
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-sharing-02

Published: 6 October 2022

Intended Status: Standards Track

Expires: 9 April 2023

Authors: N.M. Jenkins, Ed.

Fastmail

JMAP Sharing

Abstract

This document specifies a data model for sharing data between users

using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

1.2. Terminology

1.3. Data Model Overview

1.4. Subscriptions

1.5. Addition to the Capabilities Object

1.5.1. urn:ietf:params:jmap:principals

1.5.2. urn:ietf:params:jmap:principals:owner

2. Principals

2.1. Principal/get

2.2. Principal/changes

2.3. Principal/set

2.4. Principal/query

2.4.1. Filtering

2.5. Principal/queryChanges

3. Share Notifications

3.1. Auto-deletion of Notifications

3.2. Object Properties

3.3. ShareNotification/get

3.4. ShareNotification/changes

3.5. ShareNotification/set

3.6. ShareNotification/query

3.6.1. Filtering

3.6.2. Sorting

3.7. ShareNotification/queryChanges

4. Framework for shared data

5. Security Considerations

5.1. Spoofing

5.2. Unnoticed sharing

5.3. Unauthorised principals

6. IANA Considerations

6.1. JMAP Capability Registration for "principals"

6.2. JMAP Capability Registration for "principals:owner"

7. Normative References

Author's Address

1. Introduction

JMAP ([RFC8620] – (U+2013) JSON Meta Application Protocol) is a

generic protocol for synchronizing data, such as mail, calendars or

contacts, between a client and a server. It is optimized for mobile

and web environments, and aims to provide a consistent interface to

different data types.

This specification defines a data model to represent entities in a

collaborative environment and a framework for sharing data between

them that can be used to provide a consistent sharing model for

¶

different data types. It does not define what may be shared, or the

granularity of permissions, as this will depend on the data in

question.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Type signatures, examples, and property descriptions in this

document follow the conventions established in Section 1.1 of

[RFC8620]. Data types defined in the core specification are also

used in this document.

1.2. Terminology

The same terminology is used in this document as in the core JMAP

specification, see [RFC8620], Section 1.6.

The terms Principal, and ShareNotification (with these specific

capitalizations) are used to refer to the data types defined in this

document and instances of those data types.

1.3. Data Model Overview

A Principal (see Section XXX) represents an individual, team, or

resource (e.g., a room or projector). The object contains

information about the entity being represented, such as a name,

description, and time zone. It may also hold domain-specific

information. A Principal may be associated with zero or more

Accounts (see [RFC8620], Section 1.6.2) containing data belonging to

the principal. Managing the set of principals within a system is out

of scope for this specification, as it is highly domain specific. It

is likely to map directly from a directory service or other user

management system.

Data types may allow users to share data with others by assigning

permissions to principals. When a user's permissions are changed, a

ShareNotification object is created for them so a client can inform

the user of the changes.

1.4. Subscriptions

Permissions determine whether a user may access data, but not

whether they want to. Some shared data is of equal importance as the

user's own, while other data is just there should the user wish to

explicitly go find it. Clients will often want to differentiate the

¶

¶

¶

¶

¶

¶

¶

two; for example, a company may share mailing list archives for all

departments with all employees, but a user may only generally be

interested in the few they belong to. They would have permission to

access many mailboxes, but can subscribe to just the ones they care

about. The client would provide separate interfaces for reading mail

in subscribed mailboxes and browsing all mailboxes they have

permission to access in order to manage their subscriptions.

The JMAP Session object (see [RFC8620], Section 2) typically

includes an object in the accounts property for every account that

the user has access to. Collaborative systems may share data between

a very large number of Principals, most of which the user does not

care about day-to-day. The Session object MUST only include Accounts

where either the user is subscribed to at least one record (see

[RFC8620], Section 1.6.3) in the account, or the account belongs to

the user. StateChange events for changes to data SHOULD only be sent

for data the user has subscribed to and MUST NOT be sent for any

account where the user is not subscribed to any records in the

account, except where that account belongs to the user.

The server MAY reject the user's attempt to subscribe to some

resources even if they have permission to access them, e.g., a

calendar representing a location.

A user may query the set of Principals they have access to with

"Principal/query" (see Section XXX). The Principal object may then

provide Account objects if the user has permission to access data

for that principal, even if they are not yet subscribed.

1.5. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], Section 2. This document defines two

additional capability URIs.

1.5.1. urn:ietf:params:jmap:principals

Represents support for the Principal and ShareNotification data

types and associated API methods.

The value of this property in the JMAP Session capabilities property

is an empty object.

The value of this property in an account’ (U+2019)s

accountCapabilities property is an object that MUST contain the

¶

¶

¶

¶

¶

¶

¶

following information on server capabilities and permissions for

that account:

currentUserPrincipalId: Id|null The id of the principal in this

account that corresponds to the user fetching this object, if

any.

1.5.2. urn:ietf:params:jmap:principals:owner

This URI is solely used as a key in an account’ (U+2019)s

accountCapabilities property; it does not appear in the JMAP Session

capabilities. Support is implied by the

urn:ietf:params:jmap:principals session capability.

If present, the account (and data therein) is owned by a principal.

Some accounts may not be owned by a principal (e.g., the account

that contains the data for the principals themselves), in which case

this property is omitted.

The value of this property is an object with the following

properties:

accountIdForPrincipal: Id The id of an account with the

urn:ietf:params:jmap:principals capability that contains the

corresponding Principal object.

principalId: Id The id of the Principal that owns this account.

2. Principals

A Principal represents an individual, group, location (e.g. a room),

resource (e.g. a projector) or other entity in a collaborative

environment. Sharing in JMAP is generally configured by assigning

rights to certain data within an account to other principals, for

example a user may assign permission to read their calendar to a

principal representing another user, or their team.

In a shared environment such as a workplace, a user may have access

to a large number of principals.

In most systems the user will have access to a single Account

containing Principal objects, but they may have access to multiple

if, for example, aggregating data from different places.

A Principal object has the following properties:

id: Id The id of the principal.

type: String This MUST be one of the following values:

individual: This represents a single person.

group: This represents a group of people.

¶

*

¶

¶

¶

¶

*

¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

- ¶

- ¶

resource: This represents some resource, e.g. a projector.

location: This represents a location.

other: This represents some other undefined principal.

name: String The name of the principal, e.g. "Jane Doe", or "Room

4B".

description: String|null A longer description of the principal,

for example details about the facilities of a resource, or null

if no description available.

email: String|null An email address for the principal, or null if

no email is available.

timeZone: String|null The time zone for this principal, if known.

If not null, the value MUST be a time zone id from the IANA Time

Zone Database TZDB.

capabilities: String[Object] A map of JMAP capability URIs to

domain specific information about the principal in relation to

that capability, as defined in the document that registered the

capability.

accounts: Id[Account]|null A map of account id to Account object

for each JMAP Account containing data for this principal that the

user has access to, or null if none.

2.1. Principal/get

This is a standard "/get" method as described in [RFC8620], Section

5.1.

2.2. Principal/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

2.3. Principal/set

This is a standard "/set" method as described in [RFC8620], Section

5.3.

Users SHOULD be allowed to update the "name", "description" and

"timeZone" properties of the Principal with the same id as the

"currentUserPrincipalId" in the Account capabilities.

However, the server may, and probably will, reject any change with a

forbidden SetError. Managing principals is likely tied to a

directory service or some other vendor-specific solution, and may

occur out-of-band, or via an additional capability defined

elsewhere.

2.4. Principal/query

This is a standard "/query" method as described in [RFC8620],

Section 5.5

- ¶

- ¶

- ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/time-zones

2.4.1. Filtering

A FilterCondition object has the following properties:

accountIds: String[] A list of account ids. The Principal matches

if any of the ids in this list are keys in the Principal's

"accounts" property (i.e., if any of the account ids belong to

the principal).

email: String Looks for the text in the email property.

name: String Looks for the text in the name property.

text String Looks for the text in the name, email, and

description properties.

type: String The type must be exactly as given to match the

condition.

timeZone: String The timeZone must be exactly as given to match

the condition.

All conditions in the FilterCondition object must match for the

Principal to match.

2.5. Principal/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

3. Share Notifications

The ShareNotification data type records when the user's permissions

to access a shared object changes. ShareNotification are only

created by the server; users cannot create them explicitly.

Notifications are stored in the same Account as the Principals.

Clients SHOULD present the list of notifications to the user and

allow them to dismiss them. To dismiss a notification you use a

standard "/set" call to destroy it.

The server SHOULD create a ShareNotification whenever the user's

permissions change on an object. It SHOULD NOT create a notification

for permission changes to a group principal, even if the user is in

the group.

3.1. Auto-deletion of Notifications

The server MAY limit the maximum number of notifications it will

store for a user. When the limit is reached, any new notification

will cause the previously oldest notification to be automatically

deleted.

The server MAY coalesce notifications if appropriate, or remove

notifications that it deems are no longer relevant or after a

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

certain period of time. The server SHOULD automatically destroy a

notification about an object if the user subscribes to that object.

3.2. Object Properties

The ShareNotification object has the following properties:

id: String The id of the ShareNotification.

created: UTCDate The time this notification was created.

changedBy: Person Who made the change.

name: String The name of the person who made the change.

email: String|null The email of the person who made the

change, or null if no email is available.

principalId: String|null The id of the Principal corresponding

to the person who made the change, or null if no associated

principal.

objectType: String The name of the data type for the object whose

permissions have changed, e.g. "Calendar" or "Mailbox".

objectAccountId: String The id of the account where this object

exists.

objectId: String The id of the object that this notification is

about.

name: String The name of the object at the time the notification

was made.

oldRights: String[Boolean]|null The "myRights" property of the

object for the user before the change.

newRights: String[Boolean]|null The "myRights" property of the

object for the user after the change.

3.3. ShareNotification/get

This is a standard "/get" method as described in [RFC8620], Section

5.1.

3.4. ShareNotification/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

3.5. ShareNotification/set

This is a standard "/set" method as described in [RFC8620], Section

5.3.

Only destroy is supported; any attempt to create/update MUST be

rejected with a forbidden SetError.

¶

¶

* ¶

* ¶

* ¶

- ¶

-

¶

-

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

3.6. ShareNotification/query

This is a standard "/query" method as described in [RFC8620],

Section 5.5.

3.6.1. Filtering

A FilterCondition object has the following properties:

after: UTCDate|null The creation date must be on or after this

date to match the condition.

before: UTCDate|null The creation date must be before this date

to match the condition.

objectType: String The objectType value must be identical to the

given value to match the condition.

objectAccountId: String The objectAccountId value must be

identical to the given value to match the condition.

3.6.2. Sorting

The "created" property MUST be supported for sorting.

3.7. ShareNotification/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

4. Framework for shared data

Shareable data types SHOULD define the following three properties:

isSubscribed: Boolean Has the user indicated they wish to see

this data? The initial value for this when data is shared by

another user is implementation dependent, although data types may

give advice on appropriate defaults.

myRights: String[Boolean] The set of permissions the user

currently has. Appropriate permissions are domain specific and

must be defined per data type.

shareWith: Id[String[Boolean]]|null A map of principal id to

rights to give that principal, or null if not shared with anyone.

The account id for the principal id can be found in the

capabilities of the Account this object is in (see Section XXX).

Users with appropriate permission may set this property to modify

who the data is shared with. The principal that owns the account

this data is in MUST NOT be in the set of sharees; their rights

are implicit.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

5. Security Considerations

All security considerations of JMAP [RFC8620] apply to this

specification. Additional considerations are detailed below.

5.1. Spoofing

Allowing users to edit their own Principal's name (and, to a lesser

extent, description) could allow a user to change their name to that

of another user in the system, potentially tricking others into

sharing private data with them. Servers may choose to forbid this,

and SHOULD keep logs of such changes to provide an audit trail.

5.2. Unnoticed sharing

Sharing data with another user allows someone to turn a transitory

account compromise (e.g. brief access to an unlocked, logged in

client) into a persistant compromise (by setting up sharing with a

user controlled by the attacker). This can be mitigated by requiring

further authorisation for configuring sharing, or sending

notifications to the sharer via another channel whenever a new

sharee is added.

5.3. Unauthorised principals

The set of principals within a shared environment SHOULD be strictly

controlled. If adding a new principal is open to the public, risks

include: * An increased risk of a user accidentally sharing data

with an unintended person. * An attacker may share unwanted or

offensive information with the user. * An attacker may share items

with spam content in the names in order to generate

ShareNotification objects, which are likely to be prominently

displayed to the sharee.

6. IANA Considerations

6.1. JMAP Capability Registration for "principals"

IANA will register the "principals" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:principals

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[RFC8620]

6.2. JMAP Capability Registration for "principals:owner"

IANA will register the "principals:owner" JMAP Capability as

follows:

Capability Name: urn:ietf:params:jmap:principals:owner

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

Author's Address

Neil Jenkins (editor)

Fastmail

PO Box 234, Collins St West

Melbourne VIC 8007

Australia

Email: neilj@fastmailteam.com

URI: https://www.fastmail.com

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
mailto:neilj@fastmailteam.com
https://www.fastmail.com

	JMAP Sharing
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Data Model Overview
	1.4. Subscriptions
	1.5. Addition to the Capabilities Object
	1.5.1. urn:ietf:params:jmap:principals
	1.5.2. urn:ietf:params:jmap:principals:owner

	2. Principals
	2.1. Principal/get
	2.2. Principal/changes
	2.3. Principal/set
	2.4. Principal/query
	2.4.1. Filtering

	2.5. Principal/queryChanges

	3. Share Notifications
	3.1. Auto-deletion of Notifications
	3.2. Object Properties
	3.3. ShareNotification/get
	3.4. ShareNotification/changes
	3.5. ShareNotification/set
	3.6. ShareNotification/query
	3.6.1. Filtering
	3.6.2. Sorting

	3.7. ShareNotification/queryChanges

	4. Framework for shared data
	5. Security Considerations
	5.1. Spoofing
	5.2. Unnoticed sharing
	5.3. Unauthorised principals

	6. IANA Considerations
	6.1. JMAP Capability Registration for "principals"
	6.2. JMAP Capability Registration for "principals:owner"

	7. Normative References
	Author's Address

