
Workgroup: JMAP Working Group

Internet-Draft: draft-ietf-jmap-quotas-10

Published: 30 November 2022

Intended Status: Standards Track

Expires: 3 June 2023

Authors: R.C. Cordier, Ed.

Linagora Vietnam

JMAP for Quotas

Abstract

This document specifies a data model for handling quotas on accounts

with a server using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational conventions

1.2. Terminology

2. Addition to the capabilities object

2.1. urn:ietf:params:jmap:quota

3. Data types

3.1. Scope

3.2. ResourceType

4. Quota

4.1. Quota/get

4.2. Quota/changes

4.3. Quota/query

4.4. Quota/queryChanges

5. Examples

5.1. Fetching quotas

5.2. Requesting latest quota changes

6. Push

7. Security considerations

8. IANA Considerations

8.1. JMAP Capability Registration for "quota"

9. Normative References

Author's Address

1. Introduction

JMAP ([RFC8620] – (U+2013) JSON Meta Application Protocol) is a

generic protocol for synchronising data, such as mails, calendars or

contacts, between a client and a server. It is optimised for mobile

and web environments, and aims to provide a consistent interface to

different data types.

This specification defines a data model for handling quotas over

JMAP, allowing a user to obtain details about a certain quota.

This specification does not address quota administration, which

should be handled by other means.

1.1. Notational conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Type signatures, examples and property descriptions in this document

follow the conventions established in section 1.1 of [RFC8620]. Data

¶

¶

¶

¶

types defined in the core specification are also used in this

document.

1.2. Terminology

This document reuses the terminology from the core JMAP

specification established in section 1.6 of [RFC8620].

The term Quota (when capitalized) is used to refer to the data type

defined in this document in Section 4 and instance of that data

type.

2. Addition to the capabilities object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], section 2.

This document defines one additional capability URI.

2.1. urn:ietf:params:jmap:quota

This represents support for the Quota data type and associated API

methods. Servers supporting this specification MUST add a property

called urn:ietf:params:jmap:quota to the capabilities object.

The value of this property is an empty object in both the JMAP

session capabilities property and an account's accountCapabilities

property.

3. Data types

In addition to the standard JMAP data types, a couple of additional

data types are common to the definition of Quota objects and

properties.

Servers that support the new data types defined in this document

MUST support all the properties specified for these data types.

3.1. Scope

The Scope data type is used to represent the entities the Quota

applies to. It is defined as a "String" with values from the

following set:

account: The Quota information applies to just the client's

account

domain: The Quota information applies to all accounts sharing

this domain

global: The Quota information applies to all accounts belonging

to the server

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

3.2. ResourceType

The ResourceType data type is used to act as a unit of measure for

the quota usage. It is defined as a "String" with values from the

following set:

count: The quota is measured in number of data type objects. For

example, a quota can have a limit of 50 "Mail" objects.

octets: The quota is measured in size (in "octets"). For example,

a quota can have a limit of 25000 "octets".

4. Quota

The quota is an object that displays the limit set to an account

usage. It then shows as well the current usage in regard to that

limit.

¶

*

¶

*

¶

¶

The quota object MUST contain the following fields:

id: "Id"

The unique identifier for this object.

resourceType: "ResourceType"

The resource type of the quota as defined in Section 3.2.

used: "UnsignedInt"

The current usage of the defined quota, using the "resourceType"

defined as unit of measure. Computation of this value is handled

by the server.

limit: "UnsignedInt"

The hard limit set by this quota, using the "resourceType"

defined as unit of measure. Objects in scope may not be created

or updated if this limit is reached.

scope: "Scope"

The "Scope" of this quota as defined in Section 3.1.

name: "String"

The name of the quota object. Useful for managing quotas and

using queries for searching.

dataTypes: "String[]"

A list of all the type names (e.g., Email, Calendar, etc.) to

which this quota applies. This allows to assign quotas to

distinct or shared data types. This MAY include data types the

client does not recognise. Clients MUST ignore any unknown data

type in the list.

The quota object MAY contain the following fields:

warnLimit: "UnsignedInt|null"

The warn limit set by this quota object, using the "resourceType"

defined as unit of measure. It can be used to send a warning to

an entity about to reach the hard limit soon, but with no action

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

taken yet. If set, it SHOULD be lower than the "softLimit" (if

present and different than null) and the "limit".

softLimit: "UnsignedInt|null"

The soft limit set by this quota object, using the "resourceType"

defined as unit of measure. It can be used to still allow some

operations, but refuse some others. What is allowed or not is up

to the server. For example, it could be used for blocking

outgoing events of an entity (sending emails, creating calendar

events, ...) while still receiving incoming events (receiving

emails, receiving calendars events, ...). If set, it SHOULD be

higher than the "warnLimit" (if present and different than null)

but lower than the "limit".

description: "String|null"

Arbitrary free, human readable, description of this quota. It

might be used to explain where the limit comes from and explain

the entities and data types this quota applies to. The

description MUST be encoded in UTF-8 [RFC3629] as described in

[RFC8620] section 1.5, selected based on an Accept-Language

header in the request (as defined in [RFC9110], Section 12.5.4)

or out-of-band information about the user's language/locale.

The following JMAP methods are supported.

4.1. Quota/get

Standard "/get" method as described in [RFC8620] section 5.1. The

ids argument may be "null" to fetch all Quotas of the account at

once, as demonstrated in this document at Section 5.1.

4.2. Quota/changes

Standard "/changes" method as described in [RFC8620] section 5.2 but

with one extra argument in the response:

updatedProperties: "String[]|null"

If only the "used" Quota property has changed since the old

state, this will be a list containing only that property. If the

server is unable to tell if only "used" has changed, it MUST be

null.

Since "used" frequently changes but other properties are generally

only changed rarely, the server can help the client optimise data

transfer by keeping track of changes to Quota usage separate from

other state changes. The updatedProperties array may be used

directly via a back-reference in a subsequent Quota/get call in the

¶

* ¶

¶

* ¶

¶

¶

¶

¶

* ¶

¶

same request, so only these properties are returned if nothing else

has changed.

Servers MAY decide to add other properties to the list that they

judge changing frequently.

This method's usage is demonstrated in this document at Section 5.2.

4.3. Quota/query

This is a standard "/query" method as described in [RFC8620],

Section 5.5.

A FilterCondition object has the following properties, any of which

may be omitted:

name: "String"

The Quota name property contains the given string.

scopes: "Scope[]"

The Quota scope property must be in this list to match the

condition.

resourceTypes: "ResourceType[]"

The Quota resourceType property must be in this list to match the

condition.

dataTypes: "String[]"

The Quota dataTypes property must contain the elements in this

list to match the condition.

A Quota object matches the FilterCondition if and only if all the

given conditions match, including multiple array elements existing

within a condition. If zero properties are specified, it is

automatically true for all objects.

The following Quota properties MUST be supported for sorting:

name

used

4.4. Quota/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

5. Examples

5.1. Fetching quotas

Request fetching all quotas related to an account :

With response :

5.2. Requesting latest quota changes

Request fetching the changes for a specific quota:

¶

[["Quota/get", {

 "accountId": "u33084183",

 "ids": null

}, "0"]]

¶

¶

[["Quota/get", {

 "accountId": "u33084183",

 "state": "78540",

 "list": [{

 "id": "2a06df0d-9865-4e74-a92f-74dcc814270e",

 "resourceType": "count",

 "used": 1056,

 "warnLimit": 1600,

 "softLimit": 1800,

 "limit": 2000,

 "scope": "account",

 "name": "bob@example.com",

 "description": "Personal account usage",

 "dataTypes" : ["Mail", "Calendar", "Contact"]

 }, {

 "id": "3b06df0e-3761-4s74-a92f-74dcc963501x",

 "resourceType": "octets",

 ...

 }, ...],

 "notFound": []

}, "0"]]

¶

¶

With response:

6. Push

Servers MUST support the JMAP push mechanisms, as specified in

[RFC8620] Section 7, to receive notifications when the state changes

for the Quota type defined in this specification.

[["Quota/changes", {

 "accountId": "u33084183",

 "sinceState": "10824",

 "maxChanges": 20

}, "0"],

["Quota/get", {

 "accountId": "u33084183",

 "#ids": {

 "resultOf": "0",

 "name": "Quota/changes",

 "path": "/updated"

 },

 "#properties": {

 "resultOf": "0",

 "name": "Quota/changes",

 "path": "/updatedProperties"

 }

}, "1"]]

¶

¶

[["Quota/changes", {

 "accountId": "u33084183",

 "oldState": "10824",

 "newState": "10826",

 "hasMoreChanges": false,

 "updatedProperties": ["used"],

 "created": [],

 "updated": ["2a06df0d-9865-4e74-a92f-74dcc814270e"],

 "destroyed": []

}, "0"],

["Quota/get", {

 "accountId": "u33084183",

 "state": "10826",

 "list": [{

 "id": "2a06df0d-9865-4e74-a92f-74dcc814270e",

 "used": 1246

 }],

 "notFound": []

}, "1"]]

¶

¶

[RFC2119]

7. Security considerations

All security considerations of JMAP ([RFC8620]) apply to this

specification.

Implementors should be careful to make sure the implementation of

the extension specified in this document does not violate the site's

security policy. The resource usage of other users is likely to be

considered confidential information and should not be divulged to

unauthorized persons.

As for any resource shared across users (for example, a quota with

the "domain" or "global" scope), a user that can consume the

resource can affect the resources available to the other users. For

example, a user could spam themselves with events and make the

shared resource hit the limit and unusable for others (implementors

could mitigate that with some rate limiting implementation on the

server).

Also, revealing domain and global quota counts to all users may

cause privacy leakage of other sensitive data, or at least the

existence of other sensitive data. For example, "user1" is part of a

private list belonging to the server, so he shouldn't know how many

users are in there. But by comparing the quota count before and

after sending a message to the list, it could reveal the number of

people of the list, as the domain or global quota count would go up

by the number of people subscribed. Likely to limit those attacks,

quotas with "domain" or "global" scope should only be visible to the

administrators of the server and not all users.

8. IANA Considerations

8.1. JMAP Capability Registration for "quota"

IANA will register the "quota" JMAP Capability as follows:

Capability Name: "urn:ietf:params:jmap:quota"

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section 7.

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC3629]

[RFC8174]

[RFC8620]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

Author's Address

René Cordier (editor)

Linagora Vietnam

5 Dien Bien Phu

Hanoi

10000

Vietnam

Email: rcordier@linagora.com

URI: https://linagora.vn

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
mailto:rcordier@linagora.com
https://linagora.vn

	JMAP for Quotas
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational conventions
	1.2. Terminology

	2. Addition to the capabilities object
	2.1. urn:ietf:params:jmap:quota

	3. Data types
	3.1. Scope
	3.2. ResourceType

	4. Quota
	4.1. Quota/get
	4.2. Quota/changes
	4.3. Quota/query
	4.4. Quota/queryChanges

	5. Examples
	5.1. Fetching quotas
	5.2. Requesting latest quota changes

	6. Push
	7. Security considerations
	8. IANA Considerations
	8.1. JMAP Capability Registration for "quota"

	9. Normative References
	Author's Address

