
JMAP N. Jenkins
Internet-Draft FastMail
Updates: 5788 (if approved) C. Newman
Intended status: Standards Track Oracle
Expires: September 9, 2019 March 8, 2019

JMAP (JSON Meta Application Protocol) for Mail
draft-ietf-jmap-mail-16

Abstract

 This document specifies a data model for synchronising email data
 with a server using JMAP (the JSON Meta Application Protocol).
 Clients can use this to efficiently search, access, organise and send
 messages, and get pushed notifications for fast resynchronisation
 when new messages are delivered or a change is made in another
 client.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Jenkins & Newman Expires September 9, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5788
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JMAP Mail March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Notational conventions 4
1.2. Terminology . 5
1.3. Additions to the capabilities object 5
1.3.1. urn:ietf:params:jmap:mail 5
1.3.2. urn:ietf:params:jmap:submission 6
1.3.3. urn:ietf:params:jmap:vacationresponse 7

1.4. Data type support in different accounts 7
1.5. Push . 8
1.5.1. Example . 8

1.6. Ids . 8
2. Mailboxes . 8
2.1. Mailbox/get . 12
2.2. Mailbox/changes . 12
2.3. Mailbox/query . 13
2.4. Mailbox/queryChanges 14
2.5. Mailbox/set . 14
2.6. Example . 14

3. Threads . 18
3.1. Thread/get . 19
3.1.1. Example . 19

3.2. Thread/changes . 19
4. Emails . 20
4.1. Properties of the Email object 20
4.1.1. Metadata . 21
4.1.2. Header fields parsed forms 23
4.1.3. Header fields properties 28
4.1.4. Body parts . 30

4.2. Email/get . 36
4.2.1. Example . 38

4.3. Email/changes . 39
4.4. Email/query . 40
4.4.1. Filtering . 40
4.4.2. Sorting . 42
4.4.3. Thread collapsing 44

4.5. Email/queryChanges 44
4.6. Email/set . 44
4.7. Email/copy . 47
4.8. Email/import . 47
4.9. Email/parse . 49
4.10. Examples . 51

5. Search snippets . 58
5.1. SearchSnippet/get . 59

Jenkins & Newman Expires September 9, 2019 [Page 2]

Internet-Draft JMAP Mail March 2019

5.2. Example . 60
6. Identities . 61
6.1. Identity/get . 62
6.2. Identity/changes . 62
6.3. Identity/set . 62
6.4. Example . 63

7. Email submission . 63
7.1. EmailSubmission/get 68
7.2. EmailSubmission/changes 68
7.3. EmailSubmission/query 68
7.4. EmailSubmission/queryChanges 69
7.5. EmailSubmission/set 69
7.5.1. Example . 71

8. Vacation response . 74
8.1. VacationResponse/get 75
8.2. VacationResponse/set 75

9. Security considerations 75
9.1. EmailBodyPart value 75
9.2. HTML email display 76
9.3. Multiple part display 78
9.4. Email submission . 78
9.5. Partial account access 79
9.6. Permission to send from an address 79

10. IANA considerations . 80
10.1. JMAP capability registration for "mail" 80
10.2. JMAP capability registration for "submission" 80
10.3. JMAP capability registration for "vacationresponse" . . 81
10.4. IMAP and JMAP keywords registry 81
10.4.1. Registration of JMAP keyword '$draft' 81
10.4.2. Registration of JMAP keyword '$seen' 82
10.4.3. Registration of JMAP keyword '$flagged' 83
10.4.4. Registration of JMAP keyword '$answered' 84
10.4.5. Registration of '$recent' keyword 85

10.5. Registration of "inbox" role in 85
10.6. JMAP Error Codes registry 86
10.6.1. mailboxHasChild 86
10.6.2. mailboxHasEmail 86
10.6.3. blobNotFound . 86
10.6.4. tooManyKeywords 87
10.6.5. tooManyMailboxes 87
10.6.6. invalidEmail . 87
10.6.7. tooManyRecipients 87
10.6.8. noRecipients . 88
10.6.9. invalidRecipients 88
10.6.10. forbiddenMailFrom 88
10.6.11. forbiddenFrom 89
10.6.12. forbiddenToSend 89

11. References . 89

Jenkins & Newman Expires September 9, 2019 [Page 3]

Internet-Draft JMAP Mail March 2019

11.1. Normative References 89
11.2. Informative References 93
11.3. URIs . 93

 Authors' Addresses . 94

1. Introduction

 JMAP ([I-D.ietf-jmap-core] - JSON Meta Application Protocol) is a
 generic protocol for synchronising data, such as mail, calendars or
 contacts, between a client and a server. It is optimised for mobile
 and web environments, and aims to provide a consistent interface to
 different data types.

 This specification defines a data model for accessing a mail store
 over JMAP, allowing you to query, read, organise and submit mail for
 sending.

 The data model is designed to allow a server to provide consistent
 access to the same data via IMAP ([RFC3501]) as well as JMAP. As in
 IMAP, a message must belong to a mailbox, however in JMAP its id does
 not change if you move it between mailboxes, and the server may allow
 it to belong to multiple mailboxes simultaneously (often exposed in a
 user agent as labels rather than folders).

 As in IMAP, emails may also be assigned zero or more keywords: short
 arbitrary strings. These are primarily intended to store metadata to
 inform client display, such as unread status or whether a message has
 been replied to. An IANA registry allows common semantics to be
 shared between clients and extended easily in the future.

 A message and its replies are linked on the server by a common thread
 id. Clients may fetch the list of messages with a particular thread
 id to more easily present a threaded or conversational interface.

 Permissions for message access happen on a per-mailbox basis.
 Servers may give the user restricted permissions for certain
 mailboxes, for example if another user's inbox has been shared read-
 only with them.

1.1. Notational conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Jenkins & Newman Expires September 9, 2019 [Page 4]

Internet-Draft JMAP Mail March 2019

 Type signatures, examples and property descriptions in this document
 follow the conventions established in section 1.1 of
 [I-D.ietf-jmap-core]. Data types defined in the core specification
 are also used in this document.

 Servers MUST support all properties specified for the new data types
 defined in this document.

1.2. Terminology

 The same terminology is used in this document as in the core JMAP
 specification.

1.3. Additions to the capabilities object

 The capabilities object is returned as part of the JMAP Session
 object; see [I-D.ietf-jmap-core], section 2.

 This document defines three additional capability URIs.

1.3.1. urn:ietf:params:jmap:mail

 This represents support for the Mailbox, Thread, Email, and
 SearchSnippet data types and associated API methods. The value of
 this property in the JMAP session _capabilities_ property is the
 empty object.

 The value of this property in an account's _accountCapabilities_
 property is an object which MUST contain the following information on
 server capabilities and permissions for that account:

 o *maxMailboxesPerEmail*: "UnsignedInt|null" The maximum number of
 mailboxes that can be can assigned to a single Email object (see

section 4). This MUST be an integer >= 1, or "null" for no limit
 (or rather, the limit is always the number of mailboxes in the
 account).

 o *maxMailboxDepth*: "UnsignedInt|null" The maximum depth of the
 mailbox hierarchy (i.e. one more than the maximum number of
 ancestors a mailbox may have), or "null" for no limit.

 o *maxSizeMailboxName*: "UnsignedInt" The maximum length, in (UTF-8)
 octets, allowed for the name of a mailbox. This MUST be at least
 100, although it is recommended servers allow more.

 o *maxSizeAttachmentsPerEmail*: "UnsignedInt" The maximum total size
 of attachments, in octets, allowed for a single Email object. A
 server MAY still reject import or creation of emails with a lower

Jenkins & Newman Expires September 9, 2019 [Page 5]

Internet-Draft JMAP Mail March 2019

 attachment size total (for example, if the body includes several
 megabytes of text, causing the size of the encoded MIME structure
 to be over some server-defined limit). Note, this limit is for
 the sum of unencoded attachment sizes. Users are generally not
 knowledgeable about encoding overhead etc., nor should they need
 to be, so marketing and help materials normally tell them the "max
 size attachments". This is the unencoded size they see on their
 hard drive, and so this capability matches that and allows the
 client to consistently enforce what the user understands as the
 limit. The server may separately have a limit for the total size
 of the RFC5322 message, which will have attachments Base64 encoded
 and message headers and bodies too. For example, suppose the
 server advertises "maxSizeAttachmentsPerEmail: 50000000" (50 MB).
 The enforced server limit may be for an RFC5322 size of 70000000
 octets (70 MB). Even with Base64 encoding and a 2 MB HTML body,
 50 MB attachments would fit under this limit.

 o *emailQuerySortOptions*: "String[]" A list of all the values the
 server supports for the "property" field of the Comparator object
 in an Email/query sort (see section 5.5). This MAY include
 properties the client does not recognise (for example custom
 properties specified in a vendor extension). Clients MUST ignore
 any unknown properties in the list.

 o *mayCreateTopLevelMailbox*: "Boolean" If "true", the user may
 create a mailbox (see section 2) in this account with a "null"
 parentId. (Permission for creating a child of an existing mailbox
 is given by the myRights property on that mailbox.)

1.3.2. urn:ietf:params:jmap:submission

 This represents support for the Identity and MessageSubmission data
 types and associated API methods. The value of this property in the
 JMAP session _capabilities_ property is the empty object.

 The value of this property in an account's _accountCapabilities_
 property is an object which MUST contain the following information on
 server capabilities and permissions for that account:

 o *maxDelayedSend*: "UnsignedInt" The number in seconds of the
 maximum delay the server supports in sending (see the
 EmailSubmission object description). This is "0" if the server
 does not support delayed send.

 o *submissionExtensions*: "String[String[]]" The set of SMTP
 submission extensions supported by the server, which the client
 may use when creating an EmailSubmission object (see section 7).
 Each key in the object is the _ehlo-name_, and the value is a list

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 6]

Internet-Draft JMAP Mail March 2019

 of _ehlo-args_. A JMAP implementation that talks to a Submission
 [RFC6409] server SHOULD have a configuration setting that allows
 an administrator to modify the set of submission EHLO capabilities
 it may expose on this property. This allows a JMAP server to
 easily add access to a new submission extension without code
 changes. By default, the JMAP server should hide EHLO
 capabilities that are to do with the transport mechanism and thus
 are only relevant to the JMAP server (for example PIPELINING,
 CHUNKING, or STARTTLS). Examples of Submission extensions to
 include:

 * FUTURERELEASE ([RFC4865])

 * SIZE ([RFC1870])

 * DSN ([RFC3461])

 * DELIVERYBY ([RFC2852])

 * MT-PRIORITY ([RFC6710])

 A JMAP server MAY advertise an extension and implement the
 semantics of that extension locally on the JMAP server even if a
 submission server used by JMAP doesn't implement it. The full
 IANA registry of submission extensions can be found at
 <https://www.iana.org/assignments/mail-parameters/mail-

parameters.xhtml#mail-parameters-2>.

1.3.3. urn:ietf:params:jmap:vacationresponse

 This represents support for the VacationResponse data type and
 associated API methods. The value of this property is an empty
 object in both the JMAP session _capabilities_ property and an
 account's _accountCapabilities_ property.

1.4. Data type support in different accounts

 The server MUST include the appropriate capability strings as keys in
 the _accountCapabilities_ property of any account with which the user
 may use the data types represented by that URI. Supported data types
 may differ between accounts the user has access to. For example, in
 the user's personal account they may have access to all three sets of
 data, but in a shared account they may only have data for
 "urn:ietf:params:jmap:mail". This means they can access
 Mailbox/Thread/Email data in the shared account but are not allowed
 to send as that account (and so do not have access to Identity/
 MessageSubmission objects) or view/set its vacation response.

https://datatracker.ietf.org/doc/html/rfc6409
https://datatracker.ietf.org/doc/html/rfc4865
https://datatracker.ietf.org/doc/html/rfc1870
https://datatracker.ietf.org/doc/html/rfc3461
https://datatracker.ietf.org/doc/html/rfc2852
https://datatracker.ietf.org/doc/html/rfc6710
https://www.iana.org/assignments/mail-parameters/mail-parameters.xhtml#mail-parameters-2
https://www.iana.org/assignments/mail-parameters/mail-parameters.xhtml#mail-parameters-2

Jenkins & Newman Expires September 9, 2019 [Page 7]

Internet-Draft JMAP Mail March 2019

1.5. Push

 Servers MUST support the JMAP push mechanisms, as specified in
 [I-D.ietf-jmap-core] section 7, to receive notifications when the
 state changes for any of the types defined in this specification.

 In addition, servers that implement the "urn:ietf:params:jmap:mail"
 capability MUST support pushing state changes for a type called
 "EmailDelivery". There are no methods to act on this type; it only
 exists as part of the push mechanism. The state string for this MUST
 change whenever a new Email is added to the store, but SHOULD NOT
 change upon any other change to the Email objects, for example if one
 is marked as read or deleted.

 Clients in battery constrained environments may wish to delay
 fetching changes initiated by the user, but fetch new messages
 immediately so they can notify the user. To do this, they can
 register for pushes for the EmailDelivery type rather than the Email
 type (defined in section 4).

1.5.1. Example

 The client has registered for push notifications (see
 [I-D.ietf-jmap-core]) just for the "EmailDelivery" type. The user
 marks an email as read on another device, causing the state string
 for the "Email" type to change, however as nothing new was added to
 the store the "EmailDelivery" state does not change and nothing is
 pushed to the client. A new message arrives in the user's inbox,
 again causing the "Email" state to change. This time the
 "EmailDelivery" state also changes, and a StateChange object is
 pushed to the client with the new state string. The client may then
 resync to fetch the new message immediately.

1.6. Ids

 If a JMAP Mail server also provides an IMAP interface to the data and
 supports [RFC8474] IMAP Extension for Object Identifiers, the ids
 SHOULD be the same for mailbox, thread, and email objects in JMAP.

2. Mailboxes

 A mailbox represents a named set of emails. This is the primary
 mechanism for organising emails within an account. It is analogous
 to a folder or a label in other systems. A mailbox may perform a
 certain role in the system; see below for more details.

https://datatracker.ietf.org/doc/html/rfc8474

Jenkins & Newman Expires September 9, 2019 [Page 8]

Internet-Draft JMAP Mail March 2019

 For compatibility with IMAP, an email MUST belong to one or more
 mailboxes. The email id does not change if the email changes
 mailboxes.

 A *Mailbox* object has the following properties:

 o *id*: "Id" (immutable; server-set) The id of the mailbox.

 o *name*: "String" User-visible name for the mailbox, e.g. "Inbox".
 This MUST be a Net-Unicode string ([RFC5198]) of at least 1
 character in length, subject to the maximum size given in the
 capability object. There MUST NOT be two sibling mailboxes with
 both the same parent and the same name. Servers MAY reject names
 that violate server policy (e.g., names containing slash (/) or
 control characters).

 o *parentId*: "Id|null" (default: null) The mailbox id for the
 parent of this mailbox, or "null" if this mailbox is at the top
 level. Mailboxes form acyclic graphs (forests) directed by the
 child-to-parent relationship. There MUST NOT be a loop.

 o *role*: "String|null" (default: null) Identifies mailboxes that
 have a particular common purpose (e.g. the "inbox"), regardless of
 the _name_ (which may be localised). This value is shared with
 IMAP (exposed in IMAP via the [RFC6154] SPECIAL-USE extension).
 However, unlike in IMAP, a mailbox MUST only have a single role,
 and there MUST NOT be two mailboxes in the same account with the
 same role. Servers providing IMAP access to the same data are
 encouraged to enforce these extra restrictions in IMAP as well.
 Otherwise, it is implementation dependent how to modify the IMAP
 attributes to ensure compliance when exposing the data over JMAP.
 The value MUST be one of the mailbox attribute names listed in the
 IANA IMAP Mailbox Name Attributes Registry [1], as established in
 [RFC8457], converted to lower-case. New roles may be established
 here in the future. An account is not required to have mailboxes
 with any particular roles.

 o *sortOrder*: "UnsignedInt" (default: 0) Defines the sort order of
 mailboxes when presented in the client's UI, so it is consistent
 between devices. The number MUST be an integer in the range 0 <=
 sortOrder < 2^31. A mailbox with a lower order should be
 displayed before a mailbox with a higher order (that has the same
 parent) in any mailbox listing in the client's UI. Mailboxes with
 equal order SHOULD be sorted in alphabetical order by name. The
 sorting should take into account locale-specific character order
 convention.

https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/rfc6154
https://datatracker.ietf.org/doc/html/rfc8457

Jenkins & Newman Expires September 9, 2019 [Page 9]

Internet-Draft JMAP Mail March 2019

 o *totalEmails*: "UnsignedInt" (server-set) The number of emails in
 this mailbox.

 o *unreadEmails*: "UnsignedInt" (server-set) The number of emails in
 this mailbox that have neither the "$seen" keyword nor the
 "$draft" keyword.

 o *totalThreads*: "UnsignedInt" (server-set) The number of threads
 where at least one email in the thread is in this mailbox.

 o *unreadThreads*: "UnsignedInt" (server-set) An indication of the
 number of "unread" threads in the mailbox. For compatibility with
 existing implementations, the way "unread threads" is determined
 is not mandated in this document. The simplest solution to
 implement is simply the number of threads where at least one email
 in the thread is both in this mailbox and has neither the "$seen"
 nor "$draft" keywords. However, a quality implementation will
 return the number of unread items the user would see if they
 opened that mailbox. A thread is shown as unread if it contains
 any unread messages that will be displayed when the thread is
 opened. Therefore "unreadThreads" should be the number of threads
 where at least one email in the thread has neither the "$seen" nor
 the "$draft" keyword AND at least one email in the thread is in
 this mailbox. Note, the unread email does not need to be the one
 in this mailbox. In addition, the Trash mailbox (that is a
 mailbox whose "role" is "trash") is treated specially:

 1. Emails that are *only* in the Trash (and no other mailbox) are
 ignored when calculating the "unreadThreads" count of other
 mailboxes.

 2. Emails that are *not* in the Trash are ignored when
 calculating the "unreadThreads" count for the Trash mailbox.

 The result of this is that emails in the Trash are treated as
 though they are in a separate thread for the purposes of unread
 counts. It is expected that clients will hide emails in the Trash
 when viewing a thread in another mailbox and vice versa. This
 allows you to delete a single email to the Trash out of a thread.
 So for example, suppose you have an account where the entire
 contents is a single thread with 2 emails: an unread email in the
 Trash and a read email in the Inbox. The "unreadThreads" count
 would be "1" for the Trash and "0" for the Inbox.

 o *myRights*: "MailboxRights" (server-set) The set of rights (ACLs)
 the user has in relation to this mailbox. These are backwards
 compatible with IMAP ACLs, as defined in [RFC4314]. A
 MailboxRights object has the following properties:

https://datatracker.ietf.org/doc/html/rfc4314

Jenkins & Newman Expires September 9, 2019 [Page 10]

Internet-Draft JMAP Mail March 2019

 * *mayReadItems*: "Boolean" If true, the user may use this
 mailbox as part of a filter in a _Email/query_ call and the
 mailbox may be included in the _mailboxIds_ set of _Email_
 objects. Email objects may be fetched if they are in *at least
 one* mailbox with this permission. If a sub-mailbox is shared
 but not the parent mailbox, this may be "false". Corresponds
 to IMAP ACLs "lr" (if mapping from IMAP, both are required for
 this to be "true").

 * *mayAddItems*: "Boolean" The user may add mail to this mailbox
 (by either creating a new email or moving an existing one).
 Corresponds to IMAP ACL "i".

 * *mayRemoveItems*: "Boolean" The user may remove mail from this
 mailbox (by either changing the mailboxes of an email or
 deleting it). Corresponds to IMAP ACLs "te" (if mapping from
 IMAP, both are required for this to be "true").

 * *maySetSeen*: "Boolean" The user may add or remove the "$seen"
 keyword to/from an email. If an email belongs to multiple
 mailboxes, the user may only modify "$seen" if they have this
 permission for *all* of the mailboxes. Corresponds to IMAP ACL
 "s".

 * *maySetKeywords*: "Boolean" The user may add or remove any
 keyword _other than_ "$seen" to/from an email. If an email
 belongs to multiple mailboxes, the user may only modify
 keywords if they have this permission for *all* of the
 mailboxes. Corresponds to IMAP ACL "w".

 * *mayCreateChild*: "Boolean" The user may create a mailbox with
 this mailbox as its parent. Corresponds to IMAP ACL "k".

 * *mayRename*: "Boolean" The user may rename the mailbox or make
 it a child of another mailbox. Corresponds to IMAP ACL "x"
 (although this covers both rename and delete permissions).

 * *mayDelete*: "Boolean" The user may delete the mailbox itself.
 Corresponds to IMAP ACL "x" (although this covers both rename
 and delete permissions).

 * *maySubmit*: "Boolean" Messages may be submitted directly to
 this mailbox. Corresponds to IMAP ACL "p".

 o *isSubscribed*: "Boolean" Has the user indicated they wish to see
 this mailbox in their client? This SHOULD default to "false" for
 mailboxes in shared accounts the user has access to, and "true"
 for any new mailboxes created by the user themself. This MUST be

Jenkins & Newman Expires September 9, 2019 [Page 11]

Internet-Draft JMAP Mail March 2019

 stored separately per-user where multiple users have access to a
 shared mailbox. A user may have permission to access a large
 number of shared accounts, or a shared account with a very large
 set of mailboxes, but only be interested in the contents of a few
 of these. Clients may choose only to display mailboxes to the
 user that have the "isSubscribed" property set to "true", and
 offer a separate UI to allow the user to see and subscribe/
 unsubscribe from the full set of mailboxes. However, clients MAY
 choose to ignore this property, either entirely for ease of
 implementation, or just for an account where "isPersonal" is
 "true" (indicating it is the user's own, rather than a shared
 account). This property corresponds to IMAP ([RFC3501]) mailbox
 subscriptions.

 For IMAP compatibility, an email in both the Trash and another
 mailbox SHOULD be treated by the client as existing in both places
 (i.e. when emptying the trash, the client should just remove the
 Trash mailbox and leave it in the other mailbox).

 The following JMAP methods are supported:

2.1. Mailbox/get

 Standard "/get" method as described in [I-D.ietf-jmap-core] section
5.1. The _ids_ argument may be "null" to fetch all at once.

2.2. Mailbox/changes

 Standard "/changes" method as described in [I-D.ietf-jmap-core]
section 5.2, but with one extra argument to the response:

 o *updatedProperties*: "String[]|null" If only the mailbox counts
 (unread/total emails/threads) have changed since the old state,
 this will be the list of properties that may have changed, i.e.
 "["totalEmails", "unreadEmails", "totalThreads",
 "unreadThreads"]". If the server is unable to tell if only counts
 have changed, it MUST just be "null".

 Since counts frequently change but other properties are generally
 only changed rarely, the server can help the client optimise data
 transfer by keeping track of changes to email/thread counts
 separately to other state changes. The _updatedProperties_ array may
 be used directly via a back-reference in a subsequent Mailbox/get
 call in the same single request so only these properties are returned
 if nothing else has changed.

https://datatracker.ietf.org/doc/html/rfc3501

Jenkins & Newman Expires September 9, 2019 [Page 12]

Internet-Draft JMAP Mail March 2019

2.3. Mailbox/query

 Standard "/query" method as described in [I-D.ietf-jmap-core] section
5.5, but with the following additional request argument:

 o *sortAsTree*: "Boolean" (default: false) If "true", when sorting
 the query results and comparing two mailboxes a and b:

 * If a is an ancestor of b, it always comes first regardless of
 the _sort_ comparators. Similarly, if a is descendant of b,
 then b always comes first.

 * Otherwise, if a and b do not share a _parentId_, find the
 nearest ancestors of each that do have the same _parentId_ and
 compare the sort properties on those mailboxes instead.

 The result of this is that the mailboxes are sorted as a tree
 according to the parentId properties, with each set of children
 with a common parent sorted according to the standard sort
 comparators.

 o *filterAsTree*: "Boolean" (default: false) If "true", a mailbox is
 only included in the query if all its ancestors are also included
 in the query according to the filter.

 A *FilterCondition* object has the following properties, any of which
 may be omitted:

 o *parentId*: "Id|null" The Mailbox _parentId_ property must match
 the given value exactly.

 o *name*: "String" The Mailbox _name_ property contains the given
 string.

 o *role*: "String|null" The Mailbox _role_ property must match the
 given value exactly.

 o *hasAnyRole*: "Boolean" If "true", a Mailbox matches if it has any
 non-"null" value for its _role_ property.

 o *isSubscribed*: "Boolean" The "isSubscribed" property of the
 mailbox must be identical to the value given to match the
 condition.

 A Mailbox object matches the FilterCondition if and only if all of
 the given conditions match. If zero properties are specified, it is
 automatically "true" for all objects.

Jenkins & Newman Expires September 9, 2019 [Page 13]

Internet-Draft JMAP Mail March 2019

 The following Mailbox properties MUST be supported for sorting:

 o "sortOrder"

 o "name"

2.4. Mailbox/queryChanges

 Standard "/queryChanges" method as described in [I-D.ietf-jmap-core]
section 5.6.

2.5. Mailbox/set

 Standard "/set" method as described in [I-D.ietf-jmap-core] section
5.3, but with the following additional request argument:

 o *onDestroyRemoveMessages*: "Boolean" (default: false) If "false",
 any attempt to destroy a mailbox that still has messages in it
 will be rejected with a "mailboxHasEmail" SetError. If "true",
 any messages that were in the mailbox will be removed from it, and
 if in no other mailboxes will be destroyed when the mailbox is
 destroyed.

 The following extra _SetError_ types are defined:

 For *destroy*:

 o "mailboxHasChild": The mailbox still has at least one child
 mailbox. The client MUST remove these before it can delete the
 parent mailbox.

 o "mailboxHasEmail": The mailbox has at least one message assigned
 to it and the _onDestroyRemoveMessages_ argument was "false".

2.6. Example

 Fetching all mailboxes in an account:

 [["Mailbox/get", {
 "accountId": "u33084183",
 "ids": null
 }, "0"]]

 And response:

Jenkins & Newman Expires September 9, 2019 [Page 14]

Internet-Draft JMAP Mail March 2019

 [["Mailbox/get", {
 "accountId": "u33084183",
 "state": "78540",
 "list": [{
 "id": "MB23cfa8094c0f41e6",
 "name": "Inbox",
 "parentId": null,
 "role": "inbox",
 "sortOrder": 10,
 "totalEmails": 16307,
 "unreadEmails": 13905,
 "totalThreads": 5833,
 "unreadThreads": 5128,
 "myRights": {
 "mayAddItems": true,
 "mayRename": false,
 "maySubmit": true,
 "mayDelete": false,
 "maySetKeywords": true,
 "mayRemoveItems": true,
 "mayCreateChild": true,
 "maySetSeen": true,
 "mayReadItems": true
 },
 "isSubscribed": true
 }, {
 "id": "MB674cc24095db49ce",
 "name": "Important mail",
 ...
 }, ...],
 "notFound": []
 }, "0"]]

 Now suppose a message is marked read and we get a push update that
 the Mailbox state has changed. You might fetch the updates like
 this:

Jenkins & Newman Expires September 9, 2019 [Page 15]

Internet-Draft JMAP Mail March 2019

 [["Mailbox/changes", {
 "accountId": "u33084183",
 "sinceState": "78540"
 }, "0"],
 ["Mailbox/get", {
 "accountId": "u33084183",
 "#ids": {
 "resultOf": "0",
 "name": "Mailbox/changes",
 "path": "/created"
 }
 }, "1"],
 ["Mailbox/get", {
 "accountId": "u33084183",
 "#ids": {
 "resultOf": "0",
 "name": "Mailbox/changes",
 "path": "/updated"
 },
 "#properties": {
 "resultOf": "0",
 "name": "Mailbox/changes",
 "path": "/updatedProperties"
 }
 }, "2"]]

 This fetches the list of ids for created/updated/destroyed mailboxes,
 then using back-references fetches the data for just the created/
 updated mailboxes in the same request. The response may look
 something like this:

Jenkins & Newman Expires September 9, 2019 [Page 16]

Internet-Draft JMAP Mail March 2019

 [["Mailbox/changes", {
 "accountId": "u33084183",
 "oldState": "78541",
 "newState": "78542",
 "hasMoreChanges": false,
 "updatedProperties": [
 "totalEmails", "unreadEmails",
 "totalThreads", "unreadThreads"
],
 "created": [],
 "updated": ["MB23cfa8094c0f41e6"],
 "destroyed": []
 }, "0"],
 ["Mailbox/get", {
 "accountId": "u33084183",
 "state": "78542",
 "list": [],
 "notFound": []
 }, "1"],
 ["Mailbox/get", {
 "accountId": "u33084183",
 "state": "78542",
 "list": [{
 "id": "MB23cfa8094c0f41e6",
 "totalEmails": 16307,
 "unreadEmails": 13903,
 "totalThreads": 5833,
 "unreadThreads": 5127
 }],
 "notFound": []
 }, "2"]]

 Here's an example where we try to rename one mailbox and destroy
 another:

 [["Mailbox/set", {
 "accountId": "u33084183",
 "ifInState": "78542",
 "update": {
 "MB674cc24095db49ce": {
 "name": "Maybe important mail"
 }
 },
 "destroy": ["MB23cfa8094c0f41e6"]
 }, "0"]]

 Suppose the rename succeeds, but we don't have permission to destroy
 the mailbox we tried to destroy, we might get back:

Jenkins & Newman Expires September 9, 2019 [Page 17]

Internet-Draft JMAP Mail March 2019

 [["Mailbox/set", {
 "accountId": "u33084183",
 "oldState": "78542",
 "newState": "78549",
 "updated": {
 "MB674cc24095db49ce": null
 },
 "notDestroyed": {
 "MB23cfa8094c0f41e6": {
 "type": "forbidden"
 }
 }
 }, "0"]]

3. Threads

 Replies are grouped together with the original message to form a
 thread. In JMAP, a thread is simply a flat list of emails, ordered
 by date. Every email MUST belong to a thread, even if it is the only
 email in the thread.

 The exact algorithm for determining whether two emails belong to the
 same thread is not mandated in this spec to allow for compatibility
 with different existing systems. For new implementations, it is
 suggested that two messages belong in the same thread if both of the
 following conditions apply:

 1. An identical RFC5322 message id appears in both messages in any
 of the Message-Id, In-Reply-To and References headers.

 2. After stripping automatically added prefixes such as "Fwd:",
 "Re:", "[List-Tag]" etc. and ignoring whitespace, the subjects
 are the same. This avoids the situation where a person replies
 to an old message as a convenient way of finding the right
 recipient to send to, but changes the subject and starts a new
 conversation.

 If emails are delivered out of order for some reason, a user may
 receive two emails in the same thread but without headers that
 associate them with each other. The arrival of a third email in the
 thread may provide the missing references to join them all together
 into a single thread. Since the _threadId_ of an email is immutable,
 if the server wishes to merge the threads, it MUST handle this by
 deleting and reinserting (with a new email id) the emails that change
 threadId.

 A *Thread* object has the following properties:

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 18]

Internet-Draft JMAP Mail March 2019

 o *id*: "Id" (immutable; server-set) The id of the thread.

 o *emailIds*: "Id[]" (server-set) The ids of the emails in the
 thread, sorted by the _receivedAt_ date of the email, oldest
 first. If two emails have an identical date, the sort is server-
 dependent but MUST be stable (sorting by id is recommended).

 The following JMAP methods are supported:

3.1. Thread/get

 Standard "/get" method as described in [I-D.ietf-jmap-core] section
5.1.

3.1.1. Example

 Request:

 [["Thread/get", {
 "accountId": "acme",
 "ids": ["f123u4", "f41u44"]
 }, "#1"]]

 with response:

 [["Thread/get", {
 "accountId": "acme",
 "state": "f6a7e214",
 "list": [
 {
 "id": "f123u4",
 "emailIds": ["eaa623", "f782cbb"]
 },
 {
 "id": "f41u44",
 "emailIds": ["82cf7bb"]
 }
],
 "notFound": []
 }, "#1"]]

3.2. Thread/changes

 Standard "/changes" method as described in [I-D.ietf-jmap-core]
section 5.2.

Jenkins & Newman Expires September 9, 2019 [Page 19]

Internet-Draft JMAP Mail March 2019

4. Emails

 The *Email* object is a representation of an [RFC5322] message, which
 allows clients to avoid the complexities of MIME parsing, transfer
 encoding and character encoding.

4.1. Properties of the Email object

 Broadly, a message consists of two parts: a list of header fields,
 then a body. The JMAP Email object provides a way to access the full
 structure, or to use simplified properties and avoid some complexity
 if this is sufficient for the client application.

 While raw headers can be fetched and set, the vast majority of
 clients should use an appropriate parsed form for each of the headers
 it wants to process, as this allows it to avoid the complexities of
 various encodings that are required in a valid RFC5322 message.

 The body of a message is normally a MIME-encoded set of documents in
 a tree structure. This may be arbitrarily nested, but the majority
 of email clients present a flat model of an email body (normally
 plain text or HTML), with a set of attachments. Flattening the MIME
 structure to form this model can be difficult, and causes
 inconsistency between clients. Therefore in addition to the
 bodyStructure property, which gives the full tree, the Email object
 contains 3 alternate properties with flat lists of body parts:

 o _textBody_/_htmlBody_: These provide a list of parts that should
 be rendered sequentially as the "body" of the message. This is a
 list rather than a single part as messages may have headers and/or
 footers appended/prepended as separate parts as they are
 transmitted, and some clients send text and images intended to be
 displayed inline in the body (or even videos and sound clips) as
 multiple parts rather than a single HTML part with referenced
 images.

 Because MIME allows for multiple representations of the same data
 (using "multipart/alternative"), there is a textBody property (which
 prefers a plain text representation) and an htmlBody property (which
 prefers an HTML representation) to accommodate the two most common
 client requirements. The same part may appear in both lists where
 there is no alternative between the two.

 o _attachments_: This provides a list of parts that should be
 presented as "attachments" to the message. Some images may be
 solely there for embedding within an HTML body part; clients may
 wish to not present these as attachments in the user interface if
 they are displaying the HTML with the embedded images directly.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 20]

Internet-Draft JMAP Mail March 2019

 Some parts may also be in htmlBody/textBody; again, clients may
 wish to not present these as attachments in the user interface if
 rendered as part of the body.

 The _bodyValues_ property allows for clients to fetch the value of
 text parts directly without having to do a second request for the
 blob, and have the server handle decoding the charset into unicode.
 This data is in a separate property rather than on the EmailBodyPart
 object to avoid duplication of large amounts of data, as the same
 part may be included twice if the client fetches more than one of
 bodyStructure, textBody and htmlBody.

 In the following subsections the common notational convention for
 wildcards has been adopted for content types, so "foo/*" means any
 content type that starts with "foo/".

 Due to the number of properties involved, the set of _Email_
 properties is specified over the following four sub-sections. This
 is purely for readability; all properties are top-level peers.

4.1.1. Metadata

 These properties represent metadata about the [RFC5322] message, and
 are not derived from parsing the message itself.

 o *id*: "Id" (immutable; server-set) The id of the Email object.
 Note, this is the JMAP object id, NOT the [RFC5322] Message-ID
 header field value.

 o *blobId*: "Id" (immutable; server-set) The id representing the raw
 octets of the [RFC5322] message. This may be used to download the
 raw original message, or to attach it directly to another Email
 etc.

 o *threadId*: "Id" (immutable; server-set) The id of the Thread to
 which this Email belongs.

 o *mailboxIds*: "Id[Boolean]" The set of Mailbox ids this email
 belongs to. An email in the mail store MUST belong to one or more
 mailboxes at all times (until it is deleted). The set is
 represented as an object, with each key being a _Mailbox id_. The
 value for each key in the object MUST be "true".

 o *keywords*: "String[Boolean]" (default: {}) A set of keywords that
 apply to the email. The set is represented as an object, with the
 keys being the _keywords_. The value for each key in the object
 MUST be "true". Keywords are shared with IMAP. The six system
 keywords from IMAP are treated specially. The following four

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 21]

Internet-Draft JMAP Mail March 2019

 keywords have their first character changed from "\" in IMAP to
 "$" in JMAP and have particular semantic meaning:

 * "$draft": The email is a draft the user is composing.

 * "$seen": The email has been read.

 * "$flagged": The email has been flagged for urgent/special
 attention.

 * "$answered": The email has been replied to.

 The IMAP "\Recent" keyword is not exposed via JMAP. The IMAP
 "\Deleted" keyword is also not present: IMAP uses a delete+expunge
 model, which JMAP does not. Any message with the "\Deleted"
 keyword MUST NOT be visible via JMAP (including as part of any
 mailbox counts). Users may add arbitrary keywords to an email.
 For compatibility with IMAP, a keyword is a case-insensitive
 string of 1-255 characters in the ASCII subset %x21-%x7e (excludes
 control chars and space), and MUST NOT include any of these
 characters: "() {] % * " \" Because JSON is case-sensitive,
 servers MUST return keywords in lower-case. The IANA Keyword
 Registry [2] as established in [RFC5788] assigns semantic meaning
 to some other keywords in common use. New keywords may be
 established here in the future. In particular, note:

 * "$forwarded": The email has been forwarded.

 * "$phishing": The email is highly likely to be phishing.
 Clients SHOULD warn users to take care when viewing this email
 and disable links and attachments.

 * "$junk": The email is definitely spam. Clients SHOULD set this
 flag when users report spam to help train automated spam-
 detection systems.

 * "$notjunk": The email is definitely not spam. Clients SHOULD
 set this flag when users indicate an email is legitimate, to
 help train automated spam-detection systems.

 o *size*: "UnsignedInt" (immutable; server-set) The size, in octets,
 of the raw data for the [RFC5322] message (as referenced by the
 blobId, i.e. the number of octets in the file the user would
 download).

 o *receivedAt*: "UTCDate" (immutable; default: time of creation on
 server) The date the email was received by the message store.
 This is the _internal date_ in IMAP ([RFC3501]).

https://datatracker.ietf.org/doc/html/rfc5788
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc3501

Jenkins & Newman Expires September 9, 2019 [Page 22]

Internet-Draft JMAP Mail March 2019

4.1.2. Header fields parsed forms

 Header field properties are derived from the [RFC5322] and [RFC6532]
 message header fields. All header fields may be fetched in a raw
 form. Some headers may also be fetched in a parsed form. The
 structured form that may be fetched depends on the header. The
 following forms are defined:

4.1.2.1. Raw

 Type: "String"

 The raw octets of the header field value from the first octet
 following the header field name terminating colon, up to but
 excluding the header field terminating CRLF. Any standards-compliant
 message MUST be either ASCII (RFC5322) or UTF-8 (RFC6532), however
 other encodings exist in the wild. A server SHOULD replace any octet
 or octet run with the high bit set that violates UTF-8 syntax with
 the unicode replacement character (U+FFFD). Any NUL octet MUST be
 dropped.

 This form will typically have a leading space, as most generated
 messages insert a space after the colon that terminates the header
 field name.

4.1.2.2. Text

 Type: "String"

 The header field value with:

 1. White space unfolded (as defined in [RFC5322] section 2.2.3).

 2. The terminating CRLF at the end of the value removed.

 3. Any SP characters at the beginning of the value removed.

 4. Any syntactically correct [RFC2047] encoded sections with a known
 character set decoded. Any [RFC2047] encoded NUL octets or
 control characters are dropped from the decoded value. Any text
 that looks like [RFC2047] syntax but violates [RFC2047] placement
 or whitespace rules MUST NOT be decoded.

 5. The resulting unicode converted to NFC form.

 If any decodings fail, the parser SHOULD insert a unicode replacement
 character (U+FFFD) and attempt to continue as much as possible.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5322#section-2.2.3
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047

Jenkins & Newman Expires September 9, 2019 [Page 23]

Internet-Draft JMAP Mail March 2019

 To prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for the
 following header fields:

 o Subject

 o Comments

 o Keywords

 o List-Id

 o Any header not defined in [RFC5322] or [RFC2369]

4.1.2.3. Addresses

 Type: "EmailAddress[]"

 The header is parsed as an "address-list" value, as specified in
[RFC5322] section 3.4, into the "EmailAddress[]" type. There is an

 EmailAddress item for each "mailbox" parsed from the "address-list".
 Group and comment information is discarded.

 The *EmailAddress* object has the following properties:

 o *name*: "String|null" The _display-name_ of the [RFC5322]
 mailbox. If this is a _quoted-string_:

 1. The surrounding DQUOTE characters are removed.

 2. Any _quoted-pair_ is decoded.

 3. White-space is unfolded, and then any leading and trailing
 white-space is removed.

 If there is no _display-name_ but there is a _comment_ immediately
 following the _addr-spec_, the value of this SHOULD be used
 instead. Otherwise, this property is "null".

 o *email*: "String" The _addr-spec_ of the [RFC5322] _mailbox_.

 Any syntactically correct [RFC2047] encoded sections with a known
 encoding MUST be decoded, following the same rules as for the _Text_
 form.

 Parsing SHOULD be best-effort in the face of invalid structure to
 accommodate invalid messages and semi-complete drafts. EmailAddress

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2047

Jenkins & Newman Expires September 9, 2019 [Page 24]

Internet-Draft JMAP Mail March 2019

 objects MAY have an _email_ property that does not conform to the
 addr-spec form (for example, may not contain an @ symbol).

 For example, the following "address-list" string:

 " James Smythe" <james@example.com>, Friends:
 jane@example.com, =?UTF-8?Q?John_Sm=C3=AEth?=
 <john@example.com>;

 would be parsed as:

 [
 { "name": "James Smythe", "email": "james@example.com" },
 { "name": null, "email": "jane@example.com" },
 { "name": "John Smith", "email": "john@example.com" }
]

 To prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for the
 following header fields:

 o From

 o Sender

 o Reply-To

 o To

 o Cc

 o Bcc

 o Resent-From

 o Resent-Sender

 o Resent-Reply-To

 o Resent-To

 o Resent-Cc

 o Resent-Bcc

 o Any header not defined in [RFC5322] or [RFC2369]

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369

Jenkins & Newman Expires September 9, 2019 [Page 25]

Internet-Draft JMAP Mail March 2019

4.1.2.4. GroupedAddresses

 Type: "EmailAddressGroup[]"

 This is similar to the Addresses form but preserves group
 information. The header is parsed as an "address-list" value, as
 specified in [RFC5322] section 3.4, into the "GroupedAddresses[]"
 type. Consecutive mailboxes that are not part of a group are still
 collected under an EmailAddressGroup object to provide a uniform
 type.

 The *EmailAddressGroup* object has the following properties:

 o *name*: "String|null" The _display-name_ of the [RFC5322] _group_,
 or "null" if the addresses are not part of a group. If this is a
 quoted-string it is processed the same as the _name_ in the
 EmailAddress type.

 o *addresses*: "EmailAddress[]" The _mailbox_es that belong to this
 group, represented as EmailAddress objects.

 Any syntactically correct [RFC2047] encoded sections with a known
 encoding MUST be decoded, following the same rules as for the _Text_
 form.

 Parsing SHOULD be best-effort in the face of invalid structure to
 accommodate invalid messages and semi-complete drafts.

 For example, the following "address-list" string:

 " James Smythe" <james@example.com>, Friends:
 jane@example.com, =?UTF-8?Q?John_Sm=C3=AEth?=
 <john@example.com>;

 would be parsed as:

 [
 { "name": null, "addresses": [
 { "name": "James Smythe", "email": "james@example.com" }
]},
 { "name": "Friends", "addresses": [
 { "name": null, "email": "jane@example.com" },
 { "name": "John Smith", "email": "john@example.com" }
]}
]

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2047

Jenkins & Newman Expires September 9, 2019 [Page 26]

Internet-Draft JMAP Mail March 2019

 To prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for the
 same header fields as the _Addresses_ form.

4.1.2.5. MessageIds

 Type: "String[]|null"

 The header is parsed as a list of "msg-id" values, as specified in
[RFC5322] section 3.6.4, into the "String[]" type. CFWS and

 surrounding angle brackets ("<>") are removed. If parsing fails, the
 value is "null".

 To prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for the
 following header fields:

 o Message-ID

 o In-Reply-To

 o References

 o Resent-Message-ID

 o Any header not defined in [RFC5322] or [RFC2369]

4.1.2.6. Date

 Type: "Date|null"

 The header is parsed as a "date-time" value, as specified in
[RFC5322] section 3.3, into the "Date" type. If parsing fails, the

 value is "null".

 To prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for the
 following header fields:

 o Date

 o Resent-Date

 o Any header not defined in [RFC5322] or [RFC2369]

https://datatracker.ietf.org/doc/html/rfc5322#section-3.6.4
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322#section-3.3
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369

Jenkins & Newman Expires September 9, 2019 [Page 27]

Internet-Draft JMAP Mail March 2019

4.1.2.7. URLs

 Type: "String[]|null"

 The header is parsed as a list of URLs, as described in [RFC2369],
 into the "String[]" type. Values do not include the surrounding
 angle brackets or any comments in the header with the URLs. If
 parsing fails, the value is "null".

 To prevent obviously nonsense behaviour, which can lead to
 interoperability issues, this form may only be fetched or set for the
 following header fields:

 o List-Help

 o List-Unsubscribe

 o List-Subscribe

 o List-Post

 o List-Owner

 o List-Archive

 o Any header not defined in [RFC5322] or [RFC2369]

4.1.3. Header fields properties

 The following low-level *Email* property is specified for complete
 access to the header data of the message:

 o *headers*: "EmailHeader[]" (immutable) This is a list of all
 [RFC5322] header fields, in the same order they appear in the
 message. An *EmailHeader* object has the following properties:

 * *name*: "String" The header _field name_ as defined in
 [RFC5322], with the same capitalization that it has in the
 message.

 * *value*: "String" The header _field value_ as defined in
 [RFC5322], in _Raw_ form.

 In addition, the client may request/send properties representing
 individual header fields of the form:

 header:{header-field-name}

https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2369
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 28]

Internet-Draft JMAP Mail March 2019

 Where "{header-field-name}" means any series of one or more printable
 ASCII characters (i.e. characters that have values between 33 and
 126, inclusive), except colon. The property may also have the
 following suffixes:

 o *:as{header-form}* This means the value is in a parsed form, where
 "{header-form}" is one of the parsed-form names specified above.
 If not given, the value is in _Raw_ form.

 o *:all* This means the value is an array, with the items
 corresponding to each instance of the header field, in the order
 they appear in the message. If this suffix is not used, the
 result is the value of the *last* instance of the header field
 (i.e. identical to the *last* item in the array if :all is used),
 or "null" if none.

 If both suffixes are used, they MUST be specified in the order above.
 Header field names are matched case-insensitively. The value is
 typed according to the requested form, or an array of that type if
 :all is used. If no header fields exist in the message with the
 requested name, the value is "null" if fetching a single instance, or
 the empty array if requesting :all.

 As a simple example, if the client requests a property called
 "header:subject", this means find the _last_ header field in the
 message named "subject" (matched case-insensitively) and return the
 value in _Raw_ form, or "null" if no header of this name is found.

 For a more complex example, consider the client requesting a property
 called "header:Resent-To:asAddresses:all". This means:

 1. Find _all_ header fields named Resent-To (matched case-
 insensitively).

 2. For each instance parse the header field value in the _Addresses_
 form.

 3. The result is of type "EmailAddress[][]" - each item in the array
 corresponds to the parsed value (which is itself an array) of the
 Resent-To header field instance.

 The following convenience properties are also specified for the
 Email object:

 o *messageId*: "String[]|null" (immutable) The value is identical to
 the value of _header:Message-ID:asMessageIds_. For messages
 conforming to RFC5322 this will be an array with a single entry.

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 29]

Internet-Draft JMAP Mail March 2019

 o *inReplyTo*: "String[]|null" (immutable) The value is identical to
 the value of _header:In-Reply-To:asMessageIds_.

 o *references*: "String[]|null" (immutable) The value is identical
 to the value of _header:References:asMessageIds_.

 o *sender*: "EmailAddress[]|null" (immutable) The value is identical
 to the value of _header:Sender:asAddresses_.

 o *from*: "EmailAddress[]|null" (immutable) The value is identical
 to the value of _header:From:asAddresses_.

 o *to*: "EmailAddress[]|null" (immutable) The value is identical to
 the value of _header:To:asAddresses_.

 o *cc*: "EmailAddress[]|null" (immutable) The value is identical to
 the value of _header:Cc:asAddresses_.

 o *bcc*: "EmailAddress[]|null" (immutable) The value is identical to
 the value of _header:Bcc:asAddresses_.

 o *replyTo*: "EmailAddress[]|null" (immutable) The value is
 identical to the value of _header:Reply-To:asAddresses_.

 o *subject*: "String|null" (immutable) The value is identical to the
 value of _header:Subject:asText_.

 o *sentAt*: "Date|null" (immutable; default on creation: current
 server time) The value is identical to the value of
 header:Date:asDate.

4.1.4. Body parts

 These properties are derived from the [RFC5322] message body and its
 [RFC2045] MIME entities.

 A *EmailBodyPart* object has the following properties:

 o *partId*: "String|null" Identifies this part uniquely within the
 Email. This is scoped to the _emailId_ and has no meaning outside
 of the JMAP Email object representation. This is "null" if, and
 only if, the part is of type "multipart/*".

 o *blobId*: "Id|null" The id representing the raw octets of the
 contents of the part, after decoding any known _Content-Transfer-
 Encoding_ (as defined in [RFC2045]), or "null" if, and only if,
 the part is of type "multipart/*". Note, two parts may be
 transfer-encoded differently but have the same blob id if their

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

Jenkins & Newman Expires September 9, 2019 [Page 30]

Internet-Draft JMAP Mail March 2019

 decoded octets are identical and the server is using a secure hash
 of the data for the blob id. If the transfer encoding is unknown,
 it is treated as though it had no transfer-encoding.

 o *size*: "UnsignedInt" The size, in octets, of the raw data after
 content transfer decoding (as referenced by the _blobId_, i.e. the
 number of octets in the file the user would download).

 o *headers*: "EmailHeader[]" This is a list of all header fields in
 the part, in the order they appear in the message. The values are
 in _Raw_ form.

 o *name*: "String|null" This is the [RFC2231] decoded _filename_
 parameter of the _Content-Disposition_ header field, or (for
 compatibility with existing systems) if not present then the
 [RFC2047] decoded _name_ parameter of the _Content-Type_ header
 field.

 o *type*: "String" The value of the _Content-Type_ header field of
 the part, if present, otherwise the implicit type as per the MIME
 standard ("text/plain", or "message/rfc822" if inside a
 "multipart/digest"). CFWS is removed and any parameters are
 stripped.

 o *charset*: "String|null" The value of the charset parameter of the
 Content-Type header field, if present, or "null" if the header
 field is present but not of type "text/*". If there is no
 Content-Type header field, or it exists and is of type "text/*"
 but has no charset parameter, this is the implicit charset as per
 the MIME standard: "us-ascii".

 o *disposition*: "String|null" The value of the _Content-
 Disposition_ header field of the part, if present, otherwise
 "null". CFWS is removed and any parameters are stripped.

 o *cid*: "String|null" The value of the _Content-Id_ header field of
 the part, if present, otherwise "null". CFWS and surrounding
 angle brackets ("<>") are removed. This may be used to reference
 the content from within an [HTML] body part using the "cid:"
 protocol, as defined in [RFC2392].

 o *language*: "String[]|null" The list of language tags, as defined
 in [RFC3282], in the _Content-Language_ header field of the part,
 if present.

 o *location*: "String|null" The URI, as defined in [RFC2557], in the
 Content-Location header field of the part, if present.

https://datatracker.ietf.org/doc/html/rfc2231
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2392
https://datatracker.ietf.org/doc/html/rfc3282
https://datatracker.ietf.org/doc/html/rfc2557

Jenkins & Newman Expires September 9, 2019 [Page 31]

Internet-Draft JMAP Mail March 2019

 o *subParts*: "EmailBodyPart[]|null" If type is "multipart/*", this
 contains the body parts of each child.

 In addition, the client may request/send EmailBodyPart properties
 representing individual header fields, following the same syntax and
 semantics as for the Email object, e.g. "header:Content-Type".

 The following *Email* properties are specified for access to the body
 data of the message:

 o *bodyStructure*: "EmailBodyPart" (immutable) This is the full MIME
 structure of the message body, represented as an array of the
 message's top-level MIME parts, without recursing into "message/

rfc822" or "message/global" parts. Note that EmailBodyParts may
 have subParts if they are of type "multipart/*".

 o *bodyValues*: "String[EmailBodyValue]" (immutable) This is a map
 of _partId_ to an *EmailBodyValue* object for none, some or all
 "text/*" parts. Which parts are included and whether the value is
 truncated is determined by various arguments to _Email/get_ and
 Email/parse. An *EmailBodyValue* object has the following
 properties:

 * *value*: "String" The value of the body part after decoding
 Content-Transfer-Encoding and decoding the _Content-Type_
 charset, if both known to the server, and with any CRLF
 replaced with a single LF. The server MAY use heuristics to
 determine the charset to use for decoding if the charset is
 unknown, or if no charset is given, or if it believes the
 charset given is incorrect. Decoding is best-effort and SHOULD
 insert the unicode replacement character (U+FFFD) and continue
 when a malformed section is encountered. Note that due to the
 charset decoding and line ending normalisation, the length of
 this string will probably not be exactly the same as the _size_
 property on the corresponding EmailBodyPart.

 * *isEncodingProblem*: "Boolean" (default: false) This is "true"
 if malformed sections were found while decoding the charset, or
 the charset was unknown, or the content-transfer-encoding was
 unknown.

 * *isTruncated*: "Boolean" (default: false) This is "true" if the
 value has been truncated.

 See the security considerations section for issues related to
 truncation and heuristic determination of content-type and
 charset.

https://datatracker.ietf.org/doc/html/rfc822

Jenkins & Newman Expires September 9, 2019 [Page 32]

Internet-Draft JMAP Mail March 2019

 o *textBody*: "EmailBodyPart[]" (immutable) A list of "text/plain",
 "text/html", "image/*", "audio/*" and/or "video/*" parts to
 display (sequentially) as the message body, with a preference for
 "text/plain" when alternative versions are available.

 o *htmlBody*: "EmailBodyPart[]" (immutable) A list of "text/plain",
 "text/html", "image/*", "audio/*" and/or "video/*" parts to
 display (sequentially) as the message body, with a preference for
 "text/html" when alternative versions are available.

 o *attachments*: "EmailBodyPart[]" (immutable) A list of all parts
 in _bodyStructure_, traversing depth-first, which satisfy either
 of the following conditions:

 * not of type "multipart/*" and not included in _textBody_ or
 htmlBody

 * of type "image/*", "audio/*" or "video/*" and not in both
 textBody and _htmlBody_

 None of these parts include subParts, including "message/*" types.
 Attached messages may be fetched using the Email/parse method and
 the blobId. Note, an [HTML] body part may reference image parts
 in attachments using "cid:" links to reference the _Content-Id_,
 as defined in [RFC2392], or by referencing the _Content-Location_.

 o *hasAttachment*: "Boolean" (immutable; server-set) This is "true"
 if there are one or more parts in the message that a client UI
 should offer as downloadable. A server SHOULD set hasAttachment
 to "true" if the _attachments_ list contains at least one item
 that does not have "Content-Disposition: inline". The server MAY
 ignore parts in this list that are processed automatically in some
 way, or are referenced as embedded images in one of the "text/
 html" parts of the message. The server MAY set hasAttachment
 based on implementation-defined or site configurable heuristics.

 o *preview*: "String" (immutable; server-set) A plain text fragment
 of the message body. This is intended to be shown as a preview
 line on a mailbox listing, and may be truncated when shown. The
 server may choose which part of the message to include in the
 preview; skipping quoted sections and salutations and collapsing
 white-space can result in a more useful preview. This MUST NOT be
 more than 256 characters in length. As this is derived from the
 message content by the server, and the algorithm for doing so
 could change over time, fetching this for an email a second time
 MAY return a different result. However, the previous value is not
 considered incorrect, and the change SHOULD NOT cause the Email
 object to be considered as changed by the server.

https://datatracker.ietf.org/doc/html/rfc2392

Jenkins & Newman Expires September 9, 2019 [Page 33]

Internet-Draft JMAP Mail March 2019

 The exact algorithm for decomposing bodyStructure into textBody,
 htmlBody and attachments part lists is not mandated, as this is a
 quality-of-service implementation issue and likely to require
 workarounds for malformed content discovered over time. However, the
 following algorithm (expressed here in JavaScript) is suggested as a
 starting point, based on real-world experience:

 function isInlineMediaType (type) {
 return type.startsWith('image/') ||
 type.startsWith('audio/') ||
 type.startsWith('video/');
 }

 function parseStructure (parts, multipartType, inAlternative,
 htmlBody, textBody, attachments) {

 // For multipartType == alternative
 let textLength = textBody ? textBody.length : -1;
 let htmlLength = htmlBody ? htmlBody.length : -1;

 for (let i = 0; i < parts.length; i += 1) {
 let part = parts[i];
 let isMultipart = part.type.startsWith('multipart/');
 // Is this a body part rather than an attachment
 let isInline = part.disposition != "attachment" &&
 // Must be one of the allowed body types
 (part.type == "text/plain" ||
 part.type == "text/html" ||
 isInlineMediaType(part.type)) &&
 // If multipart/related, only the first part can be inline
 // If a text part with a filename, and not the first item
 // in the multipart, assume it is an attachment
 (i === 0 ||
 (multipartType != "related" &&
 (isInlineMediaType(part.type) || !part.name)));

 if (isMultipart) {
 let subMultiType = part.type.split('/')[1];
 parseStructure(part.subParts, subMultiType,
 inAlternative || (subMultiType == 'alternative'),
 htmlBody, textBody, attachments);
 } else if (isInline) {
 if (multipartType == 'alternative') {
 switch (part.type) {
 case 'text/plain':
 textBody.push(part);
 break;
 case 'text/html':

Jenkins & Newman Expires September 9, 2019 [Page 34]

Internet-Draft JMAP Mail March 2019

 htmlBody.push(part);
 break;
 default:
 attachments.push(part);
 break;
 }
 continue;
 } else if (inAlternative) {
 if (part.type == 'text/plain') {
 htmlBody = null;
 }
 if (part.type == 'text/html') {
 textBody = null;
 }
 }
 if (textBody) {
 textBody.push(part);
 }
 if (htmlBody) {
 htmlBody.push(part);
 }
 if ((!textBody || !htmlBody) &&
 isInlineMediaType(part.type)) {
 attachments.push(part);
 }
 } else {
 attachments.push(part);
 }
 }

 if (multipartType == 'alternative' && textBody && htmlBody) {
 // Found HTML part only
 if (textLength == textBody.length &&
 htmlLength != htmlBody.length) {
 for (let i = htmlLength; i < htmlBody.length; i += 1) {
 textBody.push(htmlBody[i]);
 }
 }
 // Found plain text part only
 if (htmlLength == htmlBody.length &&
 textLength != textBody.length) {
 for (let i = textLength; i < textBody.length; i += 1) {
 htmlBody.push(textBody[i]);
 }
 }
 }
 }

Jenkins & Newman Expires September 9, 2019 [Page 35]

Internet-Draft JMAP Mail March 2019

 // Usage:
 let htmlBody = [];
 let textBody = [];
 let attachments = [];

 parseStructure([bodyStructure], 'mixed', false,
 htmlBody, textBody, attachments);

 For instance, consider a message with both text and HTML versions
 that's then gone through a list software manager that attaches a
 header/footer. It might have a MIME structure something like:

 multipart/mixed
 text/plain, content-disposition=inline - A
 multipart/mixed
 multipart/alternative
 multipart/mixed
 text/plain, content-disposition=inline - B
 image/jpeg, content-disposition=inline - C
 text/plain, content-disposition=inline - D
 multipart/related
 text/html - E
 image/jpeg - F
 image/jpeg, content-disposition=attachment - G
 application/x-excel - H
 message/rfc822 - J
 text/plain, content-disposition=inline - K

 In this case, the above algorithm would decompose this to:

 textBody => [A, B, C, D, K]
 htmlBody => [A, E, K]
 attachments => [C, F, G, H, J]

4.2. Email/get

 Standard "/get" method as described in [I-D.ietf-jmap-core] section
5.1, with the following additional request arguments:

 o *bodyProperties*: "String[]" A list of properties to fetch for
 each EmailBodyPart returned. If omitted, this defaults to:

 ["partId", "blobId", "size", "name", "type", "charset",
 "disposition", "cid", "language", "location"]

 o *fetchTextBodyValues*: "Boolean" (default: false) If "true", the
 bodyValues property includes any "text/*" part in the "textBody"
 property.

Jenkins & Newman Expires September 9, 2019 [Page 36]

Internet-Draft JMAP Mail March 2019

 o *fetchHTMLBodyValues*: "Boolean" (default: false) If "true", the
 bodyValues property includes any "text/*" part in the "htmlBody"
 property.

 o *fetchAllBodyValues*: "Boolean" (default: false) If "true", the
 bodyValues property includes any "text/*" part in the
 "bodyStructure" property.

 o *maxBodyValueBytes*: "UnsignedInt" (default: 0) If greater than
 zero, the _value_ property of any EmailBodyValue object returned
 in _bodyValues_ MUST be truncated if necessary so it does not
 exceed this number of octets in size. If "0" (the default), no
 truncation occurs. The server MUST ensure the truncation results
 in valid UTF-8 and does not occur mid-codepoint. If the part is
 of type "text/html", the server SHOULD NOT truncate inside an HTML
 tag, e.g. in the middle of "".
 There is no requirement for the truncated form to be a balanced
 tree or valid HTML (indeed, the original source may well be
 neither of these things).

 If the standard _properties_ argument is omitted or "null", the
 following default MUST be used instead of "all" properties:

 ["id", "blobId", "threadId", "mailboxIds", "keywords", "size",
 "receivedAt", "messageId", "inReplyTo", "references", "sender", "from",
 "to", "cc", "bcc", "replyTo", "subject", "sentAt", "hasAttachment",
 "preview", "bodyValues", "textBody", "htmlBody", "attachments"]

 The following properties are expected to be fast to fetch in a
 quality implementation:

 o id

 o blobId

 o threadId

 o mailboxIds

 o keywords

 o size

 o receivedAt

 o messageId

 o inReplyTo

Jenkins & Newman Expires September 9, 2019 [Page 37]

Internet-Draft JMAP Mail March 2019

 o sender

 o from

 o to

 o cc

 o bcc

 o replyTo

 o subject

 o sentAt

 o hasAttachment

 o preview

 Clients SHOULD take care when fetching any other properties, as there
 may be significantly longer latency in fetching and returning the
 data.

 As specified above, parsed forms of headers may only be used on
 appropriate header fields. Attempting to fetch a form that is
 forbidden (e.g. "header:From:asDate") MUST result in the method call
 being rejected with an "invalidArguments" error.

 Where a specific header is requested as a property, the
 capitalization of the property name in the response MUST be identical
 to that used in the request.

4.2.1. Example

 Request:

 [["Email/get", {
 "ids": ["f123u456", "f123u457"],
 "properties": ["threadId", "mailboxIds", "from", "subject",
 "receivedAt", "header:List-POST:asURLs",
 "htmlBody", "bodyValues"],
 "bodyProperties": ["partId", "blobId", "size", "type"],
 "fetchHTMLBodyValues": true,
 "maxBodyValueBytes": 256
 }, "#1"]]

 and response:

Jenkins & Newman Expires September 9, 2019 [Page 38]

Internet-Draft JMAP Mail March 2019

 [["Email/get", {
 "accountId": "abc",
 "state": "41234123231",
 "list": [
 {
 "id": "f123u457",
 "threadId": "ef1314a",
 "mailboxIds": { "f123": true },
 "from": [{ "name": "Joe Bloggs", "email": "joe@example.com" }],
 "subject": "Dinner on Thursday?",
 "receivedAt": "2013-10-13T14:12:00Z",
 "header:List-POST:asURLs": [
 "mailto:partytime@lists.example.com"
],
 "htmlBody": [{
 "partId": "1",
 "blobId": "B841623871",
 "size": 283331,
 "type": "text/html"
 }, {
 "partId": "2",
 "blobId": "B319437193",
 "size": 10343,
 "type": "text/plain"
 }],
 "bodyValues": {
 "1": {
 "isEncodingProblem": false,
 "isTruncated": true,
 "value": "<html><body><p>Hello ..."
 },
 "2": {
 "isEncodingProblem": false,
 "isTruncated": false,
 "value": "-- Sent by your friendly mailing list ..."
 }
 }
 }
],
 "notFound": ["f123u456"]
 }, "#1"]]

4.3. Email/changes

 Standard "/changes" method as described in [I-D.ietf-jmap-core]
section 5.2. If generating intermediate states for a large set of

 changes, it is recommended that newer changes are returned first, as
 these are generally of more interest to users.

Jenkins & Newman Expires September 9, 2019 [Page 39]

Internet-Draft JMAP Mail March 2019

4.4. Email/query

 Standard "/query" method as described in [I-D.ietf-jmap-core] section
5.5, but with the following additional request arguments:

 o *collapseThreads*: "Boolean" (default: false) If "true", emails in
 the same thread as a previous email in the list (given the filter
 and sort order) will be removed from the list. This means only
 one email at most will be included in the list for any given
 thread.

 In quality implementations, the query "total" property is expected to
 be fast to calculate when the filter consists solely of a single
 "inMailbox" property, as it is the same as the totalEmails or
 totalThreads properties (depending on whether collapseThreads is
 true) of the associated Mailbox object.

4.4.1. Filtering

 A *FilterCondition* object has the following properties, any of which
 may be omitted:

 o *inMailbox*: "Id" A mailbox id. An email must be in this mailbox
 to match the condition.

 o *inMailboxOtherThan*: "Id[]" A list of mailbox ids. An email must
 be in at least one mailbox not in this list to match the
 condition. This is to allow messages solely in trash/spam to be
 easily excluded from a search.

 o *before*: "UTCDate" The _receivedAt_ date-time of the email must
 be before this date-time to match the condition.

 o *after*: "UTCDate" The _receivedAt_ date-time of the email must be
 the same or after this date-time to match the condition.

 o *minSize*: "UnsignedInt" The _size_ of the email in octets must be
 equal to or greater than this number to match the condition.

 o *maxSize*: "UnsignedInt" The _size_ of the email in octets must be
 less than this number to match the condition.

 o *allInThreadHaveKeyword*: "String" All emails (including this one)
 in the same thread as this email must have the given keyword to
 match the condition.

Jenkins & Newman Expires September 9, 2019 [Page 40]

Internet-Draft JMAP Mail March 2019

 o *someInThreadHaveKeyword*: "String" At least one email (possibly
 this one) in the same thread as this email must have the given
 keyword to match the condition.

 o *noneInThreadHaveKeyword*: "String" All emails (including this
 one) in the same thread as this email must *not* have the given
 keyword to match the condition.

 o *hasKeyword*: "String" This email must have the given keyword to
 match the condition.

 o *notKeyword*: "String" This email must not have the given keyword
 to match the condition.

 o *hasAttachment*: "Boolean" The "hasAttachment" property of the
 email must be identical to the value given to match the condition.

 o *text*: "String" Looks for the text in emails. The server MUST
 look up text in the _from_, _to_, _cc_, _bcc_, _subject_ header
 fields of the message, and SHOULD look inside any "text/*" or
 other body parts that may be converted to text by the server. The
 server MAY extend the search to any additional textual property.

 o *from*: "String" Looks for the text in the _From_ header field of
 the message.

 o *to*: "String" Looks for the text in the _To_ header field of the
 message.

 o *cc*: "String" Looks for the text in the _Cc_ header field of the
 message.

 o *bcc*: "String" Looks for the text in the _Bcc_ header field of
 the message.

 o *subject*: "String" Looks for the text in the _subject_ property
 of the email.

 o *body*: "String" Looks for the text in one of the body parts of
 the email. The server MAY exclude MIME body parts with content
 media types other than "text/_" and "message/_" from consideration
 in search matching. Care should be taken to match based on the
 text content actually presented to an end-user by viewers for that
 media type, or otherwise identified as appropriate for search
 indexing. Matching document metadata uninteresting to an end-user
 (e.g., markup tag and attribute names) is undesirable.

Jenkins & Newman Expires September 9, 2019 [Page 41]

Internet-Draft JMAP Mail March 2019

 o *header*: "String[]" The array MUST contain either one or two
 elements. The first element is the name of the header field to
 match against. The second (optional) element is the text to look
 for in the header field value. If not supplied, the message
 matches simply if it _has_ a header field of the given name.

 If zero properties are specified on the FilterCondition, the
 condition MUST always evaluate to "true". If multiple properties are
 specified, ALL must apply for the condition to be "true" (it is
 equivalent to splitting the object into one-property conditions and
 making them all the child of an AND filter operator).

 The exact semantics for matching "String" fields is *deliberately not
 defined* to allow for flexibility in indexing implementation, subject
 to the following:

 o Any syntactically correct [RFC2047] encoded sections of header
 fields with a known encoding SHOULD be decoded before attempting
 to match text.

 o When searching inside a "text/html" body part, any text considered
 markup rather than content SHOULD be ignored, including HTML tags
 and most attributes, anything inside the "<head>" tag, CSS and
 JavaScript. Attribute content intended for presentation to the
 user such as "alt" and "title" SHOULD be considered in the search.

 o Text SHOULD be matched in a case-insensitive manner.

 o Text contained in either (but matched) single or double quotes
 SHOULD be treated as a *phrase search*, that is a match is
 required for that exact word or sequence of words, excluding the
 surrounding quotation marks. Use "\"", "\'" and "\\" to match a
 literal """, "'" and "\" respectively in a phrase.

 o Outside of a phrase, white-space SHOULD be treated as dividing
 separate tokens that may be searched for separately, but MUST all
 be present for the email to match the filter.

 o Tokens (not part of a phrase) MAY be matched on a whole-word basis
 using stemming (so for example a text search for "bus" would match
 "buses" but not "business").

4.4.2. Sorting

 The following value for the "property" field on the Comparator object
 MUST be supported for sorting:

https://datatracker.ietf.org/doc/html/rfc2047

Jenkins & Newman Expires September 9, 2019 [Page 42]

Internet-Draft JMAP Mail March 2019

 o *receivedAt* - The _receivedAt_ date as returned in the Email
 object.

 The following values for the "property" field on the Comparator
 object SHOULD be supported for sorting. When specifying a
 "hasKeyword", "allInThreadHaveKeyword" or "someInThreadHaveKeyword"
 sort, the Comparator object MUST also have a _keyword_ property.

 o *size* - The _size_ as returned in the Email object.

 o *from* - This is taken to be either the "name" part, or if
 "null"/empty then the "email" part, of the *first* EmailAddress
 object in the _from_ property. If still none, consider the value
 to be the empty string.

 o *to* - This is taken to be either the "name" part, or if
 "null"/empty then the "email" part, of the *first* EmailAddress
 object in the _to_ property. If still none, consider the value to
 be the empty string.

 o *subject* - This is taken to be the base subject of the email, as
 defined in section 2.1 of [RFC5256].

 o *sentAt* - The _sentAt_ property on the Email object.

 o *hasKeyword* - This value MUST be considered "true" if the email
 has the keyword given as an additional _keyword_ property on the
 Comparator object, or "false" otherwise.

 o *allInThreadHaveKeyword* - This value MUST be considered "true"
 for the email if *all* of the emails in the same thread
 (regardless of mailbox) have the keyword given as an additional
 keyword property on the _Comparator_ object.

 o *someInThreadHaveKeyword* - This value MUST be considered "true"
 for the email if *any* of the emails in the same thread
 (regardless of mailbox) have the keyword given as an additional
 keyword property on the _Comparator_ object.

 The server MAY support sorting based on other properties as well. A
 client can discover which properties are supported by inspecting the
 server's _capabilities_ object (see section 1.3).

 Example sort:

https://datatracker.ietf.org/doc/html/rfc5256#section-2.1

Jenkins & Newman Expires September 9, 2019 [Page 43]

Internet-Draft JMAP Mail March 2019

 [{
 "property": "someInThreadHaveKeyword",
 "keyword": "$flagged",
 "isAscending": false
 }, {
 "property": "subject",
 "collation": "i;ascii-casemap"
 }, {
 "property": "receivedAt",
 "isAscending": false
 }]

 This would sort emails in flagged threads first (the thread is
 considered flagged if any email within it is flagged), and then in
 subject order, then newest first for messages with the same subject.
 If two emails have both identical flagged status, subject and date,
 the order is server-dependent but must be stable.

4.4.3. Thread collapsing

 When _collapseThreads_ is "true", then after filtering and sorting
 the email list, the list is further winnowed by removing any emails
 for a thread id that has already been seen (when passing through the
 list sequentially). A thread will therefore only appear *once* in
 the result, at the position of the first email in the list that
 belongs to the thread (given the current sort/filter).

4.5. Email/queryChanges

 Standard "/queryChanges" method as described in [I-D.ietf-jmap-core]
section 5.6, with the following additional request arguments:

 o *collapseThreads*: "Boolean" (default: false) The
 collapseThreads argument that was used with _Email/query_.

4.6. Email/set

 Standard "/set" method as described in [I-D.ietf-jmap-core] section
5.3. The _Email/set_ method encompasses:

 o Creating a draft

 o Changing the keywords of an email (e.g. unread/flagged status)

 o Adding/removing an email to/from mailboxes (moving a message)

 o Deleting emails

Jenkins & Newman Expires September 9, 2019 [Page 44]

Internet-Draft JMAP Mail March 2019

 The format of the keywords/mailboxIds properties means that when
 updating an email you can either replace the entire set of keywords/
 mailboxes (by setting the full value of the property) or add/remove
 individual ones using the JMAP patch syntax (see
 [I-D.ietf-jmap-core], section 5.3 for the specification and section

5.7 for an example).

 Due to the format of the Email object, when creating an email there
 are a number of ways to specify the same information. To ensure that
 the RFC5322 email to create is unambiguous, the following constraints
 apply to Email objects submitted for creation:

 o The _headers_ property MUST NOT be given, on either the top-level
 email or an EmailBodyPart - the client must set each header field
 as an individual property.

 o There MUST NOT be two properties that represent the same header
 field (e.g. "header:from" and "from") within the Email or
 particular EmailBodyPart.

 o Header fields MUST NOT be specified in parsed forms that are
 forbidden for that particular field.

 o Header fields beginning "Content-" MUST NOT be specified on the
 Email object, only on EmailBodyPart objects.

 o If a bodyStructure property is given, there MUST NOT be textBody,
 htmlBody or attachments properties.

 o If given, the bodyStructure EmailBodyPart MUST NOT contain a
 property representing a header field that is already defined on
 the top-level Email object.

 o If given, textBody MUST contain exactly one body part, of type
 "text/plain".

 o If given, htmlBody MUST contain exactly one body part, of type
 "text/html".

 o Within an EmailBodyPart:

 * The client may specify a partId OR a blobId but not both. If a
 partId is given, this partId MUST be present in the bodyValues
 property.

 * The charset property MUST be omitted if a partId is given (the
 part's content is included in bodyValues and the server may
 choose any appropriate encoding).

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 45]

Internet-Draft JMAP Mail March 2019

 * The size property MUST be omitted if a partId is given. If a
 blobId is given, it may be included but is ignored by the
 server (the size is actually calculated from the blob content
 itself).

 * A "Content-Transfer-Encoding" header field MUST NOT be given.

 o Within an EmailBodyValue object, isEncodingProblem and isTruncated
 MUST be either "false" or omitted.

 Creation attempts that violate any of this SHOULD be rejected with an
 "invalidProperties" error, however a server MAY choose to modify the
 Email (e.g. choose between conflicting headers, use a different
 content-encoding etc.) to comply with its requirements instead.

 The server MAY also choose to set additional headers. If not
 included, the server MUST generate and set a "Message-ID" header
 field in conformance with [RFC5322] section 3.6.4, and a "Date"
 header field in conformance with section 3.6.1.

 The final RFC5322 email generated may be invalid. For example, if it
 is a half-finished draft, the "To" field may have a value that does
 not conform to the required syntax for this header field. The
 message will be checked for strict conformance when submitted for
 sending (see the EmailSubmission object description).

 Destroying an email removes it from all mailboxes to which it
 belonged. To just delete an email to trash, simply change the
 "mailboxIds" property so it is now in the mailbox with "role ==
 "trash"", and remove all other mailbox ids.

 When emptying the trash, clients SHOULD NOT destroy emails which are
 also in a mailbox other than trash. For those emails, they SHOULD
 just remove the Trash mailbox from the email.

 For successfully created Email objects, the _created_ response
 contains the _id_, _blobId_, _threadId_ and _size_ properties of the
 object.

 The following extra _SetError_ types are defined:

 For *create*:

 o "blobNotFound": At least one blob id given for an EmailBodyPart
 doesn't exist. An extra _notFound_ property of type "Id[]" MUST
 be included in the error object containing every _blobId_
 referenced by an EmailBodyPart that could not be found on the
 server.

https://datatracker.ietf.org/doc/html/rfc5322#section-3.6.4
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 46]

Internet-Draft JMAP Mail March 2019

 For *create* and *update*:

 o "tooManyKeywords": The change to the email's keywords would exceed
 a server-defined maximum.

 o "tooManyMailboxes": The change to the email's mailboxes would
 exceed a server-defined maximum.

4.7. Email/copy

 Standard "/copy" method as described in [I-D.ietf-jmap-core] section
5.4, except only the _mailboxIds_, _keywords_ and _receivedAt_

 properties may be set during the copy. This method cannot modify the
RFC5322 representation of an email.

 The server MAY forbid two email objects with the same exact [RFC5322]
 content, or even just with the same [RFC5322] Message-ID, to coexist
 within an account; if the target account already has the email the
 copy will be rejected with a standard "alreadyExists" error.

 For successfully copied Email objects, the _created_ response
 contains the _id_, _blobId_, _threadId_ and _size_ properties of the
 new object.

4.8. Email/import

 The _Email/import_ method adds [RFC5322] messages to the set of
 emails in an account. The server MUST support messages with
 [RFC6532] EAI headers. The messages must first be uploaded as blobs
 using the standard upload mechanism. It takes the following
 arguments:

 o *accountId*: "Id" The id of the account to use.

 o *ifInState*: "String|null" This is a state string as returned by
 the _Email/get_ method. If supplied, the string must match the
 current state of the account referenced by the accountId,
 otherwise the method will be aborted and a "stateMismatch" error
 returned. If "null", any changes will be applied to the current
 state.

 o *emails*: "Id[EmailImport]" A map of creation id (client
 specified) to EmailImport objects

 An *EmailImport* object has the following properties:

 o *blobId*: "Id" The id of the blob containing the raw [RFC5322]
 message.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6532
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 47]

Internet-Draft JMAP Mail March 2019

 o *mailboxIds*: "Id[Boolean]" The ids of the mailboxes to assign
 this email to. At least one mailbox MUST be given.

 o *keywords*: "String[Boolean]" (default: {}) The keywords to apply
 to the email.

 o *receivedAt*: "UTCDate" (default: time of most recent Received
 header, or time of import on server if none) The _receivedAt_ date
 to set on the email.

 Each email to import is considered an atomic unit which may succeed
 or fail individually. Importing successfully creates a new email
 object from the data referenced by the blobId and applies the given
 mailboxes, keywords and receivedAt date.

 The server MAY forbid two email objects with the same exact [RFC5322]
 content, or even just with the same [RFC5322] Message-ID, to coexist
 within an account. In this case, it MUST reject attempts to import
 an email considered a duplicate with an "alreadyExists" SetError. An
 existingId property of type "Id" MUST be included on the error
 object with the id of the existing email. If duplicates are allowed,
 the newly created Email object MUST have a separate id and
 independent mutable properties to the existing object.

 If the _blobId_, _mailboxIds_, or _keywords_ properties are invalid
 (e.g. missing, wrong type, id not found), the server MUST reject the
 import with an "invalidProperties" SetError.

 If the email cannot be imported because it would take the account
 over quota, the import should be rejected with an "overQuota"
 SetError.

 If the blob referenced is not a valid [RFC5322] message, the server
 MAY modify the message to fix errors (such as removing NUL octets or
 fixing invalid headers). If it does this, the _blobId_ on the
 response MUST represent the new representation and therefore be
 different to the _blobId_ on the EmailImport object. Alternatively,
 the server MAY reject the import with an "invalidEmail" SetError.

 The response has the following arguments:

 o *accountId*: "Id" The id of the account used for this call.

 o *oldState*: "String|null" The state string that would have been
 returned by _Email/get_ on this account before making the
 requested changes, or "null" if the server doesn't know what the
 previous state string was.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 48]

Internet-Draft JMAP Mail March 2019

 o *newState*: "String" The state string that will now be returned by
 Email/get on this account.

 o *created*: "Id[Email]|null" A map of the creation id to an object
 containing the _id_, _blobId_, _threadId_ and _size_ properties
 for each successfully imported Email, or "null" if none.

 o *notCreated*: "Id[SetError]|null" A map of creation id to a
 SetError object for each Email that failed to be created, or
 "null" if all successful. The possible errors are defined above.

 The following additional errors may be returned instead of the
 Email/import response:

 "stateMismatch": An "ifInState" argument was supplied and it does not
 match the current state.

4.9. Email/parse

 This method allows you to parse blobs as [RFC5322] messages to get
 Email objects. The server MUST support messages with [RFC6532] EAI
 headers. This can be used to parse and display attached emails
 without having to import them as top-level email objects in the mail
 store in their own right.

 The following metadata properties on the Email objects will be "null"
 if requested:

 o id

 o mailboxIds

 o keywords

 o receivedAt

 The _threadId_ property of the Email MAY be present if the server can
 calculate which thread the Email would be assigned to were it to be
 imported. Otherwise, this too is "null" if fetched.

 The _Email/parse_ method takes the following arguments:

 o *accountId*: "Id" The id of the account to use.

 o *blobIds*: "Id[]" The ids of the blobs to parse.

 o *properties*: "String[]" If supplied, only the properties listed
 in the array are returned for each Email object. If omitted,

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6532

Jenkins & Newman Expires September 9, 2019 [Page 49]

Internet-Draft JMAP Mail March 2019

 defaults to: ["messageId", "inReplyTo", "references", "sender",
 "from", "to", "cc", "bcc", "replyTo", "subject", "sentAt",
 "hasAttachment", "preview", "bodyValues", "textBody", "htmlBody",
 "attachments"]

 o *bodyProperties*: "String[]" A list of properties to fetch for
 each EmailBodyPart returned. If omitted, defaults to the same
 value as the Email/get "bodyProperties" default argument.

 o *fetchTextBodyValues*: "Boolean" (default: false) If "true", the
 bodyValues property includes any "text/*" part in the "textBody"
 property.

 o *fetchHTMLBodyValues*: "Boolean" (default: false) If "true", the
 bodyValues property includes any "text/*" part in the "htmlBody"
 property.

 o *fetchAllBodyValues*: "Boolean" (default: false) If "true", the
 bodyValues property includes any "text/*" part in the
 "bodyStructure" property.

 o *maxBodyValueBytes*: "UnsignedInt" (default: 0) If greater than
 zero, the _value_ property of any EmailBodyValue object returned
 in _bodyValues_ MUST be truncated if necessary so it does not
 exceed this number of octets in size. If "0" (the default), no
 truncation occurs. The server MUST ensure the truncation results
 in valid UTF-8 and does not occur mid-codepoint. If the part is
 of type "text/html", the server SHOULD NOT truncate inside an HTML
 tag, e.g. in the middle of "".
 There is no requirement for the truncated form to be a balanced
 tree or valid HTML (indeed, the original source may well be
 neither of these things).

 The response has the following arguments:

 o *accountId*: "Id" The id of the account used for the call.

 o *parsed*: "Id[Email]|null" A map of blob id to parsed Email
 representation for each successfully parsed blob, or "null" if
 none.

 o *notParsable*: "Id[]|null" A list of ids given that corresponded
 to blobs that could not be parsed as emails, or "null" if none.

 o *notFound*: "Id[]|null" A list of blob ids given that could not be
 found, or "null" if none.

Jenkins & Newman Expires September 9, 2019 [Page 50]

Internet-Draft JMAP Mail March 2019

 As specified above, parsed forms of headers may only be used on
 appropriate header fields. Attempting to fetch a form that is
 forbidden (e.g. "header:From:asDate") MUST result in the method call
 being rejected with an "invalidArguments" error.

 Where a specific header is requested as a property, the
 capitalization of the property name in the response MUST be identical
 to that used in the request.

4.10. Examples

 A client logs in for the first time. It first fetches the set of
 mailboxes. Now it will display the inbox to the user, which we will
 presume has mailbox id "fb666a55". The inbox may be (very!) large,
 but the user's screen is only so big, so the client will just load
 the start and then can load in more as necessary. The client sends
 this request:

 [["Email/query",{
 "accountId": "ue150411c",
 "filter": {
 "inMailbox": "fb666a55"
 },
 "sort": [{
 "isAscending": false,
 "property": "receivedAt"
 }],
 "collapseThreads": true,
 "position": 0,
 "limit": 30,
 "calculateTotal": true
 }, "0"],
 ["Email/get", {
 "accountId": "ue150411c",
 "#ids": {
 "resultOf": "0",
 "name": "Email/query",
 "path": "/ids"
 },
 "properties": [
 "threadId"
]
 }, "1"],
 ["Thread/get", {
 "accountId": "ue150411c",
 "#ids": {
 "resultOf": "1",
 "name": "Email/get",

Jenkins & Newman Expires September 9, 2019 [Page 51]

Internet-Draft JMAP Mail March 2019

 "path": "/list/*/threadId"
 }
 }, "2"],
 ["Email/get", {
 "accountId": "ue150411c",
 "#ids": {
 "resultOf": "2",
 "name": "Thread/get",
 "path": "/list/*/emailIds"
 },
 "properties": [
 "threadId",
 "mailboxIds",
 "keywords",
 "hasAttachment",
 "from",
 "subject",
 "receivedAt",
 "size",
 "preview"
]
 }, "3"]]

 Let's break down the 4 method calls to see what they're doing:

 "0": This asks the server for the ids of the first 30 Email objects
 in the inbox, sorted newest first, ignoring messages from the same
 thread as a newer message in the mailbox (i.e. it is the first 30
 unique threads).

 "1": Now we use a back-reference to fetch the thread ids for each of
 these email ids.

 "2": Another back-reference fetches the Thread object for each of
 these thread ids.

 "3": Finally, we fetch the information we need to display the mailbox
 listing (but no more!) for every message in each of these 30 threads.
 The client may aggregate this data for display, for example showing
 the thread as "flagged" if any of the messages in it contain the
 "$flagged" keyword.

 The response from the server may look something like this:

 [["Email/query", {
 "accountId": "ue150411c",
 "queryState": "09aa9a075588-780599:0",
 "canCalculateChanges": true,

Jenkins & Newman Expires September 9, 2019 [Page 52]

Internet-Draft JMAP Mail March 2019

 "position": 0,
 "total": 115,
 "ids": ["Ma783e5cdf5f2deffbc97930a",
 "M9bd17497e2a99cb345fc1d0a", ...]
 }, "0"],
 ["Email/get", {
 "accountId": "ue150411c",
 "state": "780599",
 "list": [{
 "id": "Ma783e5cdf5f2deffbc97930a",
 "threadId": "T36703c2cfe9bd5ed"
 }, {
 "id": "M9bd17497e2a99cb345fc1d0a",
 "threadId": "T0a22ad76e9c097a1"
 }, ...],
 "notFound": []
 }, "1"],
 ["Thread/get", {
 "accountId": "ue150411c",
 "state": "22a8728b",
 "list": [{
 "id": "T36703c2cfe9bd5ed",
 "emailIds": ["Ma783e5cdf5f2deffbc97930a"]
 }, {
 "id": "T0a22ad76e9c097a1",
 "emailIds": ["M3b568670a63e5d100f518fa5",
 "M9bd17497e2a99cb345fc1d0a"]
 }, ...],
 "notFound": []
 }, "2"],
 ["Email/get", {
 "accountId": "ue150411c",
 "state": "780599",
 "list": [{
 "id": "Ma783e5cdf5f2deffbc97930a",
 "threadId": "T36703c2cfe9bd5ed",
 "mailboxIds": {
 "fb666a55": true
 },
 "keywords": {
 "$seen": true,
 "$flagged": true
 },
 "hasAttachment": true,
 "from": [{
 "email": "jdoe@example.com",
 "name": "Jane Doe"
 }],

Jenkins & Newman Expires September 9, 2019 [Page 53]

Internet-Draft JMAP Mail March 2019

 "subject": "The Big Reveal",
 "receivedAt": "2018-06-27T00:20:35Z",
 "size": 175047,
 "preview": "As you may be aware, we are required to prepare a
 presentation where we wow a panel of 5 random members of the
 public, on or before 30 June each year. We have drafted ..."
 },
 ...
],
 "notFound": []
 }, "3"]]

 Now, on another device the user marks the first message as unread,
 sending this API request:

 [["Email/set", {
 "accountId": "ue150411c",
 "update": {
 "Ma783e5cdf5f2deffbc97930a": {
 "keywords/$seen": null
 }
 }
 }, "0"]]

 The server applies this and sends the success response:

 [["Email/set", {
 "accountId": "ue150411c",
 "oldState": "780605",
 "newState": "780606",
 "updated": {
 "Ma783e5cdf5f2deffbc97930a": null
 },
 ...
 }, "0"]]

 The user also deletes a few messages, and then a new message arrives.

 Back on our original machine, we receive a push update that the state
 string for Email is now "780800". As this does not match the
 client's current state, it issues a request for the changes:

Jenkins & Newman Expires September 9, 2019 [Page 54]

Internet-Draft JMAP Mail March 2019

 [["Email/changes", {
 "accountId": "ue150411c",
 "sinceState": "780605",
 "maxChanges": 50
 }, "3"],
 ["Email/queryChanges", {
 "accountId": "ue150411c",
 "filter": {
 "inMailbox": "fb666a55"
 },
 "sort": [{
 "property": "receivedAt",
 "isAscending": false
 }],
 "collapseThreads": true,
 "sinceQueryState": "09aa9a075588-780599:0",
 "upToId": "Mc2781d5e856a908d8a35a564",
 "maxChanges": 25,
 "calculateTotal": true
 }, "11"]]

 The response:

 [["Email/changes", {
 "accountId": "ue150411c",
 "oldState": "780605",
 "newState": "780800",
 "hasMoreChanges": false,
 "created": ["Me8de6c9f6de198239b982ea2"],
 "updated": ["Ma783e5cdf5f2deffbc97930a"],
 "destroyed": ["M9bd17497e2a99cb345fc1d0a", ...]
 }, "3"],
 ["Email/queryChanges", {
 "accountId": "ue150411c",
 "oldQueryState": "09aa9a075588-780599:0",
 "newQueryState": "e35e9facf117-780615:0",
 "added": [{
 "id": "Me8de6c9f6de198239b982ea2",
 "index": 0
 }],
 "removed": ["M9bd17497e2a99cb345fc1d0a"],
 "total": 115
 }, "11"]]

 The client can update its local cache of the query results by
 removing "M9bd17497e2a99cb345fc1d0a" and then splicing in
 "Me8de6c9f6de198239b982ea2" at position 0. As it does not have the

Jenkins & Newman Expires September 9, 2019 [Page 55]

Internet-Draft JMAP Mail March 2019

 data for this new email, it will then fetch it (it also could have
 done this in the same request using back-references).

 It knows something has changed about "Ma783e5cdf5f2deffbc97930a", so
 it will refetch the mailboxes and keywords (the only mutable
 properties) for this email too.

 The user composes a new message and saves a draft. The client sends:

 [["Email/set", {
 "accountId": "ue150411c",
 "create": {
 "k1546": {
 "mailboxIds": {
 "2ea1ca41b38e": true
 },
 "keywords": {
 "$seen": true,
 "$draft": true
 },
 "from": [{
 "name": "Joe Bloggs",
 "email": "joe@example.com"
 }],
 "to": [{
 "name": "John",
 "email": "john@example.com"
 }],
 "subject": "World domination",
 "receivedAt": "2018-07-10T01:05:08Z",
 "sentAt": "2018-07-10T11:05:08+10:00",
 "bodyStructure": {
 "type": "multipart/alternative",
 "subParts": [{
 "partId": "a49d",
 "type": "text/html"
 }, {
 "partId": "bd48",
 "type": "text/plain"
 }]
 },
 "bodyValues": {
 "bd48": {
 "value": "I have the most brilliant plan. Let me tell you
 all about it. What we do is, we",
 "isTruncated": false
 },
 "49db": {

Jenkins & Newman Expires September 9, 2019 [Page 56]

Internet-Draft JMAP Mail March 2019

 "value": "<!DOCTYPE html><html><head><title></title>
 <style type=\"text/css\">div{font-size:16px}</style></head>
 <body><div>I have the most brilliant plan. Let me tell you
 all about it. What we do is, we</div></body></html>",
 "isTruncated": false
 }
 }
 }
 }
 }, "0"]]

 The server creates the message and sends the success response:

 [["Email/set", {
 "accountId": "ue150411c",
 "oldState": "780823",
 "newState": "780839",
 "created": {
 "k1546": {
 "id": "Md45b47b4877521042cec0938",
 "blobId": "Ge8de6c9f6de198239b982ea214e0f3a704e4af74",
 "threadId": "Td957e72e89f516dc",
 "size": 11721
 }
 },
 ...
 }, "0"]]

 The client moves this draft to a different account. The only way to
 do this is via the "/copy" method. It MUST set a new mailboxIds
 property, since the current value will not be valid mailbox ids in
 the destination account:

 [["Email/copy", {
 "fromAccountId": "ue150411c",
 "accountId": "u6c6c41ac",
 "create": {
 "k45": {
 "id": "Md45b47b4877521042cec0938",
 "mailboxIds": {
 "75a4c956": true
 }
 }
 },
 "onSuccessDestroyOriginal": true
 }, "0"]]

Jenkins & Newman Expires September 9, 2019 [Page 57]

Internet-Draft JMAP Mail March 2019

 The server successfully copies the email and deletes the original.
 Due to the implicit call to "Email/set", there are two responses to
 the single method call, both with the same method call id:

 [["Email/copy", {
 "fromAccountId": "ue150411c",
 "accountId": "u6c6c41ac",
 "oldState": "7ee7e9263a6d",
 "newState": "5a0d2447ed26",
 "created": {
 "k45": {
 "id": "M138f9954a5cd2423daeafa55",
 "blobId": "G6b9fb047cba722c48c611e79233d057c6b0b74e8",
 "threadId": "T2f242ea424a4079a",
 "size": 11721
 }
 },
 "notCreated": null
 }, "0"],
 ["Email/set", {
 "accountId": "ue150411c",
 "oldState": "780839",
 "newState": "780871",
 "destroyed": ["Md45b47b4877521042cec0938"],
 ...
 }, "0"]]

5. Search snippets

 When doing a search on a "String" property, the client may wish to
 show the relevant section of the body that matches the search as a
 preview instead of the beginning of the message, and to highlight any
 matching terms in both this and the subject of the email. Search
 snippets represent this data.

 A *SearchSnippet* object has the following properties:

 o *emailId*: "Id" The email id the snippet applies to.

 o *subject*: "String|null" If text from the filter matches the
 subject, this is the subject of the email with the following
 transformations:

 1. Any instance of the following three characters MUST be
 replaced by an appropriate [HTML] entity: & (ampersand), <
 (less-than sign), and > (greater-than sign). Other characters
 MAY also be replaced with an HTML entity form.

Jenkins & Newman Expires September 9, 2019 [Page 58]

Internet-Draft JMAP Mail March 2019

 2. The matching words/phrases from the filter are wrapped in HTML
 "<mark></mark>" tags.

 If the subject does not match text from the filter, this property
 is "null".

 o *preview*: "String|null" If text from the filter matches the
 plain-text or HTML body, this is the relevant section of the body
 (converted to plain text if originally HTML), with the same
 transformations as the _subject_ property. It MUST NOT be bigger
 than 255 octets in size. If the body does not contain a match for
 the text from the filter, this property is "null".

 It is server-defined what is a relevant section of the body for
 preview. If the server is unable to determine search snippets, it
 MUST return "null" for both the _subject_ and _preview_ properties.

 Note, unlike most data types, a SearchSnippet DOES NOT have a
 property called "id".

 The following JMAP method is supported:

5.1. SearchSnippet/get

 To fetch search snippets, make a call to "SearchSnippet/get". It
 takes the following arguments:

 o *accountId*: "Id" The id of the account to use.

 o *filter*: "FilterOperator|FilterCondition|null" The same filter as
 passed to Email/query; see the description of this method in

section 4.4 for details.

 o *emailIds*: "Id[]" The ids of the emails to fetch snippets for.

 The response has the following arguments:

 o *accountId*: "Id" The id of the account used for the call.

 o *list*: "SearchSnippet[]" An array of SearchSnippet objects for
 the requested email ids. This may not be in the same order as the
 ids that were in the request.

 o *notFound*: "Id[]|null" An array of email ids requested which
 could not be found, or "null" if all ids were found.

 As the search snippets are derived from the message content and the
 algorithm for doing so could change over time, fetching the same

Jenkins & Newman Expires September 9, 2019 [Page 59]

Internet-Draft JMAP Mail March 2019

 snippets a second time MAY return a different result. However, the
 previous value is not considered incorrect, so there is no state
 string or update mechanism needed.

 The following standard errors may be returned instead of the
 searchSnippets response:

 "requestTooLarge": The number of _emailIds_ requested by the client
 exceeds the maximum number the server is willing to process in a
 single method call.

 "unsupportedFilter": The server is unable to process the given
 filter for any reason.

5.2. Example

 Here we did an Email/query to search for any email in the account
 containing the word "foo", now we are fetching the search snippets
 for some of the ids that were returned in the results:

 [["SearchSnippet/get", {
 "accountId": "ue150411c",
 "filter": {
 "text": "foo"
 },
 "emailIds": [
 "M44200ec123de277c0c1ce69c",
 "M7bcbcb0b58d7729686e83d99",
 "M28d12783a0969584b6deaac0",
 ...
]
 }, "0"]]

 Example response:

Jenkins & Newman Expires September 9, 2019 [Page 60]

Internet-Draft JMAP Mail March 2019

 [["SearchSnippet/get", {
 "accountId": "ue150411c",
 "list": [{
 "emailId": "M44200ec123de277c0c1ce69c",
 "subject": null,
 "preview": null
 }, {
 "emailId": "M7bcbcb0b58d7729686e83d99",
 "subject": "The <mark>Foo</mark>sball competition",
 "preview": "...year the <mark>foo</mark>sball competition will
 be held in the Stadium de ..."
 }, {
 "emailId": "M28d12783a0969584b6deaac0",
 "subject": null,
 "preview": "...the <mark>Foo</mark>/bar method results often
 returns <1 widget rather than the complete..."
 },
 ...
],
 "notFound": null
 }, "0"]]

6. Identities

 An *Identity* object stores information about an email address (or
 domain) the user may send from. It has the following properties:

 o *id*: "Id" (immutable; server-set) The id of the identity.

 o *name*: "String" (default: "") The "From" _name_ the client SHOULD
 use when creating a new message from this identity.

 o *email*: "String" (immutable) The "From" email address the client
 MUST use when creating a new message from this identity. If the
 mailbox part of the address (the section before the "@") is the
 single character "*" (e.g. "*@example.com") then the client may
 use any valid address ending in that domain (e.g.
 "foo@example.com").

 o *replyTo*: "EmailAddress[]|null" (default: null) The Reply-To
 value the client SHOULD set when creating a new message from this
 identity.

 o *bcc*: "EmailAddress[]|null" (default: null) The Bcc value the
 client SHOULD set when creating a new message from this identity.

 o *textSignature*: "String" (default: "") Signature the client
 SHOULD insert into new plain-text messages that will be sent from

Jenkins & Newman Expires September 9, 2019 [Page 61]

Internet-Draft JMAP Mail March 2019

 this identity. Clients MAY ignore this and/or combine this with a
 client-specific signature preference.

 o *htmlSignature*: "String" (default: "") Signature the client
 SHOULD insert into new HTML messages that will be sent from this
 identity. This text MUST be an HTML snippet to be inserted into
 the "<body></body>" section of the new email. Clients MAY ignore
 this and/or combine this with a client-specific signature
 preference.

 o *mayDelete*: "Boolean" (server-set) Is the user allowed to delete
 this identity? Servers may wish to set this to "false" for the
 user's username or other default address. Attempts to destroy an
 identity with "mayDelete: false" will be rejected with a standard
 "forbidden" SetError.

 See the "Addresses" header form description in the Email object for
 the definition of _EmailAddress_.

 Multiple identities with the same email address MAY exist, to allow
 for different settings the user wants to pick between (for example
 with different names/signatures).

 The following JMAP methods are supported:

6.1. Identity/get

 Standard "/get" method as described in [I-D.ietf-jmap-core] section
5.1. The _ids_ argument may be "null" to fetch all at once.

6.2. Identity/changes

 Standard "/changes" method as described in [I-D.ietf-jmap-core]
section 5.2.

6.3. Identity/set

 Standard "/set" method as described in [I-D.ietf-jmap-core] section
5.3. The following extra _SetError_ types are defined:

 For *create*:

 o "forbiddenFrom": The user is not allowed to send from the address
 given as the _email_ property of the identity.

Jenkins & Newman Expires September 9, 2019 [Page 62]

Internet-Draft JMAP Mail March 2019

6.4. Example

 Request:

 ["Identity/get", {
 "accountId": "acme"
 }, "0"]

 with response:

 ["Identity/get", {
 "accountId": "acme",
 "state": "99401312ae-11-333",
 "list": [
 {
 "id": "XD-3301-222-11_22AAz",
 "name": "Joe Bloggs",
 "email": "joe@example.com",
 "replyTo": null,
 "bcc": [{
 "name": null,
 "email": "joe+archive@example.com"
 }],
 "textSignature": "-- \nJoe Bloggs\nMaster of Email",
 "htmlSignature": "<div>Joe Bloggs</div>
 <div>Master of Email</div>",
 "mayDelete": false
 },
 {
 "id": "XD-9911312-11_22AAz",
 "name": "Joe B",
 "email": "*@example.com",
 "replyTo": null,
 "bcc": null,
 "textSignature": "",
 "htmlSignature": "",
 "mayDelete": true
 }
],
 "notFound": []
 }, "0"]

7. Email submission

 An *EmailSubmission* object represents the submission of an email for
 delivery to one or more recipients. It has the following properties:

 o *id*: "Id" (immutable; server-set) The id of the email submission.

Jenkins & Newman Expires September 9, 2019 [Page 63]

Internet-Draft JMAP Mail March 2019

 o *identityId*: "Id" (immutable) The id of the identity to associate
 with this submission.

 o *emailId*: "Id" (immutable) The id of the email to send. The
 email being sent does not have to be a draft, for example when
 "redirecting" an existing email to a different address.

 o *threadId*: "Id" (immutable; server-set) The thread id of the
 email to send. This is set by the server to the _threadId_
 property of the email referenced by the _emailId_.

 o *envelope*: "Envelope|null" (immutable) Information for use when
 sending via SMTP. An *Envelope* object has the following
 properties:

 * *mailFrom*: "Address" The email address to use as the return
 address in the SMTP submission, plus any parameters to pass
 with the MAIL FROM address. The JMAP server MAY allow the
 address to be the empty string. When a JMAP server performs an
 SMTP message submission, it MAY use the same id string for the
 [RFC3461] ENVID parameter and the EmailSubmission object id.
 Servers that do this MAY replace a client-provided value for
 ENVID with a server-provided value.

 * *rcptTo*: "Address[]" The email addresses to send the message
 to, and any RCPT TO parameters to pass with the recipient.

 An *Address* object has the following properties:

 * *email*: "String" The email address being represented by the
 object. This is a "Mailbox" as used in the Reverse-path or
 Forward-path of the MAIL FROM or RCPT TO command in [RFC5321].

 * *parameters*: "Object|null" Any parameters to send with the
 email (either mail-parameter or rcpt-parameter as appropriate,
 as specified in [RFC5321]). If supplied, each key in the
 object is a parameter name, and the value either the parameter
 value (type "String") or if the parameter does not take a value
 then "null". For both name and value, any xtext or unitext
 encodings are removed ([RFC3461], [RFC6533]) and JSON string
 encoding applied.

 If the _envelope_ property is "null" or omitted on creation, the
 server MUST generate this from the referenced email as follows:

 * *mailFrom*: The email in the _Sender_ header, if present,
 otherwise the _From_ header, if present, and no parameters. If
 multiple addresses are present in one of these headers, or

https://datatracker.ietf.org/doc/html/rfc3461
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc3461
https://datatracker.ietf.org/doc/html/rfc6533

Jenkins & Newman Expires September 9, 2019 [Page 64]

Internet-Draft JMAP Mail March 2019

 there is more than one _Sender_/_From_ header, the server
 SHOULD reject the email as invalid but otherwise MUST take the
 first address in the last _Sender_/_From_ header in the
 [RFC5322] version of the message. If the address found from
 this is not allowed by the identity associated with this
 submission, the _email_ property from the identity MUST be used
 instead.

 * *rcptTo*: The deduplicated set of email addresses from the
 To, _Cc_ and _Bcc_ headers, if present, with no parameters
 for any of them.

 o *sendAt*: "UTCDate" (immutable; server-set) The date the email
 was/will be released for delivery. If the client successfully
 used [RFC4865] FUTURERELEASE with the email, this MUST be the time
 when the server will release the email; otherwise it MUST be the
 time the EmailSubmission was created.

 o *undoStatus*: "String" This represents whether the submission may
 be canceled. This is server set and MUST be one of the following
 values:

 * "pending": It may be possible to cancel this submission.

 * "final": The email has been relayed to at least one recipient
 in a manner that cannot be recalled. It is no longer possible
 to cancel this submission.

 * "canceled": The email submission was canceled and will not be
 delivered to any recipient.

 On systems that do not support unsending, the value of this
 property will always be "final". On systems that do support
 canceling submission, it will start as "pending", and MAY
 transition to "final" when the server knows it definitely cannot
 recall the email, but MAY just remain "pending". If in pending
 state, a client can attempt to cancel the submission by setting
 this property to "canceled"; if the update succeeds, the
 submission was successfully canceled and the email has not been
 delivered to any of the original recipients.

 o *deliveryStatus*: "String[DeliveryStatus]|null" (server-set) This
 represents the delivery status for each of the email's recipients,
 if known. This property MAY not be supported by all servers, in
 which case it will remain "null". Servers that support it SHOULD
 update the EmailSubmission object each time the status of any of
 the recipients changes, even if some recipients are still being
 retried. This value is a map from the email address of each

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc4865

Jenkins & Newman Expires September 9, 2019 [Page 65]

Internet-Draft JMAP Mail March 2019

 recipient to a _DeliveryStatus_ object. A *DeliveryStatus* object
 has the following properties:

 * *smtpReply*: "String" The SMTP reply string returned for this
 recipient when the server last tried to relay the email, or in
 a later DSN (Delivery Status Notification, as defined in
 [RFC3464]) response for the email. This SHOULD be the response
 to the RCPT TO stage, unless this was accepted and the email as
 a whole rejected at the end of the DATA stage, in which case
 the DATA stage reply SHOULD be used instead. Multi-line SMTP
 responses should be concatenated to a single string as follows:

 + The hyphen following the SMTP code on all but the last line
 is replaced with a space.

 + Any prefix in common with the first line is stripped from
 lines after the first.

 + CRLF is replaced by a space.

 For example:

 550-5.7.1 Our system has detected that this message is
 550 5.7.1 likely spam.

 would become:

 550 5.7.1 Our system has detected that this message is likely spam.

 For emails relayed via an alternative to SMTP, the server MAY
 generate a synthetic string representing the status instead.
 If it does this, the string MUST be of the following form:

 + A 3-digit SMTP reply code, as defined in [RFC5321], section
4.2.3.

 + Then a single space character.

 + Then an SMTP Enhanced Mail System Status Code as defined in
 [RFC3463], with a registry defined in [RFC5248].

 + Then a single space character.

 + Then an implementation-specific information string with a
 human readable explanation of the response.

https://datatracker.ietf.org/doc/html/rfc3464
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc3463
https://datatracker.ietf.org/doc/html/rfc5248

Jenkins & Newman Expires September 9, 2019 [Page 66]

Internet-Draft JMAP Mail March 2019

 * *delivered*: "String" Represents whether the email has been
 successfully delivered to the recipient. This MUST be one of
 the following values:

 + "queued": The email is in a local mail queue and status will
 change once it exits the local mail queues. The _smtpReply_
 property may still change.

 + "yes": The email was successfully delivered to the mailbox
 of the recipient. The _smtpReply_ property is final.

 + "no": Delivery to the recipient permanently failed. The
 smtpReply property is final.

 + "unknown": The final delivery status is unknown, (e.g. it
 was relayed to an external machine and no further
 information is available). The _smtpReply_ property may
 still change if a DSN arrives.

 Note, successful relaying to an external SMTP server SHOULD NOT
 be taken as an indication that the email has successfully
 reached the final mailbox. In this case though, the server may
 receive a DSN response, if requested. If a DSN is received for
 the recipient with Action equal to "delivered", as per

[RFC3464] section 2.3.3, then the _delivered_ property SHOULD
 be set to "yes"; if the Action equals "failed", the property
 SHOULD be set to "no". Receipt of any other DSN SHOULD NOT
 affect this property. The server MAY also set this property
 based on other feedback channels.

 * *displayed*: "String" Represents whether the email has been
 displayed to the recipient. This MUST be one of the following
 values:

 + "unknown": The display status is unknown. This is the
 initial value.

 + "yes": The recipient's system claims the email content has
 been displayed to the recipient. Note, there is no
 guarantee that the recipient has noticed, read, or
 understood the content.

 If an MDN is received for this recipient with Disposition-Type
 (as per [RFC8098] section 3.2.6.2) equal to "displayed", this
 property SHOULD be set to "yes". The server MAY also set this
 property based on other feedback channels.

https://datatracker.ietf.org/doc/html/rfc3464#section-2.3.3
https://datatracker.ietf.org/doc/html/rfc8098#section-3.2.6.2

Jenkins & Newman Expires September 9, 2019 [Page 67]

Internet-Draft JMAP Mail March 2019

 o *dsnBlobIds*: "Id[]" (server-set) A list of blob ids for Delivery
 Status Notifications ([RFC3464]) received for this submission, in
 order of receipt, oldest first. The blob is the whole MIME
 message (with a top-level content-type of multipart/report), as
 received.

 o *mdnBlobIds*: "Id[]" (server-set) A list of blob ids for Message
 Disposition Notifications ([RFC8098]) received for this
 submission, in order of receipt, oldest first. The blob is the
 whole MIME message (with a top-level content-type of multipart/
 report), as received.

 JMAP servers MAY choose not to expose DSN and MDN responses as Email
 objects if they correlate to an EmailSubmission object. It SHOULD
 only do this if it exposes them in the _dsnBlobIds_ and _mdnblobIds_
 fields instead, and expects the user to be using clients capable of
 fetching and displaying delivery status via the EmailSubmission
 object.

 For efficiency, a server MAY destroy EmailSubmission objects a
 certain amount of time after the email is successfully sent or it has
 finished retrying sending the email. For very basic SMTP proxies,
 this MAY be immediately after creation, as it has no way to assign a
 real id and return the information again if fetched later.

 The following JMAP methods are supported:

7.1. EmailSubmission/get

 Standard "/get" method as described in [I-D.ietf-jmap-core] section
5.1.

7.2. EmailSubmission/changes

 Standard "/changes" method as described in [I-D.ietf-jmap-core]
section 5.2.

7.3. EmailSubmission/query

 Standard "/query" method as described in [I-D.ietf-jmap-core] section
5.5.

 A *FilterCondition* object has the following properties, any of which
 may be omitted:

 o *identityIds*: "Id[]" The EmailSubmission _identityId_ property
 must be in this list to match the condition.

https://datatracker.ietf.org/doc/html/rfc3464
https://datatracker.ietf.org/doc/html/rfc8098

Jenkins & Newman Expires September 9, 2019 [Page 68]

Internet-Draft JMAP Mail March 2019

 o *emailIds*: "Id[]" The EmailSubmission _emailId_ property must be
 in this list to match the condition.

 o *threadIds*: "Id[]" The EmailSubmission _threadId_ property must
 be in this list to match the condition.

 o *undoStatus*: "String" The EmailSubmission _undoStatus_ property
 must be identical to the value given to match the condition.

 o *before*: "UTCDate" The _sendAt_ property of the EmailSubmission
 object must be before this date-time to match the condition.

 o *after*: "UTCDate" The _sendAt_ property of the EmailSubmission
 object must be the same as or after this date-time to match the
 condition.

 An EmailSubmission object matches the FilterCondition if and only if
 all of the given conditions match. If zero properties are specified,
 it is automatically "true" for all objects.

 The following EmailSubmission properties MUST be supported for
 sorting:

 o "emailId"

 o "threadId"

 o "sentAt"

7.4. EmailSubmission/queryChanges

 Standard "/queryChanges" method as described in [I-D.ietf-jmap-core]
section 5.6.

7.5. EmailSubmission/set

 Standard "/set" method as described in [I-D.ietf-jmap-core] section
5.3, with the following two additional request arguments:

 o *onSuccessUpdateEmail*: "Id[PatchObject]|null" A map of
 EmailSubmission id to an object containing properties to update
 on the Email object referenced by the EmailSubmission if the
 create/update/destroy succeeds. (For references to
 EmailSubmissions created in the same "/set" invocation, this is
 equivalent to a creation-reference so the id will be the creation
 id prefixed with a "#".)

Jenkins & Newman Expires September 9, 2019 [Page 69]

Internet-Draft JMAP Mail March 2019

 o *onSuccessDestroyEmail*: "Id[]|null" A list of _EmailSubmission
 ids_ for which the email with the corresponding emailId should be
 destroyed if the create/update/destroy succeeds. (For references
 to EmailSubmission creations, this is equivalent to a creation-
 reference so the id will be the creation id prefixed with a "#".)

 A single implicit _Email/set_ call MUST be made after all
 EmailSubmissions cred in the same "/set" invocation/update/destroy
 requests have been processed to perform any changes requested in
 these two arguments. The response to this MUST be returned after the
 EmailSubmission/set response.

 An email is sent by creating an EmailSubmission object. When
 processing each create, the server must check that the email is
 valid, and the user has sufficient authorization to send it. If the
 creation succeeds, the email will be sent to the recipients given in
 the envelope _rcptTo_ parameter. The server MUST remove any _Bcc_
 header present on the email during delivery. The server MAY add or
 remove other headers from the submitted email, or make further
 alterations in accordance with the server's policy during delivery.

 If the referenced email is destroyed at any point after the
 EmailSubmission object is created, this MUST NOT change the behaviour
 of the email submission (i.e. it does not cancel a future send). The
 emailId and _threadId_ properties of the submission object remain,
 but trying to fetch them (with a standard Email/get call) will return
 a "notFound" error if the corresponding objects have been destroyed.

 Similarly, destroying an EmailSubmission object MUST NOT affect the
 deliveries it represents. It purely removes the record of the email
 submission. The server MAY automatically destroy EmailSubmission
 objects after a certain time or in response to other triggers, and
 MAY forbid the client from manually destroying EmailSubmission
 objects.

 If the email to be sent is larger than the server supports sending, a
 standard "tooLarge" SetError MUST be returned. A _maxSize_
 "UnsignedInt" property MUST be present on the SetError specifying the
 maximum size of an email that may be sent, in octets.

 If the email or identity id given cannot be found, the submission
 creation is rejected with a standard "invalidProperties" SetError.

 The following extra _SetError_ types are defined:

 For *create*:

Jenkins & Newman Expires September 9, 2019 [Page 70]

Internet-Draft JMAP Mail March 2019

 o "invalidEmail" - The email to be sent is invalid in some way. The
 SetError SHOULD contain a property called _properties_ of type
 "String[]" that lists *all* the properties of the email that were
 invalid.

 o "tooManyRecipients" - The envelope (supplied or generated) has
 more recipients than the server allows. A _maxRecipients_
 "UnsignedInt" property MUST also be present on the SetError
 specifying the maximum number of allowed recipients.

 o "noRecipients" - The envelope (supplied or generated) does not
 have any rcptTo emails.

 o "invalidRecipients" - The _rcptTo_ property of the envelope
 (supplied or generated) contains at least one rcptTo value which
 is not a valid email for sending to. An _invalidRecipients_
 "String[]" property MUST also be present on the SetError, which is
 a list of the invalid addresses.

 o "forbiddenMailFrom" - The server does not permit the user to send
 an email with the [RFC5321] envelope From.

 o "forbiddenFrom" - The server does not permit the user to send an
 email with the [RFC5322] From header of the email to be sent.

 o "forbiddenToSend" - The user does not have permission to send at
 all right now for some reason. A _description_ "String" property
 MAY be present on the SetError object to display to the user why
 they are not permitted.

 For *update*:

 o "cannotUnsend": The client attempted to update the _undoStatus_ of
 a valid EmailSubmission object from "pending" to "canceled", but
 the email cannot be unsent.

7.5.1. Example

 The following example presumes a draft of the message to be sent has
 already been saved, and its Email id is "M7f6ed5bcfd7e2604d1753f6c".
 This call then sends the email immediately, and if successful removes
 the draft flag and moves it from the Drafts folder (which has Mailbox
 id "7cb4e8ee-df87-4757-b9c4-2ea1ca41b38e") to the Sent folder (which
 we presume has Mailbox id "73dbcb4b-bffc-48bd-8c2a-a2e91ca672f6").

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires September 9, 2019 [Page 71]

Internet-Draft JMAP Mail March 2019

 [["EmailSubmission/set", {
 "accountId": "ue411d190",
 "create": {
 "k1490": {
 "identityId": "I64588216",
 "emailId": "M7f6ed5bcfd7e2604d1753f6c",
 "envelope": {
 "mailFrom": {
 "email": "john@example.com",
 "parameters": null
 },
 "rcptTo": [{
 "email": "jane@example.com",
 "parameters": null
 },
 ...
]
 }
 }
 },
 "onSuccessUpdateEmail": {
 "#k1490": {
 "mailboxIds/7cb4e8ee-df87-4757-b9c4-2ea1ca41b38e": null,
 "mailboxIds/73dbcb4b-bffc-48bd-8c2a-a2e91ca672f6": true,
 "keywords/$draft": null
 }
 }
 }, "0"]]

 A successful response might look like this. Note there are two
 responses due to the implicit Email/set call, but both have the same
 method call id as they are due to the same call in the request:

Jenkins & Newman Expires September 9, 2019 [Page 72]

Internet-Draft JMAP Mail March 2019

 [["EmailSubmission/set", {
 "accountId": "ue411d190",
 "oldState": "012421s6-8nrq-4ps4-n0p4-9330r951ns21",
 "newState": "355421f6-8aed-4cf4-a0c4-7377e951af36",
 "created": {
 "k1490": {
 "id": "ES-3bab7f9a-623e-4acf-99a5-2e67facb02a0"
 }
 }
 }, "0"],
 ["Email/set", {
 "accountId": "ue411d190",
 "oldState": "778193",
 "newState": "778197",
 "updated": {
 "M7f6ed5bcfd7e2604d1753f6c": null
 }
 }, "0"]]

 Suppose instead an admin has removed sending rights for the user, and
 so the email submission is rejected with a "forbiddenToSend" error.
 The description argument of the error is intended for display to the
 user, so should be localised appropriately. Let's suppose the
 request was sent with an Accept-Language header like this:

 Accept-Language: de;q=0.9,en;q=0.8

 The server should attempt to choose the best localisation from those
 it has available based on the Accept-Language header, as described in
 [I-D.ietf-jmap-core], section 3.7. If the server has English, French
 and German translations it would choose German as the preferred
 language and return a response like this:

[["EmailSubmission/set", {
 "accountId": "ue411d190",
 "oldState": "012421s6-8nrq-4ps4-n0p4-9330r951ns21",
 "newState": "012421s6-8nrq-4ps4-n0p4-9330r951ns21",
 "notCreated": {
 "k1490": {
 "type": "forbiddenToSend",
 "description": "Verzeihung, wegen verdaechtiger Aktivitaeten Ihres
Benutzerkontos haben wir den Versand von Nachrichten gesperrt. Bitte wenden Sie
sich fuer Hilfe an unser Support Team."
 }
 }
}, "0"]]

Jenkins & Newman Expires September 9, 2019 [Page 73]

Internet-Draft JMAP Mail March 2019

8. Vacation response

 A vacation response automatically sends a reply to messages sent to a
 particular account, to inform the original sender that their message
 may not be read for some time. Automated message sending can produce
 undesirable behaviour. To avoid this, implementors MUST follow the
 recommendations set forth in [RFC3834].

 The *VacationResponse* object represents the state of vacation-
 response related settings for an account. It has the following
 properties:

 o *id*: "Id" (immutable; server-set) The id of the object. There is
 only ever one vacation response object, and its id is
 ""singleton"".

 o *isEnabled*: "Boolean" Should a vacation response be sent if an
 email arrives between the _fromDate_ and _toDate_?

 o *fromDate*: "UTCDate|null" If _isEnabled_ is "true" emails that
 arrive on or after this date-time (but before the _toDate_ if
 defined) should receive the user's vacation response. If "null",
 the vacation response is effective immediately.

 o *toDate*: "UTCDate|null" If _isEnabled_ is "true", emails that
 arrive before this date-time (but on or after the _fromDate_ if
 defined) should receive the user's vacation response. If "null",
 the vacation response is effective indefinitely.

 o *subject*: "String|null" The subject that will be used by the
 message sent in response to emails when the vacation response is
 enabled. If "null", an appropriate subject SHOULD be set by the
 server.

 o *textBody*: "String|null" The plain text body to send in response
 to emails when the vacation response is enabled. If this is
 "null", when the vacation message is sent a plain-text body part
 SHOULD be generated from the _htmlBody_ but the server MAY choose
 to send the response as HTML only. If both _textBody_ and
 htmlBody are "null", an appropriate default body SHOULD be
 generated for responses by the server.

 o *htmlBody*: "String|null" The HTML body to send in response to
 emails when the vacation response is enabled. If this is "null",
 when the vacation message is sent an HTML body part MAY be
 generated from the _textBody_, or the server MAY choose to send
 the response as plain-text only.

https://datatracker.ietf.org/doc/html/rfc3834

Jenkins & Newman Expires September 9, 2019 [Page 74]

Internet-Draft JMAP Mail March 2019

 The following JMAP methods are supported:

8.1. VacationResponse/get

 Standard "/get" method as described in [I-D.ietf-jmap-core] section
5.1.

 There MUST only be exactly one VacationResponse object in an account.
 It MUST have the id "singleton".

8.2. VacationResponse/set

 Standard "/set" method as described in [I-D.ietf-jmap-core] section
5.3.

9. Security considerations

 All security considerations of JMAP ([I-D.ietf-jmap-core]) apply to
 this specification. Additional considerations specific to the data
 types and functionality introduced by this document are described in
 the following subsections.

9.1. EmailBodyPart value

 Service providers typically perform security filtering on incoming
 email and it's important that the detection of content-type and
 charset for the security filter aligns with the heuristics performed
 by JMAP servers. Servers that apply heuristics to determine the
 content-type or charset for _EmailBodyValue_ SHOULD document the
 heuristics and provide a mechanism to turn them off in the event they
 are misaligned with the security filter used at a particular mailbox
 host.

 Automatic conversion of charsets that allow hidden channels for ASCII
 text, such as UTF-7, have been problematic for security filters in
 the past so server implementations can mitigate this risk by having
 such conversions off-by-default and/or separately configurable.

 To allow the client to restrict the volume of data it can receive in
 response to a request, a maximum length may be requested for the data
 returned for a textual body part. However, truncating the data may
 change the semantic meaning, for example truncating a URL changes its
 location. Servers that scan for links to malicious sites should take
 care to either ensure truncation is not at a semantically significant
 point, or to rescan the truncated value for malicious content before
 returning it.

Jenkins & Newman Expires September 9, 2019 [Page 75]

Internet-Draft JMAP Mail March 2019

9.2. HTML email display

 HTML message bodies provide richer formatting for emails but present
 a number of security challenges, especially when embedded in a
 webmail context in combination with interface HTML. Clients that
 render HTML email should make careful consideration of the potential
 risks, including:

 o Embedded JavaScript can rewrite the email to change its content on
 subsequent opening, allowing users to be mislead. In webmail
 systems, if run in the same origin as the interface it can access
 and exfiltrate all private data accessible to the user, including
 all other emails and potentially contacts, calendar events,
 settings, and credentials. It can also rewrite the interface to
 undetectably phish passwords. A compromise is likely to be
 persistent, not just for the duration of page load, due to
 exfiltration of session credentials or installation of a service
 worker that can intercept all subsequent network requests (this
 however would only be possible if blob downloads are also
 available on the same origin, and the service worker script is
 attached to the message).

 o HTML documents may load content directly from the internet, rather
 than just referencing attached resources. For example you may
 have an "" tag with an external "src" attribute. This may
 leak to the sender when a message is opened, as well as the IP
 address of the recipient. Cookies may also be sent and set by the
 server, allowing tracking between different emails and even
 website visits and advertising profiles.

 o In webmail systems, CSS can break the layout or create phishing
 vulnerabilities. For example, the use of "position:fixed" can
 allow an email to draw content outside of its normal bounds,
 potentially clickjacking a real interface element.

 o If in a webmail context and not inside a separate frame, any
 styles defined in CSS rules will apply to interface elements as
 well if the selector matches, allowing the interface to be
 modified. Similarly, any interface styles that match elements in
 the email will alter their appearance, potentially breaking the
 layout of the email.

 o The link text in HTML has no necessary correlation with the actual
 target of the link, which can be used to make phishing attacks
 more convincing.

Jenkins & Newman Expires September 9, 2019 [Page 76]

Internet-Draft JMAP Mail March 2019

 o Links opened from an email or embedded external content may leak
 private info in the "Referer" header sent by default in most
 systems.

 o Forms can be used to mimic login boxes, providing a potent
 phishing vector if allowed to submit directly from the email
 display.

 There are a number of ways clients can mitigate these issues, and a
 defence-in-depth approach that uses a combination of techniques will
 provide the strongest security.

 o HTML can be filtered before rendering, stripping potentially
 malicious content. Sanitizing HTML correctly is tricky, and
 implementers are strongly recommended to use a well-tested library
 with a carefully vetted whitelist-only approach. New features
 with unexpected security characteristics may be added to HTML
 rendering engines in the future; a blacklist approach is likely to
 result in security issues.

 Subtle differences in parsing of HTML can introduce security flaws:
 to filter with 100% accuracy you need to use the same parser when
 sanitizing that the HTML rendering engine will use.

 o Encapsulating the message in an "<iframe sandbox>", as defined in
 [HTML], section 4.7.6, can help mitigate a number of risks. This
 will:

 * Disable JavaScript.

 * Disable form submission.

 * Prevent drawing outside of its bounds, or conflict with
 interface CSS.

 * Establish a unique anonymous origin, separate to the containing
 origin.

 o A strong Content Security Policy [3] can, among other things,
 block JavaScript and loading of external content should it manage
 to evade the filter.

 o The leakage of information in the Referer header can be mitigated
 with the use of a referrer policy [4].

 o A "crossorigin=anonymous" attribute on tags that load remote
 content can prevent cookies from being sent.

Jenkins & Newman Expires September 9, 2019 [Page 77]

Internet-Draft JMAP Mail March 2019

 o If adding "target=_blank" to open links in new tabs, also add
 "rel=noopener" to ensure the page that opens cannot change the URL
 in the original tab to redirect the user to a phishing site.

 As highly complex software components, HTML rendering engines
 increase the attack surface of a client considerably, especially when
 being used to process untrusted, potentially malicious content.
 Serious bugs have been found in image decoders, JavaScript engines
 and HTML parsers in the past, which could lead to full system
 compromise. Clients using an engine should ensure they get the
 latest version and continue to incorporate any security patches
 released by the vendor.

9.3. Multiple part display

 Messages may consist of multiple parts to be displayed sequentially
 as a body. Clients MUST render each part in isolation and MUST NOT
 concatenate the raw text values to render. Doing so may change the
 overall semantics of the message. If the client or server is
 decrypting a PGP or S/MIME encrypted part, concatenating with other
 parts may leak the decrypted text to an attacker, as described in
 [EFAIL].

9.4. Email submission

 SMTP submission servers [RFC6409] use a number of mechanisms to
 mitigate damage caused by compromised user accounts and end-user
 systems including rate limiting, anti-virus/anti-spam milters (mail
 filters) and other technologies. The technologies work better when
 they have more information about the client connection. If JMAP
 email submission is implemented as a proxy to an SMTP Submission
 server, it is useful to communicate this information from the JMAP
 proxy to the submission server. The de-facto [XCLIENT] extension to
 SMTP can be used to do this, but use of an authenticated channel is
 recommended to limit use of that extension to explicitly authorized
 proxies.

 JMAP servers that proxy to an SMTP Submission server SHOULD allow use
 of the _submissions_ port [RFC8314]. Implementation of a mechanism
 similar to SMTP XCLIENT is strongly encouraged. While SASL PLAIN
 over TLS [RFC4616] is presently the mandatory-to-implement mechanism
 for interoperability with SMTP submission servers [RFC4954], a JMAP
 submission proxy SHOULD implement and prefer a stronger mechanism for
 this use case such as TLS client certificate authentication with SASL
 EXTERNAL ([RFC4422] appendix A) or SCRAM [RFC7677].

 In the event the JMAP server directly relays mail to SMTP servers in
 other administrative domains, then implementation of the de-facto

https://datatracker.ietf.org/doc/html/rfc6409
https://datatracker.ietf.org/doc/html/rfc8314
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/rfc4954
https://datatracker.ietf.org/doc/html/rfc4422#appendix-A
https://datatracker.ietf.org/doc/html/rfc7677

Jenkins & Newman Expires September 9, 2019 [Page 78]

Internet-Draft JMAP Mail March 2019

 [milter] protocol is strongly encouraged to integrate with third-
 party products that address security issues including anti-virus/
 anti-spam, reputation protection, compliance archiving, and data loss
 prevention. Proxying to a local SMTP Submission server may be a
 simpler way to provide such security services.

9.5. Partial account access

 A user may only have permission to access a subset of the data that
 exists in an account. To avoid leaking unauthorised information, in
 such a situation the server MUST treat any data the user does not
 have permission to access the same as if it did not exist.

 For example, suppose user A has an account with two mailboxes, Inbox
 and Sent, but only shares the Inbox with user B. In this case, when
 user B fetches mailboxes for this account, the server MUST behave as
 though the Sent mailbox did not exist. Similarly when querying or
 fetching Email objects, it MUST treat any messages that just belong
 to the Sent mailbox as though they did not exist. Fetching Thread
 objects MUST only return ids for Email objects the user has
 permission to access; if none, the Thread again MUST be treated the
 same as if it did not exist.

 If the server forbids a single account from having two identical
 messages, or two messages with the same "Message-Id" header field, a
 user with write access can use the error returned trying to create/
 import such a message to detect whether it already exists in an
 inaccessible portion of the account.

9.6. Permission to send from an address

 The email ecosystem has in recent years moved towards associating
 trust with the From address in the [RFC5322] message, particularly
 with schemes such as DMARC ([RFC7489]).

 The set of Identity objects (see section 6) in an account lets the
 client know which email addresses the user has permission to send
 from. Each email submission is associated with an identity, and
 servers SHOULD reject submissions where the "From" header field of
 the email does not correspond to the associated identity.

 The server MAY allow an exception to send an exact copy of an
 existing message received into the mail store to another address
 (otherwise known as "redirecting" or "bouncing"), although it is
 RECOMMENDED the server limit this to destinations the user has
 verified they also control.

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc7489

Jenkins & Newman Expires September 9, 2019 [Page 79]

Internet-Draft JMAP Mail March 2019

 If the user attempts to create a new Identity, the server MUST reject
 it with the appropriate error if the user does not have permission to
 use that email address to send from.

 The [RFC5321] SMTP MAIL FROM address is often confused with the
 [RFC5322] message header. The user generally only ever sees the
 message header address, and this is the primary one to enforce.
 However the server MUST also enforce appropriate restrictions on the
 [RFC5321] MAIL FROM address to stop the user from flooding a 3rd
 party address with bounces and non-delivery notices.

 The JMAP submission model provides separate errors for impermissible
 addresses in either context.

10. IANA considerations

10.1. JMAP capability registration for "mail"

 IANA will register the "mail" JMAP Capability as follows:

 Capability Name: "urn:ietf:params:jmap:mail"

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, section 9

10.2. JMAP capability registration for "submission"

 IANA will register the "submission" JMAP Capability as follows:

 Capability Name: "urn:ietf:params:jmap:submission"

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, section 9

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5321

Jenkins & Newman Expires September 9, 2019 [Page 80]

Internet-Draft JMAP Mail March 2019

10.3. JMAP capability registration for "vacationresponse"

 IANA will register the "vacationresponse" JMAP Capability as follows:

 Capability Name: "urn:ietf:params:jmap:vacationresponse"

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, section 9

10.4. IMAP and JMAP keywords registry

 This document makes two changes to the IMAP keywords registry as
 defined in [RFC5788].

 First, the name of the registry is changed to the "IMAP and JMAP
 keywords Registry".

 Second, a scope column is added to the template and registry
 indicating whether a keyword applies to IMAP-only, JMAP-only, both,
 or reserved. All keywords presently in the IMAP keyword registry
 will be marked with a scope of both. The "reserved" status can be
 used to prevent future registration of a name that would be confusing
 if registered. Registration of keywords with scope 'reserved' omit
 most fields in the registration template (see registration of
 "$recent" below for an example); such registrations are intended to
 be infrequent.

 IMAP clients MAY silently ignore any keywords marked JMAP-only or
 reserved in the event they appear in protocol. JMAP clients MAY
 silently ignore any keywords marked IMAP-only or reserved in the
 event they appear in protocol.

 New JMAP-only keywords are registered in the following sub-sections.
 These keywords correspond to IMAP system keywords and are thus not
 appropriate for use in IMAP. These keywords can not be subsequently
 registered for use in IMAP except via standards action.

10.4.1. Registration of JMAP keyword '$draft'

 This registers the JMAP-only keyword '$draft' in the "IMAP and JMAP
 keywords Registry".

 Keyword name: "$draft"

https://datatracker.ietf.org/doc/html/rfc5788

Jenkins & Newman Expires September 9, 2019 [Page 81]

Internet-Draft JMAP Mail March 2019

 Scope: JMAP-only

 Purpose (description): This is set when the user wants to treat the
 message as a draft the user is composing. This is the JMAP
 equivalent of the IMAP \Draft flag.

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Automatic. If the account has a mailbox marked with the \Drafts
 special use [RFC6154], setting this flag MAY cause the message to
 appear in that mailbox automatically. Certain JMAP computed values
 such as _unreadEmails_ will change as a result of changing this flag.
 In addition, mail clients typically will present draft messages in a
 composer window rather than a viewer window.

 When/by whom the keyword is set/cleared: This is typically set by a
 JMAP client when referring to a draft message. One model for draft
 emails would result in clearing this flag in an EmailSubmission/set
 operation with an onSuccessUpdateEmail attribute. In a mailstore
 shared by JMAP and IMAP, this is also set and cleared as necessary so
 it matches the IMAP \Draft flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: SPECIAL-USE [RFC6154]

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message a draft
 message. This information would be exposed to other users with read
 permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.4.2. Registration of JMAP keyword '$seen'

 This registers the JMAP-only keyword '$seen' in the "IMAP and JMAP
 keywords Registry".

 Keyword name: "$seen"

https://datatracker.ietf.org/doc/html/rfc6154
https://datatracker.ietf.org/doc/html/rfc6154

Jenkins & Newman Expires September 9, 2019 [Page 82]

Internet-Draft JMAP Mail March 2019

 Scope: JMAP-only

 Purpose (description): This is set when the user wants to treat the
 message as read. This is the JMAP equivalent of the IMAP \Seen flag.

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Advisory. However, certain JMAP computed values such as
 unreadEmails will change as a result of changing this flag.

 When/by whom the keyword is set/cleared: This is set by a JMAP client
 when it presents the message content to the user; clients often offer
 an option to clear this flag. In a mailstore shared by JMAP and
 IMAP, this is also set and cleared as necessary so it matches the
 IMAP \Seen flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: None

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message to have
 been read. This information would be exposed to other users with
 read permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.4.3. Registration of JMAP keyword '$flagged'

 This registers the JMAP-only keyword '$flagged' in the "IMAP and JMAP
 keywords Registry".

 Keyword name: "$flagged"

 Scope: JMAP-only

 Purpose (description): This is set when the user wants to treat the
 message as flagged for urgent/special attention. This is the JMAP
 equivalent of the IMAP \Flagged flag.

Jenkins & Newman Expires September 9, 2019 [Page 83]

Internet-Draft JMAP Mail March 2019

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Automatic. If the account has a mailbox marked with the \Flagged
 special use [RFC6154], setting this flag MAY cause the message to
 appear in that mailbox automatically.

 When/by whom the keyword is set/cleared: JMAP clients typically allow
 a user to set/clear this flag as desired. In a mailstore shared by
 JMAP and IMAP, this is also set and cleared as necessary so it
 matches the IMAP \Flagged flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: SPECIAL-USE [RFC6154]

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user considers the message as
 flagged for urgent/special attention. This information would be
 exposed to other users with read permission for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.4.4. Registration of JMAP keyword '$answered'

 This registers the JMAP-only keyword '$answered' in the "IMAP and
 JMAP keywords Registry".

 Keyword name: "$answered"

 Scope: JMAP-only

 Purpose (description): This is set when the message has been
 answered.

 Private or Shared on a server: BOTH

 Is it an advisory keyword or may it cause an automatic action:
 Advisory.

https://datatracker.ietf.org/doc/html/rfc6154
https://datatracker.ietf.org/doc/html/rfc6154

Jenkins & Newman Expires September 9, 2019 [Page 84]

Internet-Draft JMAP Mail March 2019

 When/by whom the keyword is set/cleared: JMAP clients typically set
 this when submitting a reply or answer to the message. It may be set
 by the EmailSubmission/set operation with an onSuccessUpdateEmail
 attribute. In a mailstore shared by JMAP and IMAP, this is also set
 and cleared as necessary so it matches the IMAP \Answered flag.

 Related keywords: None

 Related IMAP/JMAP Capabilities: None

 Security Considerations: A server implementing this keyword as a
 shared keyword may disclose that a user has replied to a message.
 This information would be exposed to other users with read permission
 for the mailbox keywords.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Intended usage: COMMON

 Owner/Change controller: IESG

10.4.5. Registration of '$recent' keyword

 This registers the keyword '$recent' in the "IMAP and JMAP keywords
 Registry".

 Keyword name: "$recent"

 Scope: reserved

 Purpose (description): This keyword is not used to avoid confusion
 with the IMAP \Recent system flag.

 Published specification (recommended): this document

 Person & email address to contact for further information: (editor-
 contact-goes-here)

 Owner/Change controller: IESG

10.5. Registration of "inbox" role in

 This registers the JMAP-only "inbox" attribute in the "IMAP Mailbox
 Name Attributes Registry", as established in [RFC8457].

https://datatracker.ietf.org/doc/html/rfc8457

Jenkins & Newman Expires September 9, 2019 [Page 85]

Internet-Draft JMAP Mail March 2019

 Attribute Name: Inbox

 Description: New mail is delivered here by default.

 Reference: This document, section 10.5.

 Usage Notes: JMAP only

10.6. JMAP Error Codes registry

 The following sub-sections register several new error codes in the
 JMAP Error Codes registry, as defined in [I-D.ietf-jmap-core].

10.6.1. mailboxHasChild

 JMAP Error Code: mailboxHasChild

 Intended use: common

 Change controller: IETF

 Reference: This document, section 2.5

 Description: The mailbox still has at least one child mailbox. The
 client MUST remove these before it can delete the parent mailbox.

10.6.2. mailboxHasEmail

 JMAP Error Code: mailboxHasEmail

 Intended use: common

 Change controller: IETF

 Reference: This document, section 2.5

 Description: The mailbox has at least one message assigned to it and
 the onDestroyRemoveMessages argument was false.

10.6.3. blobNotFound

 JMAP Error Code: blobNotFound

 Intended use: common

 Change controller: IETF

 Reference: This document, section 4.6

Jenkins & Newman Expires September 9, 2019 [Page 86]

Internet-Draft JMAP Mail March 2019

 Description: At least one blob id referenced in the object doesn't
 exist.

10.6.4. tooManyKeywords

 JMAP Error Code: tooManyKeywords

 Intended use: common

 Change controller: IETF

 Reference: This document, section 4.6

 Description: The change to the email's keywords would exceed a
 server-defined maximum.

10.6.5. tooManyMailboxes

 JMAP Error Code: tooManyMailboxes

 Intended use: common

 Change controller: IETF

 Reference: This document, section 4.6

 Description: The change to the email's mailboxes would exceed a
 server-defined maximum.

10.6.6. invalidEmail

 JMAP Error Code: invalidEmail

 Intended use: common

 Change controller: IETF

 Reference: This document, section 7.5

 Description: The email to be sent is invalid in some way.

10.6.7. tooManyRecipients

 JMAP Error Code: tooManyRecipients

 Intended use: common

 Change controller: IETF

Jenkins & Newman Expires September 9, 2019 [Page 87]

Internet-Draft JMAP Mail March 2019

 Reference: This document, section 7.5

 Description: The RFC5321 envelope (supplied or generated) has more
 recipients than the server allows.

10.6.8. noRecipients

 JMAP Error Code: noRecipients

 Intended use: common

 Change controller: IETF

 Reference: This document, section 7.5

 Description: The RFC5321 envelope (supplied or generated) does not
 have any rcptTo emails.

10.6.9. invalidRecipients

 JMAP Error Code: invalidRecipients

 Intended use: common

 Change controller: IETF

 Reference: This document, section 7.5

 Description: The rcptTo property of the RFC5321 envelope (supplied or
 generated) contains at least one rcptTo value which is not a valid
 email for sending to.

10.6.10. forbiddenMailFrom

 JMAP Error Code: forbiddenMailFrom

 Intended use: common

 Change controller: IETF

 Reference: This document, section 7.5

 Description: The server does not permit the user to send an email
 with the RFC5321 envelope From.

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5321

Jenkins & Newman Expires September 9, 2019 [Page 88]

Internet-Draft JMAP Mail March 2019

10.6.11. forbiddenFrom

 JMAP Error Code: forbiddenFrom

 Intended use: common

 Change controller: IETF

 Reference: This document, sections 6.3 and 7.5

 Description: The server does not permit the user to send an email
 with the RFC5322 From header field of the email to be sent.

10.6.12. forbiddenToSend

 JMAP Error Code: forbiddenToSend

 Intended use: common

 Change controller: IETF

 Reference: This document, section 7.5

 Description: The user does not have permission to send at all right
 now.

11. References

11.1. Normative References

 [HTML] Faulkner, S., Eicholz, A., Leithead, T., Danilo, A., and
 S. Moon, "HTML 5.2", 2017,
 <https://www.w3.org/TR/html52/>.

 [I-D.ietf-jmap-core]
 Jenkins, N. and C. Newman, "JSON Meta Application
 Protocol", draft-ietf-jmap-core-14 (work in progress),
 January 2019.

 [RFC1870] Klensin, J., Freed, N., and K. Moore, "SMTP Service
 Extension for Message Size Declaration", STD 10, RFC 1870,
 DOI 10.17487/RFC1870, November 1995,
 <https://www.rfc-editor.org/info/rfc1870>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

https://datatracker.ietf.org/doc/html/rfc5322
https://www.w3.org/TR/html52/
https://datatracker.ietf.org/doc/html/draft-ietf-jmap-core-14
https://datatracker.ietf.org/doc/html/rfc1870
https://www.rfc-editor.org/info/rfc1870
https://datatracker.ietf.org/doc/html/rfc2045
https://www.rfc-editor.org/info/rfc2045

Jenkins & Newman Expires September 9, 2019 [Page 89]

Internet-Draft JMAP Mail March 2019

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",

RFC 2047, DOI 10.17487/RFC2047, November 1996,
 <https://www.rfc-editor.org/info/rfc2047>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2231] Freed, N. and K. Moore, "MIME Parameter Value and Encoded
 Word Extensions: Character Sets, Languages, and
 Continuations", RFC 2231, DOI 10.17487/RFC2231, November
 1997, <https://www.rfc-editor.org/info/rfc2231>.

 [RFC2369] Neufeld, G. and J. Baer, "The Use of URLs as Meta-Syntax
 for Core Mail List Commands and their Transport through
 Message Header Fields", RFC 2369, DOI 10.17487/RFC2369,
 July 1998, <https://www.rfc-editor.org/info/rfc2369>.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, DOI 10.17487/RFC2392, August 1998,
 <https://www.rfc-editor.org/info/rfc2392>.

 [RFC2557] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
 <https://www.rfc-editor.org/info/rfc2557>.

 [RFC2852] Newman, D., "Deliver By SMTP Service Extension", RFC 2852,
 DOI 10.17487/RFC2852, June 2000,
 <https://www.rfc-editor.org/info/rfc2852>.

 [RFC3282] Alvestrand, H., "Content Language Headers", RFC 3282,
 DOI 10.17487/RFC3282, May 2002,
 <https://www.rfc-editor.org/info/rfc3282>.

 [RFC3461] Moore, K., "Simple Mail Transfer Protocol (SMTP) Service
 Extension for Delivery Status Notifications (DSNs)",

RFC 3461, DOI 10.17487/RFC3461, January 2003,
 <https://www.rfc-editor.org/info/rfc3461>.

 [RFC3463] Vaudreuil, G., "Enhanced Mail System Status Codes",
RFC 3463, DOI 10.17487/RFC3463, January 2003,

 <https://www.rfc-editor.org/info/rfc3463>.

https://datatracker.ietf.org/doc/html/rfc2047
https://www.rfc-editor.org/info/rfc2047
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2231
https://www.rfc-editor.org/info/rfc2231
https://datatracker.ietf.org/doc/html/rfc2369
https://www.rfc-editor.org/info/rfc2369
https://datatracker.ietf.org/doc/html/rfc2392
https://www.rfc-editor.org/info/rfc2392
https://datatracker.ietf.org/doc/html/rfc2557
https://www.rfc-editor.org/info/rfc2557
https://datatracker.ietf.org/doc/html/rfc2852
https://www.rfc-editor.org/info/rfc2852
https://datatracker.ietf.org/doc/html/rfc3282
https://www.rfc-editor.org/info/rfc3282
https://datatracker.ietf.org/doc/html/rfc3461
https://www.rfc-editor.org/info/rfc3461
https://datatracker.ietf.org/doc/html/rfc3463
https://www.rfc-editor.org/info/rfc3463

Jenkins & Newman Expires September 9, 2019 [Page 90]

Internet-Draft JMAP Mail March 2019

 [RFC3464] Moore, K. and G. Vaudreuil, "An Extensible Message Format
 for Delivery Status Notifications", RFC 3464,
 DOI 10.17487/RFC3464, January 2003,
 <https://www.rfc-editor.org/info/rfc3464>.

 [RFC3834] Moore, K., "Recommendations for Automatic Responses to
 Electronic Mail", RFC 3834, DOI 10.17487/RFC3834, August
 2004, <https://www.rfc-editor.org/info/rfc3834>.

 [RFC4314] Melnikov, A., "IMAP4 Access Control List (ACL) Extension",
RFC 4314, DOI 10.17487/RFC4314, December 2005,

 <https://www.rfc-editor.org/info/rfc4314>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4616] Zeilenga, K., Ed., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616,
 DOI 10.17487/RFC4616, August 2006,
 <https://www.rfc-editor.org/info/rfc4616>.

 [RFC4865] White, G. and G. Vaudreuil, "SMTP Submission Service
 Extension for Future Message Release", RFC 4865,
 DOI 10.17487/RFC4865, May 2007,
 <https://www.rfc-editor.org/info/rfc4865>.

 [RFC4954] Siemborski, R., Ed. and A. Melnikov, Ed., "SMTP Service
 Extension for Authentication", RFC 4954,
 DOI 10.17487/RFC4954, July 2007,
 <https://www.rfc-editor.org/info/rfc4954>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC5248] Hansen, T. and J. Klensin, "A Registry for SMTP Enhanced
 Mail System Status Codes", BCP 138, RFC 5248,
 DOI 10.17487/RFC5248, June 2008,
 <https://www.rfc-editor.org/info/rfc5248>.

 [RFC5256] Crispin, M. and K. Murchison, "Internet Message Access
 Protocol - SORT and THREAD Extensions", RFC 5256,
 DOI 10.17487/RFC5256, June 2008,
 <https://www.rfc-editor.org/info/rfc5256>.

https://datatracker.ietf.org/doc/html/rfc3464
https://www.rfc-editor.org/info/rfc3464
https://datatracker.ietf.org/doc/html/rfc3834
https://www.rfc-editor.org/info/rfc3834
https://datatracker.ietf.org/doc/html/rfc4314
https://www.rfc-editor.org/info/rfc4314
https://datatracker.ietf.org/doc/html/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc4616
https://www.rfc-editor.org/info/rfc4616
https://datatracker.ietf.org/doc/html/rfc4865
https://www.rfc-editor.org/info/rfc4865
https://datatracker.ietf.org/doc/html/rfc4954
https://www.rfc-editor.org/info/rfc4954
https://datatracker.ietf.org/doc/html/rfc5198
https://www.rfc-editor.org/info/rfc5198
https://datatracker.ietf.org/doc/html/bcp138
https://datatracker.ietf.org/doc/html/rfc5248
https://www.rfc-editor.org/info/rfc5248
https://datatracker.ietf.org/doc/html/rfc5256
https://www.rfc-editor.org/info/rfc5256

Jenkins & Newman Expires September 9, 2019 [Page 91]

Internet-Draft JMAP Mail March 2019

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5788] Melnikov, A. and D. Cridland, "IMAP4 Keyword Registry",
RFC 5788, DOI 10.17487/RFC5788, March 2010,

 <https://www.rfc-editor.org/info/rfc5788>.

 [RFC6154] Leiba, B. and J. Nicolson, "IMAP LIST Extension for
 Special-Use Mailboxes", RFC 6154, DOI 10.17487/RFC6154,
 March 2011, <https://www.rfc-editor.org/info/rfc6154>.

 [RFC6409] Gellens, R. and J. Klensin, "Message Submission for Mail",
 STD 72, RFC 6409, DOI 10.17487/RFC6409, November 2011,
 <https://www.rfc-editor.org/info/rfc6409>.

 [RFC6532] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, DOI 10.17487/RFC6532, February
 2012, <https://www.rfc-editor.org/info/rfc6532>.

 [RFC6533] Hansen, T., Ed., Newman, C., and A. Melnikov,
 "Internationalized Delivery Status and Disposition
 Notifications", RFC 6533, DOI 10.17487/RFC6533, February
 2012, <https://www.rfc-editor.org/info/rfc6533>.

 [RFC6710] Melnikov, A. and K. Carlberg, "Simple Mail Transfer
 Protocol Extension for Message Transfer Priorities",

RFC 6710, DOI 10.17487/RFC6710, August 2012,
 <https://www.rfc-editor.org/info/rfc6710>.

 [RFC7677] Hansen, T., "SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple
 Authentication and Security Layer (SASL) Mechanisms",

RFC 7677, DOI 10.17487/RFC7677, November 2015,
 <https://www.rfc-editor.org/info/rfc7677>.

 [RFC8098] Hansen, T., Ed. and A. Melnikov, Ed., "Message Disposition
 Notification", STD 85, RFC 8098, DOI 10.17487/RFC8098,
 February 2017, <https://www.rfc-editor.org/info/rfc8098>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/rfc5321
https://www.rfc-editor.org/info/rfc5321
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc5788
https://www.rfc-editor.org/info/rfc5788
https://datatracker.ietf.org/doc/html/rfc6154
https://www.rfc-editor.org/info/rfc6154
https://datatracker.ietf.org/doc/html/rfc6409
https://www.rfc-editor.org/info/rfc6409
https://datatracker.ietf.org/doc/html/rfc6532
https://www.rfc-editor.org/info/rfc6532
https://datatracker.ietf.org/doc/html/rfc6533
https://www.rfc-editor.org/info/rfc6533
https://datatracker.ietf.org/doc/html/rfc6710
https://www.rfc-editor.org/info/rfc6710
https://datatracker.ietf.org/doc/html/rfc7677
https://www.rfc-editor.org/info/rfc7677
https://datatracker.ietf.org/doc/html/rfc8098
https://www.rfc-editor.org/info/rfc8098
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Jenkins & Newman Expires September 9, 2019 [Page 92]

Internet-Draft JMAP Mail March 2019

 [RFC8314] Moore, K. and C. Newman, "Cleartext Considered Obsolete:
 Use of Transport Layer Security (TLS) for Email Submission
 and Access", RFC 8314, DOI 10.17487/RFC8314, January 2018,
 <https://www.rfc-editor.org/info/rfc8314>.

 [RFC8457] Leiba, B., Ed., "IMAP "$Important" Keyword and
 "\Important" Special-Use Attribute", RFC 8457,
 DOI 10.17487/RFC8457, September 2018,
 <https://www.rfc-editor.org/info/rfc8457>.

 [RFC8474] Gondwana, B., Ed., "IMAP Extension for Object
 Identifiers", RFC 8474, DOI 10.17487/RFC8474, September
 2018, <https://www.rfc-editor.org/info/rfc8474>.

11.2. Informative References

 [EFAIL] Poddebniak, D., Dresen, C., Mueller, J., Ising, F.,
 Schinzel, S., Friedberger, S., Somorovsky, J., and J.
 Schwenk, "Efail: Breaking S/MIME and OpenPGP Email
 Encryption using Exfiltration Channels", 2018,
 <https://www.usenix.org/system/files/conference/

usenixsecurity18/sec18-poddebniak.pdf>.

 [milter] Unknown, "Postfix before-queue Milter support", 2019,
 <http://www.postfix.org/MILTER_README.html>.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
 <https://www.rfc-editor.org/info/rfc3501>.

 [RFC7489] Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
 Message Authentication, Reporting, and Conformance
 (DMARC)", RFC 7489, DOI 10.17487/RFC7489, March 2015,
 <https://www.rfc-editor.org/info/rfc7489>.

 [XCLIENT] Unknown, "Postfix XCLIENT Howto", 2019,
 <http://www.postfix.org/XCLIENT_README.html>.

11.3. URIs

 [1] https://www.iana.org/assignments/imap-mailbox-name-attributes/
imap-mailbox-name-attributes.xhtml

 [2] https://www.iana.org/assignments/imap-keywords/imap-
keywords.xhtml

 [3] https://www.w3.org/TR/CSP3/

https://datatracker.ietf.org/doc/html/rfc8314
https://www.rfc-editor.org/info/rfc8314
https://datatracker.ietf.org/doc/html/rfc8457
https://www.rfc-editor.org/info/rfc8457
https://datatracker.ietf.org/doc/html/rfc8474
https://www.rfc-editor.org/info/rfc8474
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-poddebniak.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-poddebniak.pdf
http://www.postfix.org/MILTER_README.html
https://datatracker.ietf.org/doc/html/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://datatracker.ietf.org/doc/html/rfc7489
https://www.rfc-editor.org/info/rfc7489
http://www.postfix.org/XCLIENT_README.html
https://www.iana.org/assignments/imap-mailbox-name-attributes/imap-mailbox-name-attributes.xhtml
https://www.iana.org/assignments/imap-mailbox-name-attributes/imap-mailbox-name-attributes.xhtml
https://www.iana.org/assignments/imap-keywords/imap-keywords.xhtml
https://www.iana.org/assignments/imap-keywords/imap-keywords.xhtml
https://www.w3.org/TR/CSP3/

Jenkins & Newman Expires September 9, 2019 [Page 93]

Internet-Draft JMAP Mail March 2019

 [4] https://www.w3.org/TR/referrer-policy/

Authors' Addresses

 Neil Jenkins
 FastMail
 PO Box 234, Collins St West
 Melbourne VIC 8007
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

 Chris Newman
 Oracle
 440 E. Huntington Dr., Suite 400
 Arcadia CA 91006
 United States of America

 Email: chris.newman@oracle.com

https://www.w3.org/TR/referrer-policy/
https://www.fastmail.com

Jenkins & Newman Expires September 9, 2019 [Page 94]

