
JOSE Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track September 23, 2014
Expires: March 27, 2015

JSON Web Algorithms (JWA)
draft-ietf-jose-json-web-algorithms-32

Abstract

 The JSON Web Algorithms (JWA) specification registers cryptographic
 algorithms and identifiers to be used with the JSON Web Signature
 (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK)
 specifications. It defines several IANA registries for these
 identifiers.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jones Expires March 27, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Web Algorithms (JWA) September 2014

Table of Contents

1. Introduction . 5
1.1. Notational Conventions 5

2. Terminology . 5
3. Cryptographic Algorithms for Digital Signatures and MACs . . . 6
3.1. "alg" (Algorithm) Header Parameter Values for JWS 6
3.2. HMAC with SHA-2 Functions 7
3.3. Digital Signature with RSASSA-PKCS1-V1_5 8
3.4. Digital Signature with ECDSA 9
3.5. Digital Signature with RSASSA-PSS 10
3.6. Using the Algorithm "none" 11

4. Cryptographic Algorithms for Key Management 11
4.1. "alg" (Algorithm) Header Parameter Values for JWE 12
4.2. Key Encryption with RSAES-PKCS1-V1_5 14
4.3. Key Encryption with RSAES OAEP 14
4.4. Key Wrapping with AES Key Wrap 14
4.5. Direct Encryption with a Shared Symmetric Key 15

 4.6. Key Agreement with Elliptic Curve Diffie-Hellman
 Ephemeral Static (ECDH-ES) 15

4.6.1. Header Parameters Used for ECDH Key Agreement 16
4.6.1.1. "epk" (Ephemeral Public Key) Header Parameter . . 16
4.6.1.2. "apu" (Agreement PartyUInfo) Header Parameter . . 16
4.6.1.3. "apv" (Agreement PartyVInfo) Header Parameter . . 17

4.6.2. Key Derivation for ECDH Key Agreement 17
4.7. Key Encryption with AES GCM 18
4.7.1. Header Parameters Used for AES GCM Key Encryption . . 19
4.7.1.1. "iv" (Initialization Vector) Header Parameter . . 19
4.7.1.2. "tag" (Authentication Tag) Header Parameter . . . 19

4.8. Key Encryption with PBES2 19
4.8.1. Header Parameters Used for PBES2 Key Encryption . . . 20
4.8.1.1. "p2s" (PBES2 salt input) Parameter 20
4.8.1.2. "p2c" (PBES2 count) Parameter 21

5. Cryptographic Algorithms for Content Encryption 21
 5.1. "enc" (Encryption Algorithm) Header Parameter Values
 for JWE . 21

5.2. AES_CBC_HMAC_SHA2 Algorithms 22
5.2.1. Conventions Used in Defining AES_CBC_HMAC_SHA2 22
5.2.2. Generic AES_CBC_HMAC_SHA2 Algorithm 23
5.2.2.1. AES_CBC_HMAC_SHA2 Encryption 23
5.2.2.2. AES_CBC_HMAC_SHA2 Decryption 24

5.2.3. AES_128_CBC_HMAC_SHA_256 25
5.2.4. AES_192_CBC_HMAC_SHA_384 26
5.2.5. AES_256_CBC_HMAC_SHA_512 26
5.2.6. Content Encryption with AES_CBC_HMAC_SHA2 26

5.3. Content Encryption with AES GCM 27
6. Cryptographic Algorithms for Keys 27
6.1. "kty" (Key Type) Parameter Values 28

Jones Expires March 27, 2015 [Page 2]

Internet-Draft JSON Web Algorithms (JWA) September 2014

6.2. Parameters for Elliptic Curve Keys 28
6.2.1. Parameters for Elliptic Curve Public Keys 28
6.2.1.1. "crv" (Curve) Parameter 28
6.2.1.2. "x" (X Coordinate) Parameter 29
6.2.1.3. "y" (Y Coordinate) Parameter 29

6.2.2. Parameters for Elliptic Curve Private Keys 29
6.2.2.1. "d" (ECC Private Key) Parameter 29

6.3. Parameters for RSA Keys 29
6.3.1. Parameters for RSA Public Keys 30
6.3.1.1. "n" (Modulus) Parameter 30
6.3.1.2. "e" (Exponent) Parameter 30

6.3.2. Parameters for RSA Private Keys 30
6.3.2.1. "d" (Private Exponent) Parameter 30
6.3.2.2. "p" (First Prime Factor) Parameter 31
6.3.2.3. "q" (Second Prime Factor) Parameter 31
6.3.2.4. "dp" (First Factor CRT Exponent) Parameter 31
6.3.2.5. "dq" (Second Factor CRT Exponent) Parameter . . . 31
6.3.2.6. "qi" (First CRT Coefficient) Parameter 31
6.3.2.7. "oth" (Other Primes Info) Parameter 32

6.4. Parameters for Symmetric Keys 32
6.4.1. "k" (Key Value) Parameter 33

7. IANA Considerations . 33
7.1. JSON Web Signature and Encryption Algorithms Registry . . 34
7.1.1. Registration Template 34
7.1.2. Initial Registry Contents 35

7.2. Header Parameter Names Registration 41
7.2.1. Registry Contents 41

7.3. JSON Web Encryption Compression Algorithms Registry . . . 42
7.3.1. Registration Template 42
7.3.2. Initial Registry Contents 43

7.4. JSON Web Key Types Registry 43
7.4.1. Registration Template 43
7.4.2. Initial Registry Contents 44

7.5. JSON Web Key Parameters Registration 44
7.5.1. Registry Contents 44

7.6. JSON Web Key Elliptic Curve Registry 47
7.6.1. Registration Template 47
7.6.2. Initial Registry Contents 48

8. Security Considerations 48
8.1. Cryptographic Agility 48
8.2. Key Lifetimes . 49
8.3. RSAES-PKCS1-v1_5 Security Considerations 49
8.4. AES GCM Security Considerations 49
8.5. Unsecured JWS Security Considerations 49
8.6. Denial of Service Attacks 50
8.7. Reusing Key Material when Encrypting Keys 50
8.8. Password Considerations 51
8.9. Key Entropy and Random Values 51

Jones Expires March 27, 2015 [Page 3]

Internet-Draft JSON Web Algorithms (JWA) September 2014

8.10. Differences between Digital Signatures and MACs 51
8.11. Using Matching Algorithm Strengths 51
8.12. Adaptive Chosen-Ciphertext Attacks 52
8.13. Timing Attacks . 52
8.14. RSA Private Key Representations and Blinding 52

9. Internationalization Considerations 52
10. References . 52
10.1. Normative References 52
10.2. Informative References 54

Appendix A. Algorithm Identifier Cross-Reference 56
 A.1. Digital Signature/MAC Algorithm Identifier
 Cross-Reference . 56

A.2. Key Management Algorithm Identifier Cross-Reference . . . 57
 A.3. Content Encryption Algorithm Identifier Cross-Reference . 57

Appendix B. Test Cases for AES_CBC_HMAC_SHA2 Algorithms 58
B.1. Test Cases for AES_128_CBC_HMAC_SHA_256 59
B.2. Test Cases for AES_192_CBC_HMAC_SHA_384 60
B.3. Test Cases for AES_256_CBC_HMAC_SHA_512 61

Appendix C. Example ECDH-ES Key Agreement Computation 62
Appendix D. Acknowledgements 64
Appendix E. Document History 65

 Author's Address . 75

Jones Expires March 27, 2015 [Page 4]

Internet-Draft JSON Web Algorithms (JWA) September 2014

1. Introduction

 The JSON Web Algorithms (JWA) specification registers cryptographic
 algorithms and identifiers to be used with the JSON Web Signature
 (JWS) [JWS], JSON Web Encryption (JWE) [JWE], and JSON Web Key (JWK)
 [JWK] specifications. It defines several IANA registries for these
 identifiers. All these specifications utilize JavaScript Object
 Notation (JSON) [RFC7159] based data structures. This specification
 also describes the semantics and operations that are specific to
 these algorithms and key types.

 Registering the algorithms and identifiers here, rather than in the
 JWS, JWE, and JWK specifications, is intended to allow them to remain
 unchanged in the face of changes in the set of Required, Recommended,
 Optional, and Deprecated algorithms over time. This also allows
 changes to the JWS, JWE, and JWK specifications without changing this
 document.

 Names defined by this specification are short because a core goal is
 for the resulting representations to be compact.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

 BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per
Section 2.

 UTF8(STRING) denotes the octets of the UTF-8 [RFC3629] representation
 of STRING.

 ASCII(STRING) denotes the octets of the ASCII [USASCII]
 representation of STRING.

 The concatenation of two values A and B is denoted as A || B.

2. Terminology

 These terms defined by the JSON Web Signature (JWS) [JWS]
 specification are incorporated into this specification: "JSON Web
 Signature (JWS)", "Base64url Encoding", "Header Parameter", "JOSE
 Header", "JWS Payload", "JWS Protected Header", "JWS Signature", "JWS

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629

Jones Expires March 27, 2015 [Page 5]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 Signing Input", and "Unsecured JWS".

 These terms defined by the JSON Web Encryption (JWE) [JWE]
 specification are incorporated into this specification: "JSON Web
 Encryption (JWE)", "Additional Authenticated Data (AAD)",
 "Authentication Tag", "Ciphertext", "Content Encryption Key (CEK)",
 "Direct Encryption", "Direct Key Agreement", "JWE Authentication
 Tag", "JWE Ciphertext", "JWE Encrypted Key", "JWE Initialization
 Vector", "JWE Protected Header", "Key Agreement with Key Wrapping",
 "Key Encryption", "Key Management Mode", "Key Wrapping", and
 "Plaintext".

 These terms defined by the JSON Web Key (JWK) [JWK] specification are
 incorporated into this specification: "JSON Web Key (JWK)" and "JSON
 Web Key Set (JWK Set)".

3. Cryptographic Algorithms for Digital Signatures and MACs

 JWS uses cryptographic algorithms to digitally sign or create a
 Message Authentication Codes (MAC) of the contents of the JWS
 Protected Header and the JWS Payload.

3.1. "alg" (Algorithm) Header Parameter Values for JWS

 The table below is the set of "alg" (algorithm) header parameter
 values defined by this specification for use with JWS, each of which
 is explained in more detail in the following sections:

 +---------------+------------------------------+--------------------+
 | alg Parameter | Digital Signature or MAC | Implementation |
 | Value | Algorithm | Requirements |
 +---------------+------------------------------+--------------------+
HS256	HMAC using SHA-256	Required
HS384	HMAC using SHA-384	Optional
HS512	HMAC using SHA-512	Optional
RS256	RSASSA-PKCS-v1_5 using	Recommended
	SHA-256	
RS384	RSASSA-PKCS-v1_5 using	Optional
	SHA-384	
RS512	RSASSA-PKCS-v1_5 using	Optional
	SHA-512	
ES256	ECDSA using P-256 and	Recommended+
	SHA-256	
ES384	ECDSA using P-384 and	Optional
	SHA-384	
ES512	ECDSA using P-521 and	Optional
	SHA-512	

Jones Expires March 27, 2015 [Page 6]

Internet-Draft JSON Web Algorithms (JWA) September 2014

PS256	RSASSA-PSS using SHA-256 and	Optional
	MGF1 with SHA-256	
PS384	RSASSA-PSS using SHA-384 and	Optional
	MGF1 with SHA-384	
PS512	RSASSA-PSS using SHA-512 and	Optional
	MGF1 with SHA-512	
none	No digital signature or MAC	Optional
	performed	
 +---------------+------------------------------+--------------------+

 The use of "+" in the Implementation Requirements indicates that the
 requirement strength is likely to be increased in a future version of
 the specification.

 See Appendix A.1 for a table cross-referencing the JWS digital
 signature and MAC "alg" (algorithm) values defined in this
 specification with the equivalent identifiers used by other standards
 and software packages.

3.2. HMAC with SHA-2 Functions

 Hash-based Message Authentication Codes (HMACs) enable one to use a
 secret plus a cryptographic hash function to generate a Message
 Authentication Code (MAC). This can be used to demonstrate that
 whoever generated the MAC was in possession of the MAC key. The
 algorithm for implementing and validating HMACs is provided in RFC

2104 [RFC2104].

 A key of the same size as the hash output (for instance, 256 bits for
 "HS256") or larger MUST be used with this algorithm.

 The HMAC SHA-256 MAC is generated per RFC 2104, using SHA-256 as the
 hash algorithm "H", using the JWS Signing Input as the "text" value,
 and using the shared key. The HMAC output value is the JWS
 Signature.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWS Signature is an HMAC value computed using the
 corresponding algorithm:

 +---------------------+--------------------+
 | alg Parameter Value | MAC Algorithm |
 +---------------------+--------------------+
 | HS256 | HMAC using SHA-256 |
 | HS384 | HMAC using SHA-384 |
 | HS512 | HMAC using SHA-512 |
 +---------------------+--------------------+

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104

Jones Expires March 27, 2015 [Page 7]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 The HMAC SHA-256 MAC for a JWS is validated by computing an HMAC
 value per RFC 2104, using SHA-256 as the hash algorithm "H", using
 the received JWS Signing Input as the "text" value, and using the
 shared key. This computed HMAC value is then compared to the result
 of base64url decoding the received encoded JWS Signature value.
 Alternatively, the computed HMAC value can be base64url encoded and
 compared to the received encoded JWS Signature value, as this
 comparison produces the same result as comparing the unencoded
 values. In either case, if the values match, the HMAC has been
 validated.

 Securing content and validation with the HMAC SHA-384 and HMAC SHA-
 512 algorithms is performed identically to the procedure for HMAC
 SHA-256 -- just using the corresponding hash algorithms with
 correspondingly larger minimum key sizes and result values: 384 bits
 each for HMAC SHA-384 and 512 bits each for HMAC SHA-512.

 An example using this algorithm is shown in Appendix A.1 of [JWS].

3.3. Digital Signature with RSASSA-PKCS1-V1_5

 This section defines the use of the RSASSA-PKCS1-V1_5 digital
 signature algorithm as defined in Section 8.2 of RFC 3447 [RFC3447]
 (commonly known as PKCS #1), using SHA-2 [SHS] hash functions.

 A key of size 2048 bits or larger MUST be used with these algorithms.

 The RSASSA-PKCS1-V1_5 SHA-256 digital signature is generated as
 follows: Generate a digital signature of the JWS Signing Input using
 RSASSA-PKCS1-V1_5-SIGN and the SHA-256 hash function with the desired
 private key. This is the JWS Signature value.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWS Signature is a digital signature value computed
 using the corresponding algorithm:

 +---------------------+--------------------------------+
 | alg Parameter Value | Digital Signature Algorithm |
 +---------------------+--------------------------------+
 | RS256 | RSASSA-PKCS-v1_5 using SHA-256 |
 | RS384 | RSASSA-PKCS-v1_5 using SHA-384 |
 | RS512 | RSASSA-PKCS-v1_5 using SHA-512 |
 +---------------------+--------------------------------+

 The RSASSA-PKCS1-V1_5 SHA-256 digital signature for a JWS is
 validated as follows: Submit the JWS Signing Input, the JWS
 Signature, and the public key corresponding to the private key used
 by the signer to the RSASSA-PKCS1-V1_5-VERIFY algorithm using SHA-256

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3447#section-8.2
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires March 27, 2015 [Page 8]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 as the hash function.

 Signing and validation with the RSASSA-PKCS1-V1_5 SHA-384 and RSASSA-
 PKCS1-V1_5 SHA-512 algorithms is performed identically to the
 procedure for RSASSA-PKCS1-V1_5 SHA-256 -- just using the
 corresponding hash algorithms instead of SHA-256.

 An example using this algorithm is shown in Appendix A.2 of [JWS].

3.4. Digital Signature with ECDSA

 The Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] provides
 for the use of Elliptic Curve cryptography, which is able to provide
 equivalent security to RSA cryptography but using shorter key sizes
 and with greater processing speed for many operations. This means
 that ECDSA digital signatures will be substantially smaller in terms
 of length than equivalently strong RSA digital signatures.

 This specification defines the use of ECDSA with the P-256 curve and
 the SHA-256 cryptographic hash function, ECDSA with the P-384 curve
 and the SHA-384 hash function, and ECDSA with the P-521 curve and the
 SHA-512 hash function. The P-256, P-384, and P-521 curves are
 defined in [DSS].

 The ECDSA P-256 SHA-256 digital signature is generated as follows:

 1. Generate a digital signature of the JWS Signing Input using ECDSA
 P-256 SHA-256 with the desired private key. The output will be
 the pair (R, S), where R and S are 256 bit unsigned integers.

 2. Turn R and S into octet sequences in big endian order, with each
 array being be 32 octets long. The octet sequence
 representations MUST NOT be shortened to omit any leading zero
 octets contained in the values.

 3. Concatenate the two octet sequences in the order R and then S.
 (Note that many ECDSA implementations will directly produce this
 concatenation as their output.)

 4. The resulting 64 octet sequence is the JWS Signature value.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWS Signature is a digital signature value computed
 using the corresponding algorithm:

Jones Expires March 27, 2015 [Page 9]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 +---------------------+-------------------------------+
 | alg Parameter Value | Digital Signature Algorithm |
 +---------------------+-------------------------------+
 | ES256 | ECDSA using P-256 and SHA-256 |
 | ES384 | ECDSA using P-384 and SHA-384 |
 | ES512 | ECDSA using P-521 and SHA-512 |
 +---------------------+-------------------------------+

 The ECDSA P-256 SHA-256 digital signature for a JWS is validated as
 follows:

 1. The JWS Signature value MUST be a 64 octet sequence. If it is
 not a 64 octet sequence, the validation has failed.

 2. Split the 64 octet sequence into two 32 octet sequences. The
 first octet sequence represents R and the second S. The values R
 and S are represented as octet sequences using the Integer-to-
 OctetString Conversion defined in Section 2.3.7 of SEC1 [SEC1]
 (in big endian octet order).

 3. Submit the JWS Signing Input R, S and the public key (x, y) to
 the ECDSA P-256 SHA-256 validator.

 Signing and validation with the ECDSA P-384 SHA-384 and ECDSA P-521
 SHA-512 algorithms is performed identically to the procedure for
 ECDSA P-256 SHA-256 -- just using the corresponding hash algorithms
 with correspondingly larger result values. For ECDSA P-384 SHA-384,
 R and S will be 384 bits each, resulting in a 96 octet sequence. For
 ECDSA P-521 SHA-512, R and S will be 521 bits each, resulting in a
 132 octet sequence.

 Examples using these algorithms are shown in Appendices A.3 and A.4
 of [JWS].

3.5. Digital Signature with RSASSA-PSS

 This section defines the use of the RSASSA-PSS digital signature
 algorithm as defined in Section 8.1 of RFC 3447 [RFC3447] with the
 MGF1 mask generation function and SHA-2 hash functions, always using
 the same hash function for both the RSASSA-PSS hash function and the
 MGF1 hash function. The size of the salt value is the same size as
 the hash function output. All other algorithm parameters use the
 defaults specified in Section A.2.3 of RFC 3447.

 A key of size 2048 bits or larger MUST be used with this algorithm.

 The RSASSA-PSS SHA-256 digital signature is generated as follows:
 Generate a digital signature of the JWS Signing Input using RSASSA-

https://datatracker.ietf.org/doc/html/rfc3447#section-8.1
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires March 27, 2015 [Page 10]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 PSS-SIGN, the SHA-256 hash function, and the MGF1 mask generation
 function with SHA-256 with the desired private key. This is the JWS
 signature value.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWS Signature is a digital signature value computed
 using the corresponding algorithm:

 +---------------------+---+
 | alg Parameter Value | Digital Signature Algorithm |
 +---------------------+---+
PS256	RSASSA-PSS using SHA-256 and MGF1 with
	SHA-256
PS384	RSASSA-PSS using SHA-384 and MGF1 with
	SHA-384
PS512	RSASSA-PSS using SHA-512 and MGF1 with
	SHA-512
 +---------------------+---+

 The RSASSA-PSS SHA-256 digital signature for a JWS is validated as
 follows: Submit the JWS Signing Input, the JWS Signature, and the
 public key corresponding to the private key used by the signer to the
 RSASSA-PSS-VERIFY algorithm using SHA-256 as the hash function and
 using MGF1 as the mask generation function with SHA-256.

 Signing and validation with the RSASSA-PSS SHA-384 and RSASSA-PSS
 SHA-512 algorithms is performed identically to the procedure for
 RSASSA-PSS SHA-256 -- just using the alternative hash algorithm in
 both roles.

3.6. Using the Algorithm "none"

 JWSs MAY also be created that do not provide integrity protection.
 Such a JWS is called an Unsecured JWS. An Unsecured JWS MUST use the
 "alg" value "none", and is formatted identically to other JWSs, but
 MUST use the empty octet sequence as its JWS Signature value.
 Receivers MUST verify that the JWS Signature value is the empty octet
 sequence. See Section 8.5 for security considerations associated
 with using this algorithm.

4. Cryptographic Algorithms for Key Management

 JWE uses cryptographic algorithms to encrypt or determine the Content
 Encryption Key (CEK).

Jones Expires March 27, 2015 [Page 11]

Internet-Draft JSON Web Algorithms (JWA) September 2014

4.1. "alg" (Algorithm) Header Parameter Values for JWE

 The table below is the set of "alg" (algorithm) Header Parameter
 values that are defined by this specification for use with JWE.
 These algorithms are used to encrypt the CEK, producing the JWE
 Encrypted Key, or to use key agreement to agree upon the CEK.

 +-------------------+-----------------+------------+----------------+
alg Parameter	Key Management	Additional	Implementation
Value	Algorithm	Header	Requirements
		Parameters	
+-------------------+-----------------+------------+----------------+			
RSA1_5	RSAES-PKCS1-V1_	(none)	Required
	5		
RSA-OAEP	RSAES OAEP	(none)	Optional
	using default		
	parameters		
RSA-OAEP-256	RSAES OAEP	(none)	Optional
	using SHA-256		
	and MGF1 with		
	SHA-256		
A128KW	AES Key Wrap	(none)	Recommended
	with default		
	initial value		
	using 128 bit		
	key		
A192KW	AES Key Wrap	(none)	Optional
	with default		
	initial value		
	using 192 bit		
	key		
A256KW	AES Key Wrap	(none)	Recommended
	with default		
	initial value		
	using 256 bit		
	key		
dir	Direct use of a	(none)	Recommended
	shared		
	symmetric key		
	as the CEK		
ECDH-ES	Elliptic Curve	"epk",	Recommended+
	Diffie-Hellman	"apu",	
	Ephemeral	"apv"	
	Static key		
	agreement using		
	Concat KDF		

Jones Expires March 27, 2015 [Page 12]

Internet-Draft JSON Web Algorithms (JWA) September 2014

ECDH-ES+A128KW	ECDH-ES using	"epk",	Recommended
	Concat KDF and	"apu",	
	CEK wrapped	"apv"	
	with "A128KW"		
ECDH-ES+A192KW	ECDH-ES using	"epk",	Optional
	Concat KDF and	"apu",	
	CEK wrapped	"apv"	
	with "A192KW"		
ECDH-ES+A256KW	ECDH-ES using	"epk",	Recommended
	Concat KDF and	"apu",	
	CEK wrapped	"apv"	
	with "A256KW"		
A128GCMKW	Key wrapping	"iv",	Optional
	with AES GCM	"tag"	
	using 128 bit		
	key		
A192GCMKW	Key wrapping	"iv",	Optional
	with AES GCM	"tag"	
	using 192 bit		
	key		
A256GCMKW	Key wrapping	"iv",	Optional
	with AES GCM	"tag"	
	using 256 bit		
	key		
PBES2-HS256+A128K	PBES2 with HMAC	"p2s",	Optional
W	SHA-256 and	"p2c"	
	"A128KW"		
	wrapping		
PBES2-HS384+A192K	PBES2 with HMAC	"p2s",	Optional
W	SHA-384 and	"p2c"	
	"A192KW"		
	wrapping		
PBES2-HS512+A256K	PBES2 with HMAC	"p2s",	Optional
W	SHA-512 and	"p2c"	
	"A256KW"		
	wrapping		
 +-------------------+-----------------+------------+----------------+

 The Additional Header Parameters column indicates what additional
 Header Parameters are used by the algorithm, beyond "alg", which all
 use. All but "dir" and "ECDH-ES" also produce a JWE Encrypted Key
 value.

 The use of "+" in the Implementation Requirements indicates that the
 requirement strength is likely to be increased in a future version of
 the specification.

 See Appendix A.2 for a table cross-referencing the JWE "alg"

Jones Expires March 27, 2015 [Page 13]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 (algorithm) values defined in this specification with the equivalent
 identifiers used by other standards and software packages.

4.2. Key Encryption with RSAES-PKCS1-V1_5

 This section defines the specifics of encrypting a JWE CEK with
 RSAES-PKCS1-V1_5 [RFC3447]. The "alg" Header Parameter value
 "RSA1_5" is used for this algorithm.

 A key of size 2048 bits or larger MUST be used with this algorithm.

 An example using this algorithm is shown in Appendix A.2 of [JWE].

4.3. Key Encryption with RSAES OAEP

 This section defines the specifics of encrypting a JWE CEK with RSAES
 using Optimal Asymmetric Encryption Padding (OAEP) [RFC3447]. Two
 sets of parameters for using OAEP are defined, which use different
 hash functions. In the first case, the default parameters specified
 by RFC 3447 in Section A.2.1 are used. (Those default parameters are
 the SHA-1 hash function and the MGF1 with SHA-1 mask generation
 function.) In the second case, the SHA-256 hash function and the
 MGF1 with SHA-256 mask generation function are used.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWE Encrypted Key is the result of encrypting the
 CEK using the corresponding algorithm:

 +---------------------+---+
 | alg Parameter Value | Key Management Algorithm |
 +---------------------+---+
RSA-OAEP	RSAES OAEP using default parameters
RSA-OAEP-256	RSAES OAEP using SHA-256 and MGF1 with
	SHA-256
 +---------------------+---+

 A key of size 2048 bits or larger MUST be used with these algorithms.

 An example using RSAES OAEP with the default parameters is shown in
Appendix A.1 of [JWE].

4.4. Key Wrapping with AES Key Wrap

 This section defines the specifics of encrypting a JWE CEK with the
 Advanced Encryption Standard (AES) Key Wrap Algorithm [RFC3394] using
 the default initial value specified in Section 2.2.3.1.

 The following "alg" (algorithm) Header Parameter values are used to

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3394

Jones Expires March 27, 2015 [Page 14]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 indicate that the JWE Encrypted Key is the result of encrypting the
 CEK using the corresponding algorithm and key size:

 +------------------+--+
 | alg Parameter | Key Management Algorithm |
 | Value | |
 +------------------+--+
A128KW	AES Key Wrap with default initial value using
	128 bit key
A192KW	AES Key Wrap with default initial value using
	192 bit key
A256KW	AES Key Wrap with default initial value using
	256 bit key
 +------------------+--+

 An example using this algorithm is shown in Appendix A.3 of [JWE].

4.5. Direct Encryption with a Shared Symmetric Key

 This section defines the specifics of directly performing symmetric
 key encryption without performing a key wrapping step. In this case,
 the shared symmetric key is used directly as the Content Encryption
 Key (CEK) value for the "enc" algorithm. An empty octet sequence is
 used as the JWE Encrypted Key value. The "alg" Header Parameter
 value "dir" is used in this case.

 Refer to the security considerations on key lifetimes in Section 8.2
 and AES GCM in Section 8.4 when considering utilizing direct
 encryption.

4.6. Key Agreement with Elliptic Curve Diffie-Hellman Ephemeral Static
 (ECDH-ES)

 This section defines the specifics of key agreement with Elliptic
 Curve Diffie-Hellman Ephemeral Static [RFC6090], in combination with
 the Concat KDF, as defined in Section 5.8.1 of [NIST.800-56A]. The
 key agreement result can be used in one of two ways:

 1. directly as the Content Encryption Key (CEK) for the "enc"
 algorithm, in the Direct Key Agreement mode, or

 2. as a symmetric key used to wrap the CEK with the "A128KW",
 "A192KW", or "A256KW" algorithms, in the Key Agreement with Key
 Wrapping mode.

 A new ephemeral public key value MUST be generated for each key
 agreement operation.

https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires March 27, 2015 [Page 15]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 In Direct Key Agreement mode, the output of the Concat KDF MUST be a
 key of the same length as that used by the "enc" algorithm. In this
 case, the empty octet sequence is used as the JWE Encrypted Key
 value. The "alg" Header Parameter value "ECDH-ES" is used in the
 Direct Key Agreement mode.

 In Key Agreement with Key Wrapping mode, the output of the Concat KDF
 MUST be a key of the length needed for the specified key wrapping
 algorithm. In this case, the JWE Encrypted Key is the CEK wrapped
 with the agreed upon key.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWE Encrypted Key is the result of encrypting the
 CEK using the result of the key agreement algorithm as the key
 encryption key for the corresponding key wrapping algorithm:

 +-------------------+---+
 | alg Parameter | Key Management Algorithm |
 | Value | |
 +-------------------+---+
ECDH-ES+A128KW	ECDH-ES using Concat KDF and CEK wrapped with
	"A128KW"
ECDH-ES+A192KW	ECDH-ES using Concat KDF and CEK wrapped with
	"A192KW"
ECDH-ES+A256KW	ECDH-ES using Concat KDF and CEK wrapped with
	"A256KW"
 +-------------------+---+

4.6.1. Header Parameters Used for ECDH Key Agreement

 The following Header Parameter names are used for key agreement as
 defined below.

4.6.1.1. "epk" (Ephemeral Public Key) Header Parameter

 The "epk" (ephemeral public key) value created by the originator for
 the use in key agreement algorithms. This key is represented as a
 JSON Web Key [JWK] public key value. It MUST contain only public key
 parameters and SHOULD contain only the minimum JWK parameters
 necessary to represent the key; other JWK parameters included can be
 checked for consistency and honored or can be ignored. This Header
 Parameter MUST be present and MUST be understood and processed by
 implementations when these algorithms are used.

4.6.1.2. "apu" (Agreement PartyUInfo) Header Parameter

 The "apu" (agreement PartyUInfo) value for key agreement algorithms
 using it (such as "ECDH-ES"), represented as a base64url encoded

Jones Expires March 27, 2015 [Page 16]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 string. When used, the PartyUInfo value contains information about
 the sender. Use of this Header Parameter is OPTIONAL. This Header
 Parameter MUST be understood and processed by implementations when
 these algorithms are used.

4.6.1.3. "apv" (Agreement PartyVInfo) Header Parameter

 The "apv" (agreement PartyVInfo) value for key agreement algorithms
 using it (such as "ECDH-ES"), represented as a base64url encoded
 string. When used, the PartyVInfo value contains information about
 the receiver. Use of this Header Parameter is OPTIONAL. This Header
 Parameter MUST be understood and processed by implementations when
 these algorithms are used.

4.6.2. Key Derivation for ECDH Key Agreement

 The key derivation process derives the agreed upon key from the
 shared secret Z established through the ECDH algorithm, per Section

6.2.2.2 of [NIST.800-56A].

 Key derivation is performed using the Concat KDF, as defined in
 Section 5.8.1 of [NIST.800-56A], where the Digest Method is SHA-256.
 The Concat KDF parameters are set as follows:

 Z
 This is set to the representation of the shared secret Z as an
 octet sequence.

 keydatalen
 This is set to the number of bits in the desired output key. For
 "ECDH-ES", this is length of the key used by the "enc" algorithm.
 For "ECDH-ES+A128KW", "ECDH-ES+A192KW", and "ECDH-ES+A256KW", this
 is 128, 192, and 256, respectively.

 AlgorithmID
 The AlgorithmID value is of the form Datalen || Data, where Data
 is a variable-length string of zero or more octets, and Datalen is
 a fixed-length, big endian 32 bit counter that indicates the
 length (in octets) of Data. In the Direct Key Agreement case,
 Data is set to the octets of the UTF-8 representation of the "enc"
 Header Parameter value. In the Key Agreement with Key Wrapping
 case, Data is set to the octets of the UTF-8 representation of the
 "alg" Header Parameter value.

 PartyUInfo
 The PartyUInfo value is of the form Datalen || Data, where Data is
 a variable-length string of zero or more octets, and Datalen is a
 fixed-length, big endian 32 bit counter that indicates the length

Jones Expires March 27, 2015 [Page 17]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 (in octets) of Data. If an "apu" (agreement PartyUInfo) Header
 Parameter is present, Data is set to the result of base64url
 decoding the "apu" value and Datalen is set to the number of
 octets in Data. Otherwise, Datalen is set to 0 and Data is set to
 the empty octet sequence.

 PartyVInfo
 The PartyVInfo value is of the form Datalen || Data, where Data is
 a variable-length string of zero or more octets, and Datalen is a
 fixed-length, big endian 32 bit counter that indicates the length
 (in octets) of Data. If an "apv" (agreement PartyVInfo) Header
 Parameter is present, Data is set to the result of base64url
 decoding the "apv" value and Datalen is set to the number of
 octets in Data. Otherwise, Datalen is set to 0 and Data is set to
 the empty octet sequence.

 SuppPubInfo
 This is set to the keydatalen represented as a 32 bit big endian
 integer.

 SuppPrivInfo
 This is set to the empty octet sequence.

 Applications need to specify how the "apu" and "apv" parameters are
 used for that application. The "apu" and "apv" values MUST be
 distinct, when used. Applications wishing to conform to
 [NIST.800-56A] need to provide values that meet the requirements of
 that document, e.g., by using values that identify the sender and
 recipient. Alternatively, applications MAY conduct key derivation in
 a manner similar to The Diffie-Hellman Key Agreement Method
 [RFC2631]: In that case, the "apu" field MAY either be omitted or
 represent a random 512-bit value (analogous to PartyAInfo in
 Ephemeral-Static mode in RFC 2631) and the "apv" field SHOULD NOT be
 present.

 See Appendix C for an example key agreement computation using this
 method.

4.7. Key Encryption with AES GCM

 This section defines the specifics of encrypting a JWE Content
 Encryption Key (CEK) with Advanced Encryption Standard (AES) in
 Galois/Counter Mode (GCM) [AES, NIST.800-38D].

 Use of an Initialization Vector of size 96 bits is REQUIRED with this
 algorithm. The Initialization Vector is represented in base64url
 encoded form as the "iv" (initialization vector) Header Parameter
 value.

https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc2631

Jones Expires March 27, 2015 [Page 18]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 The Additional Authenticated Data value used is the empty octet
 string.

 The requested size of the Authentication Tag output MUST be 128 bits,
 regardless of the key size.

 The JWE Encrypted Key value is the Ciphertext output.

 The Authentication Tag output is represented in base64url encoded
 form as the "tag" (authentication tag) Header Parameter value.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWE Encrypted Key is the result of encrypting the
 CEK using the corresponding algorithm and key size:

 +---------------------+---+
 | alg Parameter Value | Key Management Algorithm |
 +---------------------+---+
A128GCMKW	Key wrapping with AES GCM using 128 bit key
A192GCMKW	Key wrapping with AES GCM using 192 bit key
A256GCMKW	Key wrapping with AES GCM using 256 bit key
 +---------------------+---+

4.7.1. Header Parameters Used for AES GCM Key Encryption

 The following Header Parameters are used for AES GCM key encryption.

4.7.1.1. "iv" (Initialization Vector) Header Parameter

 The "iv" (initialization vector) Header Parameter value is the
 base64url encoded representation of the Initialization Vector value
 used for the key encryption operation. This Header Parameter MUST be
 present and MUST be understood and processed by implementations when
 these algorithms are used.

4.7.1.2. "tag" (Authentication Tag) Header Parameter

 The "tag" (authentication tag) Header Parameter value is the
 base64url encoded representation of the Authentication Tag value
 resulting from the key encryption operation. This Header Parameter
 MUST be present and MUST be understood and processed by
 implementations when these algorithms are used.

4.8. Key Encryption with PBES2

 This section defines the specifics of performing password-based
 encryption of a JWE CEK, by first deriving a key encryption key from
 a user-supplied password using PBES2 schemes as specified in Section

Jones Expires March 27, 2015 [Page 19]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 6.2 of [RFC2898], then by encrypting the JWE CEK using the derived
 key.

 These algorithms use HMAC SHA-2 algorithms as the Pseudo-Random
 Function (PRF) for the PBKDF2 key derivation and AES Key Wrap
 [RFC3394] for the encryption scheme. The PBES2 password input is an
 octet sequence; if the password to be used is represented as a text
 string rather than an octet sequence, the UTF-8 encoding of the text
 string MUST be used as the octet sequence. The salt parameter MUST
 be computed from the "p2s" (PBES2 salt input) Header Parameter value
 and the "alg" (algorithm) Header Parameter value as specified in the
 "p2s" definition below. The iteration count parameter MUST be
 provided as the "p2c" Header Parameter value. The algorithms
 respectively use HMAC SHA-256, HMAC SHA-384, and HMAC SHA-512 as the
 PRF and use 128, 192, and 256 bit AES Key Wrap keys. Their derived-
 key lengths respectively are 16, 24, and 32 octets.

 The following "alg" (algorithm) Header Parameter values are used to
 indicate that the JWE Encrypted Key is the result of encrypting the
 CEK using the result of the corresponding password-based encryption
 algorithm as the key encryption key for the corresponding key
 wrapping algorithm:

 +---------------------+---+
 | alg Parameter Value | Key Management Algorithm |
 +---------------------+---+
PBES2-HS256+A128KW	PBES2 with HMAC SHA-256 and "A128KW"
	wrapping
PBES2-HS384+A192KW	PBES2 with HMAC SHA-384 and "A192KW"
	wrapping
PBES2-HS512+A256KW	PBES2 with HMAC SHA-512 and "A256KW"
	wrapping
 +---------------------+---+

 See Appendix C of JSON Web Key (JWK) [JWK] for an example key
 encryption computation using "PBES2-HS256+A128KW".

4.8.1. Header Parameters Used for PBES2 Key Encryption

 The following Header Parameters are used for Key Encryption with
 PBES2.

4.8.1.1. "p2s" (PBES2 salt input) Parameter

 The "p2s" (PBES2 salt input) Header Parameter encodes a Salt Input
 value, which is used as part of the PBKDF2 salt value. The "p2s"
 value is BASE64URL(Salt Input). This Header Parameter MUST be
 present and MUST be understood and processed by implementations when

https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc3394

Jones Expires March 27, 2015 [Page 20]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 these algorithms are used.

 The salt expands the possible keys that can be derived from a given
 password. A Salt Input value containing 8 or more octets MUST be
 used. A new Salt Input value MUST be generated randomly for every
 encryption operation; see RFC 4086 [RFC4086] for considerations on
 generating random values. The salt value used is (UTF8(Alg) || 0x00
 || Salt Input), where Alg is the "alg" Header Parameter value.

4.8.1.2. "p2c" (PBES2 count) Parameter

 The "p2c" (PBES2 count) Header Parameter contains the PBKDF2
 iteration count, represented as a positive integer. This Header
 Parameter MUST be present and MUST be understood and processed by
 implementations when these algorithms are used.

 The iteration count adds computational expense, ideally compounded by
 the possible range of keys introduced by the salt. A minimum
 iteration count of 1000 is RECOMMENDED.

5. Cryptographic Algorithms for Content Encryption

 JWE uses cryptographic algorithms to encrypt and integrity protect
 the Plaintext and to also integrity protect additional authenticated
 data.

5.1. "enc" (Encryption Algorithm) Header Parameter Values for JWE

 The table below is the set of "enc" (encryption algorithm) Header
 Parameter values that are defined by this specification for use with
 JWE.

 +-------------+------------------------+------------+---------------+
enc	Content Encryption	Additional	Implementatio
Parameter	Algorithm	Header	nRequirements
Value		Parameters	
+-------------+------------------------+------------+---------------+			
A128CBC-HS2	AES_128_CBC_HMAC_SHA_2	(none)	Required
56	56 authenticated		
	encryption algorithm,		
	as defined in		
	Section 5.2.3		
A192CBC-HS3	AES_192_CBC_HMAC_SHA_3	(none)	Optional
84	84 authenticated		
	encryption algorithm,		
	as defined in		
	Section 5.2.4		

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Jones Expires March 27, 2015 [Page 21]

Internet-Draft JSON Web Algorithms (JWA) September 2014

A256CBC-HS5	AES_256_CBC_HMAC_SHA_5	(none)	Required
12	12 authenticated		
	encryption algorithm,		
	as defined in		
	Section 5.2.5		
A128GCM	AES GCM using 128 bit	(none)	Recommended
	key		
A192GCM	AES GCM using 192 bit	(none)	Optional
	key		
A256GCM	AES GCM using 256 bit	(none)	Recommended
	key		
 +-------------+------------------------+------------+---------------+

 The Additional Header Parameters column indicates what additional
 Header Parameters are used by the algorithm, beyond "enc", which all
 use. All also use a JWE Initialization Vector value and produce JWE
 Ciphertext and JWE Authentication Tag values.

 See Appendix A.3 for a table cross-referencing the JWE "enc"
 (encryption algorithm) values defined in this specification with the
 equivalent identifiers used by other standards and software packages.

5.2. AES_CBC_HMAC_SHA2 Algorithms

 This section defines a family of authenticated encryption algorithms
 built using a composition of Advanced Encryption Standard (AES) in
 Cipher Block Chaining (CBC) mode with PKCS #7 padding [AES,
 NIST.800-38A] operations and HMAC [RFC2104, SHS] operations. This
 algorithm family is called AES_CBC_HMAC_SHA2. It also defines three
 instances of this family, the first using 128 bit CBC keys and HMAC
 SHA-256, the second using 192 bit CBC keys and HMAC SHA-384, and the
 third using 256 bit CBC keys and HMAC SHA-512. Test cases for these
 algorithms can be found in Appendix B.

 These algorithms are based upon Authenticated Encryption with AES-CBC
 and HMAC-SHA [I-D.mcgrew-aead-aes-cbc-hmac-sha2], performing the same
 cryptographic computations, but with the Initialization Vector and
 Authentication Tag values remaining separate, rather than being
 concatenated with the Ciphertext value in the output representation.
 This option is discussed in Appendix B of that specification. This
 algorithm family is a generalization of the algorithm family in
 [I-D.mcgrew-aead-aes-cbc-hmac-sha2], and can be used to implement
 those algorithms.

5.2.1. Conventions Used in Defining AES_CBC_HMAC_SHA2

 We use the following notational conventions.

https://datatracker.ietf.org/doc/html/rfc2104

Jones Expires March 27, 2015 [Page 22]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 CBC-PKCS5-ENC(X, P) denotes the AES CBC encryption of P using PKCS
 #7 padding using the cipher with the key X.

 MAC(Y, M) denotes the application of the Message Authentication
 Code (MAC) to the message M, using the key Y.

5.2.2. Generic AES_CBC_HMAC_SHA2 Algorithm

 This section defines AES_CBC_HMAC_SHA2 in a manner that is
 independent of the AES CBC key size or hash function to be used.

Section 5.2.2.1 and Section 5.2.2.2 define the generic encryption and
 decryption algorithms. Sections 5.2.3 through 5.2.5 define instances
 of AES_CBC_HMAC_SHA2 that specify those details.

5.2.2.1. AES_CBC_HMAC_SHA2 Encryption

 The authenticated encryption algorithm takes as input four octet
 strings: a secret key K, a plaintext P, additional authenticated data
 A, and an initialization vector IV. The authenticated ciphertext
 value E and the authentication tag value T are provided as outputs.
 The data in the plaintext are encrypted and authenticated, and the
 additional authenticated data are authenticated, but not encrypted.

 The encryption process is as follows, or uses an equivalent set of
 steps:

 1. The secondary keys MAC_KEY and ENC_KEY are generated from the
 input key K as follows. Each of these two keys is an octet
 string.

 MAC_KEY consists of the initial MAC_KEY_LEN octets of K, in
 order.

 ENC_KEY consists of the final ENC_KEY_LEN octets of K, in
 order.

 Here we denote the number of octets in the MAC_KEY as
 MAC_KEY_LEN, and the number of octets in ENC_KEY as ENC_KEY_LEN;
 the values of these parameters are specified by the Authenticated
 Encryption algorithms in Sections 5.2.3 through 5.2.5. The
 number of octets in the input key K MUST be the sum of
 MAC_KEY_LEN and ENC_KEY_LEN. When generating the secondary keys
 from K, MAC_KEY and ENC_KEY MUST NOT overlap. Note that the MAC
 key comes before the encryption key in the input key K; this is
 in the opposite order of the algorithm names in the identifier
 "AES_CBC_HMAC_SHA2".

Jones Expires March 27, 2015 [Page 23]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 2. The Initialization Vector (IV) used is a 128 bit value generated
 randomly or pseudorandomly for use in the cipher.

 3. The plaintext is CBC encrypted using PKCS #7 padding using
 ENC_KEY as the key, and the IV. We denote the ciphertext output
 from this step as E.

 4. The octet string AL is equal to the number of bits in the
 additional authenticated data A expressed as a 64-bit unsigned
 big endian integer.

 5. A message authentication tag T is computed by applying HMAC
 [RFC2104] to the following data, in order:

 the additional authenticated data A,

 the initialization vector IV,

 the ciphertext E computed in the previous step, and

 the octet string AL defined above.

 The string MAC_KEY is used as the MAC key. We denote the output
 of the MAC computed in this step as M. The first T_LEN bits of M
 are used as T.

 6. The Ciphertext E and the Authentication Tag T are returned as the
 outputs of the authenticated encryption.

 The encryption process can be illustrated as follows. Here K, P, A,
 IV, and E denote the key, plaintext, additional authenticated data,
 initialization vector, and ciphertext, respectively.

 MAC_KEY = initial MAC_KEY_LEN octets of K,

 ENC_KEY = final ENC_KEY_LEN octets of K,

 E = CBC-PKCS5-ENC(ENC_KEY, P),

 M = MAC(MAC_KEY, A || IV || E || AL),

 T = initial T_LEN octets of M.

5.2.2.2. AES_CBC_HMAC_SHA2 Decryption

 The authenticated decryption operation has five inputs: K, A, IV, E,
 and T as defined above. It has only a single output, either a
 plaintext value P or a special symbol FAIL that indicates that the

https://datatracker.ietf.org/doc/html/rfc2104

Jones Expires March 27, 2015 [Page 24]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 inputs are not authentic. The authenticated decryption algorithm is
 as follows, or uses an equivalent set of steps:

 1. The secondary keys MAC_KEY and ENC_KEY are generated from the
 input key K as in Step 1 of Section 5.2.2.1.

 2. The integrity and authenticity of A and E are checked by
 computing an HMAC with the inputs as in Step 5 of

Section 5.2.2.1. The value T, from the previous step, is
 compared to the first MAC_KEY length bits of the HMAC output. If
 those values are identical, then A and E are considered valid,
 and processing is continued. Otherwise, all of the data used in
 the MAC validation are discarded, and the Authenticated
 Encryption decryption operation returns an indication that it
 failed, and the operation halts. (But see Section 11.5 of [JWE]
 for security considerations on thwarting timing attacks.)

 3. The value E is decrypted and the PKCS #7 padding is removed. The
 value IV is used as the initialization vector. The value ENC_KEY
 is used as the decryption key.

 4. The plaintext value is returned.

5.2.3. AES_128_CBC_HMAC_SHA_256

 This algorithm is a concrete instantiation of the generic
 AES_CBC_HMAC_SHA2 algorithm above. It uses the HMAC message
 authentication code [RFC2104] with the SHA-256 hash function [SHS] to
 provide message authentication, with the HMAC output truncated to 128
 bits, corresponding to the HMAC-SHA-256-128 algorithm defined in
 [RFC4868]. For encryption, it uses AES in the Cipher Block Chaining
 (CBC) mode of operation as defined in Section 6.2 of [NIST.800-38A],
 with PKCS #7 padding and a 128 bit initialization vector (IV) value.

 The AES_CBC_HMAC_SHA2 parameters specific to AES_128_CBC_HMAC_SHA_256
 are:

 The input key K is 32 octets long.

 ENC_KEY_LEN is 16 octets.

 MAC_KEY_LEN is 16 octets.

 The SHA-256 hash algorithm is used for the HMAC.

 The HMAC-SHA-256 output is truncated to T_LEN=16 octets, by
 stripping off the final 16 octets.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4868

Jones Expires March 27, 2015 [Page 25]

Internet-Draft JSON Web Algorithms (JWA) September 2014

5.2.4. AES_192_CBC_HMAC_SHA_384

 AES_192_CBC_HMAC_SHA_384 is based on AES_128_CBC_HMAC_SHA_256, but
 with the following differences:

 The input key K is 48 octets long instead of 32.

 ENC_KEY_LEN is 24 octets instead of 16.

 MAC_KEY_LEN is 24 octets instead of 16.

 SHA-384 is used for the HMAC instead of SHA-256.

 The HMAC SHA-384 value is truncated to T_LEN=24 octets instead of
 16.

5.2.5. AES_256_CBC_HMAC_SHA_512

 AES_256_CBC_HMAC_SHA_512 is based on AES_128_CBC_HMAC_SHA_256, but
 with the following differences:

 The input key K is 64 octets long instead of 32.

 ENC_KEY_LEN is 32 octets instead of 16.

 MAC_KEY_LEN is 32 octets instead of 16.

 SHA-512 is used for the HMAC instead of SHA-256.

 The HMAC SHA-512 value is truncated to T_LEN=32 octets instead of
 16.

5.2.6. Content Encryption with AES_CBC_HMAC_SHA2

 This section defines the specifics of performing authenticated
 encryption with the AES_CBC_HMAC_SHA2 algorithms.

 The CEK is used as the secret key K.

 The following "enc" (encryption algorithm) Header Parameter values
 are used to indicate that the JWE Ciphertext and JWE Authentication
 Tag values have been computed using the corresponding algorithm:

Jones Expires March 27, 2015 [Page 26]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 +---------------+---+
 | enc Parameter | Content Encryption Algorithm |
 | Value | |
 +---------------+---+
A128CBC-HS256	AES_128_CBC_HMAC_SHA_256 authenticated encryption
	algorithm, as defined in Section 5.2.3
A192CBC-HS384	AES_192_CBC_HMAC_SHA_384 authenticated encryption
	algorithm, as defined in Section 5.2.4
A256CBC-HS512	AES_256_CBC_HMAC_SHA_512 authenticated encryption
	algorithm, as defined in Section 5.2.5
 +---------------+---+

5.3. Content Encryption with AES GCM

 This section defines the specifics of performing authenticated
 encryption with Advanced Encryption Standard (AES) in Galois/Counter
 Mode (GCM) [AES, NIST.800-38D].

 The CEK is used as the encryption key.

 Use of an initialization vector of size 96 bits is REQUIRED with this
 algorithm.

 The requested size of the Authentication Tag output MUST be 128 bits,
 regardless of the key size.

 The following "enc" (encryption algorithm) Header Parameter values
 are used to indicate that the JWE Ciphertext and JWE Authentication
 Tag values have been computed using the corresponding algorithm and
 key size:

 +---------------------+------------------------------+
 | enc Parameter Value | Content Encryption Algorithm |
 +---------------------+------------------------------+
 | A128GCM | AES GCM using 128 bit key |
 | A192GCM | AES GCM using 192 bit key |
 | A256GCM | AES GCM using 256 bit key |
 +---------------------+------------------------------+

 An example using this algorithm is shown in Appendix A.1 of [JWE].

6. Cryptographic Algorithms for Keys

 A JSON Web Key (JWK) [JWK] is a JSON data structure that represents a
 cryptographic key. These keys can be either asymmetric or symmetric.
 They can hold both public and private information about the key.
 This section defines the parameters for keys using the algorithms

Jones Expires March 27, 2015 [Page 27]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 specified by this document.

6.1. "kty" (Key Type) Parameter Values

 The table below is the set of "kty" (key type) parameter values that
 are defined by this specification for use in JWKs.

 +--------------+--------------------------------+-------------------+
kty	Key Type	Implementation
Parameter		Requirements
Value		
+--------------+--------------------------------+-------------------+		
EC	Elliptic Curve [DSS]	Recommended+
RSA	RSA [RFC3447]	Required
oct	Octet sequence (used to	Required
	represent symmetric keys)	
 +--------------+--------------------------------+-------------------+

 The use of "+" in the Implementation Requirements indicates that the
 requirement strength is likely to be increased in a future version of
 the specification.

6.2. Parameters for Elliptic Curve Keys

 JWKs can represent Elliptic Curve [DSS] keys. In this case, the
 "kty" member value MUST be "EC".

6.2.1. Parameters for Elliptic Curve Public Keys

 An elliptic curve public key is represented by a pair of coordinates
 drawn from a finite field, which together define a point on an
 elliptic curve. The following members MUST be present for elliptic
 curve public keys:

 o "crv"
 o "x"
 o "y"

 SEC1 [SEC1] point compression is not supported for any values.

6.2.1.1. "crv" (Curve) Parameter

 The "crv" (curve) member identifies the cryptographic curve used with
 the key. Curve values from [DSS] used by this specification are:

 o "P-256"

https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires March 27, 2015 [Page 28]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o "P-384"
 o "P-521"

 These values are registered in the IANA JSON Web Key Elliptic Curve
 registry defined in Section 7.6. Additional "crv" values can be
 registered by other specifications. Additional "crv" values MAY be
 used, provided they are understood by implementations using that
 Elliptic Curve key. The "crv" value is a case-sensitive string.

6.2.1.2. "x" (X Coordinate) Parameter

 The "x" (x coordinate) member contains the x coordinate for the
 elliptic curve point. It is represented as the base64url encoding of
 the octet string representation of the coordinate, as defined in

Section 2.3.5 of SEC1 [SEC1]. The length of this octet string MUST
 be the full size of a coordinate for the curve specified in the "crv"
 parameter. For example, if the value of "crv" is "P-521", the octet
 string must be 66 octets long.

6.2.1.3. "y" (Y Coordinate) Parameter

 The "y" (y coordinate) member contains the y coordinate for the
 elliptic curve point. It is represented as the base64url encoding of
 the octet string representation of the coordinate, as defined in

Section 2.3.5 of SEC1 [SEC1]. The length of this octet string MUST
 be the full size of a coordinate for the curve specified in the "crv"
 parameter. For example, if the value of "crv" is "P-521", the octet
 string must be 66 octets long.

6.2.2. Parameters for Elliptic Curve Private Keys

 In addition to the members used to represent Elliptic Curve public
 keys, the following member MUST be present to represent Elliptic
 Curve private keys.

6.2.2.1. "d" (ECC Private Key) Parameter

 The "d" (ECC private key) member contains the Elliptic Curve private
 key value. It is represented as the base64url encoding of the octet
 string representation of the private key value, as defined in
 Sections C.4 and 2.3.7 of SEC1 [SEC1]. The length of this octet
 string MUST be ceiling(log-base-2(n)/8) octets (where n is the order
 of the curve).

6.3. Parameters for RSA Keys

 JWKs can represent RSA [RFC3447] keys. In this case, the "kty"
 member value MUST be "RSA".

https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires March 27, 2015 [Page 29]

Internet-Draft JSON Web Algorithms (JWA) September 2014

6.3.1. Parameters for RSA Public Keys

 The following members MUST be present for RSA public keys.

6.3.1.1. "n" (Modulus) Parameter

 The "n" (modulus) member contains the modulus value for the RSA
 public key. It is represented as the base64url encoding of the
 value's unsigned big endian representation as an octet sequence. The
 octet sequence MUST utilize the minimum number of octets to represent
 the value.

 Note that implementers have found that some cryptographic libraries
 prefix an extra zero-valued octet to the modulus representations they
 return, for instance, returning 257 octets for a 2048 bit key, rather
 than 256. Implementations using such libraries will need to take
 care to omit the extra octet from the base64url encoded
 representation.

6.3.1.2. "e" (Exponent) Parameter

 The "e" (exponent) member contains the exponent value for the RSA
 public key. It is represented as the base64url encoding of the
 value's unsigned big endian representation as an octet sequence. The
 octet sequence MUST utilize the minimum number of octets to represent
 the value. For instance, when representing the value 65537, the
 octet sequence to be base64url encoded MUST consist of the three
 octets [1, 0, 1].

6.3.2. Parameters for RSA Private Keys

 In addition to the members used to represent RSA public keys, the
 following members are used to represent RSA private keys. The
 parameter "d" is REQUIRED for RSA private keys. The others enable
 optimizations and SHOULD be included by producers of JWKs
 representing RSA private keys. If the producer includes any of the
 other private key parameters, then all of the others MUST be present,
 with the exception of "oth", which MUST only be present when more
 than two prime factors were used. The consumer of a JWK MAY choose
 to accept an RSA private key that does not contain a complete set of
 the private key parameters other than "d", including JWKs in which
 "d" is the only RSA private key parameter included.

6.3.2.1. "d" (Private Exponent) Parameter

 The "d" (private exponent) member contains the private exponent value
 for the RSA private key. It is represented as the base64url encoding
 of the value's unsigned big endian representation as an octet

Jones Expires March 27, 2015 [Page 30]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 sequence. The octet sequence MUST utilize the minimum number of
 octets to represent the value.

6.3.2.2. "p" (First Prime Factor) Parameter

 The "p" (first prime factor) member contains the first prime factor,
 a positive integer. It is represented as the base64url encoding of
 the value's unsigned big endian representation as an octet sequence.
 The octet sequence MUST utilize the minimum number of octets to
 represent the value.

6.3.2.3. "q" (Second Prime Factor) Parameter

 The "q" (second prime factor) member contains the second prime
 factor, a positive integer. It is represented as the base64url
 encoding of the value's unsigned big endian representation as an
 octet sequence. The octet sequence MUST utilize the minimum number
 of octets to represent the value.

6.3.2.4. "dp" (First Factor CRT Exponent) Parameter

 The "dp" (first factor CRT exponent) member contains the Chinese
 Remainder Theorem (CRT) exponent of the first factor, a positive
 integer. It is represented as the base64url encoding of the value's
 unsigned big endian representation as an octet sequence. The octet
 sequence MUST utilize the minimum number of octets to represent the
 value.

6.3.2.5. "dq" (Second Factor CRT Exponent) Parameter

 The "dq" (second factor CRT exponent) member contains the Chinese
 Remainder Theorem (CRT) exponent of the second factor, a positive
 integer. It is represented as the base64url encoding of the value's
 unsigned big endian representation as an octet sequence. The octet
 sequence MUST utilize the minimum number of octets to represent the
 value.

6.3.2.6. "qi" (First CRT Coefficient) Parameter

 The "dp" (first CRT coefficient) member contains the Chinese
 Remainder Theorem (CRT) coefficient of the second factor, a positive
 integer. It is represented as the base64url encoding of the value's
 unsigned big endian representation as an octet sequence. The octet
 sequence MUST utilize the minimum number of octets to represent the
 value.

Jones Expires March 27, 2015 [Page 31]

Internet-Draft JSON Web Algorithms (JWA) September 2014

6.3.2.7. "oth" (Other Primes Info) Parameter

 The "oth" (other primes info) member contains an array of information
 about any third and subsequent primes, should they exist. When only
 two primes have been used (the normal case), this parameter MUST be
 omitted. When three or more primes have been used, the number of
 array elements MUST be the number of primes used minus two. Each
 array element MUST be an object with the following members:

6.3.2.7.1. "r" (Prime Factor)

 The "r" (prime factor) parameter within an "oth" array member
 represents the value of a subsequent prime factor, a positive
 integer. It is represented as the base64url encoding of the value's
 unsigned big endian representation as an octet sequence. The octet
 sequence MUST utilize the minimum number of octets to represent the
 value.

6.3.2.7.2. "d" (Factor CRT Exponent)

 The "d" (Factor CRT Exponent) parameter within an "oth" array member
 represents the CRT exponent of the corresponding prime factor, a
 positive integer. It is represented as the base64url encoding of the
 value's unsigned big endian representation as an octet sequence. The
 octet sequence MUST utilize the minimum number of octets to represent
 the value.

6.3.2.7.3. "t" (Factor CRT Coefficient)

 The "t" (factor CRT coefficient) parameter within an "oth" array
 member represents the CRT coefficient of the corresponding prime
 factor, a positive integer. It is represented as the base64url
 encoding of the value's unsigned big endian representation as an
 octet sequence. The octet sequence MUST utilize the minimum number
 of octets to represent the value.

6.4. Parameters for Symmetric Keys

 When the JWK "kty" member value is "oct" (octet sequence), the member
 "k" is used to represent a symmetric key (or another key whose value
 is a single octet sequence). An "alg" member SHOULD also be present
 to identify the algorithm intended to be used with the key, unless
 the application uses another means or convention to determine the
 algorithm used.

Jones Expires March 27, 2015 [Page 32]

Internet-Draft JSON Web Algorithms (JWA) September 2014

6.4.1. "k" (Key Value) Parameter

 The "k" (key value) member contains the value of the symmetric (or
 other single-valued) key. It is represented as the base64url
 encoding of the octet sequence containing the key value.

7. IANA Considerations

 The following registration procedure is used for all the registries
 established by this specification.

 Values are registered on a Specification Required [RFC5226] basis
 after a two-week review period on the [TBD]@ietf.org mailing list, on
 the advice of one or more Designated Experts. However, to allow for
 the allocation of values prior to publication, the Designated
 Expert(s) may approve registration once they are satisfied that such
 a specification will be published.

 Registration requests must be sent to the [TBD]@ietf.org mailing list
 for review and comment, with an appropriate subject (e.g., "Request
 for access token type: example"). [[Note to the RFC Editor: The name
 of the mailing list should be determined in consultation with the
 IESG and IANA. Suggested name: jose-reg-review.]]

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful. Registration requests that are undetermined for a period
 longer than 21 days can be brought to the IESG's attention (using the
 iesg@iesg.org mailing list) for resolution.

 Criteria that should be applied by the Designated Expert(s) includes
 determining whether the proposed registration duplicates existing
 functionality, determining whether it is likely to be of general
 applicability or whether it is useful only for a single application,
 and whether the registration makes sense.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification, in order to enable broadly-informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular

https://datatracker.ietf.org/doc/html/rfc5226

Jones Expires March 27, 2015 [Page 33]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 Expert, that Expert should defer to the judgment of the other
 Expert(s).

7.1. JSON Web Signature and Encryption Algorithms Registry

 This specification establishes the IANA JSON Web Signature and
 Encryption Algorithms registry for values of the JWS and JWE "alg"
 (algorithm) and "enc" (encryption algorithm) Header Parameters. The
 registry records the algorithm name, the algorithm usage locations,
 implementation requirements, and a reference to the specification
 that defines it. The same algorithm name can be registered multiple
 times, provided that the sets of usage locations are disjoint.

 It is suggested that when algorithms can use keys of different
 lengths, that the length of the key be included in the algorithm
 name. This allows readers of the JSON text to easily make security
 consideration decisions.

 The implementation requirements of an algorithm MAY be changed over
 time by the Designated Experts(s) as the cryptographic landscape
 evolves, for instance, to change the status of an algorithm to
 Deprecated, or to change the status of an algorithm from Optional to
 Recommended+ or Required. Changes of implementation requirements are
 only permitted on a Specification Required basis, with the new
 specification defining the revised implementation requirements level.

7.1.1. Registration Template

 Algorithm Name:
 The name requested (e.g., "example"). This name is case-
 sensitive. Names may not match other registered names in a case-
 insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.

 Algorithm Description:
 Brief description of the Algorithm (e.g., "Example description").

 Algorithm Usage Location(s):
 The algorithm usage location. This must be one or more of the
 values "alg" or "enc" if the algorithm is to be used with JWS or
 JWE. The value "JWK" is used if the algorithm identifier will be
 used as a JWK "alg" member value, but will not be used with JWS or
 JWE; this could be the case, for instance, for non-authenticated
 encryption algorithms. Other values may be used with the approval
 of a Designated Expert.

Jones Expires March 27, 2015 [Page 34]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 JOSE Implementation Requirements:
 The algorithm implementation requirements for JWS and JWE, which
 must be one the words Required, Recommended, Optional, Deprecated,
 or Prohibited. Optionally, the word can be followed by a "+" or
 "-". The use of "+" indicates that the requirement strength is
 likely to be increased in a future version of the specification.
 The use of "-" indicates that the requirement strength is likely
 to be decreased in a future version of the specification. Any
 identifiers registered for non-authenticated encryption algorithms
 or other algorithms that are otherwise unsuitable for direct use
 as JWS or JWE algorithms must be registered as "Prohibited".

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

7.1.2. Initial Registry Contents

 o Algorithm Name: "HS256"
 o Algorithm Description: HMAC using SHA-256
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Required
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "HS384"
 o Algorithm Description: HMAC using SHA-384
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "HS512"
 o Algorithm Description: HMAC using SHA-512
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

Jones Expires March 27, 2015 [Page 35]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Algorithm Name: "RS256"
 o Algorithm Description: RSASSA-PKCS-v1_5 using SHA-256
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RS384"
 o Algorithm Description: RSASSA-PKCS-v1_5 using SHA-384
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RS512"
 o Algorithm Description: RSASSA-PKCS-v1_5 using SHA-512
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "ES256"
 o Algorithm Description: ECDSA using P-256 and SHA-256
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended+
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "ES384"
 o Algorithm Description: ECDSA using P-384 and SHA-384
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "ES512"
 o Algorithm Description: ECDSA using P-521 and SHA-512
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "PS256"
 o Algorithm Description: RSASSA-PSS using SHA-256 and MGF1 with SHA-
 256
 o Algorithm Usage Location(s): "alg"

Jones Expires March 27, 2015 [Page 36]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "PS384"
 o Algorithm Description: RSASSA-PSS using SHA-384 and MGF1 with SHA-
 384
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "PS512"
 o Algorithm Description: RSASSA-PSS using SHA-512 and MGF1 with SHA-
 512
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "none"
 o Algorithm Description: No digital signature or MAC performed
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this document]]

 o Algorithm Name: "RSA1_5"
 o Algorithm Description: RSAES-PKCS1-V1_5
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Required
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "RSA-OAEP"
 o Algorithm Description: RSAES OAEP using default parameters
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "RSA-OAEP-256"
 o Algorithm Description: RSAES OAEP using SHA-256 and MGF1 with SHA-
 256
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional

Jones Expires March 27, 2015 [Page 37]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A128KW"
 o Algorithm Description: AES Key Wrap using 128 bit key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A192KW"
 o Algorithm Description: AES Key Wrap using 192 bit key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A256KW"
 o Algorithm Description: AES Key Wrap using 256 bit key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "dir"
 o Algorithm Description: Direct use of a shared symmetric key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "ECDH-ES"
 o Algorithm Description: ECDH-ES using Concat KDF
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended+
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "ECDH-ES+A128KW"
 o Algorithm Description: ECDH-ES using Concat KDF and "A128KW"
 wrapping
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

Jones Expires March 27, 2015 [Page 38]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Algorithm Name: "ECDH-ES+A192KW"
 o Algorithm Description: ECDH-ES using Concat KDF and "A192KW"
 wrapping
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "ECDH-ES+A256KW"
 o Algorithm Description: ECDH-ES using Concat KDF and "A256KW"
 wrapping
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 4.1 of [[this document]]

 o Algorithm Name: "A128GCMKW"
 o Algorithm Description: Key wrapping with AES GCM using 128 bit key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.7 of [[this document]]

 o Algorithm Name: "A192GCMKW"
 o Algorithm Description: Key wrapping with AES GCM using 192 bit key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.7 of [[this document]]

 o Algorithm Name: "A256GCMKW"
 o Algorithm Description: Key wrapping with AES GCM using 256 bit key
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.7 of [[this document]]

 o Algorithm Name: "PBES2-HS256+A128KW"
 o Algorithm Description: PBES2 with HMAC SHA-256 and "A128KW"
 wrapping
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.8 of [[this document]]

 o Algorithm Name: "PBES2-HS384+A192KW"

Jones Expires March 27, 2015 [Page 39]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Algorithm Description: PBES2 with HMAC SHA-384 and "A192KW"
 wrapping
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.8 of [[this document]]

 o Algorithm Name: "PBES2-HS512+A256KW"
 o Algorithm Description: PBES2 with HMAC SHA-512 and "A256KW"
 wrapping
 o Algorithm Usage Location(s): "alg"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 4.8 of [[this document]]

 o Algorithm Name: "A128CBC-HS256"
 o Algorithm Description: AES_128_CBC_HMAC_SHA_256 authenticated
 encryption algorithm
 o Algorithm Usage Location(s): "enc"
 o JOSE Implementation Requirements: Required
 o Change Controller: IESG
 o Specification Document(s): Section 5.1 of [[this document]]

 o Algorithm Name: "A192CBC-HS384"
 o Algorithm Description: AES_192_CBC_HMAC_SHA_384 authenticated
 encryption algorithm
 o Algorithm Usage Location(s): "enc"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 5.1 of [[this document]]

 o Algorithm Name: "A256CBC-HS512"
 o Algorithm Description: AES_256_CBC_HMAC_SHA_512 authenticated
 encryption algorithm
 o Algorithm Usage Location(s): "enc"
 o JOSE Implementation Requirements: Required
 o Change Controller: IESG
 o Specification Document(s): Section 5.1 of [[this document]]

 o Algorithm Name: "A128GCM"
 o Algorithm Description: AES GCM using 128 bit key
 o Algorithm Usage Location(s): "enc"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 5.1 of [[this document]]

Jones Expires March 27, 2015 [Page 40]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Algorithm Name: "A192GCM"
 o Algorithm Description: AES GCM using 192 bit key
 o Algorithm Usage Location(s): "enc"
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 5.1 of [[this document]]

 o Algorithm Name: "A256GCM"
 o Algorithm Description: AES GCM using 256 bit key
 o Algorithm Usage Location(s): "enc"
 o JOSE Implementation Requirements: Recommended
 o Change Controller: IESG
 o Specification Document(s): Section 5.1 of [[this document]]

7.2. Header Parameter Names Registration

 This specification registers the Header Parameter names defined in
Section 4.6.1, Section 4.7.1, and Section 4.8.1 in the IANA JSON Web

 Signature and Encryption Header Parameters registry defined in [JWS].

7.2.1. Registry Contents

 o Header Parameter Name: "epk"
 o Header Parameter Description: Ephemeral Public Key
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.6.1.1 of [[this document]]

 o Header Parameter Name: "apu"
 o Header Parameter Description: Agreement PartyUInfo
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.6.1.2 of [[this document]]

 o Header Parameter Name: "apv"
 o Header Parameter Description: Agreement PartyVInfo
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.6.1.3 of [[this document]]

 o Header Parameter Name: "iv"
 o Header Parameter Description: Initialization Vector
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.7.1.1 of [[this document]]

Jones Expires March 27, 2015 [Page 41]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Header Parameter Name: "tag"
 o Header Parameter Description: Authentication Tag
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.7.1.2 of [[this document]]

 o Header Parameter Name: "p2s"
 o Header Parameter Description: PBES2 salt
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.8.1.1 of [[this document]]

 o Header Parameter Name: "p2c"
 o Header Parameter Description: PBES2 count
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.8.1.2 of [[this document]]

7.3. JSON Web Encryption Compression Algorithms Registry

 This specification establishes the IANA JSON Web Encryption
 Compression Algorithms registry for JWE "zip" member values. The
 registry records the compression algorithm value and a reference to
 the specification that defines it.

7.3.1. Registration Template

 Compression Algorithm Value:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.

 Compression Algorithm Description:
 Brief description of the compression algorithm (e.g., "Example
 description").

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

Jones Expires March 27, 2015 [Page 42]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

7.3.2. Initial Registry Contents

 o Compression Algorithm Value: "DEF"
 o Compression Algorithm Description: DEFLATE
 o Change Controller: IESG
 o Specification Document(s): JSON Web Encryption (JWE) [JWE]

7.4. JSON Web Key Types Registry

 This specification establishes the IANA JSON Web Key Types registry
 for values of the JWK "kty" (key type) parameter. The registry
 records the "kty" value, implementation requirements, and a reference
 to the specification that defines it.

 The implementation requirements of a key type MAY be changed over
 time by the Designated Experts(s) as the cryptographic landscape
 evolves, for instance, to change the status of a key type to
 Deprecated, or to change the status of a key type from Optional to
 Recommended+ or Required. Changes of implementation requirements are
 only permitted on a Specification Required basis, with the new
 specification defining the revised implementation requirements level.

7.4.1. Registration Template

 "kty" Parameter Value:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.

 Key Type Description:
 Brief description of the Key Type (e.g., "Example description").

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

Jones Expires March 27, 2015 [Page 43]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 JOSE Implementation Requirements:
 The key type implementation requirements for JWS and JWE, which
 must be one the words Required, Recommended, Optional, Deprecated,
 or Prohibited. Optionally, the word can be followed by a "+" or
 "-". The use of "+" indicates that the requirement strength is
 likely to be increased in a future version of the specification.
 The use of "-" indicates that the requirement strength is likely
 to be decreased in a future version of the specification.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

7.4.2. Initial Registry Contents

 This specification registers the values defined in Section 6.1.

 o "kty" Parameter Value: "EC"
 o Key Type Description: Elliptic Curve
 o JOSE Implementation Requirements: Recommended+
 o Change Controller: IESG
 o Specification Document(s): Section 6.2 of [[this document]]

 o "kty" Parameter Value: "RSA"
 o Key Type Description: RSA
 o JOSE Implementation Requirements: Required
 o Change Controller: IESG
 o Specification Document(s): Section 6.3 of [[this document]]

 o "kty" Parameter Value: "oct"
 o Key Type Description: Octet sequence
 o JOSE Implementation Requirements: Required
 o Change Controller: IESG
 o Specification Document(s): Section 6.4 of [[this document]]

7.5. JSON Web Key Parameters Registration

 This specification registers the parameter names defined in Sections
 6.2, 6.3, and 6.4 in the IANA JSON Web Key Parameters registry
 defined in [JWK].

7.5.1. Registry Contents

 o Parameter Name: "crv"

Jones Expires March 27, 2015 [Page 44]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Parameter Description: Curve
 o Used with "kty" Value(s): "EC"
 o Parameter Information Class: Public
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.1.1 of [[this document]]

 o Parameter Name: "x"
 o Parameter Description: X Coordinate
 o Used with "kty" Value(s): "EC"
 o Parameter Information Class: Public
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.1.2 of [[this document]]

 o Parameter Name: "y"
 o Parameter Description: Y Coordinate
 o Used with "kty" Value(s): "EC"
 o Parameter Information Class: Public
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.1.3 of [[this document]]

 o Parameter Name: "d"
 o Parameter Description: ECC Private Key
 o Used with "kty" Value(s): "EC"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.2.1 of [[this document]]

 o Parameter Name: "n"
 o Parameter Description: Modulus
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Public
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.1.1 of [[this document]]

 o Parameter Name: "e"
 o Parameter Description: Exponent
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Public
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.1.2 of [[this document]]

 o Parameter Name: "d"
 o Parameter Description: Private Exponent
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG

Jones Expires March 27, 2015 [Page 45]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Specification Document(s): Section 6.3.2.1 of [[this document]]

 o Parameter Name: "p"
 o Parameter Description: First Prime Factor
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.2.2 of [[this document]]

 o Parameter Name: "q"
 o Parameter Description: Second Prime Factor
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.2.3 of [[this document]]

 o Parameter Name: "dp"
 o Parameter Description: First Factor CRT Exponent
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.2.4 of [[this document]]

 o Parameter Name: "dq"
 o Parameter Description: Second Factor CRT Exponent
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.2.5 of [[this document]]

 o Parameter Name: "qi"
 o Parameter Description: First CRT Coefficient
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.2.6 of [[this document]]

 o Parameter Name: "oth"
 o Parameter Description: Other Primes Info
 o Used with "kty" Value(s): "RSA"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.3.2.7 of [[this document]]

 o Parameter Name: "k"
 o Parameter Description: Key Value

Jones Expires March 27, 2015 [Page 46]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Used with "kty" Value(s): "oct"
 o Parameter Information Class: Private
 o Change Controller: IESG
 o Specification Document(s): Section 6.4.1 of [[this document]]

7.6. JSON Web Key Elliptic Curve Registry

 This specification establishes the IANA JSON Web Key Elliptic Curve
 registry for JWK "crv" member values. The registry records the curve
 name, implementation requirements, and a reference to the
 specification that defines it. This specification registers the
 parameter names defined in Section 6.2.1.1.

 The implementation requirements of a curve MAY be changed over time
 by the Designated Experts(s) as the cryptographic landscape evolves,
 for instance, to change the status of a curve to Deprecated, or to
 change the status of a curve from Optional to Recommended+ or
 Required. Changes of implementation requirements are only permitted
 on a Specification Required basis, with the new specification
 defining the revised implementation requirements level.

7.6.1. Registration Template

 Curve Name:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.

 Curve Description:
 Brief description of the curve (e.g., "Example description").

 JOSE Implementation Requirements:
 The curve implementation requirements for JWS and JWE, which must
 be one the words Required, Recommended, Optional, Deprecated, or
 Prohibited. Optionally, the word can be followed by a "+" or "-".
 The use of "+" indicates that the requirement strength is likely
 to be increased in a future version of the specification. The use
 of "-" indicates that the requirement strength is likely to be
 decreased in a future version of the specification.

Jones Expires March 27, 2015 [Page 47]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

7.6.2. Initial Registry Contents

 o Curve Name: "P-256"
 o Curve Description: P-256 curve
 o JOSE Implementation Requirements: Recommended+
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.1.1 of [[this document]]

 o Curve Name: "P-384"
 o Curve Description: P-384 curve
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.1.1 of [[this document]]

 o Curve Name: "P-521"
 o Curve Description: P-521 curve
 o JOSE Implementation Requirements: Optional
 o Change Controller: IESG
 o Specification Document(s): Section 6.2.1.1 of [[this document]]

8. Security Considerations

 All of the security issues that are pertinent to any cryptographic
 application must be addressed by JWS/JWE/JWK agents. Among these
 issues are protecting the user's asymmetric private and symmetric
 secret keys and employing countermeasures to various attacks.

 The security considerations in [AES], [DSS], [JWE], [JWK], [JWS],
 [NIST.800-38A], [NIST.800-38D], [NIST.800-56A], [RFC2104], [RFC3394],
 [RFC3447], [RFC5116], [RFC6090], and [SHS] apply to this
 specification.

8.1. Cryptographic Agility

 Implementers should be aware that cryptographic algorithms become
 weaker with time. As new cryptanalysis techniques are developed and

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires March 27, 2015 [Page 48]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 computing performance improves, the work factor to break a particular
 cryptographic algorithm will be reduced. Therefore, implementers and
 deployments must be prepared for the set of algorithms that are
 supported and used to change over time. Thus, cryptographic
 algorithm implementations should be modular, allowing new algorithms
 to be readily inserted.

8.2. Key Lifetimes

 Many algorithms have associated security considerations related to
 key lifetimes and/or the number of times that a key may be used.
 Those security considerations continue to apply when using those
 algorithms with JOSE data structures. See NIST SP 800-57
 [NIST.800-57] for specific guidance on key lifetimes.

8.3. RSAES-PKCS1-v1_5 Security Considerations

 While Section 8 of RFC 3447 [RFC3447] explicitly calls for people not
 to adopt RSASSA-PKCS-v1_5 for new applications and instead requests
 that people transition to RSASSA-PSS, this specification does include
 RSASSA-PKCS-v1_5, for interoperability reasons, because it commonly
 implemented.

 Keys used with RSAES-PKCS1-v1_5 must follow the constraints in
Section 7.2 of RFC 3447. In particular, keys with a low public key

 exponent value must not be used.

8.4. AES GCM Security Considerations

 Keys used with AES GCM must follow the constraints in Section 8.3 of
 [NIST.800-38D], which states: "The total number of invocations of the
 authenticated encryption function shall not exceed 2^32, including
 all IV lengths and all instances of the authenticated encryption
 function with the given key". In accordance with this rule, AES GCM
 MUST NOT be used with the same key value more than 2^32 times.

 An Initialization Vector value MUST never be used multiple times with
 the same AES GCM key. One way to prevent this is to store a counter
 with the key and increment it with every use. The counter can also
 be used to prevent exceeding the 2^32 limit above.

 This security consideration does not apply to the composite AES-CBC
 HMAC SHA-2 or AES Key Wrap algorithms.

8.5. Unsecured JWS Security Considerations

 Unsecured JWSs (JWSs that use the "alg" value "none") provide no
 integrity protection. Thus, they must only be used in contexts in

https://datatracker.ietf.org/doc/html/rfc3447#section-8
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447#section-7.2

Jones Expires March 27, 2015 [Page 49]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 which the payload is secured by means other than a digital signature
 or MAC value, or need not be secured.

 Implementations that support Unsecured JWS objects MUST NOT accept
 such objects as valid unless the application specifies that it is
 acceptable for a specific object to not be integrity-protected.
 Implementations MUST NOT accept Unsecured JWS objects by default.
 For example, the "verify" method of a hypothetical JWS software
 library might have a Boolean "acceptUnsigned" parameter that
 indicates "none" is an acceptable "alg" value. As another example,
 the "verify" method might take a list of algorithms that are
 acceptable to the application as a parameter and would reject
 Unsecured JWS values if "none" is not in that list.

 In order to mitigate downgrade attacks, applications MUST NOT signal
 acceptance of Unsecured JWS objects at a global level, and SHOULD
 signal acceptance on a per-object basis. For example, suppose an
 application accepts JWS objects over two channels, (1) HTTP and (2)
 HTTPS with client authentication. It requires a JWS signature on
 objects received over HTTP, but accepts Unsecured JWS objects over
 HTTPS. If the application were to globally indicate that "none" is
 acceptable, then an attacker could provide it with an unsigned object
 over HTTP and still have that object successfully validate. Instead,
 the application needs to indicate acceptance of "none" for each
 object received over HTTPS (e.g., by setting "acceptUnsigned" to
 "true" for the first hypothetical JWS software library above), but
 not for each object received over HTTP.

8.6. Denial of Service Attacks

 Receiving agents that validate signatures and sending agents that
 encrypt messages need to be cautious of cryptographic processing
 usage when validating signatures and encrypting messages using keys
 larger than those mandated in this specification. An attacker could
 send certificates with keys that would result in excessive
 cryptographic processing, for example, keys larger than those
 mandated in this specification, which could swamp the processing
 element. Agents that use such keys without first validating the
 certificate to a trust anchor are advised to have some sort of
 cryptographic resource management system to prevent such attacks.

8.7. Reusing Key Material when Encrypting Keys

 It is NOT RECOMMENDED to reuse the same key material (Key Encryption
 Key, Content Encryption Key, Initialization Vector, etc.) to encrypt
 multiple JWK or JWK Set objects, or to encrypt the same JWK or JWK
 Set object multiple times. One suggestion for preventing re-use is
 to always generate a new set of key material for each encryption

Jones Expires March 27, 2015 [Page 50]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 operation, based on the considerations noted in this document as well
 as from RFC 4086 [RFC4086].

8.8. Password Considerations

 Passwords are vulnerable to a number of attacks. To help mitigate
 some of these limitations, this document applies principles from RFC

2898 [RFC2898] to derive cryptographic keys from user-supplied
 passwords.

 However, the strength of the password still has a significant impact.
 A high-entropy password has greater resistance to dictionary attacks.
 [NIST-800-63-1] contains guidelines for estimating password entropy,
 which can help applications and users generate stronger passwords.

 An ideal password is one that is as large as (or larger than) the
 derived key length. However, passwords larger than a certain
 algorithm-specific size are first hashed, which reduces an attacker's
 effective search space to the length of the hash algorithm. It is
 RECOMMENDED that a password used for "PBES2-HS256+A128KW" be no
 shorter than 16 octets and no longer than 128 octets and a password
 used for "PBES2-HS512+A256KW" be no shorter than 32 octets and no
 longer than 128 octets long.

 Still, care needs to be taken in where and how password-based
 encryption is used. These algorithms can still be susceptible to
 dictionary-based attacks if the iteration count is too small; this is
 of particular concern if these algorithms are used to protect data
 that an attacker can have indefinite number of attempts to circumvent
 the protection, such as protected data stored on a file system.

8.9. Key Entropy and Random Values

 See Section 10.1 of [JWS] for security considerations on key entropy
 and random values.

8.10. Differences between Digital Signatures and MACs

 See Section 10.5 of [JWS] for security considerations on differences
 between digital signatures and MACs.

8.11. Using Matching Algorithm Strengths

 See Section 11.3 of [JWE] for security considerations on using
 matching algorithm strengths.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898

Jones Expires March 27, 2015 [Page 51]

Internet-Draft JSON Web Algorithms (JWA) September 2014

8.12. Adaptive Chosen-Ciphertext Attacks

 See Section 11.4 of [JWE] for security considerations on adaptive
 chosen-ciphertext attacks.

8.13. Timing Attacks

 See Section 10.9 of [JWS] and Section 11.5 of [JWE] for security
 considerations on timing attacks.

8.14. RSA Private Key Representations and Blinding

 See Section 9.3 of [JWK] for security considerations on RSA private
 key representations and blinding.

9. Internationalization Considerations

 Passwords obtained from users are likely to require preparation and
 normalization to account for differences of octet sequences generated
 by different input devices, locales, etc. It is RECOMMENDED that
 applications to perform the steps outlined in
 [I-D.ietf-precis-saslprepbis] to prepare a password supplied directly
 by a user before performing key derivation and encryption.

10. References

10.1. Normative References

 [AES] National Institute of Standards and Technology (NIST),
 "Advanced Encryption Standard (AES)", FIPS PUB 197,
 November 2001.

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4, July 2013.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
draft-ietf-jose-json-web-encryption (work in progress),

 September 2014.

 [JWK] Jones, M., "JSON Web Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),

 September 2014.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature (work
 in progress), September 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature

Jones Expires March 27, 2015 [Page 52]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 [NIST.800-38A]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Block Cipher Modes of Operation",
 NIST PUB 800-38A, December 2001.

 [NIST.800-38D]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC", NIST PUB 800-38D,
 December 2001.

 [NIST.800-56A]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A, Revision 2, May 2013.

 [NIST.800-57]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Key Management - Part 1: General
 (Revision 3)", NIST Special Publication 800-57, Part 1,
 Revision 3, July 2012.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, September 2000.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, September 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868, May 2007.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4868
https://datatracker.ietf.org/doc/html/rfc6090

Jones Expires March 27, 2015 [Page 53]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [SEC1] Standards for Efficient Cryptography Group, "SEC 1:
 Elliptic Curve Cryptography", May 2009.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

10.2. Informative References

 [CanvasApp]
 Facebook, "Canvas Applications", 2010.

 [I-D.ietf-precis-saslprepbis]
 Saint-Andre, P. and A. Melnikov, "Preparation and
 Comparison of Internationalized Strings Representing
 Usernames and Passwords", draft-ietf-precis-saslprepbis-07
 (work in progress), March 2014.

 [I-D.mcgrew-aead-aes-cbc-hmac-sha2]
 McGrew, D., Foley, J., and K. Paterson, "Authenticated
 Encryption with AES-CBC and HMAC-SHA",

draft-mcgrew-aead-aes-cbc-hmac-sha2-05 (work in progress),
 July 2014.

 [I-D.miller-jose-jwe-protected-jwk]
 Miller, M., "Using JavaScript Object Notation (JSON) Web
 Encryption (JWE) for Protecting JSON Web Key (JWK)
 Objects", draft-miller-jose-jwe-protected-jwk-02 (work in
 progress), June 2013.

 [I-D.rescorla-jsms]
 Rescorla, E. and J. Hildebrand, "JavaScript Message
 Security Format", draft-rescorla-jsms-00 (work in
 progress), March 2011.

 [JCA] Oracle, "Java Cryptography Architecture (JCA) Reference
 Guide", 2014.

 [JSE] Bradley, J. and N. Sakimura (editor), "JSON Simple
 Encryption", September 2010.

 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/draft-ietf-precis-saslprepbis-07
https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05
https://datatracker.ietf.org/doc/html/draft-miller-jose-jwe-protected-jwk-02
https://datatracker.ietf.org/doc/html/draft-rescorla-jsms-00

Jones Expires March 27, 2015 [Page 54]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 September 2010.

 [MagicSignatures]
 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
 Signatures", January 2011.

 [NIST-800-63-1]
 National Institute of Standards and Technology (NIST),
 "Electronic Authentication Guideline", NIST 800-63-1,
 December 2011.

 [RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method",
RFC 2631, June 1999.

 [RFC3275] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275,
 March 2002.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [W3C.NOTE-xmldsig-core2-20130411]
 Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Roessler,
 T., Yiu, K., Datta, P., and S. Cantor, "XML Signature
 Syntax and Processing Version 2.0", World Wide Web
 Consortium Note NOTE-xmldsig-core2-20130411, April 2013,
 <http://www.w3.org/TR/2013/NOTE-xmldsig-core2-20130411/>.

 [W3C.REC-xmlenc-core-20021210]
 Eastlake, D. and J. Reagle, "XML Encryption Syntax and
 Processing", World Wide Web Consortium Recommendation REC-
 xmlenc-core-20021210, December 2002,
 <http://www.w3.org/TR/2002/REC-xmlenc-core-20021210>.

 [W3C.REC-xmlenc-core1-20130411]
 Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler,
 "XML Encryption Syntax and Processing Version 1.1", World
 Wide Web Consortium Recommendation REC-xmlenc-core1-
 20130411, April 2013,
 <http://www.w3.org/TR/2013/REC-xmlenc-core1-20130411/>.

https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.w3.org/TR/2013/NOTE-xmldsig-core2-20130411/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2013/REC-xmlenc-core1-20130411/

Jones Expires March 27, 2015 [Page 55]

Internet-Draft JSON Web Algorithms (JWA) September 2014

Appendix A. Algorithm Identifier Cross-Reference

 This appendix contains tables cross-referencing the cryptographic
 algorithm identifier values defined in this specification with the
 equivalent identifiers used by other standards and software packages.
 See XML DSIG [RFC3275], XML DSIG 2.0
 [W3C.NOTE-xmldsig-core2-20130411], XML Encryption
 [W3C.REC-xmlenc-core-20021210], XML Encryption 1.1
 [W3C.REC-xmlenc-core1-20130411], and Java Cryptography Architecture
 [JCA] for more information about the names defined by those
 documents.

A.1. Digital Signature/MAC Algorithm Identifier Cross-Reference

 This section contains a table cross-referencing the JWS digital
 signature and MAC "alg" (algorithm) values defined in this
 specification with the equivalent identifiers used by other standards
 and software packages.

 +-----+-------------------------------+--------------+--------------+
 | JWS | XML DSIG | JCA | OID |
 +-----+-------------------------------+--------------+--------------+
HS2	http://www.w3.org/2001/04/xml	HmacSHA256	1.2.840.1135
56	dsig-more#hmac-sha256		49.2.9
HS3	http://www.w3.org/2001/04/xml	HmacSHA384	1.2.840.1135
84	dsig-more#hmac-sha384		49.2.10
HS5	http://www.w3.org/2001/04/xml	HmacSHA512	1.2.840.1135
12	dsig-more#hmac-sha512		49.2.11
RS2	http://www.w3.org/2001/04/xml	SHA256withRS	1.2.840.1135
56	dsig-more#rsa-sha256	A	49.1.1.11
RS3	http://www.w3.org/2001/04/xml	SHA384withRS	1.2.840.1135
84	dsig-more#rsa-sha384	A	49.1.1.12
RS5	http://www.w3.org/2001/04/xml	SHA512withRS	1.2.840.1135
12	dsig-more#rsa-sha512	A	49.1.1.13
ES2	http://www.w3.org/2001/04/xml	SHA256withEC	1.2.840.1004
56	dsig-more#ecdsa-sha256	DSA	5.4.3.2
ES3	http://www.w3.org/2001/04/xml	SHA384withEC	1.2.840.1004
84	dsig-more#ecdsa-sha384	DSA	5.4.3.3
ES5	http://www.w3.org/2001/04/xml	SHA512withEC	1.2.840.1004
12	dsig-more#ecdsa-sha512	DSA	5.4.3.4
PS2	http://www.w3.org/2007/05/xml	SHA256withRS	1.2.840.1135
56	dsig-more#sha256-rsa-MGF1	AandMGF1	49.1.1.10
PS3	http://www.w3.org/2007/05/xml	SHA384withRS	1.2.840.1135
84	dsig-more#sha384-rsa-MGF1	AandMGF1	49.1.1.10
PS5	http://www.w3.org/2007/05/xml	SHA512withRS	1.2.840.1135
12	dsig-more#sha512-rsa-MGF1	AandMGF1	49.1.1.10
 +-----+-------------------------------+--------------+--------------+

https://datatracker.ietf.org/doc/html/rfc3275
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2001/04/xml
http://www.w3.org/2007/05/xml
http://www.w3.org/2007/05/xml
http://www.w3.org/2007/05/xml

Jones Expires March 27, 2015 [Page 56]

Internet-Draft JSON Web Algorithms (JWA) September 2014

A.2. Key Management Algorithm Identifier Cross-Reference

 This section contains a table cross-referencing the JWE "alg"
 (algorithm) values defined in this specification with the equivalent
 identifiers used by other standards and software packages.

 +-------+------------------------+--------------------+-------------+
 | JWE | XML ENC | JCA | OID |
 +-------+------------------------+--------------------+-------------+
RSA1_	http://www.w3.org/2001	RSA/ECB/PKCS1Paddi	1.2.840.113
5	/04/xmlenc#rsa-1_5	ng	549.1.1.1
RSA-O	http://www.w3.org/2001	RSA/ECB/OAEPWithSH	1.2.840.113
AEP	/04/xmlenc#rsa-oaep-mg	A-1AndMGF1Padding	549.1.1.7
	f1p		
RSA-O	http://www.w3.org/2009	RSA/ECB/OAEPWithSH	1.2.840.113
AEP-2	/xmlenc11#rsa-oaep &	A-256AndMGF1Paddin	549.1.1.7
56	http://www.w3.org/200	g&	
	9/xmlenc11#mgf1sha256	MGF1ParameterSpec	
		.SHA256	
ECDH-	http://www.w3.org/2009	ECDH	1.3.132.1.1
ES	/xmlenc11#ECDH-ES		2
A128K	http://www.w3.org/2001	AESWrap	2.16.840.1.
W	/04/xmlenc#kw-aes128		101.3.4.1.5
A192K	http://www.w3.org/2001	AESWrap	2.16.840.1.
W	/04/xmlenc#kw-aes192		101.3.4.1.2
			5
A256K	http://www.w3.org/2001	AESWrap	2.16.840.1.
W	/04/xmlenc#kw-aes256		101.3.4.1.4
			5
 +-------+------------------------+--------------------+-------------+

A.3. Content Encryption Algorithm Identifier Cross-Reference

 This section contains a table cross-referencing the JWE "enc"
 (encryption algorithm) values defined in this specification with the
 equivalent identifiers used by other standards and software packages.

 For the composite algorithms "A128CBC-HS256", "A192CBC-HS384", and
 "A256CBC-HS512", the corresponding AES CBC algorithm identifiers are
 listed.

http://www.w3.org/2001
http://www.w3.org/2001
http://www.w3.org/2009
http://www.w3.org/200
http://www.w3.org/2009
http://www.w3.org/2001
http://www.w3.org/2001
http://www.w3.org/2001

Jones Expires March 27, 2015 [Page 57]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 +---------+-------------------------+--------------+----------------+
 | JWE | XML ENC | JCA | OID |
 +---------+-------------------------+--------------+----------------+
A128CBC	http://www.w3.org/2001/	AES/CBC/PKCS	2.16.840.1.101
-HS256	04/xmlenc#aes128-cbc	5Padding	.3.4.1.2
A192CBC	http://www.w3.org/2001/	AES/CBC/PKCS	2.16.840.1.101
-HS384	04/xmlenc#aes192-cbc	5Padding	.3.4.1.22
A256CBC	http://www.w3.org/2001/	AES/CBC/PKCS	2.16.840.1.101
-HS512	04/xmlenc#aes256-cbc	5Padding	.3.4.1.42
A128GCM	http://www.w3.org/2009/	AES/GCM/NoPa	2.16.840.1.101
	xmlenc11#aes128-gcm	dding	.3.4.1.6
A192GCM	http://www.w3.org/2009/	AES/GCM/NoPa	2.16.840.1.101
	xmlenc11#aes192-gcm	dding	.3.4.1.26
A256GCM	http://www.w3.org/2009/	AES/GCM/NoPa	2.16.840.1.101
	xmlenc11#aes256-gcm	dding	.3.4.1.46
 +---------+-------------------------+--------------+----------------+

Appendix B. Test Cases for AES_CBC_HMAC_SHA2 Algorithms

 The following test cases can be used to validate implementations of
 the AES_CBC_HMAC_SHA2 algorithms defined in Section 5.2. They are
 also intended to correspond to test cases that may appear in a future
 version of [I-D.mcgrew-aead-aes-cbc-hmac-sha2], demonstrating that
 the cryptographic computations performed are the same.

 The variable names are those defined in Section 5.2. All values are
 hexadecimal.

http://www.w3.org/2001/
http://www.w3.org/2001/
http://www.w3.org/2001/
http://www.w3.org/2009/
http://www.w3.org/2009/
http://www.w3.org/2009/

Jones Expires March 27, 2015 [Page 58]

Internet-Draft JSON Web Algorithms (JWA) September 2014

B.1. Test Cases for AES_128_CBC_HMAC_SHA_256

 AES_128_CBC_HMAC_SHA_256

 K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

 ENC_KEY = 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
 6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
 69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
 74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
 65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
 6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
 20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
 75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65

 IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04

 A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
 69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
 4b 65 72 63 6b 68 6f 66 66 73

 AL = 00 00 00 00 00 00 01 50

 E = c8 0e df a3 2d df 39 d5 ef 00 c0 b4 68 83 42 79
 a2 e4 6a 1b 80 49 f7 92 f7 6b fe 54 b9 03 a9 c9
 a9 4a c9 b4 7a d2 65 5c 5f 10 f9 ae f7 14 27 e2
 fc 6f 9b 3f 39 9a 22 14 89 f1 63 62 c7 03 23 36
 09 d4 5a c6 98 64 e3 32 1c f8 29 35 ac 40 96 c8
 6e 13 33 14 c5 40 19 e8 ca 79 80 df a4 b9 cf 1b
 38 4c 48 6f 3a 54 c5 10 78 15 8e e5 d7 9d e5 9f
 bd 34 d8 48 b3 d6 95 50 a6 76 46 34 44 27 ad e5
 4b 88 51 ff b5 98 f7 f8 00 74 b9 47 3c 82 e2 db

 M = 65 2c 3f a3 6b 0a 7c 5b 32 19 fa b3 a3 0b c1 c4
 e6 e5 45 82 47 65 15 f0 ad 9f 75 a2 b7 1c 73 ef

 T = 65 2c 3f a3 6b 0a 7c 5b 32 19 fa b3 a3 0b c1 c4

Jones Expires March 27, 2015 [Page 59]

Internet-Draft JSON Web Algorithms (JWA) September 2014

B.2. Test Cases for AES_192_CBC_HMAC_SHA_384

 K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17

 ENC_KEY = 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27
 28 29 2a 2b 2c 2d 2e 2f

 P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
 6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
 69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
 74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
 65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
 6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
 20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
 75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65

 IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04

 A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
 69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
 4b 65 72 63 6b 68 6f 66 66 73

 AL = 00 00 00 00 00 00 01 50

 E = ea 65 da 6b 59 e6 1e db 41 9b e6 2d 19 71 2a e5
 d3 03 ee b5 00 52 d0 df d6 69 7f 77 22 4c 8e db
 00 0d 27 9b dc 14 c1 07 26 54 bd 30 94 42 30 c6
 57 be d4 ca 0c 9f 4a 84 66 f2 2b 22 6d 17 46 21
 4b f8 cf c2 40 0a dd 9f 51 26 e4 79 66 3f c9 0b
 3b ed 78 7a 2f 0f fc bf 39 04 be 2a 64 1d 5c 21
 05 bf e5 91 ba e2 3b 1d 74 49 e5 32 ee f6 0a 9a
 c8 bb 6c 6b 01 d3 5d 49 78 7b cd 57 ef 48 49 27
 f2 80 ad c9 1a c0 c4 e7 9c 7b 11 ef c6 00 54 e3

 M = 84 90 ac 0e 58 94 9b fe 51 87 5d 73 3f 93 ac 20
 75 16 80 39 cc c7 33 d7 45 94 f8 86 b3 fa af d4
 86 f2 5c 71 31 e3 28 1e 36 c7 a2 d1 30 af de 57

 T = 84 90 ac 0e 58 94 9b fe 51 87 5d 73 3f 93 ac 20
 75 16 80 39 cc c7 33 d7

Jones Expires March 27, 2015 [Page 60]

Internet-Draft JSON Web Algorithms (JWA) September 2014

B.3. Test Cases for AES_256_CBC_HMAC_SHA_512

 K = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

 MAC_KEY = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

 ENC_KEY = 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

 P = 41 20 63 69 70 68 65 72 20 73 79 73 74 65 6d 20
 6d 75 73 74 20 6e 6f 74 20 62 65 20 72 65 71 75
 69 72 65 64 20 74 6f 20 62 65 20 73 65 63 72 65
 74 2c 20 61 6e 64 20 69 74 20 6d 75 73 74 20 62
 65 20 61 62 6c 65 20 74 6f 20 66 61 6c 6c 20 69
 6e 74 6f 20 74 68 65 20 68 61 6e 64 73 20 6f 66
 20 74 68 65 20 65 6e 65 6d 79 20 77 69 74 68 6f
 75 74 20 69 6e 63 6f 6e 76 65 6e 69 65 6e 63 65

 IV = 1a f3 8c 2d c2 b9 6f fd d8 66 94 09 23 41 bc 04

 A = 54 68 65 20 73 65 63 6f 6e 64 20 70 72 69 6e 63
 69 70 6c 65 20 6f 66 20 41 75 67 75 73 74 65 20
 4b 65 72 63 6b 68 6f 66 66 73

 AL = 00 00 00 00 00 00 01 50

 E = 4a ff aa ad b7 8c 31 c5 da 4b 1b 59 0d 10 ff bd
 3d d8 d5 d3 02 42 35 26 91 2d a0 37 ec bc c7 bd
 82 2c 30 1d d6 7c 37 3b cc b5 84 ad 3e 92 79 c2
 e6 d1 2a 13 74 b7 7f 07 75 53 df 82 94 10 44 6b
 36 eb d9 70 66 29 6a e6 42 7e a7 5c 2e 08 46 a1
 1a 09 cc f5 37 0d c8 0b fe cb ad 28 c7 3f 09 b3
 a3 b7 5e 66 2a 25 94 41 0a e4 96 b2 e2 e6 60 9e
 31 e6 e0 2c c8 37 f0 53 d2 1f 37 ff 4f 51 95 0b
 be 26 38 d0 9d d7 a4 93 09 30 80 6d 07 03 b1 f6

 M = 4d d3 b4 c0 88 a7 f4 5c 21 68 39 64 5b 20 12 bf
 2e 62 69 a8 c5 6a 81 6d bc 1b 26 77 61 95 5b c5
 fd 30 a5 65 c6 16 ff b2 f3 64 ba ec e6 8f c4 07
 53 bc fc 02 5d de 36 93 75 4a a1 f5 c3 37 3b 9c

 T = 4d d3 b4 c0 88 a7 f4 5c 21 68 39 64 5b 20 12 bf
 2e 62 69 a8 c5 6a 81 6d bc 1b 26 77 61 95 5b c5

Jones Expires March 27, 2015 [Page 61]

Internet-Draft JSON Web Algorithms (JWA) September 2014

Appendix C. Example ECDH-ES Key Agreement Computation

 This example uses ECDH-ES Key Agreement and the Concat KDF to derive
 the Content Encryption Key (CEK) in the manner described in

Section 4.6. In this example, the ECDH-ES Direct Key Agreement mode
 ("alg" value "ECDH-ES") is used to produce an agreed upon key for AES
 GCM with a 128 bit key ("enc" value "A128GCM").

 In this example, a sender Alice is encrypting content to a recipient
 Bob. The sender (Alice) generates an ephemeral key for the key
 agreement computation. Alice's ephemeral key (in JWK format) used
 for the key agreement computation in this example (including the
 private part) is:

 {"kty":"EC",
 "crv":"P-256",
 "x":"gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0",
 "y":"SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps",
 "d":"0_NxaRPUMQoAJt50Gz8YiTr8gRTwyEaCumd-MToTmIo"
 }

 The recipient's (Bob's) key (in JWK format) used for the key
 agreement computation in this example (including the private part)
 is:

 {"kty":"EC",
 "crv":"P-256",
 "x":"weNJy2HscCSM6AEDTDg04biOvhFhyyWvOHQfeF_PxMQ",
 "y":"e8lnCO-AlStT-NJVX-crhB7QRYhiix03illJOVAOyck",
 "d":"VEmDZpDXXK8p8N0Cndsxs924q6nS1RXFASRl6BfUqdw"
 }

 Header Parameter values used in this example are as follows. In this
 example, the "apu" (agreement PartyUInfo) parameter value is the
 base64url encoding of the UTF-8 string "Alice" and the "apv"
 (agreement PartyVInfo) parameter value is the base64url encoding of
 the UTF-8 string "Bob". The "epk" parameter is used to communicate
 the sender's (Alice's) ephemeral public key value to the recipient
 (Bob).

Jones Expires March 27, 2015 [Page 62]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 {"alg":"ECDH-ES",
 "enc":"A128GCM",
 "apu":"QWxpY2U",
 "apv":"Qm9i",
 "epk":
 {"kty":"EC",
 "crv":"P-256",
 "x":"gI0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0",
 "y":"SLW_xSffzlPWrHEVI30DHM_4egVwt3NQqeUD7nMFpps"
 }
 }

 The resulting Concat KDF [NIST.800-56A] parameter values are:

 Z
 This is set to the ECDH-ES key agreement output. (This value is
 often not directly exposed by libraries, due to NIST security
 requirements, and only serves as an input to a KDF.) In this
 example, Z is following the octet sequence (using JSON array
 notation):
 [158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132,
 38, 156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121,
 140, 254, 144, 196].

 keydatalen
 This value is 128 - the number of bits in the desired output key
 (because "A128GCM" uses a 128 bit key).

 AlgorithmID
 This is set to the octets representing the 32 bit big endian value
 7 - [0, 0, 0, 7] - the number of octets in the AlgorithmID content
 "A128GCM", followed, by the octets representing the UTF-8 string
 "A128GCM" - [65, 49, 50, 56, 71, 67, 77].

 PartyUInfo
 This is set to the octets representing the 32 bit big endian value
 5 - [0, 0, 0, 5] - the number of octets in the PartyUInfo content
 "Alice", followed, by the octets representing the UTF-8 string
 "Alice" - [65, 108, 105, 99, 101].

 PartyVInfo
 This is set to the octets representing the 32 bit big endian value
 3 - [0, 0, 0, 3] - the number of octets in the PartyUInfo content
 "Bob", followed, by the octets representing the UTF-8 string "Bob"
 - [66, 111, 98].

Jones Expires March 27, 2015 [Page 63]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 SuppPubInfo
 This is set to the octets representing the 32 bit big endian value
 128 - [0, 0, 0, 128] - the keydatalen value.

 SuppPrivInfo
 This is set to the empty octet sequence.

 Concatenating the parameters AlgorithmID through SuppPubInfo results
 in an OtherInfo value of:
 [0, 0, 0, 7, 65, 49, 50, 56, 71, 67, 77, 0, 0, 0, 5, 65, 108, 105,
 99, 101, 0, 0, 0, 3, 66, 111, 98, 0, 0, 0, 128]

 Concatenating the round number 1 ([0, 0, 0, 1]), Z, and the OtherInfo
 value results in the Concat KDF round 1 hash input of:
 [0, 0, 0, 1,
 158, 86, 217, 29, 129, 113, 53, 211, 114, 131, 66, 131, 191, 132, 38,
 156, 251, 49, 110, 163, 218, 128, 106, 72, 246, 218, 167, 121, 140,
 254, 144, 196,
 0, 0, 0, 7, 65, 49, 50, 56, 71, 67, 77, 0, 0, 0, 5, 65, 108, 105, 99,
 101, 0, 0, 0, 3, 66, 111, 98, 0, 0, 0, 128]

 The resulting derived key, which is the first 128 bits of the round 1
 hash output is:
 [86, 170, 141, 234, 248, 35, 109, 32, 92, 34, 40, 205, 113, 167, 16,
 26]

 The base64url encoded representation of this derived key is:

 VqqN6vgjbSBcIijNcacQGg

Appendix D. Acknowledgements

 Solutions for signing and encrypting JSON content were previously
 explored by Magic Signatures [MagicSignatures], JSON Simple Sign
 [JSS], Canvas Applications [CanvasApp], JSON Simple Encryption [JSE],
 and JavaScript Message Security Format [I-D.rescorla-jsms], all of
 which influenced this draft.

 The Authenticated Encryption with AES-CBC and HMAC-SHA
 [I-D.mcgrew-aead-aes-cbc-hmac-sha2] specification, upon which the
 AES_CBC_HMAC_SHA2 algorithms are based, was written by David A.
 McGrew and Kenny Paterson. The test cases for AES_CBC_HMAC_SHA2 are
 based upon those for [I-D.mcgrew-aead-aes-cbc-hmac-sha2] by John
 Foley.

 Matt Miller wrote Using JavaScript Object Notation (JSON) Web
 Encryption (JWE) for Protecting JSON Web Key (JWK) Objects

Jones Expires March 27, 2015 [Page 64]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 [I-D.miller-jose-jwe-protected-jwk], which the password-based
 encryption content of this draft is based upon.

 This specification is the work of the JOSE Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that influenced this specification:

 Dirk Balfanz, Richard Barnes, John Bradley, Brian Campbell, Breno de
 Medeiros, Vladimir Dzhuvinov, Yaron Y. Goland, Dick Hardt, Joe
 Hildebrand, Jeff Hodges, Edmund Jay, James Manger, Matt Miller,
 Kathleen Moriarty, Tony Nadalin, Axel Nennker, John Panzer, Emmanuel
 Raviart, Eric Rescorla, Nat Sakimura, Jim Schaad, Hannes Tschofenig,
 and Sean Turner.

 Jim Schaad and Karen O'Donoghue chaired the JOSE working group and
 Sean Turner, Stephen Farrell, and Kathleen Moriarty served as
 Security area directors during the creation of this specification.

Appendix E. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -32

 o Added a note to implementers about libraries that prefix an extra
 zero-valued octet to RSA modulus representations returned.

 o Addressed secdir review comments by Charlie Kaufman, Scott Kelly,
 and Stephen Kent.

 o Addressed Gen-ART review comments by Roni Even.

 o Replaced the term Plaintext JWS with Unsecured JWS.

 -31

 o Referenced NIST SP 800-57 for guidance on key lifetimes.

 o Updated the reference to draft-mcgrew-aead-aes-cbc-hmac-sha2.

 -30

 o Cleaned up the reference syntax in a few places.

 o Applied minor wording changes to the Security Considerations
 section.

https://datatracker.ietf.org/doc/html/draft-mcgrew-aead-aes-cbc-hmac-sha2

Jones Expires March 27, 2015 [Page 65]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 -29

 o Replaced the terms JWS Header, JWE Header, and JWT Header with a
 single JOSE Header term defined in the JWS specification. This
 also enabled a single Header Parameter definition to be used and
 reduced other areas of duplication between specifications.

 -28

 o Specified the use of PKCS #7 padding with AES CBC, rather than
 PKCS #5. (PKCS #7 is a superset of PKCS #5, and is appropriate
 for the 16 octet blocks used by AES CBC.)

 o Revised the introduction to the Security Considerations section.
 Also introduced additional subsection headings for security
 considerations items and moved a few security consideration items
 from here to the JWS and JWE drafts.

 -27

 o Described additional security considerations.

 o Updated the JCA and XMLENC parameters for "RSA-OAEP-256" and the
 JCA parameters for "A128KW", "A192KW", "A256KW", and "ECDH-ES".

 -26

 o Added algorithm identifier "RSA-OAEP-256" for RSAES OAEP using
 SHA-256 and MGF1 with SHA-256.

 o Clarified that the ECDSA signature values R and S are represented
 as octet sequences as defined in Section 2.3.7 of SEC1 [SEC1].

 o Noted that octet sequences are depicted using JSON array notation.

 o Updated references, including to W3C specifications.

 -25

 o Corrected an external section number reference that had changed.

 -24

 o Replaced uses of the term "associated data" wherever it was used
 to refer to a data value with "additional authenticated data",
 since both terms were being used as synonyms, causing confusion.

Jones Expires March 27, 2015 [Page 66]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Updated the JSON reference to RFC 7159.

 -23

 o No changes were made, other than to the version number and date.

 -22

 o Corrected RFC 2119 terminology usage.

 o Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.

 -21

 o Compute the PBES2 salt parameter as (UTF8(Alg) || 0x00 || Salt
 Input), where the "p2s" Header Parameter encodes the Salt Input
 value and Alg is the "alg" Header Parameter value.

 o Changed some references from being normative to informative,
 addressing issue #90.

 -20

 o Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis,
 addressing issue #90.

 -19

 o Used tables to show the correspondence between algorithm
 identifiers and algorithm descriptions and parameters in the
 algorithm definition sections, addressing issue #183.

 o Changed the "Implementation Requirements" registry field names to
 "JOSE Implementation Requirements" to make it clear that these
 implementation requirements apply only to JWS and JWE
 implementations.

 -18

 o Changes to address editorial and minor issues #129, #134, #135,
 #158, #161, #185, #186, and #187.

 o Added and used Description registry fields.

 -17

 o Explicitly named all the logical components of a JWS and JWE and
 defined the processing rules and serializations in terms of those

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis
https://datatracker.ietf.org/doc/html/rfc7158
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis

Jones Expires March 27, 2015 [Page 67]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 components, addressing issues #60, #61, and #62.

 o Removed processing steps in algorithm definitions that duplicated
 processing steps in JWS or JWE, addressing issue #56.

 o Replaced verbose repetitive phases such as "base64url encode the
 octets of the UTF-8 representation of X" with mathematical
 notation such as "BASE64URL(UTF8(X))".

 o Terms used in multiple documents are now defined in one place and
 incorporated by reference. Some lightly used or obvious terms
 were also removed. This addresses issue #58.

 o Changes to address minor issue #53.

 -16

 o Added a DataLen prefix to the AlgorithmID value in the Concat KDF
 computation.

 o Added OIDs for encryption algorithms, additional signature
 algorithm OIDs, and additional XML DSIG/ENC URIs in the algorithm
 cross-reference tables.

 o Changes to address editorial and minor issues #28, #36, #39, #52,
 #53, #55, #127, #128, #136, #137, #141, #150, #151, #152, and
 #155.

 -15

 o Changed statements about rejecting JWSs to statements about
 validation failing, addressing issue #35.

 o Stated that changes of implementation requirements are only
 permitted on a Specification Required basis, addressing issue #38.

 o Made "oct" a required key type, addressing issue #40.

 o Updated the example ECDH-ES key agreement values.

 o Changes to address editorial and minor issues #34, #37, #49, #63,
 #123, #124, #125, #130, #132, #133, #138, #139, #140, #142, #143,
 #144, #145, #148, #149, #150, and #162.

 -14

 o Removed "PBKDF2" key type and added "p2s" and "p2c" header
 parameters for use with the PBES2 algorithms.

Jones Expires March 27, 2015 [Page 68]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Made the RSA private key parameters that are there to enable
 optimizations be RECOMMENDED rather than REQUIRED.

 o Added algorithm identifiers for AES algorithms using 192 bit keys
 and for RSASSA-PSS using HMAC SHA-384.

 o Added security considerations about key lifetimes, addressing
 issue #18.

 o Added an example ECDH-ES key agreement computation.

 -13

 o Added key encryption with AES GCM as specified in
draft-jones-jose-aes-gcm-key-wrap-01, addressing issue #13.

 o Added security considerations text limiting the number of times
 that an AES GCM key can be used for key encryption or direct
 encryption, per Section 8.3 of NIST SP 800-38D, addressing issue
 #28.

 o Added password-based key encryption as specified in
draft-miller-jose-jwe-protected-jwk-02.

 -12

 o In the Direct Key Agreement case, the Concat KDF AlgorithmID is
 set to the octets of the UTF-8 representation of the "enc" header
 parameter value.

 o Restored the "apv" (agreement PartyVInfo) parameter.

 o Moved the "epk", "apu", and "apv" Header Parameter definitions to
 be with the algorithm descriptions that use them.

 o Changed terminology from "block encryption" to "content
 encryption".

 -11

 o Removed the Encrypted Key value from the AAD computation since it
 is already effectively integrity protected by the encryption
 process. The AAD value now only contains the representation of
 the JWE Encrypted Header.

 o Removed "apv" (agreement PartyVInfo) since it is no longer used.

https://datatracker.ietf.org/doc/html/draft-jones-jose-aes-gcm-key-wrap-01
https://datatracker.ietf.org/doc/html/draft-miller-jose-jwe-protected-jwk-02

Jones Expires March 27, 2015 [Page 69]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Added more information about the use of PartyUInfo during key
 agreement.

 o Use the keydatalen as the SuppPubInfo value for the Concat KDF
 when doing key agreement, as RFC 2631 does.

 o Added algorithm identifiers for RSASSA-PSS with SHA-256 and SHA-
 512.

 o Added a Parameter Information Class value to the JSON Web Key
 Parameters registry, which registers whether the parameter conveys
 public or private information.

 -10

 o Changed the JWE processing rules for multiple recipients so that a
 single AAD value contains the header parameters and encrypted key
 values for all the recipients, enabling AES GCM to be safely used
 for multiple recipients.

 -09

 o Expanded the scope of the JWK parameters to include private and
 symmetric key representations, as specified by

draft-jones-jose-json-private-and-symmetric-key-00.

 o Changed term "JWS Secured Input" to "JWS Signing Input".

 o Changed from using the term "byte" to "octet" when referring to 8
 bit values.

 o Specified that AES Key Wrap uses the default initial value
 specified in Section 2.2.3.1 of RFC 3394. This addressed issue
 #19.

 o Added Key Management Mode definitions to terminology section and
 used the defined terms to provide clearer key management
 instructions. This addressed issue #5.

 o Replaced "A128CBC+HS256" and "A256CBC+HS512" with "A128CBC-HS256"
 and "A256CBC-HS512". The new algorithms perform the same
 cryptographic computations as [I-D.mcgrew-aead-aes-cbc-hmac-sha2],
 but with the Initialization Vector and Authentication Tag values
 remaining separate from the Ciphertext value in the output
 representation. Also deleted the header parameters "epu"
 (encryption PartyUInfo) and "epv" (encryption PartyVInfo), since
 they are no longer used.

https://datatracker.ietf.org/doc/html/rfc2631
https://datatracker.ietf.org/doc/html/draft-jones-jose-json-private-and-symmetric-key-00
https://datatracker.ietf.org/doc/html/rfc3394#section-2.2.3.1

Jones Expires March 27, 2015 [Page 70]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Changed from using the term "Integrity Value" to "Authentication
 Tag".

 -08

 o Changed the name of the JWK key type parameter from "alg" to
 "kty".

 o Replaced uses of the term "AEAD" with "Authenticated Encryption",
 since the term AEAD in the RFC 5116 sense implied the use of a
 particular data representation, rather than just referring to the
 class of algorithms that perform authenticated encryption with
 associated data.

 o Applied editorial improvements suggested by Jeff Hodges. Many of
 these simplified the terminology used.

 o Added seriesInfo information to Internet Draft references.

 -07

 o Added a data length prefix to PartyUInfo and PartyVInfo values.

 o Changed the name of the JWK RSA modulus parameter from "mod" to
 "n" and the name of the JWK RSA exponent parameter from "xpo" to
 "e", so that the identifiers are the same as those used in RFC

3447.

 o Made several local editorial changes to clean up loose ends left
 over from to the decision to only support block encryption methods
 providing integrity.

 -06

 o Removed the "int" and "kdf" parameters and defined the new
 composite Authenticated Encryption algorithms "A128CBC+HS256" and
 "A256CBC+HS512" to replace the former uses of AES CBC, which
 required the use of separate integrity and key derivation
 functions.

 o Included additional values in the Concat KDF calculation -- the
 desired output size and the algorithm value, and optionally
 PartyUInfo and PartyVInfo values. Added the optional header
 parameters "apu" (agreement PartyUInfo), "apv" (agreement
 PartyVInfo), "epu" (encryption PartyUInfo), and "epv" (encryption
 PartyVInfo).

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Jones Expires March 27, 2015 [Page 71]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Changed the name of the JWK RSA exponent parameter from "exp" to
 "xpo" so as to allow the potential use of the name "exp" for a
 future extension that might define an expiration parameter for
 keys. (The "exp" name is already used for this purpose in the JWT
 specification.)

 o Applied changes made by the RFC Editor to RFC 6749's registry
 language to this specification.

 -05

 o Support both direct encryption using a shared or agreed upon
 symmetric key, and the use of a shared or agreed upon symmetric
 key to key wrap the CMK. Specifically, added the "alg" values
 "dir", "ECDH-ES+A128KW", and "ECDH-ES+A256KW" to finish filling in
 this set of capabilities.

 o Updated open issues.

 -04

 o Added text requiring that any leading zero bytes be retained in
 base64url encoded key value representations for fixed-length
 values.

 o Added this language to Registration Templates: "This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted."

 o Described additional open issues.

 o Applied editorial suggestions.

 -03

 o Always use a 128 bit "authentication tag" size for AES GCM,
 regardless of the key size.

 o Specified that use of a 128 bit IV is REQUIRED with AES CBC. It
 was previously RECOMMENDED.

 o Removed key size language for ECDSA algorithms, since the key size
 is implied by the algorithm being used.

 o Stated that the "int" key size must be the same as the hash output
 size (and not larger, as was previously allowed) so that its size
 is defined for key generation purposes.

https://datatracker.ietf.org/doc/html/rfc6749

Jones Expires March 27, 2015 [Page 72]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Added the "kdf" (key derivation function) header parameter to
 provide crypto agility for key derivation. The default KDF
 remains the Concat KDF with the SHA-256 digest function.

 o Clarified that the "mod" and "exp" values are unsigned.

 o Added Implementation Requirements columns to algorithm tables and
 Implementation Requirements entries to algorithm registries.

 o Changed AES Key Wrap to RECOMMENDED.

 o Moved registries JSON Web Signature and Encryption Header
 Parameters and JSON Web Signature and Encryption Type Values to
 the JWS specification.

 o Moved JSON Web Key Parameters registry to the JWK specification.

 o Changed registration requirements from RFC Required to
 Specification Required with Expert Review.

 o Added Registration Template sections for defined registries.

 o Added Registry Contents sections to populate registry values.

 o No longer say "the UTF-8 representation of the JWS Secured Input
 (which is the same as the ASCII representation)". Just call it
 "the ASCII representation of the JWS Secured Input".

 o Added "Collision Resistant Namespace" to the terminology section.

 o Numerous editorial improvements.

 -02

 o For AES GCM, use the "additional authenticated data" parameter to
 provide integrity for the header, encrypted key, and ciphertext
 and use the resulting "authentication tag" value as the JWE
 Authentication Tag.

 o Defined minimum required key sizes for algorithms without
 specified key sizes.

 o Defined KDF output key sizes.

 o Specified the use of PKCS #5 padding with AES CBC.

 o Generalized text to allow key agreement to be employed as an
 alternative to key wrapping or key encryption.

Jones Expires March 27, 2015 [Page 73]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Clarified that ECDH-ES is a key agreement algorithm.

 o Required implementation of AES-128-KW and AES-256-KW.

 o Removed the use of "A128GCM" and "A256GCM" for key wrapping.

 o Removed "A512KW" since it turns out that it's not a standard
 algorithm.

 o Clarified the relationship between "typ" header parameter values
 and MIME types.

 o Generalized language to refer to Message Authentication Codes
 (MACs) rather than Hash-based Message Authentication Codes (HMACs)
 unless in a context specific to HMAC algorithms.

 o Established registries: JSON Web Signature and Encryption Header
 Parameters, JSON Web Signature and Encryption Algorithms, JSON Web
 Signature and Encryption "typ" Values, JSON Web Key Parameters,
 and JSON Web Key Algorithm Families.

 o Moved algorithm-specific definitions from JWK to JWA.

 o Reformatted to give each member definition its own section
 heading.

 -01

 o Moved definition of "alg":"none" for JWSs here from the JWT
 specification since this functionality is likely to be useful in
 more contexts that just for JWTs.

 o Added Advanced Encryption Standard (AES) Key Wrap Algorithm using
 512 bit keys ("A512KW").

 o Added text "Alternatively, the Encoded JWS Signature MAY be
 base64url decoded to produce the JWS Signature and this value can
 be compared with the computed HMAC value, as this comparison
 produces the same result as comparing the encoded values".

 o Corrected the Magic Signatures reference.

 o Made other editorial improvements suggested by JOSE working group
 participants.

 -00

Jones Expires March 27, 2015 [Page 74]

Internet-Draft JSON Web Algorithms (JWA) September 2014

 o Created the initial IETF draft based upon
draft-jones-json-web-signature-04 and
draft-jones-json-web-encryption-02 with no normative changes.

 o Changed terminology to no longer call both digital signatures and
 HMACs "signatures".

Author's Address

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-04
https://datatracker.ietf.org/doc/html/draft-jones-json-web-encryption-02
http://self-issued.info/

Jones Expires March 27, 2015 [Page 75]

