
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-quotas-06

Published: 28 September 2022

Intended Status: Standards Track

Expires: 1 April 2023

Authors: R.C. Cordier, Ed.

Linagora Vietnam

JMAP for Quotas

Abstract

This document specifies a data model for handling quotas on accounts

with a server using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

1.1.  Notational conventions

1.2.  Terminology

1.3.  Addition to the capabilities object

1.3.1.  urn:ietf:params:jmap:quota

1.4.  Data types

1.4.1.  Scope

1.4.2.  ResourceType

1.5.  Push

2.  Quota

2.1.  Quota/get

2.2.  Quota/changes

2.3.  Quota/query

2.4.  Quota/queryChanges

2.5.  Examples

2.5.1.  Fetching quotas

2.5.2.  Requesting latest quota changes

3.  Security considerations

4.  IANA Considerations

4.1.  JMAP Capability Registration for "quota"

5.  Normative References

Author's Address

1. Introduction

JMAP ([RFC8620] - JSON Meta Application Protocol) is a generic

protocol for synchronising data, such as mails, calendars or

contacts, between a client and a server. It is optimised for mobile

and web environments, and aims to provide a consistent interface to

different data types.

This specification defines a data model for handling quotas over

JMAP, allowing you to read and explain quota information.

This specification does not address quota administration, which

should be handled by other means.

1.1. Notational conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Type signatures, examples and property descriptions in this document

follow the conventions established in section 1.1 of [RFC8620]. Data

¶

¶

¶

¶



types defined in the core specification are also used in this

document.

Servers MUST support all properties specified for the new data types

defined in this document.

1.2. Terminology

The same terminology is used in this document as in the core JMAP

specification.

The term Quota (with that specific capitalization) is used to refer

to the data type defined in this document and instance of that data

type.

1.3. Addition to the capabilities object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], section 2.

This document defines one additional capability URI.

1.3.1. urn:ietf:params:jmap:quota

This represents support for the Quota data type and associated API

methods. Servers supporting this specification MUST add a property

called urn:ietf:params:jmap:quota to the capabilities object.

The value of this property is an empty object in both the JMAP

session capabilities property and an account's accountCapabilities

property.

1.4. Data types

In addition to the standard JSON data types, a couple of additional

data types are common to the definition of Quota objects and

properties.

1.4.1. Scope

The Scope is a String from an enumeration defined list of values,

handled by the server.

It explains the entities this value applies to. Values for the Scope

are:

account: Applies for this account

domain: All accounts of this domain share this part of the quota

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶



global: All accounts of this server share this part of the quota

1.4.2. ResourceType

The ResourceType is a String from an enumeration defined list of

values, handled by the server.

A resource type is like an unit of measure for the quota usage.

Values for the ResourceType are:

count: The quota is measured in number of data type objects. For

example, a quota can have a limit of 50 Mail objects.

octets: The quota is measured in size (in octets). For example, a

quota can have a limit of 25000 octets.

1.5. Push

Servers MUST support the JMAP push mechanisms, as specified in 

[RFC8620] Section 7, to receive notifications when the state changes

for the Quota type defined in this specification.

2. Quota

The quota is an object that displays the limit set to an account

usage as well as the current usage in regard to that limit.

The quota object MUST contain the following fields:

id: Id The unique identifier for this object. It should respect

the JMAP ID datatype defined in section 1.2 of [RFC8620]

resourceType: ResourceType The resource type of the quota.

used: UnsignedInt The current usage of the defined quota.

Computation of this value is handled by the server.

limit: UnsignedInt The hard limit set by this quota. Objects in

scope may not be created or updated if we reach this limit. It

should be higher than the warnLimit and the softLimit.

scope: Scope The Scope of this quota.

name: String The name of the quota object. Useful for managing

quotas and use queries for searching.

datatypes: String[] A list of all the data types values that are

applying to this quota. This allows to assign quotas to separated

or shared data types. This MAY include data types the client does

* ¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*



not recognise. Clients MUST ignore any unknown data type in the

list.

The quota object MAY contain the following field:

warnLimit: UnsignedInt|null The warn limit set by this quota

object. It can be used to send a warning to an entity about to

reach the hard limit soon, but with no action taken yet. If set,

it should be lower than the softLimit and the limit.

softLimit: UnsignedInt|null The soft limit set by this quota

object. It can be used to still allow some operations, but

refusing some others. What is allowed or not is up to the server.

For example, it could be used for blocking outgoing events of an

entity (sending emails, creating calendar events, ...) while

still receiving incoming events (receiving emails, receiving

calendars events, ...). If set, it should be higher than the 

warnLimit but lower than the limit.

description: String|null Arbitrary free, human readable,

description of this quota. Might be used to explain where the

limit comes from and explain the entities and data types this

quota applies to.

2.1. Quota/get

Standard "/get" method as described in [RFC8620] section 5.1. The

ids argument may be null to fetch all at once.

2.2. Quota/changes

Standard "/changes" method as described in [RFC8620] section 5.2 but

with one extra argument to the response:

updatedProperties: String[]|null If only the "used" Quota

properties has changed since the old state, this will be the list

of properties that may have changed. If the server is unable to

tell if only "used" has changed, it MUST just be null.

Since "used" frequently changes but other properties are generally

only changed rarely, the server can help the client optimise data

transfer by keeping track of changes to Quota usage separate from

other state changes. The updatedProperties array may be used

directly via a back-reference in a subsequent Quota/get call in the

same request, so only these properties are returned if nothing else

has changed.

Servers MAY decide to add other properties to the list that they

judge changing frequently.

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

¶

¶



2.3. Quota/query

This is a standard "/query" method as described in [RFC8620],

Section 5.5.

A FilterCondition object has the following properties, any of which

may be omitted:

name: String The Quota name property contains the given string.

scopes: Scope[] The Quota scope property must be in this list to

match the condition.

resourceTypes: ResourceType[] The Quota resourceType property

must be in this list to match the condition.

datatypes: String[] The Quota datatypes property must contain the

elements in this list to match the condition.

A Quota object matches the FilterCondition if and only if all of the

given conditions match. If zero properties are specified, it is

automatically true for all objects.

The following Quota properties MUST be supported for sorting:

name

used

2.4. Quota/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

2.5. Examples

2.5.1. Fetching quotas

Request fetching all quotas related to an account :

With response :

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

¶

¶

[[ "Quota/get", {

  "accountId": "u33084183",

  "ids": null

}, "0" ]]

¶

¶



2.5.2. Requesting latest quota changes

Request fetching the changes for a specific quota:

With response:

[[ "Quota/get", {

  "accountId": "u33084183",

  "state": "78540",

  "list": [{

    "id": "2a06df0d-9865-4e74-a92f-74dcc814270e",

    "resourceType": "count",

    "used": 1056,

    "warnLimit": 1600,

    "softLimit": 1800,

    "limit": 2000,

    "scope": "account",

    "name": "bob@example.com",

    "description": "Personal account usage",

    "datatypes" : [ "Mail", "Calendar", "Contact" ]

  }, {

    "id": "3b06df0e-3761-4s74-a92f-74dcc963501x",

    "resourceType": "octets",

    ...

  }, ...],

  "notFound": []

}, "0" ]]

¶

¶

[[ "Quota/changes", {

  "accountId": "u33084183",

  "sinceState": "10824",

  "maxChanges": 20,

  "updatedProperties": ["used"]

}, "0" ],

[ "Quota/get", {

  "accountId": "u33084183",

  "#ids": {

    "resultOf": "0",

    "name": "Quota/changes",

    "path": "/updated"

  },

  "#properties": {

    "resultOf": "0",

    "name": "Quota/changes",

    "path": "/updatedProperties"

  }

}, "1" ]]

¶

¶



3. Security considerations

All security considerations of JMAP ([RFC8620]) apply to this

specification.

Implementors should be careful to make sure the implementation of

that extension does not violate the site's security policy. The

resource usage of other users is likely to be considered

confidential information and should not be divulged to unauthorized

persons.

As for any resource shared across users (for example, a quota with

the domain or global scope), a user that can consume the resource

can affect the resources available to the other users. For example,

a user could spam himself with events and make the shared resource

hit the limit and unusable for others (implementors could mitigate

that with some rate limiting implementation on the server).

4. IANA Considerations

4.1. JMAP Capability Registration for "quota"

IANA will register the "quota" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:quota

Specification document: this document

Intended use: common

Change Controller: IETF

[[ "Quota/changes", {

  "accountId": "u33084183",

  "oldState": "10824",

  "newState": "10826",

  "hasMoreChanges": false,

  "created": [],

  "updated": ["2a06df0d-9865-4e74-a92f-74dcc814270e"],

  "destroyed": []

}, "0" ],

[ "Quota/get", {

  "accountId": "u33084183",

  "state": "10826",

  "list": [{

    "id": "2a06df0d-9865-4e74-a92f-74dcc814270e",

    "used": 1246

  }],

  "notFound": []

}, "1" ]]

¶

¶

¶

¶

¶

¶

¶

¶

¶



[RFC2119]

[RFC8174]

[RFC8620]

Security and privacy considerations: this document, section 4.

5. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>. 

Author's Address

René Cordier (editor)

Linagora Vietnam

5 Dien Bien Phu

Hanoi

10000

Vietnam

Email: rcordier@linagora.com

URI: https://linagora.vn

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
mailto:rcordier@linagora.com
https://linagora.vn

	JMAP for Quotas
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational conventions
	1.2. Terminology
	1.3. Addition to the capabilities object
	1.3.1. urn:ietf:params:jmap:quota

	1.4. Data types
	1.4.1. Scope
	1.4.2. ResourceType

	1.5. Push

	2. Quota
	2.1. Quota/get
	2.2. Quota/changes
	2.3. Quota/query
	2.4. Quota/queryChanges
	2.5. Examples
	2.5.1. Fetching quotas
	2.5.2. Requesting latest quota changes


	3. Security considerations
	4. IANA Considerations
	4.1. JMAP Capability Registration for "quota"

	5. Normative References
	Author's Address


