
JMAP N. Jenkins
Internet-Draft FastMail
Updates: 5788 (if approved) July 2, 2018
Intended status: Standards Track
Expires: January 3, 2019

JMAP for Mail
draft-ietf-jmap-mail-06

Abstract

 This document specifies a data model for synchronising email data
 with a server using JMAP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jenkins Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5788
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JMAP Mail July 2018

Table of Contents

1. Introduction . 3
1.1. Notational conventions 3
1.2. The Date data types 4
1.3. Terminology . 4
1.4. Addition to the capabilities object 4
1.5. Push . 6

2. Mailboxes . 6
2.1. Mailbox/get . 9
2.2. Mailbox/changes . 9
2.3. Mailbox/query . 10
2.4. Mailbox/queryChanges 10
2.5. Mailbox/set . 10
2.6. Example . 11

3. Threads . 15
3.1. Thread/get . 17
3.1.1. Example . 17

3.2. Thread/changes . 17
4. Emails . 17
4.1. Properties of the Email object 17
4.1.1. Metadata . 19
4.1.2. Header fields . 20
4.1.3. Body parts . 26

4.2. Email/get . 32
4.2.1. Example . 34

4.3. Email/changes . 35
4.4. Email/query . 36
4.4.1. Filtering . 36
4.4.2. Sorting . 38
4.4.3. Thread collapsing 40
4.4.4. Response . 40

4.5. Email/queryChanges 40
4.6. Email/set . 40
4.7. Email/import . 43
4.8. Email/copy . 44
4.9. Email/parse . 46

5. Identities . 48
5.1. Identity/get . 49
5.2. Identity/changes . 49
5.3. Identity/set . 49
5.4. Example . 49

6. Email submission . 50
6.1. EmailSubmission/get 55
6.2. EmailSubmission/changes 55
6.3. EmailSubmission/query 55
6.4. EmailSubmission/queryChanges 56
6.5. EmailSubmission/set 56

Jenkins Expires January 3, 2019 [Page 2]

Internet-Draft JMAP Mail July 2018

6.5.1. Example . 58
7. Search snippets . 59
7.1. SearchSnippet/get . 60
7.2. Example . 61

8. Vacation response . 62
8.1. VacationResponse/get 63
8.2. VacationResponse/set 63

9. Security considerations 63
9.1. EmailBodyPart value 63
9.2. HTML email display 64
9.3. Email submission . 66

10. IANA Considerations . 67
10.1. JMAP Capability Registration for "mail" 67
10.2. IMAP and JMAP Keywords Registry 67
10.2.1. Registration of JMAP keyword '$draft' 68
10.2.2. Registration of JMAP keyword '$seen' 69
10.2.3. Registration of JMAP keyword '$flagged' 69
10.2.4. Registration of JMAP keyword '$answered' 70
10.2.5. Registration of '$recent' Keyword 71

11. References . 72
11.1. Normative References 72
11.2. URIs . 75

 Author's Address . 75

1. Introduction

 JMAP <https://tools.ietf.org/html/draft-ietf-jmap-core-05> is a
 generic protocol for synchronising data, such as mail, calendars or
 contacts, between a client and a server. It is optimised for mobile
 and web environments, and aims to provide a consistent interface to
 different data types.

 This specification defines a data model for synchronising mail
 between a client and a server using JMAP.

1.1. Notational conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Type signatures, examples and property descriptions in this document
 follow the conventions established in Section 1.1 of
 <https://tools.ietf.org/html/draft-ietf-jmap-core-05>.

 Object properties may also have a set of attributes defined along
 with the type signature. These have the following meanings:

https://tools.ietf.org/html/draft-ietf-jmap-core-05
https://datatracker.ietf.org/doc/html/rfc2119
https://tools.ietf.org/html/draft-ietf-jmap-core-05

Jenkins Expires January 3, 2019 [Page 3]

Internet-Draft JMAP Mail July 2018

 o *sever-set*: Only the server can set the value for this property.
 The client MUST NOT send this property when creating a new object
 of this type.

 o *immutable*: The value MUST NOT change after the object is
 created.

 o *default*: (This is followed by a JSON value). The value that
 will be used for this property if it is omitted in an argument, or
 when creating a new object of this type.

1.2. The Date data types

 Where "Date" is given as a type, it means a string in [RFC3339]
 date-time format. To ensure a normalised form, the _time-secfrac_
 MUST always be omitted and any letters in the string (e.g. "T" and
 "Z") MUST be upper-case. For example, ""2014-10-30T14:12:00+08:00"".

 Where "UTCDate" is given as a type, it means a "Date" where the
 time-offset component MUST be "Z" (i.e. it must be in UTC time).
 For example, ""2014-10-30T06:12:00Z"".

1.3. Terminology

 The same terminology is used in this document as in the core JMAP
 specification.

1.4. Addition to the capabilities object

 The capabilities object is returned as part of the standard JMAP
 Session object; see the JMAP spec. Servers supporting _this_
 specification MUST add a property called "urn:ietf:params:jmap:mail"
 to the capabilities object. The value of this property is an object
 which MUST contain the following information on server capabilities:

 o *maxMailboxesPerEmail*: "Number|null" The maximum number of
 mailboxes that can be can assigned to a single email. This MUST
 be an integer >= 1, or "null" for no limit (or rather, the limit
 is always the number of mailboxes in the account).

 o *maxSizeAttachmentsPerEmail*: "Number" The maximum total size of
 attachments, in octets, allowed for a single email. A server MAY
 still reject emails with a lower attachment size total (for
 example, if the body includes several megabytes of text, causing
 the size of the encoded MIME structure to be over some server-
 defined limit). Note, this limit is for the sum of unencoded
 attachment sizes. Users are generally not knowledgeable about
 encoding overhead etc., nor should they need to be, so services

https://datatracker.ietf.org/doc/html/rfc3339

Jenkins Expires January 3, 2019 [Page 4]

Internet-Draft JMAP Mail July 2018

 marketing and help materials normally tells them the "max size
 attachments". This is the unencoded size they see on their hard
 drive, and so this capability matches that and allows the client
 to consistently enforce what the user understands as the limit.
 The server may separately have a limit for the total size of the

RFC5322 message, which will have attachments Base64 encoded and
 message headers and bodies too. For example, suppose the server
 advertises "maxSizeAttachmentsPerEmail: 50000000" (50 MB). The
 enforced server limit may be for an RFC5322 size of 70000000
 octets (70 MB). Even with Base64 encoding and a 2 MB HTML body,
 50 MB attachments would fit under this limit.

 o *maxDelayedSend*: "Number" The number in seconds of the maximum
 delay the server supports in sending (see the EmailSubmission
 object). This is "0" if the server does not support delayed send.

 o *emailsListSortOptions*: "String[]" A list of all the email
 properties the server supports for sorting by. This MAY include
 properties the client does not recognise (for example custom
 properties specified in a vendor extension). Clients MUST ignore
 any unknown properties in the list.

 o *submissionExtensions*: "String[String[]]" A JMAP implementation
 that talks to a Submission [RFC6409] server SHOULD have a
 configuration setting that allows an administrator to expose a new
 submission EHLO capability in this field. This allows a JMAP
 server to gain access to a new submission extension without code
 changes. By default, the JMAP server should show only known safe-
 to-expose EHLO capabilities in this field, and hide EHLO
 capabilities that are only relevant to the JMAP server. Each key
 in the object is the _ehlo-name_, and the value is a list of
 ehlo-args. Examples of safe-to-expose Submission extensions
 include:

 * FUTURERELEASE ([RFC4865])

 * SIZE ([RFC1870])

 * DSN ([RFC3461])

 * DELIVERYBY ([RFC2852])

 * MT-PRIORITY ([RFC6710])

 A JMAP server MAY advertise an extension and implement the
 semantics of that extension locally on the JMAP server even if a
 submission server used by JMAP doesn't implement it. The full
 IANA registry of submission extensions can be found at

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6409
https://datatracker.ietf.org/doc/html/rfc4865
https://datatracker.ietf.org/doc/html/rfc1870
https://datatracker.ietf.org/doc/html/rfc3461
https://datatracker.ietf.org/doc/html/rfc2852
https://datatracker.ietf.org/doc/html/rfc6710

Jenkins Expires January 3, 2019 [Page 5]

Internet-Draft JMAP Mail July 2018

 <https://www.iana.org/assignments/mail-parameters/mail-
parameters.xhtml#mail-parameters-2>

 The server MUST also include the string "urn:ietf:params:jmap:mail"
 in the _hasDataFor_ property of any account in which the user may use
 the data types contained in this specification.

1.5. Push

 Servers MUST support the standard JMAP push mechanisms to receive
 notifications when the state changes for any of the types defined in
 this specification.

 In addition, servers MUST support a psuedo-type called
 "EmailDelivery" in the push mechanisms. The state string for this
 MUST change whenever a new Email is added to the store, but SHOULD
 NOT change upon any other change to the Email objects.

 Clients in battery constrained environments may wish to delay
 fetching changes initiated by the user, but fetch new messages
 immediately so they can notify the user.

2. Mailboxes

 A mailbox represents a named set of emails. This is the primary
 mechanism for organising emails within an account. It is analogous
 to a folder or a label in other systems. A mailbox may perform a
 certain role in the system; see below for more details.

 For compatibility with IMAP, an email MUST belong to one or more
 mailboxes. The email id does not change if the email changes
 mailboxes.

 A *Mailbox* object has the following properties:

 o *id*: "String" (immutable; server-set) The id of the mailbox.

 o *name*: "String" User-visible name for the mailbox, e.g. "Inbox".
 This may be any Net-Unicode string ([RFC5198]) of at least 1
 character in length and maximum 255 octets in size. Servers MUST
 forbid sibling Mailboxes with the same name. Servers MAY reject
 names that violate server policy (e.g., names containing slash (/)
 or control characters).

 o *parentId*: "String|null" (default: "null") The mailbox id for the
 parent of this mailbox, or "null" if this mailbox is at the top
 level. Mailboxes form acyclic graphs (forests) directed by the
 child-to-parent relationship. There MUST NOT be a loop.

https://www.iana.org/assignments/mail-parameters/mail-parameters.xhtml#mail-parameters-2
https://www.iana.org/assignments/mail-parameters/mail-parameters.xhtml#mail-parameters-2
https://datatracker.ietf.org/doc/html/rfc5198

Jenkins Expires January 3, 2019 [Page 6]

Internet-Draft JMAP Mail July 2018

 o *role*: "String|null" (default: "null") Identifies mailboxes that
 have a particular common purpose (e.g. the "inbox"), regardless of
 the _name_ (which may be localised). This value is shared with
 IMAP (exposed in IMAP via the [RFC6154] SPECIAL-USE extension).
 However, unlike in IMAP, a mailbox may only have a single role,
 and no two mailboxes in the same account may have the same role.
 The value MUST be one of the mailbox attribute names listed in the
 IANA Mailbox Name Attributes Registry [1], as established in
 [TODO:being established in EXTRA], converted to lower-case. New
 roles may be established here in the future. An account is not
 required to have mailboxes with any particular roles.

 o *sortOrder*: "Number" (default: "0") Defines the sort order of
 mailboxes when presented in the client's UI, so it is consistent
 between devices. The number MUST be an integer in the range 0 <=
 sortOrder < 2^31. A mailbox with a lower order should be
 displayed before a mailbox with a higher order (that has the same
 parent) in any mailbox listing in the client's UI. Mailboxes with
 equal order SHOULD be sorted in alphabetical order by name. The
 sorting SHOULD take into account locale-specific character order
 convention.

 o *totalEmails*: "Number" (server-set) The number of emails in this
 mailbox.

 o *unreadEmails*: "Number" (server-set) The number of emails in this
 mailbox that have neither the "$seen" keyword nor the "$draft"
 keyword.

 o *totalThreads*: "Number" (server-set) The number of threads where
 at least one email in the thread is in this mailbox.

 o *unreadThreads*: "Number" (server-set) The number of threads where
 at least one email in the thread has neither the "$seen" keyword
 nor the "$draft" keyword AND at least one email in the thread is
 in this mailbox (but see below for special case handling of
 Trash). Note, the unread email does not need to be the one in
 this mailbox.

 o *myRights*: "MailboxRights" (server-set) The set of rights (ACLs)
 the user has in relation to this mailbox. A _MailboxRights_
 object has the following properties:

 * *mayReadItems*: "Boolean" If true, the user may use this
 mailbox as part of a filter in a _Email/query_ call and the
 mailbox may be included in the _mailboxIds_ set of _Email_
 objects. If a sub-mailbox is shared but not the parent
 mailbox, this may be "false". Corresponds to IMAP ACLs "lr".

https://datatracker.ietf.org/doc/html/rfc6154

Jenkins Expires January 3, 2019 [Page 7]

Internet-Draft JMAP Mail July 2018

 * *mayAddItems*: "Boolean" The user may add mail to this mailbox
 (by either creating a new email or moving an existing one).
 Corresponds to IMAP ACL "i".

 * *mayRemoveItems*: "Boolean" The user may remove mail from this
 mailbox (by either changing the mailboxes of an email or
 deleting it). Corresponds to IMAP ACLs "te".

 * *maySetSeen*: "Boolean" The user may add or remove the "$seen"
 keyword to/from an email. If an email belongs to multiple
 mailboxes, the user may only modify "$seen" if *all* of the
 mailboxes have this permission. Corresponds to IMAP ACL "s".

 * *maySetKeywords*: "Boolean" The user may add or remove any
 keyword _other than_ "$seen" to/from an email. If an email
 belongs to multiple mailboxes, the user may only modify
 keywords if *all* of the mailboxes have this permission.
 Corresponds to IMAP ACL "w".

 * *mayCreateChild*: "Boolean" The user may create a mailbox with
 this mailbox as its parent. Corresponds to IMAP ACL "k".

 * *mayRename*: "Boolean" The user may rename the mailbox or make
 it a child of another mailbox. Corresponds to IMAP ACL "x".

 * *mayDelete*: "Boolean" The user may delete the mailbox itself.
 Corresponds to IMAP ACL "x".

 * *maySubmit*: "Boolean" Messages may be submitted directly to
 this mailbox. Corresponds to IMAP ACL "p".

 o *isSubscribed*: "Boolean" Has the user indicated they wish to see
 this mailbox in their client? This SHOULD default to "false" for
 mailboxes in shared accounts the user has access to, and "true"
 for any new mailboxes created by the user themself. This MUST be
 stored separately per-user where multiple users have access to a
 shared mailbox. A user may have permission to access a large
 number of shared accounts, or a shared account with a very large
 set of mailboxes, but only be interested in the contents of a few
 of these. Clients may choose only to display mailboxes to the
 user that have the "isSubscribed" property set to "true", and
 offer a separate UI to allow the user to see and subscribe/
 unsubscribe from the full set of mailboxes. However, clients MAY
 choose to ignore this property, either entirely, for ease of
 implementation, or just for the primary account (which is normally
 the user's own, rather than a shared account).

Jenkins Expires January 3, 2019 [Page 8]

Internet-Draft JMAP Mail July 2018

 The Trash mailbox (that is a mailbox with "role == "trash"") MUST be
 treated specially for the purpose of unread counts:

 1. Emails that are *only* in the Trash (and no other mailbox) are
 ignored when calculating the "unreadThreads" count of other
 mailboxes.

 2. Emails that are *not* in the Trash are ignored when calculating
 the "unreadThreads" count for the Trash mailbox.

 The result of this is that emails in the Trash are treated as though
 they are in a separate thread for the purposes of unread counts. It
 is expected that clients will hide emails in the Trash when viewing a
 thread in another mailbox and vice versa. This allows you to delete
 a single email to the Trash out of a thread.

 So for example, suppose you have an account where the entire contents
 is a single conversation with 2 emails: an unread email in the Trash
 and a read email in the Inbox. The "unreadThreads" count would be
 "1" for the Trash and "0" for the Inbox.

 For IMAP compatibility, an email in both the Trash and another
 mailbox SHOULD be treated by the client as existing in both places
 (i.e. when emptying the trash, the client SHOULD just remove the
 Trash mailbox and leave it in the other mailbox).

 The following JMAP methods are supported:

2.1. Mailbox/get

 Standard _/get_ method. The _ids_ argument may be "null" to fetch
 all at once.

2.2. Mailbox/changes

 Standard _/changes_ method, but with one extra argument to the
 response:

 o *changedProperties*: "String[]|null" If only the mailbox counts
 (unread/total emails/threads) have changed since the old state,
 this will be the list of properties that may have changed, i.e.
 "["totalEmails", "unreadEmails", "totalThreads",
 "unreadThreads"]". If the server is unable to tell if only counts
 have changed, it MUST just be "null".

 Since counts frequently change but the rest of the mailboxes state
 for most use cases changes rarely, the server can help the client
 optimise data transfer by keeping track of changes to email/thread

Jenkins Expires January 3, 2019 [Page 9]

Internet-Draft JMAP Mail July 2018

 counts separately to other state changes. The _changedProperties_
 array may be used directly via a result reference in a subsequent
 Mailbox/get call in a single request.

2.3. Mailbox/query

 Standard _/query_ method.

 A *FilterCondition* object has the following properties, any of which
 may be omitted:

 o *parentId*: "String|null" The Mailbox _parentId_ property must
 match the given value exactly.

 o *hasRole*: "Boolean" If this is "true", a Mailbox matches if it
 has a non-"null" value for its _role_ property. If "false", it
 must has a "null" _role_ value to match.

 o *isSubscribed*: "Boolean" The "isSubscribed" property of the
 mailbox must be identical to the value given to match the
 condition.

 A Mailbox object matches the filter if and only if all of the given
 conditions given match. If zero properties are specified, it is
 automatically "true" for all objects.

 The following properties MUST be supported for sorting:

 o "sortOrder"

 o "name"

 o "parent/name": This is a pseudo-property, just for sorting, with
 the following semantics: if two mailboxes have a common parent,
 sort them by name. Otherwise, find the nearest ancestors of each
 that share a common parent and sort by their names instead. (i.e.
 This sorts the mailbox list in tree order).

2.4. Mailbox/queryChanges

 Standard _/queryChanges_ method.

2.5. Mailbox/set

 Standard _/set_ method, but with the following additional argument:

 o *onDestroyRemoveMessages*: "Boolean" (default: "false") If
 "false", attempts to destroy a mailbox that still has any messages

Jenkins Expires January 3, 2019 [Page 10]

Internet-Draft JMAP Mail July 2018

 in it will be rejected with a "mailboxHasEmail" SetError. If
 "true", any messages that were in the mailbox will be removed from
 it, and if in no other mailboxes will be destroyed when the
 mailbox is destroyed.

 The following extra _SetError_ types are defined:

 For *destroy*:

 o "mailboxHasChild": The mailbox still has at least one child
 mailbox. The client MUST remove these before it can delete the
 parent mailbox.

 o "mailboxHasEmail": The mailbox has at least one message assigned
 to it and the _onDestroyRemoveMessages_ argument was "false".

2.6. Example

 Fetching all mailboxes in an account:

 [
 "Mailbox/get",
 {
 "accountId": "u33084183",
 "ids": null
 },
 "0"
]

 And response:

Jenkins Expires January 3, 2019 [Page 11]

Internet-Draft JMAP Mail July 2018

 ["Mailbox/get",
 {
 "accountId": "u33084183",
 "state": "78540",
 "list": [
 {
 "id": "23cfa8094c0f41e6",
 "name": "Inbox",
 "parentId": null,
 "role": "inbox",
 "sortOrder": 10,
 "totalEmails": 16307,
 "unreadEmails": 13905,
 "totalThreads": 5833,
 "unreadThreads": 5128,
 "myRights": {
 "mayAddItems": true,
 "mayRename": false,
 "maySubmit": true,
 "mayDelete": false,
 "maySetKeywords": true,
 "mayRemoveItems": true,
 "mayCreateChild": true,
 "maySetSeen": true,
 "mayReadItems": true
 },
 "isSubscribed": true
 },
 {
 "id": "674cc24095db49ce",
 "name": "Important mail",
 ...
 }
 ...
],
 "notFound": []
 },
 "0"
]

 Now suppose a message is marked read and we get a push update that
 the Mailbox state has changed. You might fetch the updates like
 this:

Jenkins Expires January 3, 2019 [Page 12]

Internet-Draft JMAP Mail July 2018

 [
 "Mailbox/changes",
 {
 "accountId": "u33084183",
 "sinceState": "78540"
 },
 "0"
],
 [
 "Mailbox/get",
 {
 "accountId": "u33084183",
 "#ids": {
 "resultOf": "0",
 "name": "Mailbox/changes",
 "path": "/created"
 }
 },
 "1"
],
 [
 "Mailbox/get",
 {
 "accountId": "u33084183",
 "#ids": {
 "resultOf": "0",
 "name": "Mailbox/changes",
 "path": "/updated"
 },
 "#properties": {
 "resultOf": "0",
 "name": "Mailbox/changes",
 "path": "/changedProperties"
 }
 },
 "2"
]

 This fetches the list of ids for created/updated/destroyed mailboxes,
 then using back references fetches the data for just the created/
 updated mailboxes in the same request. The response may look
 something like this:

Jenkins Expires January 3, 2019 [Page 13]

Internet-Draft JMAP Mail July 2018

 [
 "Mailbox/changes",
 {
 "accountId": "u33084183",
 "oldState": "78541",
 "newState": "78542",
 "hasMoreChanges": false,
 "changedProperties": [
 "totalEmails", "unreadEmails",
 "totalThreads", "unreadThreads"
],
 "created": [],
 "updated": ["23cfa8094c0f41e6"],
 "destroyed": []
 },
 "0"
],
 ["Mailbox/get", {
 "accountId": "u33084183",
 "state": "78542",
 "list": [],
 "notFound": []
 }, "1"],
 ["Mailbox/get", {
 "accountId": "u33084183",
 "state": "78542",
 "list": [{
 "id": "23cfa8094c0f41e6",
 "totalEmails": 16307,
 "unreadEmails": 13903,
 "totalThreads": 5833,
 "unreadThreads": 5127
 }],
 "notFound": []
 }, "2"],

 Here's an example where we try to rename one mailbox and destroy
 another:

Jenkins Expires January 3, 2019 [Page 14]

Internet-Draft JMAP Mail July 2018

 [
 "Mailbox/set",
 {
 "accountId": "u33084183",
 "ifInState": "78542",
 "update": {
 "674cc24095db49ce": {
 "name": "Maybe important mail"
 }
 },
 "destroy": ["23cfa8094c0f41e6"]
 },
 "0"
]

 Suppose the rename succeeds, but we don't have permission to destroy
 the mailbox we tried to destroy, we might get back:

 [
 "Mailbox/set",
 {
 "accountId": "u33084183",
 "oldState": "78542",
 "newState": "78549",
 "created": null,
 "notCreated": null,
 "updated": {
 "674cc24095db49ce": null
 },
 "notUpdated": null,
 "destroyed": null,
 "notDestroyed": {
 "23cfa8094c0f41e6": {
 "type": "forbidden"
 }
 }
 },
 "0"
]

3. Threads

 Replies are grouped together with the original message to form a
 thread. In JMAP, a thread is simply a flat list of emails, ordered
 by date. Every email MUST belong to a thread, even if it is the only
 email in the thread.

Jenkins Expires January 3, 2019 [Page 15]

Internet-Draft JMAP Mail July 2018

 The exact algorithm for determining whether two emails belong to the
 same thread is not mandated in this spec to allow for compatibility
 with different existing systems. For new implementations, it is
 suggested that two messages belong in the same thread if both of the
 following conditions apply:

 1. An identical RFC5322 message id appears in both messages in any
 of the Message-Id, In-Reply-To and References headers.

 2. After stripping automatically added prefixes such as "Fwd:",
 "Re:", "[List-Tag]" etc. and ignoring whitespace, the subjects
 are the same. This avoids the situation where a person replies
 to an old message as a convenient way of finding the right
 recipient to send to, but changes the subject and starts a new
 conversation.

 If emails are delivered out of order for some reason, a user may
 receive two emails in the same thread but without headers that
 associate them with each other. The arrival of a third email in the
 thread may provide the missing references to join them all together
 into a single thread. Since the _threadId_ of an email is immutable,
 if the server wishes to merge the threads, it MUST handle this by
 deleting and reinserting (with a new email id) the emails that change
 threadId.

 A *Thread* object has the following properties:

 o *id*: "String" (immutable) The id of the thread.

 o *emailIds*: "String[]" The ids of the emails in the thread, sorted
 such that:

 * Any email with the "$draft" keyword that has an "In-Reply-To"
 header is sorted after the _first_ non-draft email in the
 thread with the corresponding "Message-Id" header, but before
 any subsequent non-draft emails.

 * Other than that, everything is sorted by the _receivedAt_ date
 of the email, oldest first.

 * If two emails are identical under the above two conditions, the
 sort is server-dependent but MUST be stable (sorting by id is
 recommended).

 The following JMAP methods are supported:

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 16]

Internet-Draft JMAP Mail July 2018

3.1. Thread/get

 Standard _/get_ method.

3.1.1. Example

 Request:

 ["Thread/get", {
 "ids": ["f123u4", "f41u44"],
 }, "#1"]

 with response:

 ["Thread/get", {
 "accountId": "acme",
 "state": "f6a7e214",
 "list": [
 {
 "id": "f123u4",
 "emailIds": ["eaa623", "f782cbb"]
 },
 {
 "id": "f41u44",
 "emailIds": ["82cf7bb"]
 }
],
 "notFound": []
 }, "#1"]

3.2. Thread/changes

 Standard _/changes_ method.

4. Emails

 The *Email* object is a representation of an [RFC5322] message, which
 allows clients to avoid the complexities of MIME parsing, transport
 encoding and character encoding.

4.1. Properties of the Email object

 Broadly, a message consists of two parts: a list of header fields,
 then a body. The JMAP Email object provides a way to access the full
 structure, or to use simplified properties and avoid some complexity
 if this is sufficient for the client application.

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 17]

Internet-Draft JMAP Mail July 2018

 While raw headers can be fetched and set, the vast majority of
 clients should use an appropriate parsed form for each of the headers
 it wants to process, as this allows it to avoid the complexities of
 various encodings that are required in a valid RFC5322 message.

 The body of a message is normally a MIME-encoded set of documents in
 a tree structure. This may be arbitrarily nested, but the majority
 of email clients present a flat model of an email body (normally
 plain text or HTML), with a set of attachments. Flattening the MIME
 structure to form this model can be difficult, and causes
 inconsistency between clients. Therefore in addition to the
 bodyStructure property, which gives the full tree, the Email object
 contains 3 alternate properties with flat lists of body parts:

 o _textBody_/_htmlBody_: These provide a list of parts that should
 be rendered sequentially as the "body" of the message. This is a
 list rather than a single part as messages may have headers and/or
 footers appended/prepended as separate parts as they are
 transmitted, and some clients send text and images, or even videos
 and sound clips, intended to be displayed inline in the body as
 multiple parts rather than a single HTML part with referenced
 images.

 Because MIME allows for multiple representations of the same data
 (using "multipart/alternative"), there is a textBody property (which
 prefers a plain text representation) and an htmlBody property (which
 prefers an HTML representation) to accommodate the two most common
 client requirements. The same part may appear in both lists where
 there is no alternative between the two.

 o _attachments_: This provides a list of parts that should be
 presented as "attachments" to the message. Some images may be
 solely there for embedding within an HTML body part; clients may
 wish to not present these as attachments in the user interface if
 they are displaying the HTML with the embedded images directly.
 Some parts may also be in htmlBody/textBody; again, clients may
 wish to not present these as attachments in the user interface if
 rendered as part of the body.

 The _bodyValues_ property allows for clients to fetch the value of
 text parts directly without having to do a second request for the
 blob, and have the server handle decoding the charset into unicode.
 This data is in a separate property rather than on the EmailBodyPart
 object to avoid duplication of large amounts of data, as the same
 part may be included twice if the client fetches more than one of
 bodyStructure, textBody and htmlBody.

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 18]

Internet-Draft JMAP Mail July 2018

 Due to the number of properties involved, the set of _Email_
 properties is specified over the following three sub-sections.

4.1.1. Metadata

 These properties represent metadata about the [RFC5322] message, and
 are not derived from parsing the message itself.

 o *id*: "String" (immutable; server-set) The id of the Email object.
 Note, this is the JMAP object id, NOT the [RFC5322] Message-ID
 header field value.

 o *blobId*: "String" (immutable; server-set) The id representing the
 raw octets of the [RFC5322] message. This may be used to download
 the raw original message, or to attach it directly to another
 Email etc.

 o *threadId*: "String" (immutable; server-set) The id of the Thread
 to which this Email belongs.

 o *mailboxIds*: "String[Boolean]" The set of mailbox ids this email
 belongs to. An email MUST belong to one or more mailboxes at all
 times (until it is deleted). The set is represented as an object,
 with each key being a _Mailbox id_. The value for each key in the
 object MUST be "true".

 o *keywords*: "String[Boolean]" (default: "{}") A set of keywords
 that apply to the email. The set is represented as an object,
 with the keys being the _keywords_. The value for each key in the
 object MUST be "true". Keywords are shared with IMAP. The six
 system keywords from IMAP are treated specially. The following
 four keywords have their first character changed from "\" in IMAP
 to "$" in JMAP and have particular semantic meaning:

 * "$draft": The email is a draft the user is composing.

 * "$seen": The email has been read.

 * "$flagged": The email has been flagged for urgent/special
 attention.

 * "$answered": The email has been replied to.

 The IMAP "\Recent" keyword is not exposed via JMAP. The IMAP
 "\Deleted" keyword is also not present: IMAP uses a delete+expunge
 model, which JMAP does not. Any message with the "\Deleted"
 keyword MUST NOT be visible via JMAP. Users may add arbitrary
 keywords to an email. For compatibility with IMAP, a keyword is a

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 19]

Internet-Draft JMAP Mail July 2018

 case-insensitive string of 1-255 characters in the ASCII subset
 %x21-%x7e (excludes control chars and space), and MUST NOT include
 any of these characters: "() {] % * " \" Because JSON is case-
 sensitive, servers MUST return keywords in lower-case. The IANA
 Keyword Registry [2] as established in [RFC5788] assigns semantic
 meaning to some other keywords in common use. New keywords may be
 established here in the future. In particular, note:

 * "$forwarded": The email has been forwarded.

 * "$phishing": The email is highly likely to be phishing.
 Clients SHOULD warn users to take care when viewing this email
 and disable links and attachments.

 * "$junk": The email is definitely spam. Clients SHOULD set this
 flag when users report spam to help train automated spam-
 detection systems.

 * "$notjunk": The email is definitely not spam. Clients SHOULD
 set this flag when users indicate an email is legitimate, to
 help train automated spam-detection systems.

 o *size*: "Number" (immutable; server-set) The size, in octets, of
 the raw data for the [RFC5322] message (as referenced by the
 blobId, i.e. the number of octets in the file the user would
 download).

 o *receivedAt*: "UTCDate" (immutable; default: time of creation on
 server) The date the email was received by the message store.
 This is the _internal date_ in IMAP.

4.1.2. Header fields

 These properties are derived from the [RFC5322] and [RFC6532] message
 header fields. All header fields may be fetched in a raw form. Some
 headers may also be fetched in a parsed form. The structured form
 that may be fetched depends on the header. The following forms are
 defined:

 o *Raw* ("String") The raw octets of the header field value from the
 first octet following the header field name terminating colon, up
 to but excluding the header field terminating CRLF. Any
 standards-compliant message MUST be either ASCII (RFC5322) or
 UTF-8 (RFC6532), however other encodings exist in the wild. A
 server MAY use heuristics to determine a charset and decode the
 octets, or MAY replace any octet or octet run with the high bit
 set that violates UTF-8 syntax with the unicode replacement
 character (U+FFFD). Any NUL octet MUST be dropped.

https://datatracker.ietf.org/doc/html/rfc5788
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6532

Jenkins Expires January 3, 2019 [Page 20]

Internet-Draft JMAP Mail July 2018

 o *Text* ("String") The header field value with:

 1. White space unfolded (as defined in [RFC5322] section 2.2.3)

 2. The terminating CRLF at the end of the value removed

 3. Any SP characters at the beginning of the value removed

 4. Any syntactically correct [RFC2047] encoded sections with a
 known character set decoded. Any [RFC2047] encoded NUL octets
 or control characters are dropped from the decoded value. Any
 text that looks like [RFC2047] syntax but violates [RFC2047]
 placement or whitespace rules MUST NOT be decoded.

 5. Any [RFC6532] UTF-8 values decoded.

 6. The resulting unicode converted to NFC form.

 If any decodings fail, the parser SHOULD insert a unicode
 replacement character (U+FFFD) and attempt to continue as much as
 possible. To prevent obviously nonsense behaviour, which can lead
 to interoperability issues, this form may only be fetched or set
 for the following header fields:

 * Subject

 * Comment

 * List-Id

 * Any header not defined in [RFC5322] or [RFC2369]

 o *Addresses* ("EmailAddress[]") The header is parsed as an
 "address-list" value, as specified in [RFC5322] section 3.4, into
 the "EmailAddress[]" type. The *EmailAddress* object has the
 following properties:

 * *name*: "String|null" The _display-name_ of the [RFC5322]
 mailbox or _group_, or "null" if none. If this is a _quoted-
 string_:

 1. The surrounding DQUOTE characters are removed.

 2. Any _quoted-pair_ is decoded.

 3. White-space is unfolded, and then any leading or trailing
 white-space is removed.

https://datatracker.ietf.org/doc/html/rfc5322#section-2.2.3
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 21]

Internet-Draft JMAP Mail July 2018

 * *email*: "String|null" The _addr-spec_ of the [RFC5322]
 mailbox, or "null" if a _group_.

 Any syntactically correct [RFC2047] encoded sections with a known
 encoding MUST be decoded, following the same rules as for the
 Text form. Any [RFC6532] UTF-8 values MUST be decoded. Parsing
 SHOULD be best-effort in the face of invalid structure to
 accommodate invalid messages and semi-complete drafts.
 EmailAddress objects MAY have an _email_ property that does not
 conform to the _addr-spec_ form (for example, may not contain an @
 symbol). To prevent obviously nonsense behaviour, which can lead
 to interoperability issues, this form may only be fetched or set
 for the following header fields:

 * From

 * Sender

 * Reply-To

 * To

 * Cc

 * Bcc

 * Resent-From

 * Resent-Sender

 * Resent-Reply-To

 * Resent-To

 * Resent-Cc

 * Resent-Bcc

 * Any header not defined in [RFC5322] or [RFC2369]

 o *MessageIds* ("String[]|null") The header is parsed as a list of
 "msg-id" values, as specified in [RFC5322] section 3.6.4, into the
 "String[]" type. CFWS and surrounding angle brackets ("<>") are
 removed. If parsing fails, the value is "null". To prevent
 obviously nonsense behaviour, which can lead to interoperability
 issues, this form may only be fetched or set for the following
 header fields:

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322#section-3.6.4

Jenkins Expires January 3, 2019 [Page 22]

Internet-Draft JMAP Mail July 2018

 * Message-ID

 * In-Reply-To

 * References

 * Resent-Message-ID

 * Any header not defined in [RFC5322] or [RFC2369]

 o *Date* ("Date|null") The header is parsed as a "date-time" value,
 as specified in [RFC5322] section 3.3, into the "Date" type. If
 parsing fails, the value is "null". To prevent obviously nonsense
 behaviour, which can lead to interoperability issues, this form
 may only be fetched or set for the following header fields:

 * Date

 * Resent-Date

 * Any header not defined in [RFC5322] or [RFC2369]

 o *URLs* ("String[]|null") The header is parsed as a list of URLs,
 as described in [RFC2369], into the "String[]" type. Values do
 not include the surrounding angle brackets or any comments in the
 header with the URLs. If parsing fails, the value is "null". To
 prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for
 the following header fields:

 * List-Help

 * List-Unsubscribe

 * List-Subscribe

 * List-Post

 * List-Owner

 * List-Archive

 * Any header not defined in [RFC5322] or [RFC2369]

 The following low-level *Email* property is specified for complete
 access to the header data of the message:

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322#section-3.3
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369

Jenkins Expires January 3, 2019 [Page 23]

Internet-Draft JMAP Mail July 2018

 o *headers*: "EmailHeader[]" (immutable) This is a list of all
 [RFC5322] header fields, in the same order they appear in the
 message. An *EmailHeader* object has the following properties:

 * *name*: "String" The header _field name_ as defined in
 [RFC5322], with the same capitalization that it has in the
 message.

 * *value*: "String" The header _field value_ as defined in
 [RFC5322], in _Raw_ form.

 In addition, the client may request/send properties representing
 individual header fields of the form:

 header:{header-field-name}

 Where "{header-field-name}" means any series of one or more printable
 ASCII characters (i.e. characters that have values between 33 and
 126, inclusive), except colon. The property may also have the
 following suffixes:

 o *:as{header-form}* This means the value is in a parsed form, where
 "{header-form}" is one of the parsed-form names specified above.
 If not given, the value is in _Raw_ form.

 o *:all* This means the value is an array, with the items
 corresponding to each instance of the header field, in the order
 they appear in the message. If this suffix is not used, the
 result is the value of the *last* instance of the header field
 (i.e. identical to the *last* item in the array if :all is used),
 or "null" if none.

 If both suffixes are used, they MUST be specified in the order above.
 Header field names are matched case-insensitively. The value is
 typed according to the requested form, or an array of that type if
 :all is used. If no header fields exist in the message with the
 requested name, the value is "null" if fetching a single instance, or
 the empty array if requesting :all.

 As a simple example, if the client requests a property called
 "header:subject", this means find the _last_ header field in the
 message named "subject" (matched case-insensitively) and return the
 value in _Raw_ form, or "null" if no header of this name is found.

 For a more complex example, consider the client requesting a property
 called "header:Resent-To:asAddresses:all". This means:

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 24]

Internet-Draft JMAP Mail July 2018

 1. Find _all_ header fields named Resent-To (matched case-
 insensitively).

 2. For each instance parse the header field value in the _Addresses_
 form.

 3. The result is of type "EmailAddress[][]" - each item in the array
 corresponds to the parsed value (which is itself an array) of the
 Resent-To header field instance.

 The following convenience properties are also specified for the
 Email object:

 o *messageId*: "String[]|null" (immutable) The value is identical to
 the value of _header:Message-ID:asMessageIds_. For messages
 conforming to RFC5322 this will be an array with a single entry.

 o *inReplyTo*: "String[]|null" (immutable) The value is identical to
 the value of _header:In-Reply-To:asMessageIds_.

 o *references*: "String[]|null" (immutable) The value is identical
 to the value of _header:References:asMessageIds_.

 o *sender*: "EmailAddress[]|null" (immutable) The value is identical
 to the value of _header:Sender:asAddresses_.

 o *from*: "EmailAddress[]|null" (immutable) The value is identical
 to the value of _header:From:asAddresses_.

 o *to*: "EmailAddress[]|null" (immutable) The value is identical to
 the value of _header:To:asAddresses_.

 o *cc*: "EmailAddress[]|null" (immutable) The value is identical to
 the value of _header:Cc:asAddresses_.

 o *bcc*: "EmailAddress[]|null" (immutable) The value is identical to
 the value of _header:Bcc:asAddresses_.

 o *replyTo*: "EmailAddress[]|null" (immutable) The value is
 identical to the value of _header:Reply-To:asAddresses_.

 o *subject*: "String|null" (immutable) The value is identical to the
 value of _header:Subject:asText_.

 o *sentAt*: "Date|null" (immutable; default on creation: current
 server time) The value is identical to the value of
 header:Date:asDate.

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 25]

Internet-Draft JMAP Mail July 2018

4.1.3. Body parts

 These properties are derived from the [RFC5322] message body and its
 [RFC2045] MIME entities.

 A *EmailBodyPart* object has the following properties:

 o *partId*: "String|null" Identifies this part uniquely within the
 Email. This is scoped to the _emailId_ and has no meaning outside
 of the JMAP Email object representation. This is "null" if, and
 only if, the part is of type "multipart/*".

 o *blobId*: "String|null" The id representing the raw octets of the
 contents of the part after decoding any _Content-Transfer-
 Encoding_ (as defined in [RFC2045]), or "null" if, and only if,
 the part is of type "multipart/*". Note, two parts may be
 transfer-encoded differently but have same the same blob id if
 their decoded octets are identical and the server is using a
 secure hash of the data for the blob id.

 o *size*: "Number" The size, in octets, of the raw data after
 content transfer decoding (as referenced by the _blobId_, i.e. the
 number of octets in the file the user would download).

 o *headers*: "EmailHeader[]" This is a list of all header fields in
 the part, in the order they appear. The values are in _Raw_ form.

 o *name*: "String|null" This is the [RFC2231] decoded _filename_
 parameter of the _Content-Disposition_ header field, or (for
 compatibility with existing systems) if not present then the
 [RFC2047] decoded _name_ parameter of the _Content-Type_ header
 field.

 o *type*: "String" The value of the _Content-Type_ header field of
 the part, if present, otherwise the implicit type as per the MIME
 standard ("text/plain", or "message/rfc822" if inside a
 "multipart/digest"). CFWS is removed and any parameters are
 stripped.

 o *charset*: "String|null" The value of the charset parameter of the
 Content-Type header field, if present, or "null" if the header
 field is present but has no charset parameter. If there is no
 Content-Type header field, this is the implicit charset as per
 the MIME standard ("us-ascii").

 o *disposition*: "String|null" The value of the _Content-
 Disposition_ header field of the part, if present, otherwise
 "null". CFWS is removed and any parameters are stripped.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2231
https://datatracker.ietf.org/doc/html/rfc2047

Jenkins Expires January 3, 2019 [Page 26]

Internet-Draft JMAP Mail July 2018

 o *cid*: "String|null" The value of the _Content-Id_ header field of
 the part, if present, otherwise "null". CFWS and surrounding
 angle brackets ("<>") are removed. This may be used to reference
 the content from within an html body part using the "cid:"
 protocol.

 o *language*: "String[]|null" The list of language tags, as defined
 in [RFC3282], in the _Content-Language_ header field of the part,
 if present.

 o *location*: "String|null" The URI, as defined in [RFC2557], in the
 Content-Location header field of the part, if present.

 o *subParts*: "EmailBodyPart[]" (optional) If type is "multipart/*",
 this contains the body parts of each child.

 In addition, the client may request/send EmailBodyPart properties
 representing individual header fields, following the same syntax and
 semantics as for the Email object, e.g. "header:Content-Type".

 The following *Email* properties are specified for access to the body
 data of the message:

 o *bodyStructure*: "EmailBodyPart" (immutable) This is the full MIME
 structure of the message body, represented as an array of the
 message's top-level MIME parts, without recursing into "message/

rfc822" or "message/global" parts. Note that EmailBodyParts may
 have subParts if they are of type "multipart/*".

 o *bodyValues*: "String[EmailBodyValue]" (immutable) This is a map
 of _partId_ to an *EmailBodyValue* object for none, some or all
 "text/*" parts. Which parts are included and whether the value is
 truncated is determined by various arguments to _Email/get_ and
 Email/parse. An *EmailBodyValue* object has the following
 properties:

 * *value*: "String" The value of the body part after decoding
 Content-Transport-Encoding and decoding the _Content-Type_
 charset, if known to the server, and with any CRLF replaced
 with a single LF. The server MAY use heuristics to determine
 the charset to use for decoding if the charset is unknown, or
 if no charset is given, or if it believes the charset given is
 incorrect. Decoding is best-effort and SHOULD insert the
 unicode replacement character (U+FFFD) and continue when a
 malformed section is encountered. Note that due to the charset
 decoding and line ending normalisation, the length of this
 string will probably not be exactly the same as the _size_
 property on the corresponding EmailBodyPart.

https://datatracker.ietf.org/doc/html/rfc3282
https://datatracker.ietf.org/doc/html/rfc2557
https://datatracker.ietf.org/doc/html/rfc822

Jenkins Expires January 3, 2019 [Page 27]

Internet-Draft JMAP Mail July 2018

 * *isEncodingProblem*: "Boolean" (default: "false") This is
 "true" if malformed sections were found while decoding the
 charset, or the charset was unknown.

 * *isTruncated*: "Boolean" (default: "false") This is "true" if
 the _value_ has been truncated.

 See the security considerations section for issues related to
 truncation and heuristic determination of content-type and
 charset.

 o *textBody*: "EmailBodyPart[]" (immutable) A list of "text/plain",
 "text/html", "image/*", "audio/*" and/or "video/*" parts to
 display (sequentially) as the message body, with a preference for
 "text/plain" when alternative versions are available.

 o *htmlBody*: "EmailBodyPart[]" (immutable) A list of "text/plain",
 "text/html", "image/*", "audio/*" and/or "video/*" parts to
 display (sequentially) as the message body, with a preference for
 "text/html" when alternative versions are available.

 o *attachments*: "EmailBodyPart[]" (immutable) A list of all parts
 in _bodyStructure_, traversing depth-first, which satisfy either
 of the following conditions:

 * not of type "multipart/*" and not included in _textBody_ or
 htmlBody

 * of type "image/*", "audio/*" or "video/*" and not in both
 textBody and _htmlBody_

 None of these parts include subParts, including "message/*" types.
 Attached messages may be fetched using the Email/parse method and
 the blobId. Note, an HTML body part may reference image parts in
 attachments using "cid:" links to reference the _Content-Id_ or by
 referencing the _Content-Location_.

 o *hasAttachment*: "Boolean" (immutable; server-set) This is "true"
 if there are one or more parts in the message that a client UI
 should offer as downloadable. A server SHOULD set hasAttachment
 if either:

 * The _attachments_ list contains at least one item that does not
 have "Content-Disposition: inline". The server MAY ignore
 parts in this list that are processed automatically in some
 way, or are referenced as embedded images in one of the "text/
 html" parts of the message.

Jenkins Expires January 3, 2019 [Page 28]

Internet-Draft JMAP Mail July 2018

 The server MAY set hasAttachment based on implementation-defined
 or site configurable heuristics.

 o *preview*: "String" (immutable; server-set) Up to 255 octets of
 plain text, summarising the message body. This is intended to be
 shown as a preview line on a mailbox listing, and may be truncated
 when shown. The server may choose which part of the message to
 include in the preview, for example skipping quoted sections and
 salutations and collapsing white-space can result in a more useful
 preview.

 The exact algorithm for decomposing bodyStructure into textBody,
 htmlBody and attachments part lists is not mandated, as this is a
 quality-of-service implementation issue and likely to require
 workarounds for malformed content discovered over time. However, the
 following algorithm (expressed here in JavaScript) is suggested as a
 starting point, based on real-world experience:

function isInlineMediaType (type) {
 return type.startsWith('image/') ||
 type.startsWith('audio/') ||
 type.startsWith('video/');
}

function parseStructure (parts, multipartType, inAlternative,
 htmlBody, textBody, attachments) {

 // For multipartType == alternative
 let textLength = textBody ? textBody.length : -1;
 let htmlLength = htmlBody ? htmlBody.length : -1;

 for (let i = 0; i < parts.length; i += 1) {
 let part = parts[i];
 let isMultipart = part.type.startsWith('multipart/');
 // Is this a body part rather than an attachment
 let isInline = part.disposition != "attachment" &&
 // Must be one of the allowed body types
 (part.type == "text/plain" ||
 part.type == "text/html" ||
 isInlineMediaType(part.type)) &&
 // If multipart/related, only the first part can be inline
 // If a text part with a filename, and not the first item in the
 // multipart, assume it is an attachment
 (i === 0 ||
 (multipartType != "related" &&
 (isInlineMediaType(part.type) || !part.name)));

 if (isMultipart) {

Jenkins Expires January 3, 2019 [Page 29]

Internet-Draft JMAP Mail July 2018

 let subMultiType = part.type.split('/')[1];
 parseStructure(part.subParts, subMultiType,
 inAlternative || (subMultiType == 'alternative'),
 htmlBody, textBody, attachments);
 } else if (isInline) {
 if (multipartType == 'alternative') {
 switch (part.type) {
 case 'text/plain':
 textBody.push(part);
 break;
 case 'text/html':
 htmlBody.push(part);
 break;
 default:
 attachments.push(part);
 break;
 }
 continue;
 } else if (inAlternative) {
 if (part.type == 'text/plain') {
 htmlBody = null;
 }
 if (part.type == 'text/html') {
 textBody = null;
 }
 }
 if (textBody) {
 textBody.push(part);
 }
 if (htmlBody) {
 htmlBody.push(part);
 }
 if ((!textBody || !htmlBody) &&
 isInlineMediaType(part.type)) {
 attachments.push(part);
 }
 } else {
 attachments.push(part);
 }
 }

 if (multipartType == 'alternative' && textBody && htmlBody) {
 // Found HTML part only
 if (textLength == textBody.length &&
 htmlLength != htmlBody.length) {
 for (let i = htmlLength; i < htmlBody.length; i += 1) {
 textBody.push(htmlBody[i]);
 }

Jenkins Expires January 3, 2019 [Page 30]

Internet-Draft JMAP Mail July 2018

 }
 // Found plain text part only
 if (htmlLength == htmlBody.length &&
 textLength != textBody.length) {
 for (let i = textLength; i < textBody.length; i += 1) {
 htmlBody.push(textBody[i]);
 }
 }
 }
}

// Usage:
let htmlBody = [];
let textBody = [];
let attachments = [];

parseStructure([bodyStructure], 'mixed', false,
 htmlBody, textBody, attachments);

 For instance, consider a message with both text and html versions
 that's then gone through a list software manager that attaches a
 header/footer. It might have a MIME structure something like:

 multipart/mixed
 text/plain, content-disposition=inline - A
 multipart/mixed
 multipart/alternative
 multipart/mixed
 text/plain, content-disposition=inline - B
 image/jpeg, content-disposition=inline - C
 text/plain, content-disposition=inline - D
 multipart/related
 text/html - E
 image/jpeg - F
 image/jpeg, content-disposition=attachment - G
 application/x-excel - H
 message/rfc822 - J
 text/plain, content-disposition=inline - K

 In this case, the above algorithm would decompose this to:

 textBody => [A, B, C, D, K]
 htmlBody => [A, E, K]
 attachments => [C, F, G, H, J]

Jenkins Expires January 3, 2019 [Page 31]

Internet-Draft JMAP Mail July 2018

4.2. Email/get

 Standard _/get_ method, with the following additional arguments:

 o *bodyProperties*: "String[]" (optional) A list of properties to
 fetch for each EmailBodyPart returned. If omitted, this defaults
 to: ["partId", "blobId", "size", "name", "type", "charset",
 "disposition", cid", "language", "location"]

 o *fetchTextBodyValues*: "Boolean" (default: "false") If "true", the
 bodyValues property includes any "text/*" part in the "textBody"
 property.

 o *fetchHTMLBodyValues*: "Boolean" (default: "false") If "true", the
 bodyValues property includes any "text/*" part in the "htmlBody"
 property.

 o *fetchAllBodyValues*: "Boolean" (default: "false") If "true", the
 bodyValues property includes any "text/*" part in the
 "bodyStructure" property.

 o *maxBodyValueBytes*: "Number" (optional) If supplied by the
 client, the value MUST be a positive integer greater than 0. If a
 value outside of this range is given, the server MUST reject the
 call with an "invalidArguments" error. When given, the _value_
 property of any EmailBodyValue object returned in _bodyValues_
 MUST be truncated if necessary so it does not exceed this number
 of octets in size. The server MUST ensure the truncation results
 in valid UTF-8 and does not occur mid-codepoint. If the part is
 of type "text/html", the server SHOULD NOT truncate inside an HTML
 tag e.g. in the middle of "". There
 is no requirement for the truncated form to be a balanced tree or
 valid HTML (indeed, the original source may well be neither of
 these things).

 If the standard _properties_ argument is omitted or "null", the
 following default MUST be used instead of "all" properties:

 ["id", "blobId", "threadId", "mailboxIds", "keywords", "size",
 "receivedAt", "messageId", "inReplyTo", "references", "sender", "from",
 "to", "cc", "bcc", "replyTo", "subject", "sentAt", "hasAttachment",
 "preview", "bodyValues", "textBody", "htmlBody", "attachments"]

 The following properties are expected to be fast to fetch in a
 quality implementation:

 o id

Jenkins Expires January 3, 2019 [Page 32]

Internet-Draft JMAP Mail July 2018

 o blobId

 o threadId

 o mailboxIds

 o keywords

 o size

 o receivedAt

 o messageId

 o inReplyTo

 o sender

 o from

 o to

 o cc

 o bcc

 o replyTo

 o subject

 o sentAt

 o hasAttachment

 o preview

 Clients SHOULD take care when fetching any other properties, as there
 may be significantly longer latency in fetching and returning the
 data.

 As specified above, parsed forms of headers may only be used on
 appropriate header fields. Attempting to fetch a form that is
 forbidden (e.g. "header:From:asDate") MUST result in the method call
 being rejected with an "invalidArguments" error.

 Where a specific header is requested as a property, the
 capitalization of the property name in the response MUST be identical
 to that used in the request.

Jenkins Expires January 3, 2019 [Page 33]

Internet-Draft JMAP Mail July 2018

4.2.1. Example

 Request:

["Email/get", {
 "ids": ["f123u456", "f123u457"],
 "properties": ["threadId", "mailboxIds", "from", "subject", "receivedAt",
"header:List-POST:asURLs" "htmlBody", "bodyValues"],
 "bodyProperties": ["partId", "blobId", "size", "type"],
 "fetchHTMLBodyValues": true,
 "maxBodyValueBytes": 256
}, "#1"]

 and response:

Jenkins Expires January 3, 2019 [Page 34]

Internet-Draft JMAP Mail July 2018

["Email/get", {
 "accountId": "abc",
 "state": "41234123231",
 "list": [
 {
 "id": "f123u457",
 "threadId": "ef1314a",
 "mailboxIds": { "f123": true },
 "from": [{name: "Joe Bloggs", email: "joe@bloggs.com"}],
 "subject": "Dinner on Thursday?",
 "receivedAt": "2013-10-13T14:12:00Z",
 "header:List-POST:asURLs": ["mailto:partytime@lists.example.com"],
 "htmlBody": [{
 "partId": "1",
 "blobId": "841623871",
 "size": 283331,
 "type": "text/html"
 }, {
 "partId": "2",
 "blobId": "319437193",
 "size": 10343,
 "type": "text/plain"
 }],
 "bodyValues": {
 "1": {
 "isEncodingProblem": false,
 "isTruncated": true,
 "value": "<html><body><p>Hello ..."
 },
 "2": {
 "isEncodingProblem": false,
 "isTruncated": false,
 "value": "-- \nSent by your friendly mailing list ..."
 }
 }
 }
],
 notFound: ["f123u456"]
}, "#1"]

4.3. Email/changes

 Standard _/changes_ method.

Jenkins Expires January 3, 2019 [Page 35]

Internet-Draft JMAP Mail July 2018

4.4. Email/query

 Standard _/query_ method, but with the following additional
 arguments:

 o *collapseThreads*: "Boolean" (default: "false") If "true", emails
 in the same thread as a previous email in the list (given the
 filter and sort order) will be removed from the list. This means
 at most only one email will be included in the list for any given
 thread.

4.4.1. Filtering

 A *FilterCondition* object has the following properties, any of which
 may be omitted:

 o *inMailbox*: "String" A mailbox id. An email must be in this
 mailbox to match the condition.

 o *inMailboxOtherThan*: "String[]" A list of mailbox ids. An email
 must be in at least one mailbox not in this list to match the
 condition. This is to allow messages solely in trash/spam to be
 easily excluded from a search.

 o *before*: "UTCDate" The _receivedAt_ date of the email must be
 before this date to match the condition.

 o *after*: "UTCDate" The _receivedAt_ date of the email must be on
 or after this date to match the condition.

 o *minSize*: "Number" The _size_ of the email in octets must be
 equal to or greater than this number to match the condition.

 o *maxSize*: "Number" The size of the email in octets must be less
 than this number to match the condition.

 o *allInThreadHaveKeyword*: "String" All emails (including this one)
 in the same thread as this email must have the given keyword to
 match the condition.

 o *someInThreadHaveKeyword*: "String" At least one email (possibly
 this one) in the same thread as this email must have the given
 keyword to match the condition.

 o *noneInThreadHaveKeyword*: "String" All emails (including this
 one) in the same thread as this email must *not* have the given
 keyword to match the condition.

Jenkins Expires January 3, 2019 [Page 36]

Internet-Draft JMAP Mail July 2018

 o *hasKeyword*: "String" This email must have the given keyword to
 match the condition.

 o *notKeyword*: "String" This email must not have the given keyword
 to match the condition.

 o *hasAttachment*: "Boolean" The "hasAttachment" property of the
 email must be identical to the value given to match the condition.

 o *text*: "String" Looks for the text in emails. The server SHOULD
 look up text in the _from_, _to_, _cc_, _bcc_, _subject_ header
 fields of the message, and inside any "text/*" or other body parts
 that may be converted to text by the server. The server MAY
 extend the search to any additional textual property.

 o *from*: "String" Looks for the text in the _From_ header field of
 the message.

 o *to*: "String" Looks for the text in the _To_ header field of the
 message.

 o *cc*: "String" Looks for the text in the _Cc_ header field of the
 message.

 o *bcc*: "String" Looks for the text in the _Bcc_ header field of
 the message.

 o *subject*: "String" Looks for the text in the _subject_ property
 of the email.

 o *body*: "String" Looks for the text in one of the "text/*" body
 parts of the email.

 o *attachments*: "String" Looks for the text in the attachments of
 the email. Servers MAY handle text extraction when possible for
 the different kinds of media.

 o *header*: "String[]" The array MUST contain either one or two
 elements. The first element is the name of the header field to
 match against. The second (optional) element is the text to look
 for in the header field value. If not supplied, the message
 matches simply if it _has_ a header field of the given name.

 If zero properties are specified on the FilterCondition, the
 condition MUST always evaluate to "true". If multiple properties are
 specified, ALL must apply for the condition to be "true" (it is
 equivalent to splitting the object into one-property conditions and
 making them all the child of an AND filter operator).

Jenkins Expires January 3, 2019 [Page 37]

Internet-Draft JMAP Mail July 2018

 The exact semantics for matching "String" fields is *deliberately not
 defined* to allow for flexibility in indexing implementation, subject
 to the following:

 o Any syntactically correct [RFC2047] encoded sections of header
 fields with a known encoding SHOULD be decoded before attempting
 to match text.

 o When searching inside a "text/html" body part, any text considered
 markup rather than content SHOULD be ignored, including HTML tags
 and most attributes, anything inside the "<head>" tag, CSS and
 JavaScript. Attribute content intended for presentation to the
 user such as "alt" and "title" SHOULD be considered in the search.

 o Text SHOULD be matched in a case-insensitive manner.

 o Text contained in either (but matched) single or double quotes
 SHOULD be treated as a *phrase search*, that is a match is
 required for that exact word or sequence of words, excluding the
 surrounding quotation marks. Use "\"", "\'" and "\\" to match a
 literal """, "'" and "\" respectively in a phrase.

 o Outside of a phrase, white-space SHOULD be treated as dividing
 separate tokens that may be searched for separately, but MUST all
 be present for the email to match the filter.

 o Tokens MAY be matched on a whole-word basis using stemming (so for
 example a text search for "bus" would match "buses" but not
 "business").

4.4.2. Sorting

 The following properties MUST be supported for sorting:

 o *receivedAt* - The _receivedAt_ date as returned in the Email
 object.

 The following properties SHOULD be supported for sorting:

 o *size* - The size as returned in the Email object.

 o *from* - This is taken to be either the "name" part, or if
 "null"/empty then the "email" part, of the *first* EmailAddress
 object in the _from_ property. If still none, consider the value
 to be the empty string.

 o *to* - This is taken to be either the "name" part, or if
 "null"/empty then the "email" part, of the *first* EmailAddress

https://datatracker.ietf.org/doc/html/rfc2047

Jenkins Expires January 3, 2019 [Page 38]

Internet-Draft JMAP Mail July 2018

 object in the _to_ property. If still none, consider the value to
 be the empty string.

 o *subject* - This is taken to be the base subject of the email, as
 defined in section 2.1 of [RFC5256].

 o *sentAt* - The _sentAt_ property on the Email object.

 o *hasKeyword* - This value MUST be considered "true" if the email
 has the keyword given as the _keyword_ property on this
 Comparator object, or "false" otherwise.

 o *allInThreadHaveKeyword* - This value MUST be considered "true"
 for the email if *all* of the emails in the same thread
 (regardless of mailbox) have the keyword given as the _keyword_
 property on this _Comparator_ object.

 o *someInThreadHaveKeyword* - This value MUST be considered "true"
 for the email if *any* of the emails in the same thread
 (regardless of mailbox) have the keyword given as the _keyword_
 property on this _Comparator_ object.

 The server MAY support sorting based on other properties as well. A
 client can discover which properties are supported by inspecting the
 server's _capabilities_ object (see section 1).

 Example sort:

 [{
 "property": "someInThreadHaveKeyword",
 "keyword": "$flagged",
 "isAscending": false,
 }, {
 "property": "subject",
 "collation": "i;ascii-casemap"
 }, {
 "property": "receivedAt",
 "isAscending": false,
 }]

 This would sort emails in flagged threads first (the thread is
 considered flagged if any email within it is flagged), and then in
 subject order, then newest first for messages with the same subject.
 If two emails have both identical flagged status, subject and date,
 the order is server-dependent but must be stable.

https://datatracker.ietf.org/doc/html/rfc5256#section-2.1

Jenkins Expires January 3, 2019 [Page 39]

Internet-Draft JMAP Mail July 2018

4.4.3. Thread collapsing

 When "collapseThreads == true", then after filtering and sorting the
 email list, the list is further winnowed by removing any emails for a
 thread id that has already been seen (when passing through the list
 sequentially). A thread will therefore only appear *once* in the
 "threadIds" list of the result, at the position of the first email in
 the list that belongs to the thread.

4.4.4. Response

 The response has the following additional argument:

 o *collapseThreads*: "Boolean" The _collapseThreads_ value that was
 used when calculating the email list for this call.

4.5. Email/queryChanges

 Standard _/queryChanges_ method, with the following additional
 arguments:

 o *collapseThreads*: "Boolean" (default: "false") The
 collapseThreads argument that was used with _Email/query_.

 The response has the following additional argument:

 o *collapseThreads*: "Boolean" The _collapseThreads_ value that was
 used when calculating the email list for this call.

4.6. Email/set

 Standard _/set_ method. The _Email/set_ method encompasses:

 o Creating a draft

 o Changing the keywords of an email (e.g. unread/flagged status)

 o Adding/removing an email to/from mailboxes (moving a message)

 o Deleting emails

 Due to the format of the Email object, when creating an email there
 are a number of ways to specify the same information. To ensure that
 the RFC5322 email to create is unambiguous, the following constraints
 apply to Email objects submitted for creation:

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 40]

Internet-Draft JMAP Mail July 2018

 o The _headers_ property MUST NOT be given, on either the top-level
 email or an EmailBodyPart - the client must set each header field
 as an individual property.

 o There MUST NOT be two properties that represent the same header
 field (e.g. "header:from" and "from") within the Email or
 particular EmailBodyPart.

 o Header fields MUST NOT be specified in parsed forms that are
 forbidden for that particular field.

 o Header fields beginning "Content-" MUST NOT be specified on the
 Email object, only on EmailBodyPart objects.

 o If a bodyStructure property is given, there MUST NOT be textBody,
 htmlBody or attachments properties.

 o If given, the bodyStructure EmailBodyPart MUST NOT contain a
 property representing a header field that is already defined on
 the top-level Email object.

 o If given, textBody MUST contain exactly one body part, of type
 "text/plain".

 o If given, htmlBody MUST contain exactly one body part, of type
 "text/html".

 o Within an EmailBodyPart:

 * The client may specify a partId OR a blobId but not both. If a
 partId is given, this partId MUST be present in the bodyValues
 property.

 * The charset property MUST be omitted if a partId is given (the
 part's content is included in bodyValues and the server may
 choose any appropriate encoding).

 * The size property MUST be omitted if a partId is given. If a
 blobId is given, it may be omitted, but otherwise MUST match
 the size of the blob.

 * A "Content-Transfer-Encoding" header field MUST NOT be given.

 o Within an EmailBodyValue object, isEncodingProblem and isTruncated
 MUST be either "false" or omitted.

 Creation attempts that violate any of this SHOULD be rejected with an
 "invalidProperties" error, however a server MAY choose to modify the

Jenkins Expires January 3, 2019 [Page 41]

Internet-Draft JMAP Mail July 2018

 Email (e.g. choose between conflicting headers, use a different
 content-encoding etc.) to comply with its requirements instead.

 The server MAY also choose to set additional headers. If not
 included, the server MUST generate and set a "Message-ID" header
 field in conformance with [RFC5322] section 3.6.4, and a "Date"
 header field in conformance with section 3.6.1.

 The final RFC5322 email generated may be invalid. For example, if it
 is a half-finished draft, the "To" field may data that does not
 currently conform to the required syntax for this header field. The
 message will be checked for strict conformance when submitted for
 sending (see the EmailSubmission object description).

 Destroying an email removes it from all mailboxes to which it
 belonged. To just delete an email to trash, simply change the
 "mailboxIds" property so it is now in the mailbox with "role ==
 "trash"", and remove all other mailbox ids.

 When emptying the trash, clients SHOULD NOT destroy emails which are
 also in a mailbox other than trash. For those emails, they SHOULD
 just remove the Trash mailbox from the email.

 For successfully created Email objects, the _created_ response MUST
 contain the _id_, _blobId_, _threadId_ and _size_ properties of the
 object.

 The following extra _SetError_ types are defined:

 For *create*:

 o "blobNotFound": At least one blob id given for an EmailBodyPart
 doesn't exist. An extra _notFound_ property of type "String[]"
 MUST be included in the error object containing every _blobId_
 referenced by an EmailBodyPart that could not be found on the
 server.

 For *create* and *update*:

 o "tooManyKeywords": The change to the email's keywords would exceed
 a server-defined maximum.

 o "tooManyMailboxes": The change to the email's mailboxes would
 exceed a server-defined maximum.

https://datatracker.ietf.org/doc/html/rfc5322#section-3.6.4
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 42]

Internet-Draft JMAP Mail July 2018

4.7. Email/import

 The _Email/import_ method adds [RFC5322] messages to a user's set of
 emails. The messages must first be uploaded as a file using the
 standard upload mechanism. It takes the following arguments:

 o *accountId*: "String|null" The id of the account to use for this
 call. If "null", defaults to the "urn:ietf:params:jmap:mail"
 primary account.

 o *emails*: "String[EmailImport]" A map of creation id (client
 specified) to EmailImport objects

 An *EmailImport* object has the following properties:

 o *blobId*: "String" The id of the blob containing the raw [RFC5322]
 message.

 o *mailboxIds* "String[Boolean]" The ids of the mailboxes to assign
 this email to. At least one mailbox MUST be given.

 o *keywords*: "String[Boolean]" (default: "{}") The keywords to
 apply to the email.

 o *receivedAt*: "UTCDate" (default: time of import on server) The
 receivedAt date to set on the email.

 Each email to import is considered an atomic unit which may succeed
 or fail individually. Importing successfully creates a new email
 object from the data reference by the blobId and applies the given
 mailboxes, keywords and receivedAt date.

 The server MAY forbid two email objects with the same exact [RFC5322]
 content, or even just with the same [RFC5322] Message-ID, to coexist
 within an account. In this case, it MUST reject attempts to import
 an email considered a duplicate with an "alreadyExists" SetError. An
 emailId property of type "String" MUST be included on the error
 object with the id of the existing email.

 If the _blobId_, _mailboxIds_, or _keywords_ properties are invalid
 (e.g. missing, wrong type, id not found), the server MUST reject the
 import with an "invalidProperties" SetError.

 If the email cannot be imported because it would take the account
 over quota, the import should be rejected with a "maxQuotaReached"
 SetError.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 43]

Internet-Draft JMAP Mail July 2018

 If the blob referenced is not a valid [RFC5322] message, the server
 MAY modify the message to fix errors (such as removing NUL octets or
 fixing invalid headers). If it does this, the _blobId_ on the
 response MUST represent the new representation and therefore be
 different to the _blobId_ on the EmailImport object. Alternatively,
 the server MAY reject the import with an "invalidEmail" SetError.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for this call.

 o *created*: "String[Email]" A map of the creation id to an object
 containing the _id_, _blobId_, _threadId_ and _size_ properties
 for each successfully imported Email.

 o *notCreated*: "String[SetError]" A map of creation id to a
 SetError object for each Email that failed to be created. The
 possible errors are defined above.

4.8. Email/copy

 The only way to move messages *between* two different accounts is to
 copy them using the _Email/copy_ method, then once the copy has
 succeeded, delete the original. The _onSuccessDestroyOriginal_
 argument allows you to try to do this in one method call, however
 note that the two different actions are not atomic, and so it is
 possible for the copy to succeed but the original not to be destroyed
 for some reason.

 The _Email/copy_ method takes the following arguments:

 o *fromAccountId*: "String|null" The id of the account to copy
 emails from. If "null", defaults to the
 "urn:ietf:params:jmap:mail" primary account.

 o *toAccountId*: "String|null" The id of the account to copy emails
 to. If "null", defaults to the "urn:ietf:params:jmap:mail"
 primary account.

 o *create*: "String[EmailCopy]" A map of _creation id_ to an
 EmailCopy object.

 o *onSuccessDestroyOriginal*: "Boolean" (default: "false") If
 "true", an attempt will be made to destroy the emails that were
 successfully copied: after emitting the _Email/copy_ response, but
 before processing the next method, the server MUST make a single
 call to _Email/set_ to destroy the original of each successfully

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 44]

Internet-Draft JMAP Mail July 2018

 copied message; the output of this is added to the responses as
 normal to be returned to the client.

 An *EmailCopy* object has the following properties:

 o *id*: "String" The id of the email to be copied in the "from"
 account.

 o *mailboxIds*: "String[Boolean]" The ids of the mailboxes (in the
 "to" account) to add the copied email to. At least one mailbox
 MUST be given.

 o *keywords*: "String[Boolean]" (default: "{}") The _keywords_
 property for the copy.

 o *receivedAt*: "UTCDate" (default: _receivedAt_ date of original)
 The _receivedAt_ date to set on the copy.

 The server MAY forbid two email objects with the same exact [RFC5322]
 content, or even just with the same [RFC5322] Message-ID, to coexist
 within an account. If duplicates are allowed though, the "from"
 account may be the same as the "to" account to copy emails within an
 account.

 Each email copy is considered an atomic unit which may succeed or
 fail individually. Copying successfully MUST create a new email
 object, with separate ids and mutable properties (e.g. mailboxes and
 keywords) to the original email.

 The response has the following arguments:

 o *fromAccountId*: "String" The id of the account emails were copied
 from.

 o *toAccountId*: "String" The id of the account emails were copied
 to.

 o *created*: "String[Email]|null" A map of the creation id to an
 object containing the _id_, _blobId_, _threadId_ and _size_
 properties for each successfully copied Email.

 o *notCreated*: "String[SetError]|null" A map of creation id to a
 SetError object for each Email that failed to be copied, "null" if
 none.

 The *SetError* may be any of the standard set errors that may be
 returned for a _create_. The following extra _SetError_ type is also
 defined:

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 45]

Internet-Draft JMAP Mail July 2018

 "alreadyExists": The server forbids duplicates and the email already
 exists in the target account. An _emailId_ property of type "String"
 MUST be included on the error object with the id of the existing
 email.

 The following additional errors may be returned instead of the
 Email/copy response:

 "fromAccountNotFound": A _fromAccountId_ was explicitly included with
 the request, but it does not correspond to a valid account; or,
 fromAccountId was null but there is no primary account for
 "urn:ietf:params:jmap:mail".

 "toAccountNotFound": A _toAccountId_ was explicitly included with the
 request, but it does not correspond to a valid account; or,
 toAccountId was null but there is no primary account for
 "urn:ietf:params:jmap:mail".

 "fromAccountNotSupportedByMethod": The _fromAccountId_ given
 corresponds to a valid account, but does not contain any mail data.

 "toAccountNotSupportedByMethod": The _toAccountId_ given corresponds
 to a valid account, but does not contain any mail data.

4.9. Email/parse

 This method allows you to parse blobs as [RFC5322] messages to get
 Email objects. The following metadata properties on the Email
 objects will be "null" if requested:

 o id

 o mailboxIds

 o keywords

 o receivedAt

 The _threadId_ property of the Email MAY be present if the server can
 calculate which thread the Email would be assigned to were it to be
 imported. Otherwise, this too is "null" if fetched.

 The _Email/parse_ method takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *blobIds*: "String[]" The ids of the blobs to parse.

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 46]

Internet-Draft JMAP Mail July 2018

 o *properties*: "String[]" If supplied, only the properties listed
 in the array are returned for each Email object. If omitted,
 defaults to: ["messageId", "inReplyTo", "references", "sender",
 "from", "to", "cc", "bcc", "replyTo", "subject", "sentAt",
 "hasAttachment", "preview", "bodyValues", "textBody", "htmlBody",
 "attachments"]

 o *bodyProperties*: "String[]" (optional) A list of properties to
 fetch for each EmailBodyPart returned. If omitted, defaults to
 the same value as the Email/get "bodyProperties" default argument.

 o *fetchTextBodyValues*: "Boolean" (default: "false") If "true", the
 bodyValues property includes any "text/*" part in the "textBody"
 property.

 o *fetchHTMLBodyValues*: "Boolean" (default: "false") If "true", the
 bodyValues property includes any "text/*" part in the "htmlBody"
 property.

 o *fetchAllBodyValues*: "Boolean" (default: "false") If "true", the
 bodyValues property includes any "text/*" part in the
 "bodyStructure" property.

 o *maxBodyValueBytes*: "Number" (optional) If supplied by the
 client, the value MUST be a positive integer greater than 0. If a
 value outside of this range is given, the server MUST reject the
 call with an "invalidArguments" error. When given, the _value_
 property of any EmailBodyValue object returned in _bodyValues_
 MUST be truncated if necessary so it does not exceed this number
 of octets in size. The server MUST ensure the truncation results
 in valid UTF-8 and does not occur mid-codepoint. If the part is
 of type "text/html", the server SHOULD NOT truncate inside an HTML
 tag.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *parsed*: "String[Email]|null" A map of blob id to parsed Email
 representation for each successfully parsed blob, or "null" if
 none.

 o *notParsable*: "String[]|null" A list of ids given that
 corresponded to blobs that could not be parsed as emails, or
 "null" if none.

 o *notFound*: "String[]|null" A list of blob ids given that could
 not be found, or "null" if none.

Jenkins Expires January 3, 2019 [Page 47]

Internet-Draft JMAP Mail July 2018

 As specified above, parsed forms of headers may only be used on
 appropriate header fields. Attempting to fetch a form that is
 forbidden (e.g. "header:From:asDate") MUST result in the method call
 being rejected with an "invalidArguments" error.

 Where a specific header is requested as a property, the
 capitalization of the property name in the response MUST be identical
 to that used in the request.

5. Identities

 An *Identity* object stores information about an email address (or
 domain) the user may send from. It has the following properties:

 o *id*: "String" (immutable; server-set) The id of the identity.

 o *name*: "String" (default: """") The "From" _name_ the client
 SHOULD use when creating a new message from this identity.

 o *email*: "String" (immutable) The "From" email address the client
 MUST use when creating a new message from this identity. The
 value MAY alternatively be of the form "*@example.com", in which
 case the client may use any valid email address ending in
 "@example.com".

 o *replyTo*: "EmailAddress[]|null" (default: "null") The Reply-To
 value the client SHOULD set when creating a new message from this
 identity.

 o *bcc*: "EmailAddress[]|null" (default: "null") The Bcc value the
 client SHOULD set when creating a new message from this identity.

 o *textSignature*: "String" (default: """") Signature the client
 SHOULD insert into new plain-text messages that will be sent from
 this identity. Clients MAY ignore this and/or combine this with a
 client-specific signature preference.

 o *htmlSignature*: "String" (default: """") Signature the client
 SHOULD insert into new HTML messages that will be sent from this
 identity. This text MUST be an HTML snippet to be inserted into
 the "<body></body>" section of the new email. Clients MAY ignore
 this and/or combine this with a client-specific signature
 preference.

 o *mayDelete*: "Boolean" (server-set) Is the user allowed to delete
 this identity? Servers may wish to set this to "false" for the
 user's username or other default address.

Jenkins Expires January 3, 2019 [Page 48]

Internet-Draft JMAP Mail July 2018

 See the "Addresses" header form description in the Email object for
 the definition of _EmailAddress_.

 Multiple identities with the same email address MAY exist, to allow
 for different settings the user wants to pick between (for example
 with different names/signatures).

 The following JMAP methods are supported:

5.1. Identity/get

 Standard _/get_ method. The _ids_ argument may be "null" to fetch
 all at once.

5.2. Identity/changes

 Standard _/changes_ method.

5.3. Identity/set

 Standard _/set_ method. The following extra _SetError_ types are
 defined:

 For *create*:

 o "maxQuotaReached": The user has reached a server-defined limit on
 the number of identities.

 o "emailNotPermitted": The user is not allowed to send from the
 address given as the _email_ property of the identity.

 For *destroy*:

 o "forbidden": Returned if the identity's _mayDelete_ value is
 "false".

5.4. Example

 Request:

 ["Identity/get", {}, "0"]

 with response:

Jenkins Expires January 3, 2019 [Page 49]

Internet-Draft JMAP Mail July 2018

["Identity/get", {
 "accountId": "acme",
 "state": "99401312ae-11-333",
 "list": [
 {
 "id": "3301-222-11_22AAz",
 "name": "Joe Bloggs",
 "email": "joe@example.com",
 "replyTo": null,
 "bcc": [{
 "name": null,
 "email": "joe+archive@example.com"
 }],
 "textSignature": "-- \nJoe Bloggs\nMaster of Email",
 "htmlSignature": "<div>Joe Bloggs</div><div>Master of Email</
div>",
 "mayDelete": false,
 },
 {
 "id": "9911312-11_22AAz",
 "name": "Joe B",
 "email": "joebloggs@example.com",
 "replyTo": null,
 "bcc": null,
 "textSignature": "",
 "htmlSignature": "",
 "mayDelete": true
 }
],
 "notFound": []
}, "0"]

6. Email submission

 An *EmailSubmission* object represents the submission of an email for
 delivery to one or more recipients. It has the following properties:

 o *id*: "String" (immutable; server-set) The id of the email
 submission.

 o *identityId*: "String" (immutable) The id of the identity to
 associate with this submission.

 o *emailId*: "String" (immutable) The id of the email to send. The
 email being sent does not have to be a draft, for example when
 "redirecting" an existing email to a different address.

Jenkins Expires January 3, 2019 [Page 50]

Internet-Draft JMAP Mail July 2018

 o *threadId*: "String" (immutable; server-set) The thread id of the
 email to send. This is set by the server to the _threadId_
 property of the email referenced by the _emailId_.

 o *envelope*: "Envelope|null" (immutable; default: "null")
 Information for use when sending via SMTP. An *Envelope* object
 has the following properties:

 * *mailFrom*: "Address" The email address to use as the return
 address in the SMTP submission, plus any parameters to pass
 with the MAIL FROM address. The JMAP server MAY allow the
 address to be the empty string. When a JMAP server performs an
 SMTP message submission, it MAY use the same id string for the
 [RFC3461] ENVID parameter and the EmailSubmission object id.
 Servers that do this MAY replace a client-provided value for
 ENVID with a server-provided value.

 * *rcptTo*: "Address[]" The email addresses to send the message
 to, and any RCPT TO parameters to pass with the recipient.

 An *Address* object has the following properties:

 * *email*: "String" The email address being represented by the
 object. This as a "Mailbox" as used in the Reverse-path or
 Forward-path of the MAIL FROM or RCPT TO command in [RFC5321].

 * *parameters*: "Object|null" Any parameters to send with the
 email (either mail-parameter or rcpt-parameter as appropriate,
 as specified in [RFC5321]). If supplied, each key in the
 object is a parameter name, and the value either the parameter
 value (type "String") or if the parameter does not take a value
 then "null". For both name and value, any xtext or unitext
 encodings are removed ([RFC3461], [RFC6533]) and JSON string
 encoding applied.

 If the _envelope_ property is "null" or omitted on creation, the
 server MUST generate this from the referenced email as follows:

 * *mailFrom*: The email in the _Sender_ header, if present,
 otherwise the _From_ header, if present, and no parameters. If
 multiple addresses are present in one of these headers, or
 there is more than one _Sender_/_From_ header, the server
 SHOULD reject the email as invalid but otherwise MUST take the
 first address in the last _Sender_/_From_ header in the
 [RFC5322] version of the message. If the address found from
 this is not allowed by the identity associated with this
 submission, the _email_ property from the identity MUST be used
 instead.

https://datatracker.ietf.org/doc/html/rfc3461
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc3461
https://datatracker.ietf.org/doc/html/rfc6533
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 51]

Internet-Draft JMAP Mail July 2018

 * *rcptTo*: The deduplicated set of email addresses from the
 To, _Cc_ and _Bcc_ headers, if present, with no parameters
 for any of them.

 o *sendAt*: "UTCDate" (immutable; server-set) The date the email
 was/will be released for delivery. If the client successfully
 used [RFC4865] FUTURERELEASE with the email, this MUST be the time
 when the server will release the email; otherwise it MUST be the
 time the EmailSubmission was created.

 o *undoStatus*: "String" (server-set) This represents whether the
 submission may be canceled. This is server set and MUST be one of
 the following values:

 * "pending": It MAY be possible to cancel this submission.

 * "final": The email has been relayed to at least one recipient
 in a manner that cannot be recalled. It is no longer possible
 to cancel this submission.

 * "canceled": The email submission was canceled and will not be
 delivered to any recipient.

 On systems that do not support unsending, the value of this
 property will always be "final". On systems that do support
 canceling submission, it will start as "pending", and MAY
 transition to "final" when the server knows it definitely cannot
 recall the email, but MAY just remain "pending". If in pending
 state, a client can attempt to cancel the submission by setting
 this property to "canceled"; if the update succeeds, the
 submission was successfully canceled and the email has not been
 delivered to any of the original recipients.

 o *deliveryStatus*: "String[DeliveryStatus]|null" (server-set) This
 represents the delivery status for each of the email's recipients,
 if known. This property MAY not be supported by all servers, in
 which case it will remain "null". Servers that support it SHOULD
 update the EmailSubmission object each time the status of any of
 the recipients changes, even if some recipients are still being
 retried. This value is a map from the email address of each
 recipient to a _DeliveryStatus_ object. A *DeliveryStatus* object
 has the following properties:

 * *smtpReply*: "String" The SMTP reply string returned for this
 recipient when the server last tried to relay the email, or in
 a later DSN response for the email. This SHOULD be the
 response to the RCPT TO stage, unless this was accepted and the
 email as a whole rejected at the end of the DATA stage, in

https://datatracker.ietf.org/doc/html/rfc4865

Jenkins Expires January 3, 2019 [Page 52]

Internet-Draft JMAP Mail July 2018

 which case the DATA stage reply SHOULD be used instead. Multi-
 line SMTP responses should be concatenated to a single string
 as follows:

 + The hyphen following the SMTP code on all but the last line
 is replaced with a space.

 + Any prefix in common with the first line is stripped from
 lines after the first.

 + CRLF is replaced by a space.

 For example:

 550-5.7.1 Our system has detected that this message is
 550 5.7.1 likely spam, sorry.

 would become:

550 5.7.1 Our system has detected that this message is likely spam, sorry.

 For emails relayed via an alternative to SMTP, the server MAY
 generate a synthetic string representing the status instead.
 If it does this, the string MUST be of the following form:

 + A 3-digit SMTP reply code, as defined in [RFC5321], section
4.2.3.

 + Then a single space character.

 + Then an SMTP Enhanced Mail System Status Code as defined in
 [RFC3463], with a registry defined in [RFC5248].

 + Then a single space character.

 + Then an implementation-specific information string with a
 human readable explanation of the response.

 * *delivered*: "String" Represents whether the email has been
 successfully delivered to the recipient. This MUST be one of
 the following values:

 + "queued": The email is in a local mail queue and status will
 change once it exits the local mail queues. The _smtpReply_
 property may still change.

 + "yes": The email was successfully delivered to the mailbox
 of the recipient. The _smtpReply_ property is final.

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc3463
https://datatracker.ietf.org/doc/html/rfc5248

Jenkins Expires January 3, 2019 [Page 53]

Internet-Draft JMAP Mail July 2018

 + "no": Delivery to the recipient permanently failed. The
 smtpReply property is final.

 + "unknown": The final delivery status is unknown, (e.g. it
 was relayed to an external machine and no further
 information is available). The _smtpReply_ property may
 still change if a DSN arrives.

 Note, successful relaying to an external SMTP server SHOULD NOT
 be taken as an indication that the email has successfully
 reached the final mailbox. In this case though, the server MAY
 receive a DSN response, if requested. If a DSN is received for
 the recipient with Action equal to "delivered", as per

[RFC3464] section 2.3.3, then the _delivered_ property SHOULD
 be set to "yes"; if the Action equals "failed", the property
 SHOULD be set to "no". Receipt of any other DSN SHOULD NOT
 affect this property. The server MAY also set this property
 based on other feedback channels.

 * *displayed*: "String" Represents whether the email has been
 displayed to the recipient. This MUST be one of the following
 values:

 + "unknown": The display status is unknown. This is the
 initial value.

 + "yes": The recipient's system claims the email content has
 been displayed to the recipient. Note, there is no
 guarantee that the recipient has noticed, read, or
 understood the content.

 If an MDN is received for this recipient with Disposition-Type
 (as per [RFC3798] section 3.2.6.2) equal to "displayed", this
 property SHOULD be set to "yes". The server MAY also set this
 property based on other feedback channels.

 o *dsnBlobIds*: "String[]" (server-set) A list of blob ids for DSNs
 received for this submission, in order of receipt, oldest first.

 o *mdnBlobIds*: "String[]" (server-set) A list of blob ids for MDNs
 received for this submission, in order of receipt, oldest first.

 JMAP servers MAY choose not to expose DSN and MDN responses as Email
 objects if they correlate to a EmailSubmission object. It SHOULD
 only do this if it exposes them in the _dsnBlobIds_ and _mdnblobIds_
 fields instead, and expects the user to be using clients capable of
 fetching and displaying delivery status via the EmailSubmission
 object.

https://datatracker.ietf.org/doc/html/rfc3464#section-2.3.3
https://datatracker.ietf.org/doc/html/rfc3798#section-3.2.6.2

Jenkins Expires January 3, 2019 [Page 54]

Internet-Draft JMAP Mail July 2018

 For efficiency, a server MAY destroy EmailSubmission objects a
 certain amount of time after the email is successfully sent or it has
 finished retrying sending the email. For very basic SMTP proxies,
 this MAY be immediately after creation, as it has no way to assign a
 real id and return the information again if fetched later.

 The following JMAP methods are supported:

6.1. EmailSubmission/get

 Standard _/get_ method.

6.2. EmailSubmission/changes

 Standard _/changes_ method.

6.3. EmailSubmission/query

 Standard _/query_ method.

 A *FilterCondition* object has the following properties, any of which
 may be omitted:

 o *emailIds*: "String[]" The EmailSubmission _emailId_ property must
 be in this list to match the condition.

 o *threadIds*: "String[]" The EmailSubmission _threadId_ property
 must be in this list to match the condition.

 o *undoStatus*: "String" The EmailSubmission _undoStatus_ property
 must be identical to the value given to match the condition.

 o *before*: "UTCDate" The _sendAt_ property of the EmailSubmission
 object must be before this date to match the condition.

 o *after*: "UTCDate" The _sendAt_ property of the EmailSubmission
 object must be after this date to match the condition.

 A EmailSubmission object matches the filter if and only if all of the
 given conditions given match. If zero properties are specified, it
 is automatically "true" for all objects.

 The following properties MUST be supported for sorting:

 o "emailId"

 o "threadId"

Jenkins Expires January 3, 2019 [Page 55]

Internet-Draft JMAP Mail July 2018

 o "sentAt"

6.4. EmailSubmission/queryChanges

 Standard _/queryChanges_ method.

6.5. EmailSubmission/set

 Standard _/set_ method, with the following two extra arguments:

 o *onSuccessUpdateEmail*: "String[Email]|null" A map of
 EmailSubmission id to an object containing properties to update
 on the Email object referenced by the EmailSubmission if the
 create/update/destroy succeeds. (For references to
 EmailSubmission creations, this is equivalent to a back reference
 so the id will be the creation id prefixed with a "#".)

 o *onSuccessDestroyEmail*: "String[]|null" A list of
 EmailSubmission ids for which the email with the corresponding
 emailId should be destroyed if the create/update/destroy succeeds.
 (For references to EmailSubmission creations, this is equivalent
 to a back reference so the id will be the creation id prefixed
 with a "#".)

 A single implicit _Email/set_ call MUST be made after all
 EmailSubmission create/update/destroy requests have been processed to
 perform any changes requested in these two arguments. The response
 to this MUST be returned after the _EmailSubmission/set_ response.

 An email is sent by creating a EmailSubmission object. When
 processing each create, the server must check that the email is
 valid, and the user has sufficient authorization to send it. If the
 creation succeeds, the email will be sent to the recipients given in
 the envelope _rcptTo_ parameter. The server MUST remove any _Bcc_
 header present on the email during delivery. The server MAY add or
 remove other headers from the submitted email, or make further
 alterations in accordance with the server's policy during delivery.

 If the referenced email is destroyed at any point after the
 EmailSubmission object is created, this MUST NOT change the behaviour
 of the email submission (i.e. it does not cancel a future send).

 Similarly, destroying a EmailSubmission object MUST NOT affect the
 deliveries it represents. It purely removes the record of the email
 submission. The server MAY automatically destroy EmailSubmission
 objects after a certain time or in response to other triggers, and
 MAY forbid the client from manually destroying EmailSubmission
 objects.

Jenkins Expires January 3, 2019 [Page 56]

Internet-Draft JMAP Mail July 2018

 The following extra _SetError_ types are defined:

 For *create*:

 o "tooLarge" - The email size is larger than the server supports
 sending. A _maxSize_ "Number" property MUST be present on the
 SetError specifying the maximum size of an email that may be sent,
 in octets.

 o "tooManyRecipients" - The envelope (supplied or generated) has
 more recipients than the server allows. A _maxRecipients_
 "Number" property MUST be present on the SetError specifying the
 maximum number of allowed recipients.

 o "noRecipients" - The envelope (supplied or generated) does not
 have any rcptTo emails.

 o "invalidRecipients" - The _rcptTo_ property of the envelope
 (supplied or generated) contains at least one rcptTo value which
 is not a valid email for sending to. An _invalidRecipients_
 "String[]" property MUST be present on the SetError, which is a
 list of the invalid addresses.

 o "forbiddenMailFrom" - The server does not permit the user to send
 an email with the [RFC5321] envelope From.

 o "forbiddenFrom" - The server does not permit the user to send an
 email with the [RFC5322] From header of the email to be sent.

 o "forbiddenToSend" - The user does not have permission to send at
 all right now for some reason. A _description_ "String" property
 MAY be present on the SetError object to display to the user why
 they are not permitted. The server MAY choose to localise this
 string into the user's preferred language, if known.

 o "emailNotFound" - The _emailId_ is not a valid id for an email in
 the account.

 o "invalidEmail" - The email to be sent is invalid in some way. The
 SetError SHOULD contain a property called _properties_ of type
 "String[]" that lists *all* the properties of the email that were
 invalid.

 For *update*:

 o "cannotUnsend": The client attempted to update the _undoStatus_ of
 a valid EmailSubmission object from "pending" to "canceled", but
 the email cannot be unsent.

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins Expires January 3, 2019 [Page 57]

Internet-Draft JMAP Mail July 2018

6.5.1. Example

 The following example presumes a draft of the message to be sent has
 already been saved, and its Email id is "M7f6ed5bcfd7e2604d1753f6c".
 This call then sends the email immediately, and if successful removes
 the draft flag and moves it from the Drafts folder (which has Mailbox
 id "7cb4e8ee-df87-4757-b9c4-2ea1ca41b38e") to the Sent folder (which
 we presume has Mailbox id "73dbcb4b-bffc-48bd-8c2a-a2e91ca672f6").

 [
 "EmailSubmission/set",
 {
 "accountId": "ue411d190",
 "create": {
 "k1490": {
 "identityId": "64588216",
 "emailId": "M7f6ed5bcfd7e2604d1753f6c",
 "envelope": {
 "mailFrom": {
 "email": "john@example.com",
 "parameters": null
 },
 "rcptTo": [
 {
 "email": "jane@example.com",
 "parameters": null
 }
]
 }
 }
 },
 "onSuccessUpdateEmail": {
 "#k1490": {
 "mailboxIds/7cb4e8ee-df87-4757-b9c4-2ea1ca41b38e": null,
 "mailboxIds/73dbcb4b-bffc-48bd-8c2a-a2e91ca672f6": true,
 "keywords/$draft": null
 }
 }
 },
 "0"
]

 A successful response might look like this. Note there are two
 responses due to the implicit Email/set call, but both have the same
 tag as they are due to the same call in the request:

Jenkins Expires January 3, 2019 [Page 58]

Internet-Draft JMAP Mail July 2018

 [
 "EmailSubmission/set",
 {
 "accountId": "ue411d190",
 "oldState": "012421s6-8nrq-4ps4-n0p4-9330r951ns21,
 "newState": "355421f6-8aed-4cf4-a0c4-7377e951af36",
 "created": {
 "k1490": {
 "id": "3bab7f9a-623e-4acf-99a5-2e67facb02a0"
 }
 },
 "notCreated": null,
 "updated": null,
 "notUpdated": null,
 "destroyed": null,
 "notDestroyed": null
 },
 "0"
],
 [
 "Email/set",
 {
 "accountId": "neilj@fastmail.fm",
 "oldState": "778193",
 "newState": "778197",
 "created": null,
 "notCreated": null,
 "updated": {
 "M7f6ed5bcfd7e2604d1753f6c": null
 },
 "notUpdated": null,
 "destroyed": null,
 "notDestroyed": null
 },
 "0"
]

7. Search snippets

 When doing a search on a "String" property, the client may wish to
 show the relevant section of the body that matches the search as a
 preview instead of the beginning of the message, and to highlight any
 matching terms in both this and the subject of the email. Search
 snippets represent this data.

 A *SearchSnippet* object has the following properties:

 o *emailId*: "String" The email id the snippet applies to.

Jenkins Expires January 3, 2019 [Page 59]

Internet-Draft JMAP Mail July 2018

 o *subject*: "String|null" If text from the filter matches the
 subject, this is the subject of the email HTML-escaped, with
 matching words/phrases wrapped in "<mark></mark>" tags. If it
 does not match, this is "null".

 o *preview*: "String|null" If text from the filter matches the
 plain-text or HTML body, this is the relevant section of the body
 (converted to plain text if originally HTML), HTML-escaped, with
 matching words/phrases wrapped in "<mark></mark>" tags. It MUST
 NOT be bigger than 255 octets in size. If it does not match, this
 is "null".

 o *attachments*: "String|null" If text from the filter matches the
 text extracted from an attachment, this is the relevant section of
 the attachment (converted to plain text), with matching words/
 phrases wrapped in "<mark></mark>" tags. It MUST NOT be bigger
 than 255 octets in size. If it does not match, this is "null".

 It is server-defined what is a relevant section of the body for
 preview. If the server is unable to determine search snippets, it
 MUST return "null" for both the _subject_, _preview_ and
 attachments properties.

 Note, unlike most data types, a SearchSnippet DOES NOT have a
 property called "id".

 The following JMAP method is supported:

7.1. SearchSnippet/get

 To fetch search snippets, make a call to "SearchSnippet/get". It
 takes the following arguments:

 o *accountId*: "String|null" The id of the account to use for this
 call. If "null", defaults to the "urn:ietf:params:jmap:mail"
 primary account.

 o *filter*: "FilterOperator|FilterCondition|null" The same filter as
 passed to Email/query; see the description of this method for
 details.

 o *emailIds*: "String[]" The list of ids of emails to fetch the
 snippets for.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

Jenkins Expires January 3, 2019 [Page 60]

Internet-Draft JMAP Mail July 2018

 o *filter*: "FilterOperator|FilterCondition|null" Echoed back from
 the call.

 o *list*: "SearchSnippet[]" An array of SearchSnippet objects for
 the requested email ids. This may not be in the same order as the
 ids that were in the request.

 o *notFound*: "String[]|null" An array of email ids requested which
 could not be found, or "null" if all ids were found.

 Since snippets are only based on immutable properties, there is no
 state string or update mechanism needed.

 The following additional errors may be returned instead of the
 searchSnippets response:

 "requestTooLarge": Returned if the number of _emailIds_ requested by
 the client exceeds the maximum number the server is willing to
 process in a single method call.

 "unsupportedFilter": Returned if the server is unable to process the
 given _filter_ for any reason.

7.2. Example

 Here we did an Email/query to search for any email in the account
 containing the word "foo", now we are fetching the search snippets
 for some of the ids that were returned in the results:

 [
 "SearchSnippet/get",
 {
 "accountId": "ue150411c",
 "filter": {
 "text": "foo"
 },
 "emailIds": [
 "M44200ec123de277c0c1ce69c",
 "M7bcbcb0b58d7729686e83d99",
 "M28d12783a0969584b6deaac0",
 ...
]
 },
 "tag-0"
]

 Example response:

Jenkins Expires January 3, 2019 [Page 61]

Internet-Draft JMAP Mail July 2018

[
 "SearchSnippet/get", {
 "accountId": "ue150411c",
 "filter": {
 "text": "foo"
 },
 "list": [{
 "emailId": "M44200ec123de277c0c1ce69c"
 "subject": null,
 "preview": null
 }, {
 "emailId": "M7bcbcb0b58d7729686e83d99",
 "subject": "The <mark>Foo</mark>sball competition",
 "preview": "...year the <mark>foo</mark>sball competition will be held
in the Stadium de ..."
 }, {
 "emailId": "M28d12783a0969584b6deaac0",
 "subject": null,
 "preview": "...mail <mark>Foo</mark>/changes results often return
current-state-minus-1 rather than new..."
 },
 ...
],
 "notFound": null
 },
 "0"
]

8. Vacation response

 The *VacationResponse* object represents the state of vacation-
 response related settings for an account. It has the following
 properties:

 o *id*: "String" (immutable) The id of the object. There is only
 ever one vacation response object, and its id is ""singleton"".

 o *isEnabled* "Boolean" Should a vacation response be sent if an
 email arrives between the _fromDate_ and _toDate_?

 o *fromDate*: "UTCDate|null" If _isEnabled_ is "true", the date/time
 in UTC after which emails that arrive should receive the user's
 vacation response. If "null", the vacation response is effective
 immediately.

 o *toDate*: "UTCDate|null" If _isEnabled_ is "true", the date/time
 in UTC after which emails that arrive should no longer receive the
 user's vacation response. If "null", the vacation response is

 effective indefinitely.

Jenkins Expires January 3, 2019 [Page 62]

Internet-Draft JMAP Mail July 2018

 o *subject*: "String|null" The subject that will be used by the
 message sent in response to emails when the vacation response is
 enabled. If null, an appropriate subject SHOULD be set by the
 server.

 o *textBody*: "String|null" The plain text part of the message to
 send in response to emails when the vacation response is enabled.
 If this is "null", when the vacation message is sent a plain-text
 body part SHOULD be generated from the _htmlBody_ but the server
 MAY choose to send the response as HTML only.

 o *htmlBody*: "String|null" The HTML message to send in response to
 emails when the vacation response is enabled. If this is "null",
 when the vacation message is sent an HTML body part MAY be
 generated from the _textBody_, or the server MAY choose to send
 the response as plain-text only.

 The following JMAP methods are supported:

8.1. VacationResponse/get

 Standard _/get_ method.

 There MUST only be exactly one VacationResponse object in an account.
 It MUST have the id ""singleton"".

8.2. VacationResponse/set

 Standard _/set_ method.

9. Security considerations

 All security considerations of JMAP {TODO: insert RFC ref} apply to
 this specification.

9.1. EmailBodyPart value

 Service providers typically perform security filtering on incoming
 email and it's important the detection of content-type and charset
 for the security filter aligns with the heuristics performed by JMAP
 servers. Servers that apply heuristics to determine the content-type
 or charset for _EmailBodyValue_ SHOULD document the heuristics and
 provide a mechanism to turn them off in the event they are misaligned
 with the security filter used at a particular mailbox host.

 Automatic conversion of charsets that allow hidden channels for ASCII
 text, such as UTF-7, have been problematic for security filters in

Jenkins Expires January 3, 2019 [Page 63]

Internet-Draft JMAP Mail July 2018

 the past so server implementations can mitigate this risk by having
 such conversions off-by-default and/or separately configurable.

 To allow the client to restrict the volume of data it can receive in
 response to a request, a maximum length may be requested for the data
 returned for a textual body part. However, truncating the data may
 change the semantic meaning, for example truncating a URL changes its
 location. Servers that scan for links to malicious sites should take
 care to either ensure truncation is not at a semantically significant
 point, or to rescan the truncated value for malicious content before
 returning it.

9.2. HTML email display

 HTML message bodies provide richer formatting for emails but present
 a number of security challenges, especially when embedded in a
 webmail context in combination with interface HTML. Clients that
 render HTML email should make careful consideration of the potential
 risks, including:

 o Embedded JavaScript can rewrite the email to change its content on
 subsequent opening, allowing users to be mislead. In webmail
 systems, if run in the same origin as the interface it can access
 and exfiltrate all private data accessible to the user, including
 all other emails and potentially contacts, calendar events,
 settings, and credentials. It can also rewrite the interface to
 undetectably phish passwords. A compromise is likely to be
 persistent, not just for the duration of page load, due to
 exfiltration of session credentials or installation of a service
 worker that can intercept all subsequent network requests (this
 however would only be possible if blob downloads are also
 available on the same origin, and the service worker script is
 attached to the message).

 o HTML documents may load content directly from the internet, rather
 than just referencing attached resources. For example you may
 have an "" tag with an external "src" attribute. This may
 leak to the sender when a message is opened, as well as the IP
 address of the recipient. Cookies may also be sent and set by the
 server, allowing tracking between different emails and even
 website visits and advertising profiles.

 o In webmail systems, CSS can break the layout or create phishing
 vulnerabilities. For example, the use of "position:fixed" can
 allow an email to draw content outside of its normal bounds,
 potentially clickjacking a real interface element.

Jenkins Expires January 3, 2019 [Page 64]

Internet-Draft JMAP Mail July 2018

 o If in a webmail context and not inside a separate frame, any
 styles defined in CSS rules will apply to interface elements as
 well if the selector matches, allowing the interface to be
 modified. Similarly, any interface styles that match elements in
 the email will alter their appearance, potentially breaking the
 layout of the email.

 o The link text in HTML has no necessary correlation with the actual
 target of the link, which can be used to make phishing attacks
 more convincing.

 o Links opened from an email or embedded external content may leak
 private info in the "Referer" header sent by default in most
 systems.

 o Forms can be used to mimic login boxes, providing a potent
 phishing vector if allowed to submit directly from the email
 display.

 There are a number of ways clients can mitigate these issues, and a
 defence-in-depth approach that uses a combination of techniques will
 provide the strongest security.

 o HTML can be filtered before rendering, stripping potentially
 malicious content. Sanitizing HTML correctly is tricky, and
 implementers are strongly recommended to use a well-tested library
 with a carefully vetted whitelist-only approach. New features
 with unexpected security characteristics may be added to HTML
 rendering engines in the future; a blacklist approach is likely to
 result in security issues.

 Subtle differences in parsing of HTML can introduce security flaws:
 to filter with 100% accurately you need to use the same parser when
 sanitizing that the HTML rendering engine will use.

 o Encapsulating the message in an "<iframe sandbox>" can help
 mitigate a number of risks. This will:

 * Disable JavaScript.

 * Disable form submission.

 * Prevent drawing outside of its bounds, or conflict with
 interface CSS.

 * Establish a unique anonymous origin, separate to the containing
 origin.

Jenkins Expires January 3, 2019 [Page 65]

Internet-Draft JMAP Mail July 2018

 o A strong Content Security Policy [3] can, among other things,
 block JavaScript and loading of external content should it manage
 to evade the filter.

 o The leakage of information in the Referer header can be mitigated
 with the use of a referrer policy [4].

 o A "crossorigin=anonymous" attribute on tags that load remote
 content can prevent cookies from being sent.

 o If adding "target=_blank" to open links in new tabs, also add
 "rel=noopener" to ensure the page that opens cannot change the URL
 in the original tab to redirect the user to a phishing site.

 As highly complex software components, HTML rendering engines
 increase the attack surface of a client considerably, especially when
 being used to process untrusted, potentially malicious content.
 Serious bugs have been found in image decoders, JavaScript engines
 and HTML parsers in the past, which could lead to full system
 compromise. Clients using an engine should ensure they get the
 latest version and continue to incorporate any security patches
 released by the vendor.

9.3. Email submission

 SMTP submission servers [RFC6409] use a number of mechanisms to
 mitigate damage caused by compromised user accounts and end-user
 systems including rate limiting, anti-virus/anti-spam milters and
 other technologies. The technologies work better when they have more
 information about the client connection. If JMAP email submission is
 implemented as a proxy to an SMTP Submission server, it is useful to
 communicate this information from the JMAP proxy to the submission
 server. The de-facto XCLIENT extension to SMTP can be used to do
 this, but use of an authenticated channel is recommended to limit use
 of that extension to explicitly authorized proxies. JMAP servers
 that proxy to an SMTP Submission server SHOULD allow use of the
 submissions port [RFC8314] and SHOULD implement SASL PLAIN over TLS
 [RFC4616] and/or TLS client certificate authentication with SASL
 EXTERNAL [RFC4422] appendix A. Implementation of a mechanism similar
 to SMTP XCLIENT is strongly encouraged.

 In the event the JMAP server directly relays mail to SMTP servers in
 other administrative domains, then implementation of the de-facto
 milter protocol is strongly encouraged to integrate with third-party
 products that address security issues including anti-virus/anti-spam,
 reputation protection, compliance archiving, and data loss
 prevention. Proxying to a local SMTP Submission server may be a
 simpler way to provide such security services.

https://datatracker.ietf.org/doc/html/rfc6409
https://datatracker.ietf.org/doc/html/rfc8314
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/rfc4422#appendix-A

Jenkins Expires January 3, 2019 [Page 66]

Internet-Draft JMAP Mail July 2018

10. IANA Considerations

10.1. JMAP Capability Registration for "mail"

 IANA will register the "mail" JMAP Capability as follows:

 Capability Name: "urn:ietf:params:jmap:mail"

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, section 9

10.2. IMAP and JMAP Keywords Registry

 This document makes two changes to the IMAP keywords registry as
 defined in [RFC5788].

 First, the name of the registry is changed to the "IMAP and JMAP
 keywords Registry".

 Second, a scope column is added to the template and registry
 indicating whether a keyword applies to IMAP-only, JMAP-only, both,
 or reserved. All keywords presently in the IMAP keyword registry
 will be marked with a scope of both. The "reserved" status can be
 used to prevent future registration of a name that would be confusing
 if registered. Registration of keywords with scope 'reserved' omit
 most fields in the registration template (see example for "$recent"
 subsection of this section); such registrations are intended to be
 infrequent.

 IMAP clients MAY silently ignore any keywords marked JMAP-only or
 reserved in the event they appear in protocol. JMAP clients MAY
 silently ignore any keywords marked IMAP-only or reserved in the
 event they appear in protocol.

 New JMAP-only keywords are registered in the following sub-sections.
 These keywords correspond to IMAP system keywords and are thus not
 appropriate for use in IMAP. These keywords can not be subsequently
 registered for use in IMAP except via standards action.

https://datatracker.ietf.org/doc/html/rfc5788

Jenkins Expires January 3, 2019 [Page 67]

Internet-Draft JMAP Mail July 2018

10.2.1. Registration of JMAP keyword '$draft'

 This registers the JMAP-only keyword '$draft' in the "IMAP and JMAP
 keywords Registry".

 Keyword name: "$draft"

 Scope: JMAP-only

 Purpose (description): This is set when the user wants to treat the
 message as a draft the user is composing. This is the JMAP
 equivalent of the IMAP \Draft flag.

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Automatic. If the account has a mailbox marked with the \Drafts
 special use [RFC6154], setting this flag MAY cause the message to
 appear in that mailbox automatically. Certain JMAP computed values
 such as _unreadEmails_ will change as a result of changing this flag.
 In addition, mail clients typically will present draft messages in a
 composer window rather than a viewer window.

 When/by whom the keyword is set/cleared: This is typically set by a
 JMAP client when referring to a draft message. One model for draft
 emails would result in clearing this flag in an EmailSubmission/set
 operation with an onSuccessUpdateEmail attribute. In a mailstore
 shared by JMAP and IMAP, this is also set and cleared as necessary so
 it matches the IMAP \Draft flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: SPECIAL-USE [RFC6154]

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message a draft
 message. This information would be exposed to other users with read
 permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

https://datatracker.ietf.org/doc/html/rfc6154
https://datatracker.ietf.org/doc/html/rfc6154

Jenkins Expires January 3, 2019 [Page 68]

Internet-Draft JMAP Mail July 2018

10.2.2. Registration of JMAP keyword '$seen'

 This registers the JMAP-only keyword '$seen' in the "IMAP and JMAP
 keywords Registry".

 Keyword name: "$seen"

 Scope: JMAP-only

 Purpose (description): This is set when the user wants to treat the
 message as read. This is the JMAP equivalent of the IMAP \Seen flag.

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Advisory. However, certain JMAP computed values such as
 unreadEmails will change as a result of changing this flag.

 When/by whom the keyword is set/cleared: This is set by a JMAP client
 when it presents the message content to the user; clients often offer
 an option to clear this flag. In a mailstore shared by JMAP and
 IMAP, this is also set and cleared as necessary so it matches the
 IMAP \Seen flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: None

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message to have
 been read. This information would be exposed to other users with
 read permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.2.3. Registration of JMAP keyword '$flagged'

 This registers the JMAP-only keyword '$flagged' in the "IMAP and JMAP
 keywords Registry".

 Keyword name: "$flagged"

Jenkins Expires January 3, 2019 [Page 69]

Internet-Draft JMAP Mail July 2018

 Scope: JMAP-only

 Purpose (description): This is set when the user wants to treat the
 message as flagged for urgent/special attention. This is the JMAP
 equivalent of the IMAP \Flagged flag.

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Automatic. If the account has a mailbox marked with the \Flagged
 special use [RFC6154], setting this flag MAY cause the message to
 appear in that mailbox automatically.

 When/by whom the keyword is set/cleared: JMAP clients typically allow
 a user to set/clear this flag as desired. In a mailstore shared by
 JMAP and IMAP, this is also set and cleared as necessary so it
 matches the IMAP \Flagged flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: SPECIAL-USE [RFC6154]

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message as
 flagged for urgent/special attention. This information would be
 exposed to other users with read permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.2.4. Registration of JMAP keyword '$answered'

 This registers the JMAP-only keyword '$answered' in the "IMAP and
 JMAP keywords Registry".

 Keyword name: "$answered"

 Scope: JMAP-only

 Purpose (description): This is set when the message has been
 answered.

https://datatracker.ietf.org/doc/html/rfc6154
https://datatracker.ietf.org/doc/html/rfc6154

Jenkins Expires January 3, 2019 [Page 70]

Internet-Draft JMAP Mail July 2018

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Advisory.

 When/by whom the keyword is set/cleared: JMAP clients typically set
 this when submitting a reply or answer to the message. It may be set
 by the EmailSubmission/set operation with an onSuccessUpdateEmail
 attribute. In a mailstore shared by JMAP and IMAP, this is also set
 and cleared as necessary so it matches the IMAP \Answered flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: None

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message as
 flagged for urgent/special attention. This information would be
 exposed to other users with read permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.2.5. Registration of '$recent' Keyword

 This registers the keyword '$recent' in the "IMAP and JMAP keywords
 Registry".

 Keyword name: "$recent"

 Scope: reserved

 Purpose (description): This keyword is not used to avoid confusion
 with the IMAP \Recent system flag.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Owner/Change controller: IESG

Jenkins Expires January 3, 2019 [Page 71]

Internet-Draft JMAP Mail July 2018

11. References

11.1. Normative References

 [RFC1870] Klensin, J., Freed, N., and K. Moore, "SMTP Service
 Extension for Message Size Declaration", STD 10, RFC 1870,
 DOI 10.17487/RFC1870, November 1995,
 <https://www.rfc-editor.org/info/rfc1870>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",

RFC 2047, DOI 10.17487/RFC2047, November 1996,
 <https://www.rfc-editor.org/info/rfc2047>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2231] Freed, N. and K. Moore, "MIME Parameter Value and Encoded
 Word Extensions: Character Sets, Languages, and
 Continuations", RFC 2231, DOI 10.17487/RFC2231, November
 1997, <https://www.rfc-editor.org/info/rfc2231>.

 [RFC2369] Neufeld, G. and J. Baer, "The Use of URLs as Meta-Syntax
 for Core Mail List Commands and their Transport through
 Message Header Fields", RFC 2369, DOI 10.17487/RFC2369,
 July 1998, <https://www.rfc-editor.org/info/rfc2369>.

 [RFC2557] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
 <https://www.rfc-editor.org/info/rfc2557>.

 [RFC2852] Newman, D., "Deliver By SMTP Service Extension", RFC 2852,
 DOI 10.17487/RFC2852, June 2000,
 <https://www.rfc-editor.org/info/rfc2852>.

 [RFC3282] Alvestrand, H., "Content Language Headers", RFC 3282,
 DOI 10.17487/RFC3282, May 2002,
 <https://www.rfc-editor.org/info/rfc3282>.

https://datatracker.ietf.org/doc/html/rfc1870
https://www.rfc-editor.org/info/rfc1870
https://datatracker.ietf.org/doc/html/rfc2045
https://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/rfc2047
https://www.rfc-editor.org/info/rfc2047
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2231
https://www.rfc-editor.org/info/rfc2231
https://datatracker.ietf.org/doc/html/rfc2369
https://www.rfc-editor.org/info/rfc2369
https://datatracker.ietf.org/doc/html/rfc2557
https://www.rfc-editor.org/info/rfc2557
https://datatracker.ietf.org/doc/html/rfc2852
https://www.rfc-editor.org/info/rfc2852
https://datatracker.ietf.org/doc/html/rfc3282
https://www.rfc-editor.org/info/rfc3282

Jenkins Expires January 3, 2019 [Page 72]

Internet-Draft JMAP Mail July 2018

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3461] Moore, K., "Simple Mail Transfer Protocol (SMTP) Service
 Extension for Delivery Status Notifications (DSNs)",

RFC 3461, DOI 10.17487/RFC3461, January 2003,
 <https://www.rfc-editor.org/info/rfc3461>.

 [RFC3463] Vaudreuil, G., "Enhanced Mail System Status Codes",
RFC 3463, DOI 10.17487/RFC3463, January 2003,

 <https://www.rfc-editor.org/info/rfc3463>.

 [RFC3464] Moore, K. and G. Vaudreuil, "An Extensible Message Format
 for Delivery Status Notifications", RFC 3464,
 DOI 10.17487/RFC3464, January 2003,
 <https://www.rfc-editor.org/info/rfc3464>.

 [RFC3798] Hansen, T., Ed. and G. Vaudreuil, Ed., "Message
 Disposition Notification", RFC 3798, DOI 10.17487/RFC3798,
 May 2004, <https://www.rfc-editor.org/info/rfc3798>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4616] Zeilenga, K., Ed., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616,
 DOI 10.17487/RFC4616, August 2006,
 <https://www.rfc-editor.org/info/rfc4616>.

 [RFC4865] White, G. and G. Vaudreuil, "SMTP Submission Service
 Extension for Future Message Release", RFC 4865,
 DOI 10.17487/RFC4865, May 2007,
 <https://www.rfc-editor.org/info/rfc4865>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC5248] Hansen, T. and J. Klensin, "A Registry for SMTP Enhanced
 Mail System Status Codes", BCP 138, RFC 5248,
 DOI 10.17487/RFC5248, June 2008,
 <https://www.rfc-editor.org/info/rfc5248>.

https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3461
https://www.rfc-editor.org/info/rfc3461
https://datatracker.ietf.org/doc/html/rfc3463
https://www.rfc-editor.org/info/rfc3463
https://datatracker.ietf.org/doc/html/rfc3464
https://www.rfc-editor.org/info/rfc3464
https://datatracker.ietf.org/doc/html/rfc3798
https://www.rfc-editor.org/info/rfc3798
https://datatracker.ietf.org/doc/html/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc4616
https://www.rfc-editor.org/info/rfc4616
https://datatracker.ietf.org/doc/html/rfc4865
https://www.rfc-editor.org/info/rfc4865
https://datatracker.ietf.org/doc/html/rfc5198
https://www.rfc-editor.org/info/rfc5198
https://datatracker.ietf.org/doc/html/bcp138
https://datatracker.ietf.org/doc/html/rfc5248
https://www.rfc-editor.org/info/rfc5248

Jenkins Expires January 3, 2019 [Page 73]

Internet-Draft JMAP Mail July 2018

 [RFC5256] Crispin, M. and K. Murchison, "Internet Message Access
 Protocol - SORT and THREAD Extensions", RFC 5256,
 DOI 10.17487/RFC5256, June 2008,
 <https://www.rfc-editor.org/info/rfc5256>.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5788] Melnikov, A. and D. Cridland, "IMAP4 Keyword Registry",
RFC 5788, DOI 10.17487/RFC5788, March 2010,

 <https://www.rfc-editor.org/info/rfc5788>.

 [RFC6154] Leiba, B. and J. Nicolson, "IMAP LIST Extension for
 Special-Use Mailboxes", RFC 6154, DOI 10.17487/RFC6154,
 March 2011, <https://www.rfc-editor.org/info/rfc6154>.

 [RFC6409] Gellens, R. and J. Klensin, "Message Submission for Mail",
 STD 72, RFC 6409, DOI 10.17487/RFC6409, November 2011,
 <https://www.rfc-editor.org/info/rfc6409>.

 [RFC6532] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, DOI 10.17487/RFC6532, February
 2012, <https://www.rfc-editor.org/info/rfc6532>.

 [RFC6533] Hansen, T., Ed., Newman, C., and A. Melnikov,
 "Internationalized Delivery Status and Disposition
 Notifications", RFC 6533, DOI 10.17487/RFC6533, February
 2012, <https://www.rfc-editor.org/info/rfc6533>.

 [RFC6710] Melnikov, A. and K. Carlberg, "Simple Mail Transfer
 Protocol Extension for Message Transfer Priorities",

RFC 6710, DOI 10.17487/RFC6710, August 2012,
 <https://www.rfc-editor.org/info/rfc6710>.

 [RFC8314] Moore, K. and C. Newman, "Cleartext Considered Obsolete:
 Use of Transport Layer Security (TLS) for Email Submission
 and Access", RFC 8314, DOI 10.17487/RFC8314, January 2018,
 <https://www.rfc-editor.org/info/rfc8314>.

https://datatracker.ietf.org/doc/html/rfc5256
https://www.rfc-editor.org/info/rfc5256
https://datatracker.ietf.org/doc/html/rfc5321
https://www.rfc-editor.org/info/rfc5321
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc5788
https://www.rfc-editor.org/info/rfc5788
https://datatracker.ietf.org/doc/html/rfc6154
https://www.rfc-editor.org/info/rfc6154
https://datatracker.ietf.org/doc/html/rfc6409
https://www.rfc-editor.org/info/rfc6409
https://datatracker.ietf.org/doc/html/rfc6532
https://www.rfc-editor.org/info/rfc6532
https://datatracker.ietf.org/doc/html/rfc6533
https://www.rfc-editor.org/info/rfc6533
https://datatracker.ietf.org/doc/html/rfc6710
https://www.rfc-editor.org/info/rfc6710
https://datatracker.ietf.org/doc/html/rfc8314
https://www.rfc-editor.org/info/rfc8314

Jenkins Expires January 3, 2019 [Page 74]

Internet-Draft JMAP Mail July 2018

11.2. URIs

 [1] TODO

 [2] https://www.iana.org/assignments/imap-keywords/imap-
keywords.xhtml

 [3] https://www.w3.org/TR/CSP3/

 [4] https://www.w3.org/TR/referrer-policy/

Author's Address

 Neil Jenkins
 FastMail
 PO Box 234, Collins St West
 Melbourne VIC 8007
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

https://www.iana.org/assignments/imap-keywords/imap-keywords.xhtml
https://www.iana.org/assignments/imap-keywords/imap-keywords.xhtml
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/referrer-policy/
https://www.fastmail.com

Jenkins Expires January 3, 2019 [Page 75]

