
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-tasks-00

Published: 21 April 2021

Intended Status: Standards Track

Expires: 23 October 2021

Authors: J.M. Baum, Ed.

audriga

H.J. Happel, Ed.

audriga

JMAP for Tasks

Abstract

This document specifies a data model for synchronizing task data

with a server using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 October 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

1.2. Terminology

1.3. Data Model Overview

1.4. Addition to the Capabilities Object

1.4.1. urn:ietf:params:jmap:tasks

2. Principals

2.1. Principal Capability urn:ietf:params:jmap:tasks

3. Assignee Identities

3.1. AssigneeIdentity/get

3.2. AssigneeIdentity/changes

3.3. AssigneeIdentity/set

4. TaskLists

4.1. TaskList/get

4.2. TaskList/changes

4.3. TaskList/set

5. Tasks

5.1. Additional JSCalendar properties

5.1.1. mayInviteSelf

5.1.2. mayInviteOthers

5.1.3. hideAttendees

5.1.4. relatedTo

5.2. Properties similar in JMAP for Calendar

5.3. Task/get

5.4. Task/changes

5.5. Task/set

5.6. Task/copy

5.7. Task/query

5.8. Task/queryChanges

6. Task Notifications

6.1. Object Properties

6.2. TaskNotification/get

6.3. TaskNotification/changes

6.4. TaskNotification/set

6.5. TaskNotification/query

6.5.1. Filtering

6.5.2. Sorting

6.6. TaskNotification/queryChanges

7. Security Considerations

8. IANA Considerations

8.1. JMAP Capability Registration for "tasks"

8.2. JSCalendar Property Registrations

9. Normative References

10. Informative References

Authors' Addresses

1. Introduction

JMAP ([RFC8620] - JSON Meta Application Protocol) is a generic

protocol for synchronizing data, such as mail, calendars or

contacts, between a client and a server. It is optimized for mobile

and web environments, and aims to provide a consistent interface to

different data types.

JMAP for Calendars ([I-D.ietf-jmap-calendars]) defines a data model

for synchronizing calendar data between a client and a server using

JMAP. The data model is designed to allow a server to provide

consistent access to the same data via CalDAV [RFC4791] as well as

JMAP.

While CalDAV defines access to tasks, JMAP for Calendars does not.

This specification fills this gap and defines a data model for

synchronizing task data between a client and a server using JMAP. It

is built upon JMAP for Calendars and reuses most of its definitions.

For better readability this document only outlines differences

between this specification and JMAP for Calendars. If not stated

otherwise, the same specifics that apply to Calendar, CalendarEvent

and CalendarEventNotification objects as defined in the

aforemetioned specification also apply to similar data types

introduced in this specification.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Type signatures, examples, and property descriptions in this

document follow the conventions established in Section 1.1 of

[RFC8620]. Data types defined in the core specification are also

used in this document.

1.2. Terminology

The same terminology is used in this document as in the core JMAP

specification, see [RFC8620], Section 1.6.

The terms ParticipantIdentity, TaskList, Task and TaskNotification

are used to refer to the data types defined in this document and

instances of those data types.

¶

¶

¶

¶

¶

¶

¶

1.3. Data Model Overview

Similar to JMAP for Calendar, an Account (see [RFC8620], Section

1.6.2) contains zero or more TaskList objects, which is a named

collection of Tasks belonging to a Principal (see [I-D.jenkins-jmap-

sharing] Section XXX). Task lists can also provide defaults, such as

alerts and a color to apply to tasks in the calendar. Clients

commonly let users toggle visibility of tasks belonging to a

particular task list on/off. Servers may allow a task to belong to

multiple TaskLists within an account.

A Task is a representation of a single task or recurring series of

Tasks in JSTask [I-D.ietf-calext-jscalendar] format. Recurrence

rules and alerts as defined in JMAP for Calendars (see [I-D.ietf-

jmap-calendars] Section XXX) apply.

Just like the CalendarEventNotification objects (see [I-D.ietf-jmap-

calendars] Section XXX), TaskNotification objects keep track of the

history of changes made to a task by other users. Similarly, the

ShareNotification type (see [I-D.jenkins-jmap-sharing] Section XXX)

notifies the user when their access to another user's calendar is

granted or revoked.

1.4. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], Section 2. This document defines one

additional capability URI.

1.4.1. urn:ietf:params:jmap:tasks

This represents support for the TaskList, Task and TaskNotification

data types and associated API methods. The value of this property in

the JMAP Session capabilities property is an empty object.

The value of this property in an account's accountCapabilities

property is an object that MUST contain the following information on

server capabilities and permissions for that account:

shareesActAs: String This MUST be one of:

self - sharees act as themselves when using tasks in this

account.

secretary- sharees act as the principal to which this account

belongs.

minDateTime: LocalDate The earliest date-time the server is

willing to accept for any date stored in a Task.

¶

¶

¶

¶

¶

¶

* ¶

-

¶

-

¶

*

¶

maxDateTime: LocalDate The latest date-time the server is willing

to accept for any date stored in a Task.

maxExpandedQueryDuration: Duration The maximum duration the user

may query over when asking the server to expand recurrences.

maxAssigneesPerTask: Number|null The maximum number of assignees

a single task may have, or null for no limit.

mayCreateTaskList: Boolean If true, the user may create a task

list in this account.

2. Principals

For systems that also support JMAP Sharing [RFC XXX], the tasks

capability is used to indicate that this principal may be used with

tasks.

2.1. Principal Capability urn:ietf:params:jmap:tasks

A "urn:ietf:params:jmap:tasks" property is added to the Principal

"capabilities" object, the value of which is an object with the

following properties:

accountId: Id|null Id of Account with the

urn:ietf:params:jmap:tasks capability that contains the task data

for this principal, or null if none (e.g. the Principal is a

group just used for permissions management), or the user does not

have access to any data in the account.

account: Account|null The JMAP Account object corresponding to

the accountId, null if none.

sendTo: String[String]|null If this principal may be added as a

participant to an event, this is the map of methods for adding

it, in the same format as Participant#sendTo in JSTask (see [I-

D.ietf-calext-jscalendar], Section 4.4.5).

3. Assignee Identities

An AssigneeIdentity stores information about a URI that represents

the user within that account in an event's assignees. It has the

following properties:

id: Id (immutable; server-set) The id of the AssigneeIdentity.

name: String (default: "") The display name of the assignee to

use when adding this assignee to a task, e.g. "Jane Bloggs".

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

sendTo: String[String] Represents methods by which the

participant may receive invitations and updates to an event.

The keys in the property value are the available methods and MUST

only contain ASCII alphanumeric characters (A-Za-z0-9). The value

is a URI for the method specified in the key.

An assignee in an task corresponds to an AssigneeIdentity if any of

the method/uri pairs in the sendTo property of the participant are

identical to a method/uri pair in the sendTo property of the

identity.

The following JMAP methods are supported.

3.1. AssigneeIdentity/get

This is a standard "/get" method as described in [RFC8620], Section

5.1. The ids argument may be null to fetch all at once.

3.2. AssigneeIdentity/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

3.3. AssigneeIdentity/set

This is a standard "/set" method as described in [RFC8620], Section

5.3. The server MAY restrict the uri values the user may claim, for

example only allowing mailto: URIs with email addresses that belong

to the user. A standard forbidden error is returned to reject non-

permissible changes.

4. TaskLists

A TaskList is a named collection of tasks. All tasks are associated

with exactly one TaskList.

A TaskList object has the following properties:

id: Id (immutable; server-set) The id of the task list.

role: String|null (default: null) Denotes the task list has a

special purpose. This MUST be one of the following:

inbox: This is the principal's default task list;

trash: This task list holds messages the user has discarded;

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

- ¶

- ¶

name: String The user-visible name of the task list. This may be

any UTF-8 string of at least 1 character in length and maximum

255 octets in size.

description: String|null (default: null) An optional longer-form

description of the task list, to provide context in shared

environments where users need more than just the name.

color: String|null (default: null) A color to be used when

displaying events associated with the task list.

If not null, the value MUST be a case-insensitive color name

taken from the set of names defined in Section 4.3 of CSS Color

Module Level 3 COLORS, or an RGB value in hexadecimal notation,

as defined in Section 4.2.1 of CSS Color Module Level 3.

The color SHOULD have sufficient contrast to be used as text on a

white background.

sortOrder: UnsignedInt (default: 0) Defines the sort order of

task lists when presented in the client's UI, so it is consistent

between devices. The number MUST be an integer in the range 0 <=

sortOrder < 2

A task list with a lower order should be displayed before a list

with a higher order in any list of task lists in the client's UI.

Task lists with equal order SHOULD be sorted in alphabetical

order by name. The sorting should take into account locale-

specific character order convention.

isSubscribed: Boolean Has the user indicated they wish to see

this task list in their client? This SHOULD default to false for

task lists in shared accounts the user has access to and true for

any new task list created by the user themself.

If false, the task list should only be displayed when the user

explicitly requests it or to offer it for the user to subscribe

to.

defaultAlertsWithTime: Id[Alert]|null (default: null) A map of

alert ids to Alert objects (see [I-D.ietf-calext-jscalendar],

Section 4.5.2) to apply for events where "showWithoutTime" is

false and "useDefaultAlerts" is true. Ids MUST be unique across

all default alerts in the account, including those in other task

lists; a UUID is recommended.

defaultAlertsWithoutTime: Id[Alert]|null (default: null) A map of

alert ids to Alert objects (see [I-D.ietf-calext-jscalendar],

Section 4.5.2) to apply for events where "showWithoutTime" is

true and "useDefaultAlerts" is true. Ids MUST be unique across

*

¶

*

¶

*

¶

¶

¶

*

31.¶

¶

*

¶

¶

*

¶

*

https://www.w3.org/TR/css-color-3/

all default alerts in the account, including those in other task

lists; a UUID is recommended.

timeZone: String|null (default: null) The time zone to use for

events without a time zone when the server needs to resolve them

into absolute time, e.g., for alerts or availability calculation.

The value MUST be a time zone id from the IANA Time Zone Database

TZDB. If null, the timeZone of the account's associated Principal

will be used. Clients SHOULD use this as the default for new

events in this task list if set.

shareWith: Id[CalendarRights]|null (default: null) A map of

Principal id to rights for principals this calendar is shared

with. The principal to which this task list belongs MUST NOT be

in this set. This is null if the user requesting the object does

not have the mayAdmin right, or if the task list is not shared

with anyone. May be modified only if the user has the mayAdmin

right. The account id for the principals may be found in the

urn:ietf:params:jmap:principals:owner capability of the Account

to which the calendar belongs.

The user is an owner for a task if the Task object has an "assignee"

property, and one of the Participant objects both:

Has the "chair" role.

Corresponds to one of the user's AssigneeIdentity objects in

the account.

A task has no owner if its assignee property is null or omitted.

TODO currently disregarding myRights

4.1. TaskList/get

This is a standard "/get" method as described in [RFC8620], Section

5.1. The ids argument may be null to fetch all at once.

TODO add part about rights properties.

4.2. TaskList/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

4.3. TaskList/set

This is the "Calendar/set" method as described in [I-D.ietf-jmap-

calendars], Section XXX.

¶

*

¶

*

¶

¶

1. ¶

2.

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/time-zones

TODO copy+paste from "Calendar/set" and replace

onDestroyRemoveEvents by onDestroyRemoveTasks (and

calendarHasEvent).

5. Tasks

A Task object contains information about a task, or recurring series

of tasks. It is a JSTask object, as defined in [I-D.ietf-calext-

jscalendar], with the following additional properties:

id: Id The id of the Task. This property is immutable. The id

uniquely identifies a JSTask with a particular "uid" and

"recurrenceId" within a particular account.

taskListId: Id The TaskList id this task belongs to. A task MUST

belong to exactly one TaskList at all times (until it is

destroyed).

isDraft: Boolean If true, this task is to be considered a draft.

The server will not send any push notifications for alerts. This

may only be set to true upon creation. Once set to false, the

value cannot be updated to true. This property MUST NOT appear in

"recurrenceOverrides".

utcStart: UTCDate For simple clients that do not or cannot

implement time zone support. Clients should only use this if also

asking the server to expand recurrences, as you cannot accurately

expand a recurrence without the original time zone.

This property is calculated at fetch time by the server. Time

zones are political, and they can and do change at any time.

Fetching exactly the same property again may return different

results if the time zone data has been updated on the server.

Time zone data changes are not considered "updates" to the task.

If set, the server will convert to the task's current time zone

using its current time zone data and store the local time.

This is not included by default and must be requested explicitly.

Floating tasks (tasks without a time zone) will be interpreted as

per the time zone given as a Task/get argument.

Note that it is not possible to accurately calculate the

expansion of recurrence rules or recurrence overrides with the

utcStart property rather than the local start time. Even simple

recurrences such as "repeat weekly" may cross a daylight-savings

boundary and end up at a different UTC time. Clients that wish to

use "utcStart" are RECOMMENDED to request the server expand

recurrences (see Section XXX).

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

utcDue: UTCDate The server calculates the end time in UTC from

the start/timeZone/duration properties of the task. This is not

included by default and must be requested explicitly. Like

utcStart, this is calculated at fetch time if requested and may

change due to time zone data changes. Floating tasks will be

interpreted as per the time zone given as a Task/get argument.

sortOrder: UnsignedInt (default: 0) Defines the sort order of a

task when presented in the client's UI, so it is consistent

between devices. The number MUST be an integer in the range 0 <=

sortOrder < 2

A task with a lower order should be displayed before a task with

a higher order in any list of tasks in the client's UI. Tasks

with equal order SHOULD be sorted in alphabetical order by name.

The sorting should take into account locale-specific character

order convention.

5.1. Additional JSCalendar properties

This document defines four new JSCalendar properties.

5.1.1. mayInviteSelf

Type: Boolean (default: false)

If true, any user that has access to the event may add themselves to

it as a participant with the "attendee" role. This property MUST NOT

be altered in the recurrenceOverrides; it may only be set on the

master object.

5.1.2. mayInviteOthers

Type: Boolean (default: false)

If true, any current participant with the "attendee" role may add

new participants with the "attendee" role to the event. This

property MUST NOT be altered in the recurrenceOverrides; it may only

be set on the master object.

5.1.3. hideAttendees

Type: Boolean (default: false)

If true, only the owners of the event may see the full set of

participants. Other sharees of the event may only see the owners and

themselves. This property MUST NOT be altered in the

recurrenceOverrides; it may only be set on the master object.

*

¶

*

31.¶

¶

¶

¶

¶

¶

¶

¶

¶

5.1.4. relatedTo

Type: Id[String]|null (default: null)

A map of task ids to relations. Relation SHOULD be one of: -

blockedBy: Blocked by task with id. - clonedBy: Task with id was

cloned from this issue. - duplicatedBy: Task with id is a duplicate

of this issue. - causedBy: Task with id was the cause for this task.

- relatesTo: Task with id is related. - childOf: Task with id is

parent.

5.2. Properties similar in JMAP for Calendar

Attachments, per-user properties, recurrences and updates to

recurrences are described in [I-D.ietf-jmap-calendars], Section XXX.

5.3. Task/get

This is the "CalendarEvent/get" method as described in [I-D.ietf-

jmap-calendars], Section XXX.

TODO redefine this here. Similar to "TaskList/get" we only need to

replace a few definitions. For example, replace reduceParticipants

with reduceAssignees. Copy+Paste most of the stuff.

5.4. Task/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

5.5. Task/set

This is the "CalendarEvent/set" method as described in [I-D.ietf-

jmap-calendars], Section XXX.

TODO copy+paste most stuff from "CalendarEvent/set". It should be

fine to just reference patching.

5.6. Task/copy

This is a standard "/copy" method as described in [RFC8620], Section

5.4.

5.7. Task/query

This is the "CalendarEvent/query" method as described in [I-D.ietf-

jmap-calendars], Section XXX.

TODO copy+paste most stuff from "CalendarEvent/query". Mainly

filtering should be different.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.8. Task/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

6. Task Notifications

The TaskNotification data type records changes made by external

entities to tasks in calendars the user is subscribed to.

Notifications are stored in the same Account as the Task that was

changed.

This is the same specification as the CalendarEventNotification

object from [I-D.ietf-jmap-calendars], Section XXX. Only the object

properties differ slightly and are therefore fully described in this

document.

6.1. Object Properties

The TaskNotification object has the following properties:

id: String The id of the TaskNotification.

created: UTCDate The time this notification was created.

changedBy: Person Who made the change.

name: String The name of the person who made the change.

email: String The email of the person who made the change, or

null if no email is available.

principalId: String|null The id of the principal corresponding

to the person who made the change, if any. This will be null

if the change was due to receving an iTIP message.

comment: String|null Comment sent along with the change by the

user that made it. (e.g. COMMENT property in an iTIP message).

type: String This MUST be one of

created

updated

destroyed

TaskId: String The id of the Task that this notification is

about.

¶

¶

¶

¶

* ¶

* ¶

* ¶

- ¶

-

¶

-

¶

*

¶

* ¶

- ¶

- ¶

- ¶

*

¶

isDraft: Boolean (created/updated only) Is this event a draft?

event: JSTask The data before the change (if updated or

destroyed), or the data after creation (if created).

eventPatch: PatchObject (updated only) A patch encoding the

change between the data in the event property, and the data after

the update.

To reduce data, if the change only affects a single instance of a

recurring event, the server MAY set the event and eventPatch

properties for the instance; the calendarEventId MUST still be for

the master event.

6.2. TaskNotification/get

This is a standard "/get" method as described in [RFC8620], Section

5.1.

6.3. TaskNotification/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

6.4. TaskNotification/set

This is a standard "/changes" method as described in [RFC8620],

Section 5.3.

Only destroy is supported; any attempt to create/update MUST be

rejected with a forbidden SetError.

6.5. TaskNotification/query

This is a standard "/query" method as described in [RFC8620],

Section 5.5.

6.5.1. Filtering

A FilterCondition object has the following properties:

after: UTCDate|null The creation date must be on or after this

date to match the condition.

before: UTCDate|null The creation date must be before this date

to match the condition.

type: String The type property must be the same to match the

condition.

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

[I-D.ietf-calext-jscalendar]

[I-D.ietf-jmap-calendars]

taskIds: Id[]|null A list of task ids. The taskId property of the

notification must be in this list to match the condition.

6.5.2. Sorting

The "created" property MUST be supported for sorting.

6.6. TaskNotification/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

7. Security Considerations

All security considerations of JMAP for Calendars [I-D.ietf-jmap-

calendars] apply to this specification.

8. IANA Considerations

8.1. JMAP Capability Registration for "tasks"

TODO Actually register

IANA will register the "tasks" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:tasks

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

8.2. JSCalendar Property Registrations

All IANA registrations for JSTask are described in JMAP for

Calendars [I-D.ietf-jmap-calendars].

9. Normative References

Jenkins, N. and R. Stepanek,

"JSCalendar: A JSON representation of calendar data",

Work in Progress, Internet-Draft, draft-ietf-calext-

jscalendar-32, 15 October 2020, <https://tools.ietf.org/

html/draft-ietf-calext-jscalendar-32>.

Jenkins, N. and M. Douglass, "JMAP for

Calendars", Work in Progress, Internet-Draft, draft-ietf-

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-calext-jscalendar-32
https://tools.ietf.org/html/draft-ietf-calext-jscalendar-32

[I-D.jenkins-jmap-sharing]

[RFC2119]

[RFC8174]

[RFC8620]

[RFC4791]

jmap-calendars-05, 24 January 2021, <https://

tools.ietf.org/html/draft-ietf-jmap-calendars-05>.

Jenkins, N., "JMAP Sharing", Work in Progress, Internet-

Draft, draft-jenkins-jmap-sharing-00, 15 December 2020,

<https://tools.ietf.org/html/draft-jenkins-jmap-

sharing-00>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

10. Informative References

Daboo, C., Desruisseaux, B., and L. Dusseault,

"Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,

DOI 10.17487/RFC4791, March 2007, <https://www.rfc-

editor.org/info/rfc4791>.

Authors' Addresses

Joris Baum (editor)

audriga

Durlacher Allee 47

76131 Karlsruhe

Germany

Email: joris@audriga.com

URI: https://www.audriga.com

Hans-Joerg (editor)

audriga

Durlacher Allee 47

76131 Karlsruhe

Germany

Email: hans-joerg@audriga.com

URI: https://www.audriga.com

https://tools.ietf.org/html/draft-ietf-jmap-calendars-05
https://tools.ietf.org/html/draft-ietf-jmap-calendars-05
https://tools.ietf.org/html/draft-jenkins-jmap-sharing-00
https://tools.ietf.org/html/draft-jenkins-jmap-sharing-00
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc4791
https://www.rfc-editor.org/info/rfc4791
mailto:joris@audriga.com
https://www.audriga.com
mailto:hans-joerg@audriga.com
https://www.audriga.com

	JMAP for Tasks
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Data Model Overview
	1.4. Addition to the Capabilities Object
	1.4.1. urn:ietf:params:jmap:tasks

	2. Principals
	2.1. Principal Capability urn:ietf:params:jmap:tasks

	3. Assignee Identities
	3.1. AssigneeIdentity/get
	3.2. AssigneeIdentity/changes
	3.3. AssigneeIdentity/set

	4. TaskLists
	4.1. TaskList/get
	4.2. TaskList/changes
	4.3. TaskList/set

	5. Tasks
	5.1. Additional JSCalendar properties
	5.1.1. mayInviteSelf
	5.1.2. mayInviteOthers
	5.1.3. hideAttendees
	5.1.4. relatedTo

	5.2. Properties similar in JMAP for Calendar
	5.3. Task/get
	5.4. Task/changes
	5.5. Task/set
	5.6. Task/copy
	5.7. Task/query
	5.8. Task/queryChanges

	6. Task Notifications
	6.1. Object Properties
	6.2. TaskNotification/get
	6.3. TaskNotification/changes
	6.4. TaskNotification/set
	6.5. TaskNotification/query
	6.5.1. Filtering
	6.5.2. Sorting

	6.6. TaskNotification/queryChanges

	7. Security Considerations
	8. IANA Considerations
	8.1. JMAP Capability Registration for "tasks"
	8.2. JSCalendar Property Registrations

	9. Normative References
	10. Informative References
	Authors' Addresses

