
JOSE Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track November 6, 2012
Expires: May 10, 2013

JSON Web Algorithms (JWA)
draft-ietf-jose-json-web-algorithms-07

Abstract

 The JSON Web Algorithms (JWA) specification enumerates cryptographic
 algorithms and identifiers to be used with the JSON Web Signature
 (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK)
 specifications.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 10, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jones Expires May 10, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Web Algorithms (JWA) November 2012

Table of Contents

1. Introduction . 4
1.1. Notational Conventions 4

2. Terminology . 4
2.1. Terms Incorporated from the JWS Specification 4
2.2. Terms Incorporated from the JWE Specification 5
2.3. Terms Incorporated from the JWK Specification 6
2.4. Defined Terms . 7

3. Cryptographic Algorithms for JWS 7
3.1. "alg" (Algorithm) Header Parameter Values for JWS 7
3.2. MAC with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512 . . . 8

 3.3. Digital Signature with RSA SHA-256, RSA SHA-384, or
 RSA SHA-512 . 9
 3.4. Digital Signature with ECDSA P-256 SHA-256, ECDSA
 P-384 SHA-384, or ECDSA P-521 SHA-512 10

3.5. Using the Algorithm "none" 12
 3.6. Additional Digital Signature/MAC Algorithms and
 Parameters . 12

4. Cryptographic Algorithms for JWE 12
4.1. "alg" (Algorithm) Header Parameter Values for JWE 12

 4.2. "enc" (Encryption Method) Header Parameter Values for
 JWE . 14

4.3. Key Encryption with RSAES-PKCS1-V1_5 15
4.4. Key Encryption with RSAES OAEP 15
4.5. Key Encryption with AES Key Wrap 15
4.6. Direct Encryption with a Shared Symmetric Key 15

 4.7. Key Agreement with Elliptic Curve Diffie-Hellman
 Ephemeral Static (ECDH-ES) 15

4.7.1. Key Derivation for "ECDH-ES" 16
 4.8. Composite Plaintext Encryption Algorithms
 "A128CBC+HS256" and "A256CBC+HS512" 17
 4.8.1. Key Derivation for "A128CBC+HS256" and
 "A256CBC+HS512" 17
 4.8.2. Encryption Calculation for "A128CBC+HS256" and
 "A256CBC+HS512" 19
 4.8.3. Integrity Calculation for "A128CBC+HS256" and
 "A256CBC+HS512" 19

4.9. Plaintext Encryption with AES GCM 19
4.10. Additional Encryption Algorithms and Parameters 20

5. Cryptographic Algorithms for JWK 21
5.1. "alg" (Algorithm Family) Parameter Values for JWK 21
5.2. JWK Parameters for Elliptic Curve Keys 21
5.2.1. "crv" (Curve) Parameter 21
5.2.2. "x" (X Coordinate) Parameter 22
5.2.3. "y" (Y Coordinate) Parameter 22

5.3. JWK Parameters for RSA Keys 22
5.3.1. "n" (Modulus) Parameter 22

Jones Expires May 10, 2013 [Page 2]

Internet-Draft JSON Web Algorithms (JWA) November 2012

5.3.2. "e" (Exponent) Parameter 22
5.4. Additional Key Algorithm Families and Parameters 23

6. IANA Considerations . 23
6.1. JSON Web Signature and Encryption Algorithms Registry . . 24
6.1.1. Registration Template 24
6.1.2. Initial Registry Contents 25

6.2. JSON Web Key Algorithm Families Registry 27
6.2.1. Registration Template 28
6.2.2. Initial Registry Contents 28

6.3. JSON Web Key Parameters Registration 28
6.3.1. Registry Contents 29

7. Security Considerations 29
8. References . 30
8.1. Normative References 30
8.2. Informative References 32

Appendix A. Digital Signature/MAC Algorithm Identifier
 Cross-Reference 33

Appendix B. Encryption Algorithm Identifier Cross-Reference . . . 35
Appendix C. Acknowledgements 37
Appendix D. Open Issues . 37
Appendix E. Document History 37

 Author's Address . 41

Jones Expires May 10, 2013 [Page 3]

Internet-Draft JSON Web Algorithms (JWA) November 2012

1. Introduction

 The JSON Web Algorithms (JWA) specification enumerates cryptographic
 algorithms and identifiers to be used with the JSON Web Signature
 (JWS) [JWS], JSON Web Encryption (JWE) [JWE], and JSON Web Key (JWK)
 [JWK] specifications. All these specifications utilize JavaScript
 Object Notation (JSON) [RFC4627] based data structures. This
 specification also describes the semantics and operations that are
 specific to these algorithms and algorithm families.

 Enumerating the algorithms and identifiers for them in this
 specification, rather than in the JWS, JWE, and JWK specifications,
 is intended to allow them to remain unchanged in the face of changes
 in the set of required, recommended, optional, and deprecated
 algorithms over time.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in Key words for use in
 RFCs to Indicate Requirement Levels [RFC2119].

2. Terminology

2.1. Terms Incorporated from the JWS Specification

 These terms defined by the JSON Web Signature (JWS) [JWS]
 specification are incorporated into this specification:

 JSON Web Signature (JWS) A data structure cryptographically securing
 a JWS Header and a JWS Payload with a JWS Signature value.

 JWS Header A string representing a JavaScript Object Notation (JSON)
 [RFC4627] object that describes the digital signature or MAC
 operation applied to create the JWS Signature value.

 JWS Payload The bytes to be secured -- a.k.a., the message. The
 payload can contain an arbitrary sequence of bytes.

 JWS Signature A byte array containing the cryptographic material
 that secures the contents of the JWS Header and the JWS Payload.

 Base64url Encoding The URL- and filename-safe Base64 encoding
 described in RFC 4648 [RFC4648], Section 5, with the (non URL-
 safe) '=' padding characters omitted, as permitted by Section 3.2.
 (See Appendix C of [JWS] for notes on implementing base64url

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-5

Jones Expires May 10, 2013 [Page 4]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 encoding without padding.)

 Encoded JWS Header Base64url encoding of the bytes of the UTF-8
 [RFC3629] representation of the JWS Header.

 Encoded JWS Payload Base64url encoding of the JWS Payload.

 Encoded JWS Signature Base64url encoding of the JWS Signature.

 JWS Secured Input The concatenation of the Encoded JWS Header, a
 period ('.') character, and the Encoded JWS Payload.

 Collision Resistant Namespace A namespace that allows names to be
 allocated in a manner such that they are highly unlikely to
 collide with other names. For instance, collision resistance can
 be achieved through administrative delegation of portions of the
 namespace or through use of collision-resistant name allocation
 functions. Examples of Collision Resistant Namespaces include:
 Domain Names, Object Identifiers (OIDs) as defined in the ITU-T
 X.660 and X.670 Recommendation series, and Universally Unique
 IDentifiers (UUIDs) [RFC4122]. When using an administratively
 delegated namespace, the definer of a name needs to take
 reasonable precautions to ensure they are in control of the
 portion of the namespace they use to define the name.

2.2. Terms Incorporated from the JWE Specification

 These terms defined by the JSON Web Encryption (JWE) [JWE]
 specification are incorporated into this specification:

 JSON Web Encryption (JWE) A data structure representing an encrypted
 version of a Plaintext. The structure consists of four parts: the
 JWE Header, the JWE Encrypted Key, the JWE Ciphertext, and the JWE
 Integrity Value.

 Plaintext The bytes to be encrypted -- a.k.a., the message. The
 plaintext can contain an arbitrary sequence of bytes.

 Ciphertext The encrypted version of the Plaintext.

 Content Encryption Key (CEK) A symmetric key used to encrypt the
 Plaintext for the recipient to produce the Ciphertext.

 Content Integrity Key (CIK) A key used with a MAC function to ensure
 the integrity of the Ciphertext and the parameters used to create
 it.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4122

Jones Expires May 10, 2013 [Page 5]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 Content Master Key (CMK) A key from which the CEK and CIK are
 derived. When key wrapping or key encryption are employed, the
 CMK is randomly generated and encrypted to the recipient as the
 JWE Encrypted Key. When key agreement is employed, the CMK is the
 result of the key agreement algorithm.

 JWE Header A string representing a JSON object that describes the
 encryption operations applied to create the JWE Encrypted Key, the
 JWE Ciphertext, and the JWE Integrity Value.

 JWE Encrypted Key When key wrapping or key encryption are employed,
 the Content Master Key (CMK) is encrypted with the intended
 recipient's key and the resulting encrypted content is recorded as
 a byte array, which is referred to as the JWE Encrypted Key.
 Otherwise, when key agreement is employed, the JWE Encrypted Key
 is the empty byte array.

 JWE Ciphertext A byte array containing the Ciphertext.

 JWE Integrity Value A byte array containing a MAC value that ensures
 the integrity of the Ciphertext and the parameters used to create
 it.

 Encoded JWE Header Base64url encoding of the bytes of the UTF-8
 [RFC3629] representation of the JWE Header.

 Encoded JWE Encrypted Key Base64url encoding of the JWE Encrypted
 Key.

 Encoded JWE Ciphertext Base64url encoding of the JWE Ciphertext.

 Encoded JWE Integrity Value Base64url encoding of the JWE Integrity
 Value.

 AEAD Algorithm An Authenticated Encryption with Associated Data
 (AEAD) [RFC5116] encryption algorithm is one that provides an
 integrated content integrity check. AEAD encryption algorithms
 accept two inputs, the plaintext and the "additional authenticated
 data" value, and produce two outputs, the ciphertext and the
 "authentication tag" value. AES Galois/Counter Mode (GCM) is one
 such algorithm.

2.3. Terms Incorporated from the JWK Specification

 These terms defined by the JSON Web Key (JWK) [JWK] specification are
 incorporated into this specification:

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5116

Jones Expires May 10, 2013 [Page 6]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 JSON Web Key (JWK) A JSON data structure that represents a public
 key.

 JSON Web Key Set (JWK Set) A JSON object that contains an array of
 JWKs as a member.

2.4. Defined Terms

 These terms are defined for use by this specification:

 Header Parameter Name The name of a member of the JSON object
 representing a JWS Header or JWE Header.

 Header Parameter Value The value of a member of the JSON object
 representing a JWS Header or JWE Header.

3. Cryptographic Algorithms for JWS

 JWS uses cryptographic algorithms to digitally sign or create a
 Message Authentication Codes (MAC) of the contents of the JWS Header
 and the JWS Payload. The use of the following algorithms for
 producing JWSs is defined in this section.

3.1. "alg" (Algorithm) Header Parameter Values for JWS

 The table below is the set of "alg" (algorithm) header parameter
 values defined by this specification for use with JWS, each of which
 is explained in more detail in the following sections:

 +--------------+--------------------------------+-------------------+
alg	Digital Signature or MAC	Implementation
Parameter	Algorithm	Requirements
Value		
+--------------+--------------------------------+-------------------+		
HS256	HMAC using SHA-256 hash	REQUIRED
	algorithm	
HS384	HMAC using SHA-384 hash	OPTIONAL
	algorithm	
HS512	HMAC using SHA-512 hash	OPTIONAL
	algorithm	
RS256	RSASSA using SHA-256 hash	RECOMMENDED
	algorithm	
RS384	RSASSA using SHA-384 hash	OPTIONAL
	algorithm	
RS512	RSASSA using SHA-512 hash	OPTIONAL
	algorithm	

Jones Expires May 10, 2013 [Page 7]

Internet-Draft JSON Web Algorithms (JWA) November 2012

ES256	ECDSA using P-256 curve and	RECOMMENDED+
	SHA-256 hash algorithm	
ES384	ECDSA using P-384 curve and	OPTIONAL
	SHA-384 hash algorithm	
ES512	ECDSA using P-521 curve and	OPTIONAL
	SHA-512 hash algorithm	
none	No digital signature or MAC	REQUIRED
	value included	
 +--------------+--------------------------------+-------------------+

 All the names are short because a core goal of JWS is for the
 representations to be compact. However, there is no a priori length
 restriction on "alg" values.

 The use of "+" in the Implementation Requirements indicates that the
 requirement strength is likely to be increased in a future version of
 the specification.

 See Appendix A for a table cross-referencing the digital signature
 and MAC "alg" (algorithm) values used in this specification with the
 equivalent identifiers used by other standards and software packages.

3.2. MAC with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512

 Hash-based Message Authentication Codes (HMACs) enable one to use a
 secret plus a cryptographic hash function to generate a Message
 Authentication Code (MAC). This can be used to demonstrate that the
 MAC matches the hashed content, in this case the JWS Secured Input,
 which therefore demonstrates that whoever generated the MAC was in
 possession of the secret. The means of exchanging the shared key is
 outside the scope of this specification.

 The algorithm for implementing and validating HMACs is provided in
RFC 2104 [RFC2104]. This section defines the use of the HMAC SHA-

 256, HMAC SHA-384, and HMAC SHA-512 functions [SHS]. The "alg"
 (algorithm) header parameter values "HS256", "HS384", and "HS512" are
 used in the JWS Header to indicate that the Encoded JWS Signature
 contains a base64url encoded HMAC value using the respective hash
 function.

 A key of the same size as the hash output (for instance, 256 bits for
 "HS256") or larger MUST be used with this algorithm.

 The HMAC SHA-256 MAC is generated per RFC 2104, using SHA-256 as the
 hash algorithm "H", using the bytes of the ASCII [USASCII]
 representation of the JWS Secured Input as the "text" value, and
 using the shared key. The HMAC output value is the JWS Signature.
 The JWS signature is base64url encoded to produce the Encoded JWS

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104

Jones Expires May 10, 2013 [Page 8]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 Signature.

 The HMAC SHA-256 MAC for a JWS is validated by computing an HMAC
 value per RFC 2104, using SHA-256 as the hash algorithm "H", using
 the bytes of the ASCII representation of the received JWS Secured
 input as the "text" value, and using the shared key. This computed
 HMAC value is then compared to the result of base64url decoding the
 received Encoded JWS signature. Alternatively, the computed HMAC
 value can be base64url encoded and compared to the received Encoded
 JWS Signature, as this comparison produces the same result as
 comparing the unencoded values. In either case, if the values match,
 the HMAC has been validated. If the validation fails, the JWS MUST
 be rejected.

 Securing content with the HMAC SHA-384 and HMAC SHA-512 algorithms is
 performed identically to the procedure for HMAC SHA-256 - just using
 the corresponding hash algorithm with correspondingly larger minimum
 key sizes and result values: 384 bits each for HMAC SHA-384 and 512
 bits each for HMAC SHA-512.

 An example using this algorithm is shown in Appendix A.1 of [JWS].

3.3. Digital Signature with RSA SHA-256, RSA SHA-384, or RSA SHA-512

 This section defines the use of the RSASSA-PKCS1-V1_5 digital
 signature algorithm as defined in Section 8.2 of RFC 3447 [RFC3447],
 (commonly known as PKCS #1), using SHA-256, SHA-384, or SHA-512 [SHS]
 as the hash functions. The "alg" (algorithm) header parameter values
 "RS256", "RS384", and "RS512" are used in the JWS Header to indicate
 that the Encoded JWS Signature contains a base64url encoded RSA
 digital signature using the respective hash function.

 A key of size 2048 bits or larger MUST be used with these algorithms.

 The RSA SHA-256 digital signature is generated as follows:

 1. Generate a digital signature of the bytes of the ASCII
 representation of the JWS Secured Input using RSASSA-PKCS1-V1_5-
 SIGN and the SHA-256 hash function with the desired private key.
 The output will be a byte array.

 2. Base64url encode the resulting byte array.

 The output is the Encoded JWS Signature for that JWS.

 The RSA SHA-256 digital signature for a JWS is validated as follows:

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3447#section-8.2
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires May 10, 2013 [Page 9]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 1. Take the Encoded JWS Signature and base64url decode it into a
 byte array. If decoding fails, the JWS MUST be rejected.

 2. Submit the bytes of the ASCII representation of the JWS Secured
 Input and the public key corresponding to the private key used by
 the signer to the RSASSA-PKCS1-V1_5-VERIFY algorithm using SHA-
 256 as the hash function.

 3. If the validation fails, the JWS MUST be rejected.

 Signing with the RSA SHA-384 and RSA SHA-512 algorithms is performed
 identically to the procedure for RSA SHA-256 - just using the
 corresponding hash algorithm with correspondingly larger result
 values: 384 bits for RSA SHA-384 and 512 bits for RSA SHA-512.

 An example using this algorithm is shown in Appendix A.2 of [JWS].

3.4. Digital Signature with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384,
 or ECDSA P-521 SHA-512

 The Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] provides
 for the use of Elliptic Curve cryptography, which is able to provide
 equivalent security to RSA cryptography but using shorter key sizes
 and with greater processing speed. This means that ECDSA digital
 signatures will be substantially smaller in terms of length than
 equivalently strong RSA digital signatures.

 This specification defines the use of ECDSA with the P-256 curve and
 the SHA-256 cryptographic hash function, ECDSA with the P-384 curve
 and the SHA-384 hash function, and ECDSA with the P-521 curve and the
 SHA-512 hash function. The P-256, P-384, and P-521 curves are
 defined in [DSS]. The "alg" (algorithm) header parameter values
 "ES256", "ES384", and "ES512" are used in the JWS Header to indicate
 that the Encoded JWS Signature contains a base64url encoded ECDSA
 P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-521 SHA-512 digital
 signature, respectively.

 The ECDSA P-256 SHA-256 digital signature is generated as follows:

 1. Generate a digital signature of the bytes of the ASCII
 representation of the JWS Secured Input using ECDSA P-256 SHA-256
 with the desired private key. The output will be the pair (R,
 S), where R and S are 256 bit unsigned integers.

 2. Turn R and S into byte arrays in big endian order, with each
 array being be 32 bytes long. The array representations MUST not
 be shortened to omit any leading zero bytes contained in the
 values.

Jones Expires May 10, 2013 [Page 10]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 3. Concatenate the two byte arrays in the order R and then S. (Note
 that many ECDSA implementations will directly produce this
 concatenation as their output.)

 4. Base64url encode the resulting 64 byte array.

 The output is the Encoded JWS Signature for the JWS.

 The ECDSA P-256 SHA-256 digital signature for a JWS is validated as
 follows:

 1. Take the Encoded JWS Signature and base64url decode it into a
 byte array. If decoding fails, the JWS MUST be rejected.

 2. The output of the base64url decoding MUST be a 64 byte array. If
 decoding does not result in a 64 byte array, the JWS MUST be
 rejected.

 3. Split the 64 byte array into two 32 byte arrays. The first array
 will be R and the second S (with both being in big endian byte
 order).

 4. Submit the bytes of the ASCII representation of the JWS Secured
 Input R, S and the public key (x, y) to the ECDSA P-256 SHA-256
 validator.

 5. If the validation fails, the JWS MUST be rejected.

 Note that ECDSA digital signature contains a value referred to as K,
 which is a random number generated for each digital signature
 instance. This means that two ECDSA digital signatures using exactly
 the same input parameters will output different signature values
 because their K values will be different. A consequence of this is
 that one cannot validate an ECDSA signature by recomputing the
 signature and comparing the results.

 Signing with the ECDSA P-384 SHA-384 and ECDSA P-521 SHA-512
 algorithms is performed identically to the procedure for ECDSA P-256
 SHA-256 - just using the corresponding hash algorithm with
 correspondingly larger result values. For ECDSA P-384 SHA-384, R and
 S will be 384 bits each, resulting in a 96 byte array. For ECDSA
 P-521 SHA-512, R and S will be 521 bits each, resulting in a 132 byte
 array.

 Examples using these algorithms are shown in Appendices A.3 and A.4
 of [JWS].

Jones Expires May 10, 2013 [Page 11]

Internet-Draft JSON Web Algorithms (JWA) November 2012

3.5. Using the Algorithm "none"

 JWSs MAY also be created that do not provide integrity protection.
 Such a JWS is called a "Plaintext JWS". Plaintext JWSs MUST use the
 "alg" value "none", and are formatted identically to other JWSs, but
 with an empty JWS Signature value.

3.6. Additional Digital Signature/MAC Algorithms and Parameters

 Additional algorithms MAY be used to protect JWSs with corresponding
 "alg" (algorithm) header parameter values being defined to refer to
 them. New "alg" header parameter values SHOULD either be registered
 in the IANA JSON Web Signature and Encryption Algorithms registry

Section 6.1 or be a URI that contains a Collision Resistant
 Namespace. In particular, it is permissible to use the algorithm
 identifiers defined in XML DSIG [RFC3275], XML DSIG 2.0
 [W3C.CR-xmldsig-core2-20120124], and related specifications as "alg"
 values.

 As indicated by the common registry, JWSs and JWEs share a common
 "alg" value space. The values used by the two specifications MUST be
 distinct, as the "alg" value MAY be used to determine whether the
 object is a JWS or JWE.

 Likewise, additional reserved header parameter names MAY be defined
 via the IANA JSON Web Signature and Encryption Header Parameters
 registry [JWS]. As indicated by the common registry, JWSs and JWEs
 share a common header parameter space; when a parameter is used by
 both specifications, its usage must be compatible between the
 specifications.

4. Cryptographic Algorithms for JWE

 JWE uses cryptographic algorithms to encrypt the Content Master Key
 (CMK) and the Plaintext. This section specifies a set of specific
 algorithms for these purposes.

4.1. "alg" (Algorithm) Header Parameter Values for JWE

 The table below is the set of "alg" (algorithm) header parameter
 values that are defined by this specification for use with JWE.
 These algorithms are used to encrypt the CMK, producing the JWE
 Encrypted Key, or to use key agreement to agree upon the CMK.

https://datatracker.ietf.org/doc/html/rfc3275

Jones Expires May 10, 2013 [Page 12]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 +----------------+---------------------------------+----------------+
 | alg Parameter | Key Encryption or Agreement | Implementation |
 | Value | Algorithm | Requirements |
 +----------------+---------------------------------+----------------+
RSA1_5	RSAES-PKCS1-V1_5 [RFC3447]	REQUIRED
RSA-OAEP	RSAES using Optimal Asymmetric	OPTIONAL
	Encryption Padding (OAEP)	
	[RFC3447], with the default	
	parameters specified by RFC	
	3447 in Section A.2.1	
A128KW	Advanced Encryption Standard	RECOMMENDED
	(AES) Key Wrap Algorithm	
	[RFC3394] using 128 bit keys	
A256KW	AES Key Wrap Algorithm using	RECOMMENDED
	256 bit keys	
dir	Direct use of a shared	RECOMMENDED
	symmetric key as the Content	
	Master Key (CMK) for the block	
	encryption step (rather than	
	using the symmetric key to wrap	
	the CMK)	
ECDH-ES	Elliptic Curve Diffie-Hellman	RECOMMENDED+
	Ephemeral Static [RFC6090] key	
	agreement using the Concat KDF,	
	as defined in Section 5.8.1 of	
	[NIST.800-56A], with the	
	agreed-upon key being used	
	directly as the Content Master	
	Key (CMK) (rather than being	
	used to wrap the CMK), as	
	specified in Section 4.7	
ECDH-ES+A128KW	Elliptic Curve Diffie-Hellman	RECOMMENDED
	Ephemeral Static key agreement	
	per "ECDH-ES" and Section 4.7,	
	but where the agreed-upon key	
	is used to wrap the Content	
	Master Key (CMK) with the	
	"A128KW" function (rather than	
	being used directly as the CMK)	
ECDH-ES+A256KW	Elliptic Curve Diffie-Hellman	RECOMMENDED
	Ephemeral Static key agreement	
	per "ECDH-ES" and Section 4.7,	
	but where the agreed-upon key	
	is used to wrap the Content	
	Master Key (CMK) with the	
	"A256KW" function (rather than	
	being used directly as the CMK)	
 +----------------+---------------------------------+----------------+

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires May 10, 2013 [Page 13]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 The use of "+" in the Implementation Requirements indicates that the
 requirement strength is likely to be increased in a future version of
 the specification.

4.2. "enc" (Encryption Method) Header Parameter Values for JWE

 The table below is the set of "enc" (encryption method) header
 parameter values that are defined by this specification for use with
 JWE. These algorithms are used to encrypt the Plaintext, which
 produces the Ciphertext.

 +---------------+----------------------------------+----------------+
 | enc Parameter | Block Encryption Algorithm | Implementation |
 | Value | | Requirements |
 +---------------+----------------------------------+----------------+
A128CBC+HS256	Composite AEAD algorithm using	REQUIRED
	Advanced Encryption Standard	
	(AES) in Cipher Block Chaining	
	(CBC) mode with PKCS #5 padding	
	[AES] [NIST.800-38A] with an	
	integrity calculation using HMAC	
	SHA-256, using a 256 bit CMK	
	(and 128 bit CEK) as specified	
	in Section 4.8	
A256CBC+HS512	Composite AEAD algorithm using	REQUIRED
	AES in CBC mode with PKCS #5	
	padding with an integrity	
	calculation using HMAC SHA-512,	
	using a 512 bit CMK (and 256 bit	
	CEK) as specified in Section 4.8	
A128GCM	AES in Galois/Counter Mode (GCM)	RECOMMENDED
	[AES] [NIST.800-38D] using 128	
	bit keys	
A256GCM	AES GCM using 256 bit keys	RECOMMENDED
 +---------------+----------------------------------+----------------+

 All the names are short because a core goal of JWE is for the
 representations to be compact. However, there is no a priori length
 restriction on "alg" values.

 See Appendix B for a table cross-referencing the encryption "alg"
 (algorithm) and "enc" (encryption method) values used in this
 specification with the equivalent identifiers used by other standards
 and software packages.

Jones Expires May 10, 2013 [Page 14]

Internet-Draft JSON Web Algorithms (JWA) November 2012

4.3. Key Encryption with RSAES-PKCS1-V1_5

 This section defines the specifics of encrypting a JWE CMK with
 RSAES-PKCS1-V1_5 [RFC3447]. The "alg" header parameter value
 "RSA1_5" is used in this case.

 A key of size 2048 bits or larger MUST be used with this algorithm.

 An example using this algorithm is shown in Appendix A.2 of [JWE].

4.4. Key Encryption with RSAES OAEP

 This section defines the specifics of encrypting a JWE CMK with RSAES
 using Optimal Asymmetric Encryption Padding (OAEP) [RFC3447], with
 the default parameters specified by RFC 3447 in Section A.2.1. The
 "alg" header parameter value "RSA-OAEP" is used in this case.

 A key of size 2048 bits or larger MUST be used with this algorithm.

 An example using this algorithm is shown in Appendix A.1 of [JWE].

4.5. Key Encryption with AES Key Wrap

 This section defines the specifics of encrypting a JWE CMK with the
 Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394] using
 128 or 256 bit keys. The "alg" header parameter values "A128KW" or
 "A256KW" are used in this case.

 An example using this algorithm is shown in Appendix A.3 of [JWE].

4.6. Direct Encryption with a Shared Symmetric Key

 This section defines the specifics of directly performing symmetric
 key encryption without performing a key wrapping step. In this case,
 the shared symmetric key is used directly as the Content Master Key
 (CMK) value for the "enc" algorithm. An empty byte array is used as
 the JWE Encrypted Key value. The "alg" header parameter value "dir"
 is used in this case.

4.7. Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static
 (ECDH-ES)

 This section defines the specifics of key agreement with Elliptic
 Curve Diffie-Hellman Ephemeral Static [RFC6090], and using the Concat
 KDF, as defined in Section 5.8.1 of [NIST.800-56A]. The key
 agreement result can be used in one of two ways: (1) directly as the
 Content Master Key (CMK) for the "enc" algorithm, or (2) as a
 symmetric key used to wrap the CMK with either the "A128KW" or

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires May 10, 2013 [Page 15]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 "A256KW" algorithms. The "alg" header parameter values "ECDH-ES",
 "ECDH-ES+A128KW", and "ECDH-ES+A256KW" are respectively used in this
 case.

 In the direct case, the output of the Concat KDF MUST be a key of the
 same length as that used by the "enc" algorithm; in this case, the
 empty byte array is used as the JWE Encrypted Key value. In the key
 wrap case, the output of the Concat KDF MUST be a key of the length
 needed for the specified key wrap algorithm, either 128 or 256 bits
 respectively.

 A new "epk" (ephemeral public key) value MUST be generated for each
 key agreement transaction.

4.7.1. Key Derivation for "ECDH-ES"

 The key derivation process derives the agreed upon key from the
 shared secret Z established through the ECDH algorithm, per Section

6.2.2.2 of [NIST.800-56A].

 Key derivation is performed using the Concat KDF, as defined in
 Section 5.8.1 of [NIST.800-56A], where the Digest Method is SHA-256.
 The Concat KDF parameters are set as follows:

 Z This is set to the representation of the shared secret Z as a byte
 array.

 keydatalen This is set to the number of bits in the desired output
 key. For "ECDH-ES", this is length of the key used by the "enc"
 algorithm. For "ECDH-ES+A128KW", and "ECDH-ES+A256KW", this is
 128 and 256, respectively.

 AlgorithmID This is set to the concatenation of keydatalen
 represented as a 32 bit big endian integer and the bytes of the
 UTF-8 representation of the "alg" header parameter value.

 PartyUInfo The PartyUInfo value is of the form Datalen || Data,
 where Data is a variable-length string of zero or more bytes, and
 Datalen is a fixed-length, big endian 32 bit counter that
 indicates the length (in bytes) of Data, with || being
 concatenation. If an "apu" (agreement PartyUInfo) header
 parameter is present, Data is set to the result of base64url
 decoding the "apu" value and Datalen is set to the number of bytes
 in Data. Otherwise, Datalen is set to 0 and Data is set to the
 empty byte string.

Jones Expires May 10, 2013 [Page 16]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 PartyVInfo The PartyVInfo value is of the form Datalen || Data,
 where Data is a variable-length string of zero or more bytes, and
 Datalen is a fixed-length, big endian 32 bit counter that
 indicates the length (in bytes) of Data, with || being
 concatenation. If an "apv" (agreement PartyVInfo) header
 parameter is present, Data is set to the result of base64url
 decoding the "apv" value and Datalen is set to the number of bytes
 in Data. Otherwise, Datalen is set to 0 and Data is set to the
 empty byte string.

 SuppPubInfo This is set to the empty byte string.

 SuppPrivInfo This is set to the empty byte string.

 For all three "alg" values, the digest function used is SHA-256.

4.8. Composite Plaintext Encryption Algorithms "A128CBC+HS256" and
 "A256CBC+HS512"

 This section defines two composite "enc" algorithms that perform
 plaintext encryption using non-AEAD algorithms and add an integrity
 check calculation, so that the resulting composite algorithms are
 AEAD. These composite algorithms derive a Content Encryption Key
 (CEK) and a Content Integrity Key (CIK) from a Content Master Key,
 per Section 4.8.1. They perform block encryption with AES CBC, per

Section 4.8.2. Finally, they add an integrity check using HMAC SHA-2
 algorithms of matching strength, per Section 4.8.3.

 A 256 bit Content Master Key (CMK) value is used with the
 "A128CBC+HS256" algorithm. A 512 bit Content Master Key (CMK) value
 is used with the "A256CBC+HS512" algorithm.

 An example using this algorithm is shown in Appendix A.2 of [JWE].

4.8.1. Key Derivation for "A128CBC+HS256" and "A256CBC+HS512"

 The key derivation process derives CEK and CIK values from the CMK.
 This section defines the specifics of deriving keys for the "enc"
 algorithms "A128CBC+HS256" and "A256CBC+HS512".

 Key derivation is performed using the Concat KDF, as defined in
 Section 5.8.1 of [NIST.800-56A], where the Digest Method is SHA-256
 or SHA-512, respectively. The Concat KDF parameters are set as
 follows:

Jones Expires May 10, 2013 [Page 17]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 Z This is set to the Content Master Key (CMK).

 keydatalen This is set to the number of bits in the desired output
 key.

 AlgorithmID This is set to the concatenation of keydatalen
 represented as a 32 bit big endian integer and the bytes of the
 UTF-8 representation of the "enc" header parameter value.

 PartyUInfo The PartyUInfo value is of the form Datalen || Data,
 where Data is a variable-length string of zero or more bytes, and
 Datalen is a fixed-length, big endian 32 bit counter that
 indicates the length (in bytes) of Data, with || being
 concatenation. If an "epu" (encryption PartyUInfo) header
 parameter is present, Data is set to the result of base64url
 decoding the "epu" value and Datalen is set to the number of bytes
 in Data. Otherwise, Datalen is set to 0 and Data is set to the
 empty byte string.

 PartyVInfo The PartyVInfo value is of the form Datalen || Data,
 where Data is a variable-length string of zero or more bytes, and
 Datalen is a fixed-length, big endian 32 bit counter that
 indicates the length (in bytes) of Data, with || being
 concatenation. If an "epv" (encryption PartyVInfo) header
 parameter is present, Data is set to the result of base64url
 decoding the "epv" value and Datalen is set to the number of bytes
 in Data. Otherwise, Datalen is set to 0 and Data is set to the
 empty byte string.

 SuppPubInfo This is set to the bytes of one of the ASCII strings
 "Encryption" ([69, 110, 99, 114, 121, 112, 116, 105, 111, 110]) or
 "Integrity" ([73, 110, 116, 101, 103, 114, 105, 116, 121])
 respectively, depending upon whether the CEK or CIK is being
 generated.

 SuppPrivInfo This is set to the empty byte string.

 To compute the CEK from the CMK, the ASCII label "Encryption" is used
 for the SuppPubInfo value. For "A128CBC+HS256", the keydatalen is
 128 and the digest function used is SHA-256. For "A256CBC+HS512",
 the keydatalen is 256 and the digest function used is SHA-512.

 To compute the CIK from the CMK, the ASCII label "Integrity" is used
 for the SuppPubInfo value. For "A128CBC+HS256", the keydatalen is
 256 and the digest function used is SHA-256. For "A256CBC+HS512",
 the keydatalen is 512 and the digest function used is SHA-512.

 Example derivation computations are shown in Appendices A.4 and A.5

Jones Expires May 10, 2013 [Page 18]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 of [JWE].

4.8.2. Encryption Calculation for "A128CBC+HS256" and "A256CBC+HS512"

 This section defines the specifics of encrypting the JWE Plaintext
 with Advanced Encryption Standard (AES) in Cipher Block Chaining
 (CBC) mode with PKCS #5 padding [AES] [NIST.800-38A] using 128 or 256
 bit keys. The "enc" header parameter values "A128CBC+HS256" or
 "A256CBC+HS512" are respectively used in this case.

 The CEK is used as the encryption key.

 Use of an initialization vector of size 128 bits is REQUIRED with
 these algorithms.

4.8.3. Integrity Calculation for "A128CBC+HS256" and "A256CBC+HS512"

 This section defines the specifics of computing the JWE Integrity
 Value for the "enc" algorithms "A128CBC+HS256" and "A256CBC+HS512".
 This value is computed as a MAC of the JWE parameters to be secured.

 The MAC input value is the bytes of the ASCII representation of the
 concatenation of the Encoded JWE Header, a period ('.') character,
 the Encoded JWE Encrypted Key, a second period character ('.'), the
 Encoded JWE Initialization Vector, a third period ('.') character,
 and the Encoded JWE Ciphertext. (Equivalently, this input value is
 the concatenation of the "additional authenticated data" value, a
 byte containing an ASCII period character, and the bytes of the ASCII
 representation of the Encoded JWE Ciphertext.)

 The CIK is used as the MAC key.

 For "A128CBC+HS256", HMAC SHA-256 is used as the MAC algorithm. For
 "A256CBC+HS512", HMAC SHA-512 is used as the MAC algorithm.

 The resulting MAC value is used as the JWE Integrity Value.
 (Equivalently, this value is the "authentication tag" output for the
 algorithm.) The same integrity calculation is performed during
 decryption. During decryption, the computed integrity value must
 match the received JWE Integrity Value.

4.9. Plaintext Encryption with AES GCM

 This section defines the specifics of encrypting the JWE Plaintext
 with Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM)
 [AES] [NIST.800-38D] using 128 or 256 bit keys. The "enc" header
 parameter values "A128GCM" or "A256GCM" are used in this case.

Jones Expires May 10, 2013 [Page 19]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 The CMK is used as the encryption key.

 Use of an initialization vector of size 96 bits is REQUIRED with this
 algorithm.

 The "additional authenticated data" parameter is used to secure the
 header and key values. (The "additional authenticated data" value
 used is the bytes of the ASCII representation of the concatenation of
 the Encoded JWE Header, a period ('.') character, the Encoded JWE
 Encrypted Key, a second period character ('.'), and the Encoded JWE
 Initialization Vector, per Section 5 of the JWE specification.) This
 same "additional authenticated data" value is used when decrypting as
 well.

 The requested size of the "authentication tag" output MUST be 128
 bits, regardless of the key size.

 The JWE Integrity Value is set to be the "authentication tag" value
 produced by the encryption. During decryption, the received JWE
 Integrity Value is used as the "authentication tag" value.

 Examples using this algorithm are shown in Appendices A.1 and A.3 of
 [JWE].

4.10. Additional Encryption Algorithms and Parameters

 Additional algorithms MAY be used to protect JWEs with corresponding
 "alg" (algorithm) and "enc" (encryption method) header parameter
 values being defined to refer to them. New "alg" and "enc" header
 parameter values SHOULD either be registered in the IANA JSON Web
 Signature and Encryption Algorithms registry Section 6.1 or be a URI
 that contains a Collision Resistant Namespace. In particular, it is
 permissible to use the algorithm identifiers defined in XML
 Encryption [W3C.REC-xmlenc-core-20021210], XML Encryption 1.1
 [W3C.CR-xmlenc-core1-20120313], and related specifications as "alg"
 and "enc" values.

 As indicated by the common registry, JWSs and JWEs share a common
 "alg" value space. The values used by the two specifications MUST be
 distinct, as the "alg" value MAY be used to determine whether the
 object is a JWS or JWE.

 Likewise, additional reserved header parameter names MAY be defined
 via the IANA JSON Web Signature and Encryption Header Parameters
 registry [JWS]. As indicated by the common registry, JWSs and JWEs
 share a common header parameter space; when a parameter is used by
 both specifications, its usage must be compatible between the
 specifications.

Jones Expires May 10, 2013 [Page 20]

Internet-Draft JSON Web Algorithms (JWA) November 2012

5. Cryptographic Algorithms for JWK

 A JSON Web Key (JWK) [JWK] is a JavaScript Object Notation (JSON)
 [RFC4627] data structure that represents a public key. A JSON Web
 Key Set (JWK Set) is a JSON data structure for representing a set of
 JWKs. This section specifies a set of algorithm families to be used
 for those public keys and the algorithm family specific parameters
 for representing those keys.

5.1. "alg" (Algorithm Family) Parameter Values for JWK

 The table below is the set of "alg" (algorithm family) parameter
 values that are defined by this specification for use in JWKs.

 +-----------------+-------------------------+-----------------------+
 | alg Parameter | Algorithm Family | Implementation |
 | Value | | Requirements |
 +-----------------+-------------------------+-----------------------+
EC	Elliptic Curve [DSS]	RECOMMENDED+
	key family	
RSA	RSA [RFC3447] key	REQUIRED
	family	
 +-----------------+-------------------------+-----------------------+

 All the names are short because a core goal of JWK is for the
 representations to be compact. However, there is no a priori length
 restriction on "alg" values.

 The use of "+" in the Implementation Requirements indicates that the
 requirement strength is likely to be increased in a future version of
 the specification.

5.2. JWK Parameters for Elliptic Curve Keys

 JWKs can represent Elliptic Curve [DSS] keys. In this case, the
 "alg" member value MUST be "EC". Furthermore, these additional
 members MUST be present:

5.2.1. "crv" (Curve) Parameter

 The "crv" (curve) member identifies the cryptographic curve used with
 the key. Curve values from [DSS] used by this specification are:

 o "P-256"

 o "P-384"

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires May 10, 2013 [Page 21]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 o "P-521"

 Additional "crv" values MAY be used, provided they are understood by
 implementations using that Elliptic Curve key. The "crv" value is a
 case sensitive string.

5.2.2. "x" (X Coordinate) Parameter

 The "x" (x coordinate) member contains the x coordinate for the
 elliptic curve point. It is represented as the base64url encoding of
 the coordinate's big endian representation as a byte array. The
 array representation MUST not be shortened to omit any leading zero
 bytes contained in the value. For instance, when representing 521
 bit integers, the byte array to be base64url encoded MUST contain 66
 bytes, including any leading zero bytes.

5.2.3. "y" (Y Coordinate) Parameter

 The "y" (y coordinate) member contains the y coordinate for the
 elliptic curve point. It is represented as the base64url encoding of
 the coordinate's big endian representation as a byte array. The
 array representation MUST not be shortened to omit any leading zero
 bytes contained in the value. For instance, when representing 521
 bit integers, the byte array to be base64url encoded MUST contain 66
 bytes, including any leading zero bytes.

5.3. JWK Parameters for RSA Keys

 JWKs can represent RSA [RFC3447] keys. In this case, the "alg"
 member value MUST be "RSA". Furthermore, these additional members
 MUST be present:

5.3.1. "n" (Modulus) Parameter

 The "n" (modulus) member contains the modulus value for the RSA
 public key. It is represented as the base64url encoding of the
 value's unsigned big endian representation as a byte array. The
 array representation MUST not be shortened to omit any leading zero
 bytes. For instance, when representing 2048 bit integers, the byte
 array to be base64url encoded MUST contain 256 bytes, including any
 leading zero bytes.

5.3.2. "e" (Exponent) Parameter

 The "e" (exponent) member contains the exponent value for the RSA
 public key. It is represented as the base64url encoding of the
 value's unsigned big endian representation as a byte array. The
 array representation MUST utilize the minimum number of bytes to

https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires May 10, 2013 [Page 22]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 represent the value. For instance, when representing the value
 65537, the byte array to be base64url encoded MUST consist of the
 three bytes [1, 0, 1].

5.4. Additional Key Algorithm Families and Parameters

 Public keys using additional algorithm families MAY be represented
 using JWK data structures with corresponding "alg" (algorithm family)
 parameter values being defined to refer to them. New "alg" parameter
 values SHOULD either be registered in the IANA JSON Web Key Algorithm
 Families registry Section 6.2 or be a URI that contains a Collision
 Resistant Namespace.

 Likewise, parameters for representing keys for additional algorithm
 families or additional key properties SHOULD either be registered in
 the IANA JSON Web Key Parameters registry [JWK] or be a URI that
 contains a Collision Resistant Namespace.

6. IANA Considerations

 The following registration procedure is used for all the registries
 established by this specification.

 Values are registered with a Specification Required [RFC5226] after a
 two-week review period on the [TBD]@ietf.org mailing list, on the
 advice of one or more Designated Experts. However, to allow for the
 allocation of values prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published.

 Registration requests must be sent to the [TBD]@ietf.org mailing list
 for review and comment, with an appropriate subject (e.g., "Request
 for access token type: example"). [[Note to RFC-EDITOR: The name of
 the mailing list should be determined in consultation with the IESG
 and IANA. Suggested name: jose-reg-review.]]

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

https://datatracker.ietf.org/doc/html/rfc5226

Jones Expires May 10, 2013 [Page 23]

Internet-Draft JSON Web Algorithms (JWA) November 2012

6.1. JSON Web Signature and Encryption Algorithms Registry

 This specification establishes the IANA JSON Web Signature and
 Encryption Algorithms registry for values of the JWS and JWE "alg"
 (algorithm) and "enc" (encryption method) header parameters. The
 registry records the algorithm name, the algorithm usage locations
 from the set "alg" and "enc", implementation requirements, and a
 reference to the specification that defines it. The same algorithm
 name may be registered multiple times, provided that the sets of
 usage locations are disjoint. The implementation requirements of an
 algorithm may be changed over time by the Designated Experts(s) as
 the cryptographic landscape evolves, for instance, to change the
 status of an algorithm to DEPRECATED, or to change the status of an
 algorithm from OPTIONAL to RECOMMENDED or REQUIRED.

6.1.1. Registration Template

 Algorithm Name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Algorithm Usage Location(s):
 The algorithm usage, which must be one or more of the values "alg"
 or "enc".

 Implementation Requirements:
 The algorithm implementation requirements, which must be one the
 words REQUIRED, RECOMMENDED, OPTIONAL, or DEPRECATED. Optionally,
 the word may be followed by a "+" or "-". The use of "+"
 indicates that the requirement strength is likely to be increased
 in a future version of the specification. The use of "-"
 indicates that the requirement strength is likely to be decreased
 in a future version of the specification.

 Change Controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

Jones Expires May 10, 2013 [Page 24]

Internet-Draft JSON Web Algorithms (JWA) November 2012

6.1.2. Initial Registry Contents

 o Algorithm Name: "HS256"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: REQUIRED
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "HS384"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "HS512"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RS256"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RS384"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RS512"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "ES256"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED+
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "ES384"
 o Algorithm Usage Location(s): "alg"

Jones Expires May 10, 2013 [Page 25]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "ES512"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "none"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: REQUIRED
 o Change Controller: IETF
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RSA1_5"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: REQUIRED
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "RSA-OAEP"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: OPTIONAL
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A128KW"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A256KW"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "dir"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

Jones Expires May 10, 2013 [Page 26]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 o Algorithm Name: "ECDH-ES"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED+
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "ECDH-ES+A128KW"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "ECDH-ES+A256KW"
 o Algorithm Usage Location(s): "alg"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A128CBC+HS256"
 o Algorithm Usage Location(s): "enc"
 o Implementation Requirements: REQUIRED
 o Change Controller: IETF
 o Specification Document(s): Section 4.2 of [[this document]]

 o Algorithm Name: "A256CBC+HS512"
 o Algorithm Usage Location(s): "enc"
 o Implementation Requirements: REQUIRED
 o Change Controller: IETF
 o Specification Document(s): Section 4.2 of [[this document]]

 o Algorithm Name: "A128GCM"
 o Algorithm Usage Location(s): "enc"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.2 of [[this document]]

 o Algorithm Name: "A256GCM"
 o Algorithm Usage Location(s): "enc"
 o Implementation Requirements: RECOMMENDED
 o Change Controller: IETF
 o Specification Document(s): Section 4.2 of [[this document]]

6.2. JSON Web Key Algorithm Families Registry

 This specification establishes the IANA JSON Web Key Algorithm
 Families registry for values of the JWK "alg" (algorithm family)
 parameter. The registry records the "alg" value and a reference to
 the specification that defines it. This specification registers the

Jones Expires May 10, 2013 [Page 27]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 values defined in Section 5.1.

6.2.1. Registration Template

 "alg" Parameter Value:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Change Controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Implementation Requirements:
 The algorithm implementation requirements, which must be one the
 words REQUIRED, RECOMMENDED, OPTIONAL, or DEPRECATED. Optionally,
 the word may be followed by a "+" or "-". The use of "+"
 indicates that the requirement strength is likely to be increased
 in a future version of the specification. The use of "-"
 indicates that the requirement strength is likely to be decreased
 in a future version of the specification.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

6.2.2. Initial Registry Contents

 o "alg" Parameter Value: "EC"
 o Implementation Requirements: RECOMMENDED+
 o Change Controller: IETF
 o Specification Document(s): Section 5.1 of [[this document]]

 o "alg" Parameter Value: "RSA"
 o Implementation Requirements: REQUIRED
 o Change Controller: IETF
 o Specification Document(s): Section 5.1 of [[this document]]

6.3. JSON Web Key Parameters Registration

 This specification registers the parameter names defined in Sections
 5.2 and 5.3 in the IANA JSON Web Key Parameters registry [JWK].

Jones Expires May 10, 2013 [Page 28]

Internet-Draft JSON Web Algorithms (JWA) November 2012

6.3.1. Registry Contents

 o Parameter Name: "crv"
 o Change Controller: IETF
 o Specification Document(s): Section 5.2.1 of [[this document]]

 o Parameter Name: "x"
 o Change Controller: IETF
 o Specification Document(s): Section 5.2.2 of [[this document]]

 o Parameter Name: "y"
 o Change Controller: IETF
 o Specification Document(s): Section 5.2.3 of [[this document]]

 o Parameter Name: "n"
 o Change Controller: IETF
 o Specification Document(s): Section 5.3.1 of [[this document]]

 o Parameter Name: "e"
 o Change Controller: IETF
 o Specification Document(s): Section 5.3.2 of [[this document]]

7. Security Considerations

 All of the security issues faced by any cryptographic application
 must be faced by a JWS/JWE/JWK agent. Among these issues are
 protecting the user's private key, preventing various attacks, and
 helping the user avoid mistakes such as inadvertently encrypting a
 message for the wrong recipient. The entire list of security
 considerations is beyond the scope of this document, but some
 significant concerns are listed here.

 The security considerations in [AES], [DSS], [JWE], [JWK], [JWS],
 [NIST.800-38A], [NIST.800-38D], [NIST.800-56A], [RFC2104], [RFC3394],
 [RFC3447], [RFC5116], [RFC6090], and [SHS] apply to this
 specification.

 Eventually the algorithms and/or key sizes currently described in
 this specification will no longer be considered sufficiently secure
 and will be removed. Therefore, implementers and deployments must be
 prepared for this eventuality.

 Algorithms of matching strength should be used together whenever
 possible. For instance, when AES Key Wrap is used with a given key
 size, using the same key size is recommended when AES GCM is also
 used.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires May 10, 2013 [Page 29]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 While Section 8 of RFC 3447 [RFC3447] explicitly calls for people not
 to adopt RSASSA-PKCS1 for new applications and instead requests that
 people transition to RSASSA-PSS, this specification does include
 RSASSA-PKCS1, for interoperability reasons, because it commonly
 implemented.

 Keys used with RSAES-PKCS1-v1_5 must follow the constraints in
Section 7.2 of RFC 3447 [RFC3447]. In particular, keys with a low

 public key exponent value must not be used.

 Plaintext JWSs (JWSs that use the "alg" value "none") provide no
 integrity protection. Thus, they must only be used in contexts where
 the payload is secured by means other than a digital signature or MAC
 value, or need not be secured.

 Receiving agents that validate signatures and sending agents that
 encrypt messages need to be cautious of cryptographic processing
 usage when validating signatures and encrypting messages using keys
 larger than those mandated in this specification. An attacker could
 send certificates with keys that would result in excessive
 cryptographic processing, for example, keys larger than those
 mandated in this specification, which could swamp the processing
 element. Agents that use such keys without first validating the
 certificate to a trust anchor are advised to have some sort of
 cryptographic resource management system to prevent such attacks.

8. References

8.1. Normative References

 [AES] National Institute of Standards and Technology (NIST),
 "Advanced Encryption Standard (AES)", FIPS PUB 197,
 November 2001.

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-3, June 2009.

 [JWE] Jones, M., Rescorla, E., and J. Hildebrand, "JSON Web
 Encryption (JWE)", November 2012.

 [JWK] Jones, M., "JSON Web Key (JWK)", November 2012.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", November 2012.

 [NIST.800-38A]
 National Institute of Standards and Technology (NIST),

https://datatracker.ietf.org/doc/html/rfc3447#section-8
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447#section-7.2
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires May 10, 2013 [Page 30]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 "Recommendation for Block Cipher Modes of Operation",
 NIST PUB 800-38A, December 2001.

 [NIST.800-38D]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC", NIST PUB 800-38D,
 December 2001.

 [NIST.800-56A]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography (Revised)", NIST PUB
 800-56A, March 2007.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires May 10, 2013 [Page 31]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-3, October 2008.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

8.2. Informative References

 [CanvasApp]
 Facebook, "Canvas Applications", 2010.

 [I-D.rescorla-jsms]
 Rescorla, E. and J. Hildebrand, "JavaScript Message
 Security Format", draft-rescorla-jsms-00 (work in
 progress), March 2011.

 [JCA] Oracle, "Java Cryptography Architecture", 2011.

 [JSE] Bradley, J. and N. Sakimura (editor), "JSON Simple
 Encryption", September 2010.

 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
 September 2010.

 [MagicSignatures]
 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
 Signatures", January 2011.

 [RFC3275] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275,
 March 2002.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [W3C.CR-xmldsig-core2-20120124]
 Reagle, J., Solo, D., Datta, P., Hirsch, F., Eastlake, D.,
 Cantor, S., Roessler, T., and K. Yiu, "XML Signature
 Syntax and Processing Version 2.0", World Wide Web
 Consortium CR CR-xmldsig-core2-20120124, January 2012,
 <http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124>.

 [W3C.CR-xmlenc-core1-20120313]
 Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch,
 "XML Encryption Syntax and Processing Version 1.1", World
 Wide Web Consortium CR CR-xmlenc-core1-20120313,

https://datatracker.ietf.org/doc/html/draft-rescorla-jsms-00
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4122
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124

Jones Expires May 10, 2013 [Page 32]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 March 2012,
 <http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313>.

 [W3C.REC-xmlenc-core-20021210]
 Eastlake, D. and J. Reagle, "XML Encryption Syntax and
 Processing", World Wide Web Consortium Recommendation REC-
 xmlenc-core-20021210, December 2002,
 <http://www.w3.org/TR/2002/REC-xmlenc-core-20021210>.

Appendix A. Digital Signature/MAC Algorithm Identifier Cross-Reference

 This appendix contains a table cross-referencing the digital
 signature and MAC "alg" (algorithm) values used in this specification
 with the equivalent identifiers used by other standards and software
 packages. See XML DSIG [RFC3275], XML DSIG 2.0
 [W3C.CR-xmldsig-core2-20120124], and Java Cryptography Architecture
 [JCA] for more information about the names defined by those
 documents.

 +-------+-----+----------------------------+----------+-------------+
 | Algor | JWS | XML DSIG | JCA | OID |
 | ithm | | | | |
 +-------+-----+----------------------------+----------+-------------+
HMAC	HS2	http://www.w3.org/2001/04/	HmacSHA2	1.2.840.113
using	56	xmldsig-more#hmac-sha256	56	549.2.9
SHA-2				
56				
hash				
algo				
rithm				
HMAC	HS3	http://www.w3.org/2001/04/	HmacSHA3	1.2.840.113
using	84	xmldsig-more#hmac-sha384	84	549.2.10
SHA-3				
84				
hash				
algo				
rithm				
HMAC	HS5	http://www.w3.org/2001/04/	HmacSHA5	1.2.840.113
using	12	xmldsig-more#hmac-sha512	12	549.2.11
SHA-5				
12				
hash				
algo				
rithm				

http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
https://datatracker.ietf.org/doc/html/rfc3275
http://www.w3.org/2001/04/
http://www.w3.org/2001/04/
http://www.w3.org/2001/04/

Jones Expires May 10, 2013 [Page 33]

Internet-Draft JSON Web Algorithms (JWA) November 2012

RSASS	RS2	http://www.w3.org/2001/04/	SHA256wi	1.2.840.113
A	56	xmldsig-more#rsa-sha256	thRSA	549.1.1.11
usin				
gSHA-				
256				
has				
h alg				
orith				
m				
RSASS	RS3	http://www.w3.org/2001/04/	SHA384wi	1.2.840.113
A	84	xmldsig-more#rsa-sha384	thRSA	549.1.1.12
usin				
gSHA-				
384				
has				
h alg				
orith				
m				
RSASS	RS5	http://www.w3.org/2001/04/	SHA512wi	1.2.840.113
A	12	xmldsig-more#rsa-sha512	thRSA	549.1.1.13
usin				
gSHA-				
512				
has				
h alg				
orith				
m				
ECDSA	ES2	http://www.w3.org/2001/04/	SHA256wi	1.2.840.100
using	56	xmldsig-more#ecdsa-sha256	thECDSA	45.4.3.2
P-256				
curve				
and				
SHA-2				
56				
hash				
algo				
rithm				
ECDSA	ES3	http://www.w3.org/2001/04/	SHA384wi	1.2.840.100
using	84	xmldsig-more#ecdsa-sha384	thECDSA	45.4.3.3
P-384				
curve				
and				
SHA-3				
84				
hash				
algo				
rithm				

http://www.w3.org/2001/04/
http://www.w3.org/2001/04/
http://www.w3.org/2001/04/
http://www.w3.org/2001/04/
http://www.w3.org/2001/04/

Jones Expires May 10, 2013 [Page 34]

Internet-Draft JSON Web Algorithms (JWA) November 2012

ECDSA	ES5	http://www.w3.org/2001/04/	SHA512wi	1.2.840.100
using	12	xmldsig-more#ecdsa-sha512	thECDSA	45.4.3.4
P-521				
curve				
and				
SHA-5				
12				
hash				
algo				
rithm				
 +-------+-----+----------------------------+----------+-------------+

Appendix B. Encryption Algorithm Identifier Cross-Reference

 This appendix contains a table cross-referencing the "alg"
 (algorithm) and "enc" (encryption method) values used in this
 specification with the equivalent identifiers used by other standards
 and software packages. See XML Encryption
 [W3C.REC-xmlenc-core-20021210], XML Encryption 1.1
 [W3C.CR-xmlenc-core1-20120313], and Java Cryptography Architecture
 [JCA] for more information about the names defined by those
 documents.

 For the composite algorithms "A128CBC+HS256" and "A256CBC+HS512", the
 corresponding AES CBC algorithm identifiers are listed.

 +----------+--------+--------------------------+--------------------+
 | Algorith | JWE | XML ENC | JCA |
 | m | | | |
 +----------+--------+--------------------------+--------------------+
RSAES-PK	RSA1_5	http://www.w3.org/2001/0	RSA/ECB/PKCS1Paddi
CS1-V1_5		4/xmlenc#rsa-1_5	ng
RSAES	RSA-OA	http://www.w3.org/2001/0	RSA/ECB/OAEPWithSH
using	EP	4/xmlenc#rsa-oaep-mgf1p	A-1AndMGF1Padding
Optimal			
Asymmetr			
ic			
Encrypt			
ion			
Paddin			
g (OAEP)			
Elliptic	ECDH-E	http://www.w3.org/2009/x	
Curve	S	mlenc11#ECDH-ES	
Diffie-H			
ellman			
Ephemer			
alStatic			

http://www.w3.org/2001/04/
http://www.w3.org/2001/0
http://www.w3.org/2001/0
http://www.w3.org/2009/x

Jones Expires May 10, 2013 [Page 35]

Internet-Draft JSON Web Algorithms (JWA) November 2012

Advanced	A128KW	http://www.w3.org/2001/0	
Encrypti		4/xmlenc#kw-aes128	
on			
Standar			
d(AES)			
Key Wra			
pAlgorit			
hmusing			
128 bi			
t keys			
AES Key	A256KW	http://www.w3.org/2001/0	
Wrap		4/xmlenc#kw-aes256	
Algorith			
musing			
256 bit			
keys			
AES in	A128CB	http://www.w3.org/2001/0	AES/CBC/PKCS5Paddi
Cipher	C+HS25	4/xmlenc#aes128-cbc	ng
Block	6		
Chaining			
(CBC)			
mode			
with			
PKCS #5			
padding			
using			
128 bit			
keys			
AES in	A256CB	http://www.w3.org/2001/0	AES/CBC/PKCS5Paddi
CBC mode	C+HS51	4/xmlenc#aes256-cbc	ng
with	2		
PKCS #5			
padding			
using			
256 bit			
keys			
AES in	A128GC	http://www.w3.org/2009/x	AES/GCM/NoPadding
Galois/C	M	mlenc11#aes128-gcm	
ounter			
Mode			
(GCM)			
using			
128 bit			
keys			

http://www.w3.org/2001/0
http://www.w3.org/2001/0
http://www.w3.org/2001/0
http://www.w3.org/2001/0
http://www.w3.org/2009/x

Jones Expires May 10, 2013 [Page 36]

Internet-Draft JSON Web Algorithms (JWA) November 2012

AES GCM	A256GC	http://www.w3.org/2009/x	AES/GCM/NoPadding
using	M	mlenc11#aes256-gcm	
256 bit			
keys			
 +----------+--------+--------------------------+--------------------+

Appendix C. Acknowledgements

 Solutions for signing and encrypting JSON content were previously
 explored by Magic Signatures [MagicSignatures], JSON Simple Sign
 [JSS], Canvas Applications [CanvasApp], JSON Simple Encryption [JSE],
 and JavaScript Message Security Format [I-D.rescorla-jsms], all of
 which influenced this draft. Dirk Balfanz, John Bradley, Yaron Y.
 Goland, John Panzer, Nat Sakimura, and Paul Tarjan all made
 significant contributions to the design of this specification and its
 related specifications.

 Jim Schaad and Karen O'Donoghue chaired the JOSE working group and
 Sean Turner and Stephen Farrell served as Security area directors
 during the creation of this specification.

Appendix D. Open Issues

 [[to be removed by the RFC editor before publication as an RFC]]

 The following items remain to be considered or done in this draft:

 o No known open issues.

Appendix E. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -07

 o Added a data length prefix to PartyUInfo and PartyVInfo values.

 o Changed the name of the JWK RSA modulus parameter from "mod" to
 "n" and the name of the JWK RSA exponent parameter from "xpo" to
 "e", so that the identifiers are the same as those used in RFC

3447.

 o Made several local editorial changes to clean up loose ends left
 over from to the decision to only support block encryption methods
 providing integrity.

http://www.w3.org/2009/x
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires May 10, 2013 [Page 37]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 -06

 o Removed the "int" and "kdf" parameters and defined the new
 composite AEAD algorithms "A128CBC+HS256" and "A256CBC+HS512" to
 replace the former uses of AES CBC, which required the use of
 separate integrity and key derivation functions.

 o Included additional values in the Concat KDF calculation -- the
 desired output size and the algorithm value, and optionally
 PartyUInfo and PartyVInfo values. Added the optional header
 parameters "apu" (agreement PartyUInfo), "apv" (agreement
 PartyVInfo), "epu" (encryption PartyUInfo), and "epv" (encryption
 PartyVInfo).

 o Changed the name of the JWK RSA exponent parameter from "exp" to
 "xpo" so as to allow the potential use of the name "exp" for a
 future extension that might define an expiration parameter for
 keys. (The "exp" name is already used for this purpose in the JWT
 specification.)

 o Applied changes made by the RFC Editor to RFC 6749's registry
 language to this specification.

 -05

 o Support both direct encryption using a shared or agreed upon
 symmetric key, and the use of a shared or agreed upon symmetric
 key to key wrap the CMK. Specifically, added the "alg" values
 "dir", "ECDH-ES+A128KW", and "ECDH-ES+A256KW" to finish filling in
 this set of capabilities.

 o Updated open issues.

 -04

 o Added text requiring that any leading zero bytes be retained in
 base64url encoded key value representations for fixed-length
 values.

 o Added this language to Registration Templates: "This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted."

 o Described additional open issues.

 o Applied editorial suggestions.

 -03

https://datatracker.ietf.org/doc/html/rfc6749

Jones Expires May 10, 2013 [Page 38]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 o Always use a 128 bit "authentication tag" size for AES GCM,
 regardless of the key size.

 o Specified that use of a 128 bit IV is REQUIRED with AES CBC. It
 was previously RECOMMENDED.

 o Removed key size language for ECDSA algorithms, since the key size
 is implied by the algorithm being used.

 o Stated that the "int" key size must be the same as the hash output
 size (and not larger, as was previously allowed) so that its size
 is defined for key generation purposes.

 o Added the "kdf" (key derivation function) header parameter to
 provide crypto agility for key derivation. The default KDF
 remains the Concat KDF with the SHA-256 digest function.

 o Clarified that the "mod" and "exp" values are unsigned.

 o Added Implementation Requirements columns to algorithm tables and
 Implementation Requirements entries to algorithm registries.

 o Changed AES Key Wrap to RECOMMENDED.

 o Moved registries JSON Web Signature and Encryption Header
 Parameters and JSON Web Signature and Encryption Type Values to
 the JWS specification.

 o Moved JSON Web Key Parameters registry to the JWK specification.

 o Changed registration requirements from RFC Required to
 Specification Required with Expert Review.

 o Added Registration Template sections for defined registries.

 o Added Registry Contents sections to populate registry values.

 o No longer say "the UTF-8 representation of the JWS Secured Input
 (which is the same as the ASCII representation)". Just call it
 "the ASCII representation of the JWS Secured Input".

 o Added "Collision Resistant Namespace" to the terminology section.

 o Numerous editorial improvements.

 -02

Jones Expires May 10, 2013 [Page 39]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 o For AES GCM, use the "additional authenticated data" parameter to
 provide integrity for the header, encrypted key, and ciphertext
 and use the resulting "authentication tag" value as the JWE
 Integrity Value.

 o Defined minimum required key sizes for algorithms without
 specified key sizes.

 o Defined KDF output key sizes.

 o Specified the use of PKCS #5 padding with AES CBC.

 o Generalized text to allow key agreement to be employed as an
 alternative to key wrapping or key encryption.

 o Clarified that ECDH-ES is a key agreement algorithm.

 o Required implementation of AES-128-KW and AES-256-KW.

 o Removed the use of "A128GCM" and "A256GCM" for key wrapping.

 o Removed "A512KW" since it turns out that it's not a standard
 algorithm.

 o Clarified the relationship between "typ" header parameter values
 and MIME types.

 o Generalized language to refer to Message Authentication Codes
 (MACs) rather than Hash-based Message Authentication Codes (HMACs)
 unless in a context specific to HMAC algorithms.

 o Established registries: JSON Web Signature and Encryption Header
 Parameters, JSON Web Signature and Encryption Algorithms, JSON Web
 Signature and Encryption "typ" Values, JSON Web Key Parameters,
 and JSON Web Key Algorithm Families.

 o Moved algorithm-specific definitions from JWK to JWA.

 o Reformatted to give each member definition its own section
 heading.

 -01

 o Moved definition of "alg":"none" for JWSs here from the JWT
 specification since this functionality is likely to be useful in
 more contexts that just for JWTs.

Jones Expires May 10, 2013 [Page 40]

Internet-Draft JSON Web Algorithms (JWA) November 2012

 o Added Advanced Encryption Standard (AES) Key Wrap Algorithm using
 512 bit keys ("A512KW").

 o Added text "Alternatively, the Encoded JWS Signature MAY be
 base64url decoded to produce the JWS Signature and this value can
 be compared with the computed HMAC value, as this comparison
 produces the same result as comparing the encoded values".

 o Corrected the Magic Signatures reference.

 o Made other editorial improvements suggested by JOSE working group
 participants.

 -00

 o Created the initial IETF draft based upon
draft-jones-json-web-signature-04 and
draft-jones-json-web-encryption-02 with no normative changes.

 o Changed terminology to no longer call both digital signatures and
 HMACs "signatures".

Author's Address

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-04
https://datatracker.ietf.org/doc/html/draft-jones-json-web-encryption-02
http://self-issued.info/

Jones Expires May 10, 2013 [Page 41]

