
JOSE Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track E. Rescorla
Expires: November 13, 2012 RTFM
 J. Hildebrand
 Cisco
 May 12, 2012

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-02

Abstract

 JSON Web Encryption (JWE) is a means of representing encrypted
 content using JSON data structures. Cryptographic algorithms and
 identifiers used with this specification are enumerated in the
 separate JSON Web Algorithms (JWA) specification. Related digital
 signature and MAC capabilities are described in the separate JSON Web
 Signature (JWS) specification.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 13, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Jones, et al. Expires November 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft JWE May 2012

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jones, et al. Expires November 13, 2012 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JWE May 2012

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. JSON Web Encryption (JWE) Overview 6
3.1. Example JWE with an Integrated Integrity Check 6
3.2. Example JWE with a Separate Integrity Check 7

4. JWE Header . 8
4.1. Reserved Header Parameter Names 8
4.1.1. "alg" (Algorithm) Header Parameter 9
4.1.2. "enc" (Encryption Method) Header Parameter 9
4.1.3. "int" (Integrity Algorithm) Header Parameter 9
4.1.4. "iv" (Initialization Vector) Header Parameter 10
4.1.5. "epk" (Ephemeral Public Key) Header Parameter 10
4.1.6. "zip" (Compression Algorithm) Header Parameter 10
4.1.7. "jku" (JWK Set URL) Header Parameter 10
4.1.8. "jwk" (JSON Web Key) Header Parameter 10
4.1.9. "x5u" (X.509 URL) Header Parameter 11

 4.1.10. "x5t" (X.509 Certificate Thumbprint) Header
 Parameter . 11

4.1.11. "x5c" (X.509 Certificate Chain) Header Parameter . . . 11
4.1.12. "kid" (Key ID) Header Parameter 12
4.1.13. "typ" (Type) Header Parameter 12

4.2. Public Header Parameter Names 12
4.3. Private Header Parameter Names 12

5. Message Encryption . 13
6. Message Decryption . 14
7. Key Derivation . 15
8. CMK Encryption . 16
8.1. Asymmetric Encryption 16
8.2. Symmetric Encryption 16

9. Integrity Value Calculation 16
10. Encrypting JWEs with Cryptographic Algorithms 17
11. IANA Considerations . 17
11.1. Registration of application/jwe MIME Media Type 17
11.2. Registration of "JWE" Type Value 18

12. Security Considerations 19
13. Open Issues and Things To Be Done (TBD) 19
14. References . 19
14.1. Normative References 19
14.2. Informative References 20

Appendix A. JWE Examples . 21
A.1. JWE Example using TBD Algorithm 21
A.1.1. Encrypting . 21
A.1.2. Decrypting . 21

Appendix B. Acknowledgements 21
Appendix C. Document History 22

 Authors' Addresses . 23

Jones, et al. Expires November 13, 2012 [Page 3]

Internet-Draft JWE May 2012

1. Introduction

 JSON Web Encryption (JWE) is a compact encryption format intended for
 space constrained environments such as HTTP Authorization headers and
 URI query parameters. It provides a wrapper for encrypted content
 using JSON RFC 4627 [RFC4627] data structures. The JWE encryption
 mechanisms are independent of the type of content being encrypted.
 Cryptographic algorithms and identifiers used with this specification
 are enumerated in the separate JSON Web Algorithms (JWA) [JWA]
 specification. Related digital signature and MAC capabilities are
 described in the separate JSON Web Signature (JWS) [JWS]
 specification.

2. Terminology

 JSON Web Encryption (JWE) A data structure representing an encrypted
 version of a Plaintext. The structure consists of four parts: the
 JWE Header, the JWE Encrypted Key, the JWE Ciphertext, and the JWE
 Integrity Value.

 Plaintext The bytes to be encrypted - a.k.a., the message. The
 plaintext can contain an arbitrary sequence of bytes.

 Ciphertext The encrypted version of the Plaintext.

 Content Encryption Key (CEK) A symmetric key used to encrypt the
 Plaintext for the recipient to produce the Ciphertext.

 Content Integrity Key (CIK) A key used with a MAC function to ensure
 the integrity of the Ciphertext and the parameters used to create
 it.

 Content Master Key (CMK) A key from which the CEK and CIK are
 derived. When key wrapping or key encryption are employed, the
 CMK is randomly generated and encrypted to the recipient as the
 JWE Encrypted Key. When key agreement is employed, the CMK is the
 result of the key agreement algorithm.

 JWE Header A string representing a JSON object that describes the
 encryption operations applied to create the JWE Encrypted Key, the
 JWE Ciphertext, and the JWE Integrity Value.

 JWE Encrypted Key When key wrapping or key encryption are employed,
 the Content Master Key (CMK) is encrypted with the intended
 recipient's key and the resulting encrypted content is recorded as
 a byte array, which is referred to as the JWE Encrypted Key.
 Otherwise, when key agreement is employed, the JWE Encrypted Key

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires November 13, 2012 [Page 4]

Internet-Draft JWE May 2012

 is the empty byte array.

 JWE Ciphertext A byte array containing the Ciphertext.

 JWE Integrity Value A byte array containing a MAC value that ensures
 the integrity of the Ciphertext and the parameters used to create
 it.

 Encoded JWE Header Base64url encoding of the bytes of the UTF-8 RFC
3629 [RFC3629] representation of the JWE Header.

 Encoded JWE Encrypted Key Base64url encoding of the JWE Encrypted
 Key.

 Encoded JWE Ciphertext Base64url encoding of the JWE Ciphertext.

 Encoded JWE Integrity Value Base64url encoding of the JWE Integrity
 Value.

 Header Parameter Names The names of the members within the JWE
 Header.

 Header Parameter Values The values of the members within the JWE
 Header.

 JWE Compact Serialization A representation of the JWE as the
 concatenation of the Encoded JWE Header, the Encoded JWE Encrypted
 Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity
 Value in that order, with the four strings being separated by
 period ('.') characters.

 AEAD Algorithm An Authenticated Encryption with Associated Data
 (AEAD) [RFC5116] encryption algorithm is one that provides an
 integrated content integrity check. AES Galois/Counter Mode (GCM)
 is one such algorithm.

 Base64url Encoding For the purposes of this specification, this term
 always refers to the URL- and filename-safe Base64 encoding
 described in RFC 4648 [RFC4648], Section 5, with the (non URL-
 safe) '=' padding characters omitted, as permitted by Section 3.2.
 (See Appendix B of [JWS] for notes on implementing base64url
 encoding without padding.)

 StringOrURI A JSON string value, with the additional requirement
 that while arbitrary string values MAY be used, any value
 containing a ":" character MUST be a URI as defined in RFC 3986
 [RFC3986].

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Jones, et al. Expires November 13, 2012 [Page 5]

Internet-Draft JWE May 2012

3. JSON Web Encryption (JWE) Overview

 JWE represents encrypted content using JSON data structures and
 base64url encoding. The representation consists of four parts: the
 JWE Header, the JWE Encrypted Key, the JWE Ciphertext, and the JWE
 Integrity Value. In the Compact Serialization, the four parts are
 base64url-encoded for transmission, and represented as the
 concatenation of the encoded strings in that order, with the four
 strings being separated by period ('.') characters. (A JSON
 Serialization for this information is defined in the separate JSON
 Web Encryption JSON Serialization (JWE-JS) [JWE-JS] specification.)

 JWE utilizes encryption to ensure the confidentiality of the contents
 of the Plaintext. JWE adds a content integrity check if not provided
 by the underlying encryption algorithm.

3.1. Example JWE with an Integrated Integrity Check

 The following example JWE Header declares that:

 o the Content Master Key is encrypted to the recipient using the
 RSA-PKCS1_1.5 algorithm to produce the JWE Encrypted Key,

 o the Plaintext is encrypted using the AES-256-GCM algorithm to
 produce the JWE Ciphertext,

 o the specified 96 bit Initialization Vector with the base64url
 encoding "__79_Pv6-fj39vX0" was used, and

 o a JSON Web Key Set (JWK Set) representation of the public key used
 to encrypt the JWE is located at
 "https://example.com/public_key.jwk".

 {"alg":"RSA1_5",
 "enc":"A256GCM",
 "iv":"__79_Pv6-fj39vX0",
 "jku":"https://example.com/public_key.jwk"}

 Base64url encoding the bytes of the UTF-8 representation of the JWE
 Header yields this Encoded JWE Header value (with line breaks for
 display purposes only):
 eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
 X1B2Ni1mZyIsDQogImprdSI6Imh0dHBzOi8vZXhhbXBsZS5jb20vcHVibGljX2tl
 eS5qd2sifQ

 TBD: Finish this example by showing generation of a Content Master
 Key (CMK), saying that the CMK is used as the CEK and there is no
 separate integrity check since AES GCM is an AEAD algorithm, using

Jones, et al. Expires November 13, 2012 [Page 6]

Internet-Draft JWE May 2012

 the recipient's key to encrypt the CMK to produce the JWE Encrypted
 Key, using the CEK, IV, Encoded JWE Header, and Encoded JWE Encrypted
 Key to encrypt the Plaintext to produce the Ciphertext and
 "authentication tag" value, base64url encoding these values, and
 assembling the result.

 Concatenating these parts in the order
 Header.EncryptedKey.Ciphertext.IntegrityValue with period characters
 between the parts yields this complete JWE representation (with line
 breaks for display purposes only):
 eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
 X1B2Ni1mZyIsDQogImprdSI6Imh0dHBzOi8vZXhhbXBsZS5jb20vcHVibGljX2tl
 eS5qd2sifQ
 .
 TBD_encrypted_key_value_TBD
 .
 TBD_ciphertext_value_TBD
 .
 TBD_integrity_value_TBD

3.2. Example JWE with a Separate Integrity Check

 The following example JWE Header declares that:

 o the Content Master Key is encrypted to the recipient using the
 RSA-PKCS1_1.5 algorithm to produce the JWE Encrypted Key,

 o the Plaintext is encrypted using the AES-256-CBC algorithm to
 produce the JWE Ciphertext,

 o the JWE Integrity Value safeguarding the integrity of the
 Ciphertext and the parameters used to create it was computed with
 the HMAC SHA-256 algorithm,

 o the specified 128 bit Initialization Vector with the base64url
 encoding "AxY8DCtDaGlsbGljb3RoZQ" was used, and

 o the thumbprint of the X.509 certificate that corresponds to the
 key used to encrypt the JWE has the base64url encoding
 "7noOPq-hJ1_hCnvWh6IeYI2w9Q0".

 {"alg":"RSA1_5",
 "enc":"A256CBC",
 "int":"HS256",
 "iv":"AxY8DCtDaGlsbGljb3RoZQ",
 "x5t":"7noOPq-hJ1_hCnvWh6IeYI2w9Q0"}

 Because AES CBC is not an AEAD algorithm (and so provides no

Jones, et al. Expires November 13, 2012 [Page 7]

Internet-Draft JWE May 2012

 integrated content integrity check), a separate integrity check value
 is used.

 Base64url encoding the bytes of the UTF-8 representation of the JWE
 Header yields this Encoded JWE Header value (with line breaks for
 display purposes only):
 eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2Q0JDIiwNCiAiaW50IjoiSFMy
 NTYiLA0KICJpdiI6Ik16LW1XXzRKSGZnIiwNCiAieDV0IjoiN25vT1BxLWhKMV9o
 Q252V2g2SWVZSTJ3OVEwIn0

 TBD: Finish this example by showing generation of a Content Master
 Key (CMK), showing the derivation of the CEK and the CIK from the
 CMK, using the recipient's key to encrypt the CMK to produce the JWE
 Encrypted Key, using the CEK and IV to encrypt the Plaintext to
 produce the Ciphertext, showing the computation of the JWE Integrity
 Value, base64url encoding these values, and assembling the result.
 eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2Q0JDIiwNCiAiaW50IjoiSFMy
 NTYiLA0KICJpdiI6Ik16LW1XXzRKSGZnIiwNCiAieDV0IjoiN25vT1BxLWhKMV9o
 Q252V2g2SWVZSTJ3OVEwIn0
 .
 TBD_encrypted_key_value_TBD
 .
 TBD_ciphertext_value_TBD
 .
 TBD_integrity_value_TBD

4. JWE Header

 The members of the JSON object represented by the JWE Header describe
 the encryption applied to the Plaintext and optionally additional
 properties of the JWE. The Header Parameter Names within this object
 MUST be unique; JWEs with duplicate Header Parameter Names MUST be
 rejected. Implementations MUST understand the entire contents of the
 header; otherwise, the JWE MUST be rejected.

 There are three classes of Header Parameter Names: Reserved Header
 Parameter Names, Public Header Parameter Names, and Private Header
 Parameter Names.

4.1. Reserved Header Parameter Names

 The following header parameter names are reserved with meanings as
 defined below. All the names are short because a core goal of JWE is
 for the representations to be compact.

 Additional reserved header parameter names MAY be defined via the
 IANA JSON Web Signature and Encryption Header Parameters registry

Jones, et al. Expires November 13, 2012 [Page 8]

Internet-Draft JWE May 2012

 [JWA]. As indicated by the common registry, JWSs and JWEs share a
 common header parameter space; when a parameter is used by both
 specifications, its usage must be compatible between the
 specifications.

4.1.1. "alg" (Algorithm) Header Parameter

 The "alg" (algorithm) header parameter identifies the cryptographic
 algorithm used to secure the JWE Encrypted Key. A list of defined
 "alg" values for use with JWE is presented in Section 4.1 of the JSON
 Web Algorithms (JWA) [JWA] specification. The processing of the
 "alg" header parameter requires that the value MUST be one that is
 both supported and for which there exists a key for use with that
 algorithm associated with the intended recipient. The "alg" value is
 case sensitive. Its value MUST be a string containing a StringOrURI
 value. This header parameter is REQUIRED.

 "alg" values SHOULD either be defined in the IANA JSON Web Signature
 and Encryption Algorithms registry [JWA] or be a URI that contains a
 collision resistant namespace.

4.1.2. "enc" (Encryption Method) Header Parameter

 The "enc" (encryption method) header parameter identifies the
 symmetric encryption algorithm used to secure the Ciphertext. A list
 of defined "enc" values is presented in Section 4.2 of the JSON Web
 Algorithms (JWA) [JWA] specification. The processing of the "enc"
 (encryption method) header parameter requires that the value MUST be
 one that is supported. The "enc" value is case sensitive. Its value
 MUST be a string containing a StringOrURI value. This header
 parameter is REQUIRED.

 "enc" values SHOULD either be defined in the IANA JSON Web Signature
 and Encryption Algorithms registry [JWA] or be a URI that contains a
 collision resistant namespace.

4.1.3. "int" (Integrity Algorithm) Header Parameter

 The "int" (integrity algorithm) header parameter identifies the
 cryptographic algorithm used to safeguard the integrity of the
 Ciphertext and the parameters used to create it. A list of defined
 "int" values is presented in Section 4.3 of the JSON Web Algorithms
 (JWA) [JWA] specification. The "int" parameter uses the MAC subset
 of the algorithm values used by the JWS "alg" parameter. The "int"
 value is case sensitive. Its value MUST be a string containing a
 StringOrURI value. This header parameter is REQUIRED when an AEAD
 algorithm is not used to encrypt the Plaintext and MUST NOT be
 present when an AEAD algorithm is used.

Jones, et al. Expires November 13, 2012 [Page 9]

Internet-Draft JWE May 2012

 "int" values SHOULD either be defined in the IANA JSON Web Signature
 and Encryption Algorithms registry [JWA] or be a URI that contains a
 collision resistant namespace.

4.1.4. "iv" (Initialization Vector) Header Parameter

 The "iv" (initialization vector) value for algorithms requiring it,
 represented as a base64url encoded string. This header parameter is
 OPTIONAL.

4.1.5. "epk" (Ephemeral Public Key) Header Parameter

 The "epk" (ephemeral public key) value created by the originator for
 the use in ECDH-ES RFC 6090 [RFC6090] encryption. This key is
 represented as a JSON Web Key [JWK] value, containing "crv" (curve),
 "x", and "y" members. The inclusion of the JWK "alg" (algorithm)
 member is OPTIONAL. This header parameter is OPTIONAL.

4.1.6. "zip" (Compression Algorithm) Header Parameter

 The "zip" (compression algorithm) applied to the Plaintext before
 encryption, if any. If present, the value of the "zip" header
 parameter MUST be the case sensitive string "DEF". Compression is
 performed with the DEFLATE [RFC1951] algorithm. If no "zip"
 parameter is present, no compression is applied to the Plaintext
 before encryption. This header parameter is OPTIONAL.

4.1.7. "jku" (JWK Set URL) Header Parameter

 The "jku" (JWK Set URL) header parameter is an absolute URL that
 refers to a resource for a set of JSON-encoded public keys, one of
 which corresponds to the key used to encrypt the JWE. The keys MUST
 be encoded as a JSON Web Key Set (JWK Set) as defined in the JSON Web
 Key (JWK) [JWK] specification. The protocol used to acquire the
 resource MUST provide integrity protection; an HTTP GET request to
 retrieve the certificate MUST use TLS RFC 2818 [RFC2818] RFC 5246
 [RFC5246]; the identity of the server MUST be validated, as per

Section 3.1 of HTTP Over TLS [RFC2818]. This header parameter is
 OPTIONAL.

4.1.8. "jwk" (JSON Web Key) Header Parameter

 The "jwk" (JSON Web Key) header parameter is a public key that
 corresponds to the key used to encrypt the JWE. This key is
 represented as a JSON Web Key [JWK]. This header parameter is
 OPTIONAL.

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Jones, et al. Expires November 13, 2012 [Page 10]

Internet-Draft JWE May 2012

4.1.9. "x5u" (X.509 URL) Header Parameter

 The "x5u" (X.509 URL) header parameter is an absolute URL that refers
 to a resource for the X.509 public key certificate or certificate
 chain corresponding to the key used to encrypt the JWE. The
 identified resource MUST provide a representation of the certificate
 or certificate chain that conforms to RFC 5280 [RFC5280] in PEM
 encoded form RFC 1421 [RFC1421]. The certificate containing the
 public key of the entity that encrypted the JWE MUST be the first
 certificate. This MAY be followed by additional certificates, with
 each subsequent certificate being the one used to certify the
 previous one. The protocol used to acquire the resource MUST provide
 integrity protection; an HTTP GET request to retrieve the certificate
 MUST use TLS RFC 2818 [RFC2818] RFC 5246 [RFC5246]; the identity of
 the server MUST be validated, as per Section 3.1 of HTTP Over TLS
 [RFC2818]. This header parameter is OPTIONAL.

4.1.10. "x5t" (X.509 Certificate Thumbprint) Header Parameter

 The "x5t" (X.509 Certificate Thumbprint) header parameter provides a
 base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
 encoding of the X.509 certificate corresponding to the key used to
 encrypt the JWE. This header parameter is OPTIONAL.

 If, in the future, certificate thumbprints need to be computed using
 hash functions other than SHA-1, it is suggested that additional
 related header parameters be defined for that purpose. For example,
 it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint
 using SHA-256) header parameter could be defined by registering it in
 the IANA JSON Web Signature and Encryption Header Parameters registry
 [JWA].

4.1.11. "x5c" (X.509 Certificate Chain) Header Parameter

 The "x5c" (X.509 Certificate Chain) header parameter contains the
 X.509 public key certificate or certificate chain corresponding to
 the key used to encrypt the JWE. The certificate or certificate
 chain is represented as an array of certificate values. Each value
 is a base64-encoded (not base64url encoded) DER/BER PKIX certificate
 value. The certificate containing the public key of the entity that
 encrypted the JWE MUST be the first certificate. This MAY be
 followed by additional certificates, with each subsequent certificate
 being the one used to certify the previous one. The recipient MUST
 verify the certificate chain according to [RFC5280] and reject the
 JWE if any validation failure occurs. This header parameter is
 OPTIONAL.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280

Jones, et al. Expires November 13, 2012 [Page 11]

Internet-Draft JWE May 2012

4.1.12. "kid" (Key ID) Header Parameter

 The "kid" (key ID) header parameter is a hint indicating which key
 was used to encrypt the JWE. This allows originators to explicitly
 signal a change of key to recipients. Should the recipient be unable
 to locate a key corresponding to the "kid" value, they SHOULD treat
 that condition as an error. The interpretation of the contents of
 the "kid" parameter is unspecified. Its value MUST be a string.
 This header parameter is OPTIONAL.

4.1.13. "typ" (Type) Header Parameter

 The "typ" (type) header parameter is used to declare the type of the
 encrypted content. The type value "JWE" MAY be used to indicate that
 the encrypted content is a JWE. The "typ" value is case sensitive.
 Its value MUST be a string. This header parameter is OPTIONAL.

 MIME Media Type RFC 2045 [RFC2045] values MAY be used as "typ"
 values.

 "typ" values SHOULD either be defined in the IANA JSON Web Signature
 and Encryption "typ" Values registry [JWA] or be a URI that contains
 a collision resistant namespace.

4.2. Public Header Parameter Names

 Additional header parameter names can be defined by those using JWEs.
 However, in order to prevent collisions, any new header parameter
 name SHOULD either be defined in the IANA JSON Web Signature and
 Encryption Header Parameters registry [JWA] or be a URI that contains
 a collision resistant namespace. In each case, the definer of the
 name or value needs to take reasonable precautions to make sure they
 are in control of the part of the namespace they use to define the
 header parameter name.

 New header parameters should be introduced sparingly, as they can
 result in non-interoperable JWEs.

4.3. Private Header Parameter Names

 A producer and consumer of a JWE may agree to any header parameter
 name that is not a Reserved Name Section 4.1 or a Public Name

Section 4.2. Unlike Public Names, these private names are subject to
 collision and should be used with caution.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

Jones, et al. Expires November 13, 2012 [Page 12]

Internet-Draft JWE May 2012

5. Message Encryption

 The message encryption process is as follows. The order of the steps
 is not significant in cases where there are no dependencies between
 the inputs and outputs of the steps.

 1. When key wrapping or key encryption are employed, generate a
 random Content Master Key (CMK). See RFC 4086 [RFC4086] for
 considerations on generating random values. Otherwise, when key
 agreement is employed, use the key agreement algorithm to
 compute the value of the Content Master Key (CMK). The CMK MUST
 have a length equal to that of the larger of the required
 encryption and integrity keys.

 2. When key wrapping or key encryption are employed, encrypt the
 CMK for the recipient (see Section 8) and let the result be the
 JWE Encrypted Key. Otherwise, when key agreement is employed,
 let the JWE Encrypted Key be an empty byte array.

 3. Base64url encode the JWE Encrypted Key to create the Encoded JWE
 Encrypted Key.

 4. Generate a random Initialization Vector (IV) of the correct size
 for the algorithm (if required for the algorithm).

 5. If not using an AEAD algorithm, run the key derivation algorithm
 (see Section 7) to generate the Content Encryption Key (CEK) and
 the Content Integrity Key (CIK); otherwise (when using an AEAD
 algorithm), set the CEK to be the CMK.

 6. Compress the Plaintext if a "zip" parameter was included.

 7. Serialize the (compressed) Plaintext into a byte sequence M.

 8. Encrypt M using the CEK and IV to form the byte sequence C. If
 an AEAD algorithm is used, use the concatenation of the Encoded
 JWE Header, a period ('.') character, and the Encoded JWE
 Encrypted Key as the "additional authenticated data" parameter
 value for the encryption.

 9. Base64url encode C to create the Encoded JWE Ciphertext.

 10. Create a JWE Header containing the encryption parameters used.
 Note that white space is explicitly allowed in the
 representation and no canonicalization need be performed before
 encoding.

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Jones, et al. Expires November 13, 2012 [Page 13]

Internet-Draft JWE May 2012

 11. Base64url encode the bytes of the UTF-8 representation of the
 JWE Header to create the Encoded JWE Header.

 12. If not using an AEAD algorithm, run the integrity algorithm (see
Section 9) using the CIK to compute the JWE Integrity Value;

 otherwise (when using an AEAD algorithm), set the JWE Integrity
 Value to be the "authentication tag" value produced by the AEAD
 algorithm.

 13. Base64url encode the JWE Integrity Value to create the Encoded
 JWE Integrity Value.

 14. The four encoded parts, taken together, are the result. The
 Compact Serialization of this result is the concatenation of the
 Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded
 JWE Ciphertext, and the Encoded JWE Integrity Value in that
 order, with the four strings being separated by period ('.')
 characters.

6. Message Decryption

 The message decryption process is the reverse of the encryption
 process. The order of the steps is not significant in cases where
 there are no dependencies between the inputs and outputs of the
 steps. If any of these steps fails, the JWE MUST be rejected.

 1. Parse the four parts of the input (which are separated by period
 characters when using the JWE Compact Serialization) into the
 Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded
 JWE Ciphertext, and the Encoded JWE Integrity Value.

 2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the
 Encoded JWE Ciphertext, and the Encoded JWE Integrity Value MUST
 be successfully base64url decoded following the restriction that
 no padding characters have been used.

 3. The resulting JWE Header MUST be completely valid JSON syntax
 conforming to RFC 4627 [RFC4627].

 4. The resulting JWE Header MUST be validated to only include
 parameters and values whose syntax and semantics are both
 understood and supported.

 5. Verify that the JWE Header references a key known to the
 recipient.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires November 13, 2012 [Page 14]

Internet-Draft JWE May 2012

 6. When key wrapping or key encryption are employed, decrypt the
 JWE Encrypted Key to produce the Content Master Key (CMK).
 Otherwise, when key agreement is employed, use the key agreement
 algorithm to compute the value of the Content Master Key (CMK).
 The CMK MUST have a length equal to that of the larger of the
 required encryption and integrity keys.

 7. If not using an AEAD algorithm, run the key derivation algorithm
 (see Section 7) to generate the Content Encryption Key (CEK) and
 the Content Integrity Key (CIK); otherwise (when using an AEAD
 algorithm), set the CEK to be the CMK.

 8. Decrypt the binary representation of the JWE Ciphertext using
 the CEK and IV. If an AEAD algorithm is used, use the
 concatenation of the Encoded JWE Header, a period ('.')
 character, and the Encoded JWE Encrypted Key as the "additional
 authenticated data" parameter value for the decryption.

 9. If not using an AEAD algorithm, run the integrity algorithm (see
Section 9) using the CIK to compute an integrity value for the

 input received. This computed value MUST match the received JWE
 Integrity Value; otherwise (when using an AEAD algorithm), the
 received JWE Integrity Value MUST match the "authentication tag"
 value produced by the AEAD algorithm.

 10. Uncompress the result of the previous step, if a "zip" parameter
 was included.

 11. Output the resulting Plaintext.

7. Key Derivation

 The key derivation process converts the CMK into a CEK and a CIK. It
 assumes as a primitive a Key Derivation Function (KDF) which
 notionally takes three arguments:

 MasterKey: The master key used to compute the individual use keys

 Label: The use key label, used to differentiate individual use keys

 Length: The desired length of the use key

 The only KDF used in this document is the Concat KDF, as defined in
 Section 5.8.1 of [NIST.800-56A], where the Digest Method is SHA-256,
 the SuppPubInfo parameter is the Label, and the remaining OtherInfo
 parameters are the empty bit string.

Jones, et al. Expires November 13, 2012 [Page 15]

Internet-Draft JWE May 2012

 To compute the CEK from the CMK, the ASCII label "Encryption" ([69,
 110, 99, 114, 121, 112, 116, 105, 111, 110]) is used. Use the key
 size for the "enc" algorithm as the CEK desired key length.

 To compute the CIK from the CMK, the ASCII label "Integrity" ([73,
 110, 116, 101, 103, 114, 105, 116, 121]) is used. Use the minimum
 key size for the "int" algorithm (for instance, 256 bits for "HS256")
 as the CIK desired key length.

8. CMK Encryption

 JWE supports two forms of CMK encryption:

 o Asymmetric encryption under the recipient's public key.

 o Symmetric encryption under a shared key.

8.1. Asymmetric Encryption

 In the asymmetric encryption mode, the CMK is encrypted under the
 recipient's public key. The asymmetric encryption modes defined for
 use with this in this specification are listed in Section 4.1 of the
 JSON Web Algorithms (JWA) [JWA] specification.

8.2. Symmetric Encryption

 In the symmetric encryption mode, the CMK is encrypted under a
 symmetric key shared between the sender and receiver. The symmetric
 encryption modes defined for use with this in this specification are
 listed in Section 4.1 of the JSON Web Algorithms (JWA) [JWA]
 specification.

9. Integrity Value Calculation

 When a non-AEAD algorithm is used (an algorithm without an integrated
 content check), JWE adds an explicit integrity check value to the
 representation. This value is computed in the manner described in
 the JSON Web Signature (JWS) [JWS] specification, with these
 modifications:

 o The algorithm used is taken from the "int" (integrity algorithm)
 header parameter rather than the "alg" header parameter.

 o The algorithm MUST be a MAC algorithm (normally HMAC SHA-256).

Jones, et al. Expires November 13, 2012 [Page 16]

Internet-Draft JWE May 2012

 o The JWS Secured Input used is the concatenation of the Encoded JWE
 Header, a period ('.') character, the Encoded JWE Encrypted Key, a
 period ('.') character, and the Encoded JWE Ciphertext.

 o The CIK is used as the MAC key.

 The computed JWS Signature value is the resulting integrity value.

10. Encrypting JWEs with Cryptographic Algorithms

 JWE uses cryptographic algorithms to encrypt the Plaintext and the
 Content Encryption Key (CMK) and to provide integrity protection for
 the JWE Header, JWE Encrypted Key, and JWE Ciphertext. The JSON Web
 Algorithms (JWA) [JWA] specification enumerates a set of
 cryptographic algorithms and identifiers to be used with this
 specification. Specifically, Section 4.1 enumerates a set of "alg"
 (algorithm) header parameter values, Section 4.2 enumerates a set of
 "enc" (encryption method) header parameter values, and Section 4.3
 enumerates a set of "int" (integrity algorithm) header parameter
 values intended for use this specification. It also describes the
 semantics and operations that are specific to these algorithms and
 algorithm families.

 Public keys employed for encryption can be identified using the
 Header Parameter methods described in Section 4.1 or can be
 distributed using methods that are outside the scope of this
 specification.

11. IANA Considerations

11.1. Registration of application/jwe MIME Media Type

 This specification registers the "application/jwe" MIME Media Type
RFC 2045 [RFC2045].

 Type name:
 application

 Subtype name:
 jwe

 Required parameters:
 n/a

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

Jones, et al. Expires November 13, 2012 [Page 17]

Internet-Draft JWE May 2012

 Optional parameters:
 n/a

 Encoding considerations:
 n/a

 Security considerations:
 See the Security Considerations section of this document

 Interoperability considerations:
 n/a

 Published specification:
 [[this document]]

 Applications that use this media type:
 OpenID Connect

 Additional information:
 Magic number(s): n/a
 File extension(s): n/a
 Macintosh file type code(s): n/a

 Person & email address to contact for further information:
 Michael B. Jones
 mbj@microsoft.com

 Intended usage:
 COMMON

 Restrictions on usage:
 none

 Author:
 Michael B. Jones
 mbj@microsoft.com

 Change controller:
 IETF

11.2. Registration of "JWE" Type Value

 This specification registers the following "typ" header parameter
 value in the JSON Web Signature and Encryption "typ" Values registry
 established by the JSON Web Algorithms (JWA) [JWA] specification:

Jones, et al. Expires November 13, 2012 [Page 18]

Internet-Draft JWE May 2012

 "typ" header parameter value:
 "JWE"

 Abbreviation for MIME type:
 application/jwe

 Change controller:
 IETF

 Description:
 [[this document]]

12. Security Considerations

 All the security considerations in the JWS specification also apply
 to this specification, other than those that are signature specific.
 Likewise, all the security considerations in XML Encryption 1.1
 [W3C.CR-xmlenc-core1-20120313] also apply to JWE, other than those
 that are XML specific.

13. Open Issues and Things To Be Done (TBD)

 The following items remain to be done in this draft:

 o Add examples, including a KDF and a key agreement example.

14. References

14.1. Normative References

 [JWA] Jones, M., "JSON Web Algorithms (JWA)", May 2012.

 [JWK] Jones, M., "JSON Web Key (JWK)", May 2012.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", May 2012.

 [NIST.800-56A]
 National Institute of Standards and Technology (NIST),
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography (Revised)", NIST PUB
 800-56A, March 2007.

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication

Jones, et al. Expires November 13, 2012 [Page 19]

Internet-Draft JWE May 2012

 Procedures", RFC 1421, February 1993.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

14.2. Informative References

 [I-D.rescorla-jsms]
 Rescorla, E. and J. Hildebrand, "JavaScript Message

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6090

Jones, et al. Expires November 13, 2012 [Page 20]

Internet-Draft JWE May 2012

 Security Format", draft-rescorla-jsms-00 (work in
 progress), March 2011.

 [JSE] Bradley, J. and N. Sakimura (editor), "JSON Simple
 Encryption", September 2010.

 [JWE-JS] Jones, M., "JSON Web Encryption JSON Serialization
 (JWE-JS)", March 2012.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [W3C.CR-xmlenc-core1-20120313]
 Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch,
 "XML Encryption Syntax and Processing Version 1.1", World
 Wide Web Consortium CR CR-xmlenc-core1-20120313,
 March 2012,
 <http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313>.

Appendix A. JWE Examples

 This section provides several examples of JWEs.

A.1. JWE Example using TBD Algorithm

A.1.1. Encrypting

 TBD: Demonstrate encryption steps with this algorithm

A.1.2. Decrypting

 TBD: Demonstrate decryption steps with this algorithm

Appendix B. Acknowledgements

 Solutions for encrypting JSON content were also explored by JSON
 Simple Encryption [JSE] and JavaScript Message Security Format
 [I-D.rescorla-jsms], both of which significantly influenced this
 draft. This draft attempts to explicitly reuse as many of the
 relevant concepts from XML Encryption 1.1
 [W3C.CR-xmlenc-core1-20120313] and RFC 5652 [RFC5652] as possible,
 while utilizing simple compact JSON-based data structures.

 Special thanks are due to John Bradley and Nat Sakimura for the
 discussions that helped inform the content of this specification and
 to Eric Rescorla and Joe Hildebrand for allowing the reuse of text

https://datatracker.ietf.org/doc/html/draft-rescorla-jsms-00
https://datatracker.ietf.org/doc/html/rfc5652
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5652

Jones, et al. Expires November 13, 2012 [Page 21]

Internet-Draft JWE May 2012

 from [I-D.rescorla-jsms] in this document.

Appendix C. Document History

 -02

 o When using AEAD algorithms (such as AES GCM), use the "additional
 authenticated data" parameter to provide integrity for the header,
 encrypted key, and ciphertext and use the resulting
 "authentication tag" value as the JWE Integrity Value.

 o Defined KDF output key sizes.

 o Generalized text to allow key agreement to be employed as an
 alternative to key wrapping or key encryption.

 o Changed compression algorithm from gzip to DEFLATE.

 o Clarified that it is an error when a "kid" value is included and
 no matching key is found.

 o Clarified that JWEs with duplicate Header Parameter Names MUST be
 rejected.

 o Clarified the relationship between "typ" header parameter values
 and MIME types.

 o Registered application/jwe MIME type and "JWE" typ header
 parameter value.

 o Simplified JWK terminology to get replace the "JWK Key Object" and
 "JWK Container Object" terms with simply "JSON Web Key (JWK)" and
 "JSON Web Key Set (JWK Set)" and to eliminate potential confusion
 between single keys and sets of keys. As part of this change, the
 header parameter name for a public key value was changed from
 "jpk" (JSON Public Key) to "jwk" (JSON Web Key).

 o Added suggestion on defining additional header parameters such as
 "x5t#S256" in the future for certificate thumbprints using hash
 algorithms other than SHA-1.

 o Specify RFC 2818 server identity validation, rather than RFC 6125
 (paralleling the same decision in the OAuth specs).

 o Generalized language to refer to Message Authentication Codes
 (MACs) rather than Hash-based Message Authentication Codes (HMACs)
 unless in a context specific to HMAC algorithms.

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125

Jones, et al. Expires November 13, 2012 [Page 22]

Internet-Draft JWE May 2012

 o Reformatted to give each header parameter its own section heading.

 -01

 o Added an integrity check for non-AEAD algorithms.

 o Added "jpk" and "x5c" header parameters for including JWK public
 keys and X.509 certificate chains directly in the header.

 o Clarified that this specification is defining the JWE Compact
 Serialization. Referenced the new JWE-JS spec, which defines the
 JWE JSON Serialization.

 o Added text "New header parameters should be introduced sparingly
 since an implementation that does not understand a parameter MUST
 reject the JWE".

 o Clarified that the order of the encryption and decryption steps is
 not significant in cases where there are no dependencies between
 the inputs and outputs of the steps.

 o Made other editorial improvements suggested by JOSE working group
 participants.

 -00

 o Created the initial IETF draft based upon
draft-jones-json-web-encryption-02 with no normative changes.

 o Changed terminology to no longer call both digital signatures and
 HMACs "signatures".

Authors' Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Eric Rescorla
 RTFM, Inc.

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/draft-jones-json-web-encryption-02
http://self-issued.info/

Jones, et al. Expires November 13, 2012 [Page 23]

Internet-Draft JWE May 2012

 Joe Hildebrand
 Cisco Systems, Inc.

 Email: jhildebr@cisco.com

Jones, et al. Expires November 13, 2012 [Page 24]

