
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-jmap-smime-sender-extensions-04

Published: 3 August 2023

Intended Status: Informational

Expires: 4 February 2024

Authors: A. Melnikov

Isode Ltd

JMAP extension for S/MIME signing and encryption

Abstract

This document specifies an extension to JMAP for sending S/MIME

signed and/or S/MIME encrypted messages, as well as automatic

decryption of received S/MIME messages.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 February 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions Used in This Document

3. Addition to the capabilities object

4. Extension to Email/set for S/MIME signing and/or encryption

5. Extension to Email/get and Email/query for S/MIME decryption

6. IANA Considerations

6.1. JMAP capability registration for "smime-advanced"

6.2. JMAP Error Codes Registry Updates

6.2.1. signedSenderNotAllowed error code

6.2.2. validEncryptionKeyNotFound error code

7. Security Considerations

8. Normative References

Author's Address

1. Introduction

[RFC8621] is a JSON based application protocol for synchronising

email data between a client and a server.

This document describes an extension to JMAP for sending S/MIME

signed and/or encrypted messages, as well as automatic decryption of

received S/MIME messages. It allows JMAP server to sign/encrypt

messages on user's behalf.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Addition to the capabilities object

The capabilities object is returned as part of the standard JMAP

Session object; see the JMAP spec. Servers supporting _this_

specification MUST add a property called

"urn:ietf:params:jmap:smime-advanced" to the capabilities object.

The value of this property is an empty object in both the JMAP

session _capabilities_ property and an account's

accountCapabilities property.

¶

¶

¶

¶

¶

4. Extension to Email/set for S/MIME signing and/or encryption

[RFC8621] defines Email/set method for creating new email messages.

This document defines the following additional request arguments

that can be used to create S/MIME signed and/or encrypted messages:

smimeSign: "Boolean" (default: false). If included and has the

value "true", this requests the JMAP server to create an S/MIME

signed message from the message constructed according to other

specified arguments (the "original message"). This is done by

encapsulating the original message either inside application/

pkcs7-mime [RFC8551] or multipart/signed [RFC1847] container.

(smimeSignOpaque argument (see below) controls which of the two

mechanisms is used.) The signature's private key/certificate is

associated with the email address in the Sender header field, if

present; otherwise, it is associated with the email address in

the From header field, if present.

If multiple addresses are present in one of these header fields,

or there is more than one Sender/From header field, the server

SHOULD reject the Email/set as invalid with the "invalidEmail"

error code; otherwise, it MUST take the first address in the last

Sender/From header field. If JMAP account is not authorized to

sign message as the selected sender (as above), it SHOULD return

"signedSenderNotAllowed" error code.

smimeEncrypt: "Boolean" (default: false). If included and has the

value "true", this requests the JMAP server to create an S/MIME

encrypted message from the constructed message. This is done by

encapsulating the message inside application/pkcs7-mime [RFC8551]

media type. The message MUST be encrypted to the sender and all

To/Cc/Bcc recipients. This extension assumes that there is some

kind of per user or organizational addressbook, that can be used

to lookup public keys of recipients. If lookup of a particular

public key fails, or results in an expired or revoked

certificate, the Email/set operation MUST fail with the

"validEncryptionKeyNotFound" error code.

smimeHeaderProtect: "Boolean" (default: true). If has the value

"true", this requests the JMAP server to use S/MIME header

protection as specified in [draft-ietf-lamps-header-protection]

when at least one of smimeEncrypt/smimeSign is true.

smimeSignOpaque: "Boolean" (default: true). If has the value

"true", this requests the JMAP server to use application/pkcs7-

mime media type for S/MIME signing, otherwise multipart/signed

media type.

¶

*

¶

¶

*

¶

*

¶

*

¶

If both "smimeSign" and "smimeEncrypt" are set to true, the message

is first signed and then the signed version is encrypted (in that

order).

(Note that this extension doesn't allow management of private keys/

certificates. How private keys are managed or configured for a

particular user is out of scope for this document.)

¶

¶

 [["Email/set", {

 "accountId": "ue150411c",

 "create": {

 "k192": {

 "mailboxIds": {

 "2ea1ca41b38e": true

 },

 "keywords": {

 "$seen": true,

 "$draft": true

 },

 "from": [{

 "name": "Joe Bloggs",

 "email": "joe@example.com"

 }],

 "subject": "World domination",

 "receivedAt": "2021-07-07T01:03:11Z",

 "sentAt": "2021-07-10T11:03:11+10:00",

 "smimeSign": true,

 "smimeEncrypt": true,

 "bodyStructure": {

 "type": "text/plain",

 "partId": "bd48",

 "header:Content-Language": "en"

 },

 "bodyValues": {

 "bd48": {

 "value": "I have the most brilliant plan. Let me tell

 you all about it.",

 "isTruncated": false

 }

 }

 }

 }

 }, "0"]]

This will result in the following response:

 [["Email/set", {

 "accountId": "ue150411c",

 "oldState": "780823",

 "newState": "780839",

 "created": {

 "k192": {

 "id": "Mf40b5f831efa7233b9eb1c7f",

 "blobId": "Gf40b5f831efa7233b9eb1c7f8f97d84eeeee64f7",

 "threadId": "Td957e72e89f516dc",

 "size": 5096

 }

 },

 ...

 }, "0"]]

Figure 1: Example 1:

5. Extension to Email/get and Email/query for S/MIME decryption

[RFC8621] defines Email/get method for retrieving information about

email messages. This document defines the following additional

request arguments of the "bodyProperties" object that can be used to

facilitate decryption of S/MIME encrypted messages:

smimeBlobId: "Id|null". The id representing the raw octets of the

decrypted contents of the part. When processing this request

argument, the server first removes the Content-Transfer-Encoding

(see then "blobId" request argument in RFC 8621). If the Content-

Transfer-Encoding is supported by the server, the content is then

S/MIME decrypted. The resulting Id can be used in Email/parse

method to import the decrypted message. If the body part is not

encrypted, the returned smimeBlobId attribute has the same value

as the "blobId" attribute.

¶

*

¶

Figure 2: Example 2:

[RFC8621] defines Email/query method for searching for email

messages. This document defines the following additional request

arguments to the *FilterCondition* object that can be used to search

for S/MIME encrypted messages:

isEncrypted: "Boolean" (default: false) If isEncrypted is true,

then an Email matches this condition if its top level body part

has content type "application/pkcs7-mime" with smime-type

parameter that has the case-insensitive value "enveloped-data" or

"authEnveloped-data". [[Alexey: Do we want to limit this to S/

MIME encryption and not OpenPGP?]]

isNotEncrypted: "Boolean" (default: false) If isNotEncrypted is

true, then an Email matches this condition if its top level body

part has any content type other than "application/pkcs7-mime", or

 [["Email/get", {

 "ids": ["f123u986"],

 "properties": ["threadId", "mailboxIds", "from", "subject",

 "receivedAt", "htmlBody"],

 "bodyProperties": ["partId", "smimeBlobId", "size", "type"]

 }, "#1"]]

This will result in the following response:

 [["Email/get", {

 "accountId": "abc",

 "state": "41234123231",

 "list": [

 {

 "id": "f123u986",

 "threadId": "cb1314a",

 "mailboxIds": { "da123c": true },

 "from": [{ "name": "Mice Ace", "email": "mike@example.com" }],

 "subject": "Dinner on Saturday?",

 "receivedAt": "2023-03-09T14:12:00Z",

 "htmlBody": [{

 "partId": "1",

 "smimeBlobId": "B841623871",

 "size": 120537,

 "type": "text/html"

 }]

 }

]

 }, "#1"]]

¶

*

¶

*

its top level body part has content type "application/pkcs7-mime"

but the smime-type parameter has the case-insensitive value other

than "enveloped-data" or "authEnveloped-data". [[Alexey: what if

smime-type is absent? It is defined as optional! Shall we make

compliant server implementations test the inner CMS structure

type?]]

6. IANA Considerations

6.1. JMAP capability registration for "smime-advanced"

IANA is requested to register the "smime" JMAP Capability as

follows:

Capability Name: "urn:ietf:params:jmap:smime-advanced"

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section 7

6.2. JMAP Error Codes Registry Updates

6.2.1. signedSenderNotAllowed error code

JMAP Error Code: signedSenderNotAllowed

Intended use: common

Change controller: IETF

Reference: This document, Section 4

Description: JMAP account is not authorized to S/MIME sign message

as the specified sender.

6.2.2. validEncryptionKeyNotFound error code

JMAP Error Code: validEncryptionKeyNotFound

Intended use: common

Change controller: IETF

Reference: This document, Section 4

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC1847]

[RFC2119]

[RFC8550]

[RFC8551]

[RFC8620]

[RFC8621]

Description: S/MIME encrypted message can't be generated because no

valid certificate (non expired and non revoked) can be found for one

of recipients.

7. Security Considerations

This JMAP extension assumes trust between the user and the JMAP

server for purposes of signing and encrypting messages on user's

behalf.

This JMAP extension also relies on access to user's (or

organization's) addressbook which contain up-to-date certificates

for recipients.

This JMAP extension doesn't support management of user's private

keys and corresponding certificates.

8. Normative References

Galvin, J., Murphy, S., Crocker, S., and N. Freed,

"Security Multiparts for MIME: Multipart/Signed and

Multipart/Encrypted", RFC 1847, DOI 10.17487/RFC1847,

October 1995, <https://www.rfc-editor.org/info/rfc1847>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Certificate Handling", RFC 8550, DOI 10.17487/

RFC8550, April 2019, <https://www.rfc-editor.org/info/

rfc8550>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP) for Mail", RFC 8621, DOI 10.17487/

RFC8621, August 2019, <https://www.rfc-editor.org/info/

rfc8621>.

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1847
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8550
https://www.rfc-editor.org/info/rfc8550
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc8621

[draft-ietf-lamps-header-protection]
Gillmor, D. K., Hoeneisen, B.,

and A. Melnikov, "Header Protection for Cryptographically

Protected E-mail", Work in Progress, Internet-Draft,

draft-ietf-lamps-header-protection-13, 10 March 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-lamps-

header-protection-13>.

Author's Address

Alexey Melnikov

Isode Ltd

14 Castle Mews

Hampton

TW12 2NP

United Kingdom

Email: Alexey.Melnikov@isode.com

https://datatracker.ietf.org/doc/html/draft-ietf-lamps-header-protection-13
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-header-protection-13
mailto:Alexey.Melnikov@isode.com

	JMAP extension for S/MIME signing and encryption
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Addition to the capabilities object
	4. Extension to Email/set for S/MIME signing and/or encryption
	5. Extension to Email/get and Email/query for S/MIME decryption
	6. IANA Considerations
	6.1. JMAP capability registration for "smime-advanced"
	6.2. JMAP Error Codes Registry Updates
	6.2.1. signedSenderNotAllowed error code
	6.2.2. validEncryptionKeyNotFound error code

	7. Security Considerations
	8. Normative References
	Author's Address

