
JOSE Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track J. Bradley
Expires: September 19, 2014 Ping Identity
 N. Sakimura
 NRI
 March 18, 2014

JSON Web Signature (JWS)
draft-ietf-jose-json-web-signature-24

Abstract

 JSON Web Signature (JWS) represents content secured with digital
 signatures or Message Authentication Codes (MACs) using JavaScript
 Object Notation (JSON) based data structures. Cryptographic
 algorithms and identifiers for use with this specification are
 described in the separate JSON Web Algorithms (JWA) specification and
 an IANA registry defined by that specification. Related encryption
 capabilities are described in the separate JSON Web Encryption (JWE)
 specification.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Jones, et al. Expires September 19, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Web Signature (JWS) March 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Notational Conventions 4

2. Terminology . 5
3. JSON Web Signature (JWS) Overview 6
3.1. Example JWS . 8

4. JWS Header . 9
4.1. Registered Header Parameter Names 9
4.1.1. "alg" (Algorithm) Header Parameter 10
4.1.2. "jku" (JWK Set URL) Header Parameter 10
4.1.3. "jwk" (JSON Web Key) Header Parameter 10
4.1.4. "kid" (Key ID) Header Parameter 10
4.1.5. "x5u" (X.509 URL) Header Parameter 11
4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter . . . 11

 4.1.7. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header
 Parameter . 11

4.1.8. "typ" (Type) Header Parameter 12
4.1.9. "cty" (Content Type) Header Parameter 12
4.1.10. "crit" (Critical) Header Parameter 13

4.2. Public Header Parameter Names 13
4.3. Private Header Parameter Names 14

5. Producing and Consuming JWSs 14
5.1. Message Signature or MAC Computation 14
5.2. Message Signature or MAC Validation 15
5.3. String Comparison Rules 16

6. Key Identification . 16
7. Serializations . 17
7.1. JWS Compact Serialization 17
7.2. JWS JSON Serialization 17

8. TLS Requirements . 19
9. IANA Considerations . 19

 9.1. JSON Web Signature and Encryption Header Parameters
 Registry . 20

9.1.1. Registration Template 21
9.1.2. Initial Registry Contents 21

9.2. Media Type Registration 23
9.2.1. Registry Contents 23

10. Security Considerations 24
10.1. Cryptographic Security Considerations 24

Jones, et al. Expires September 19, 2014 [Page 2]

Internet-Draft JSON Web Signature (JWS) March 2014

10.2. JSON Security Considerations 25
10.3. Unicode Comparison Security Considerations 26

11. References . 26
11.1. Normative References 26
11.2. Informative References 28

Appendix A. JWS Examples . 28
A.1. Example JWS using HMAC SHA-256 29
A.1.1. Encoding . 29
A.1.2. Validating . 31

A.2. Example JWS using RSASSA-PKCS-v1_5 SHA-256 31
A.2.1. Encoding . 31
A.2.2. Validating . 33

A.3. Example JWS using ECDSA P-256 SHA-256 34
A.3.1. Encoding . 34
A.3.2. Validating . 36

A.4. Example JWS using ECDSA P-521 SHA-512 36
A.4.1. Encoding . 36
A.4.2. Validating . 38

A.5. Example Plaintext JWS 38
A.6. Example JWS Using JWS JSON Serialization 39
A.6.1. JWS Per-Signature Protected Headers 40
A.6.2. JWS Per-Signature Unprotected Headers 40
A.6.3. Complete JWS Header Values 40
A.6.4. Complete JWS JSON Serialization Representation 41

Appendix B. "x5c" (X.509 Certificate Chain) Example 41
Appendix C. Notes on implementing base64url encoding without

 padding . 43
Appendix D. Notes on Key Selection 44
Appendix E. Negative Test Case for "crit" Header Parameter . . . 46
Appendix F. Detached Content 46
Appendix G. Acknowledgements 47
Appendix H. Document History 47

 Authors' Addresses . 55

Jones, et al. Expires September 19, 2014 [Page 3]

Internet-Draft JSON Web Signature (JWS) March 2014

1. Introduction

 JSON Web Signature (JWS) represents content secured with digital
 signatures or Message Authentication Codes (MACs) using JavaScript
 Object Notation (JSON) [RFC7159] based data structures. The JWS
 cryptographic mechanisms provide integrity protection for an
 arbitrary sequence of octets.

 Two closely related serializations for JWS objects are defined. The
 JWS Compact Serialization is a compact, URL-safe representation
 intended for space constrained environments such as HTTP
 Authorization headers and URI query parameters. The JWS JSON
 Serialization represents JWS objects as JSON objects and enables
 multiple signatures and/or MACs to be applied to the same content.
 Both share the same cryptographic underpinnings.

 Cryptographic algorithms and identifiers for use with this
 specification are described in the separate JSON Web Algorithms (JWA)
 [JWA] specification and an IANA registry defined by that
 specification. Related encryption capabilities are described in the
 separate JSON Web Encryption (JWE) [JWE] specification.

 Names defined by this specification are short because a core goal is
 for the resulting representations to be compact.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

 BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per
Section 2.

 UTF8(STRING) denotes the octets of the UTF-8 [RFC3629] representation
 of STRING.

 ASCII(STRING) denotes the octets of the ASCII [USASCII]
 representation of STRING.

 The concatenation of two values A and B is denoted as A || B.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629

Jones, et al. Expires September 19, 2014 [Page 4]

Internet-Draft JSON Web Signature (JWS) March 2014

2. Terminology

 JSON Web Signature (JWS)
 A data structure representing a digitally signed or MACed message.

 JWS Header
 JSON object containing the parameters describing the cryptographic
 operations and parameters employed. The JWS Header members are
 the union of the members of the JWS Protected Header and the JWS
 Unprotected Header. The members of the JWS Header are Header
 Parameters.

 JWS Payload
 The sequence of octets to be secured -- a.k.a., the message. The
 payload can contain an arbitrary sequence of octets.

 JWS Signature
 Digital signature or MAC over the JWS Protected Header and the JWS
 Payload.

 Header Parameter
 A name/value pair that is member of the JWS Header.

 JWS Protected Header
 JSON object that contains the JWS Header Parameters that are
 integrity protected by the JWS Signature digital signature or MAC
 operation. For the JWS Compact Serialization, this comprises the
 entire JWS Header. For the JWS JSON Serialization, this is one
 component of the JWS Header.

 JWS Unprotected Header
 JSON object that contains the JWS Header Parameters that are not
 integrity protected. This can only be present when using the JWS
 JSON Serialization.

 Base64url Encoding
 Base64 encoding using the URL- and filename-safe character set
 defined in Section 5 of RFC 4648 [RFC4648], with all trailing '='
 characters omitted (as permitted by Section 3.2) and without the
 inclusion of any line breaks, white space, or other additional
 characters. (See Appendix C for notes on implementing base64url
 encoding without padding.)

 JWS Signing Input
 The input to the digital signature or MAC computation. Its value
 is ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.' ||
 BASE64URL(JWS Payload)).

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648

Jones, et al. Expires September 19, 2014 [Page 5]

Internet-Draft JSON Web Signature (JWS) March 2014

 JWS Compact Serialization
 A representation of the JWS as a compact, URL-safe string.

 JWS JSON Serialization
 A representation of the JWS as a JSON object. Unlike the JWS
 Compact Serialization, the JWS JSON Serialization enables multiple
 digital signatures and/or MACs to be applied to the same content.
 This representation is neither optimized for compactness nor URL-
 safe.

 Collision-Resistant Name
 A name in a namespace that enables names to be allocated in a
 manner such that they are highly unlikely to collide with other
 names. Examples of collision-resistant namespaces include: Domain
 Names, Object Identifiers (OIDs) as defined in the ITU-T X.660 and
 X.670 Recommendation series, and Universally Unique IDentifiers
 (UUIDs) [RFC4122]. When using an administratively delegated
 namespace, the definer of a name needs to take reasonable
 precautions to ensure they are in control of the portion of the
 namespace they use to define the name.

 StringOrURI
 A JSON string value, with the additional requirement that while
 arbitrary string values MAY be used, any value containing a ":"
 character MUST be a URI [RFC3986]. StringOrURI values are
 compared as case-sensitive strings with no transformations or
 canonicalizations applied.

3. JSON Web Signature (JWS) Overview

 JWS represents digitally signed or MACed content using JSON data
 structures and base64url encoding. A JWS represents these logical
 values:

 JWS Header
 JSON object containing the parameters describing the cryptographic
 operations and parameters employed. The JWS Header members are
 the union of the members of the JWS Protected Header and the JWS
 Unprotected Header, as described below.

 JWS Payload
 The sequence of octets to be secured -- a.k.a., the message. The
 payload can contain an arbitrary sequence of octets.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc3986

Jones, et al. Expires September 19, 2014 [Page 6]

Internet-Draft JSON Web Signature (JWS) March 2014

 JWS Signature
 Digital signature or MAC over the JWS Protected Header and the JWS
 Payload.

 The JWS Header represents the combination of these values:

 JWS Protected Header
 JSON object that contains the JWS Header Parameters that are
 integrity protected by the JWS Signature digital signature or MAC
 operation.

 JWS Unprotected Header
 JSON object that contains the JWS Header Parameters that are not
 integrity protected.

 This document defines two serializations for JWS objects: a compact,
 URL-safe serialization called the JWS Compact Serialization and a
 JSON serialization called the JWS JSON Serialization. In both
 serializations, the JWS Protected Header, JWS Payload, and JWS
 Signature are base64url encoded for transmission, since JSON lacks a
 way to directly represent octet sequences.

 In the JWS Compact Serialization, no JWS Unprotected Header is used.
 In this case, the JWS Header and the JWS Protected Header are the
 same.

 In the JWS Compact Serialization, a JWS object is represented as the
 combination of these three string values,
 BASE64URL(UTF8(JWS Protected Header)),
 BASE64URL(JWS Payload), and
 BASE64URL(JWS Signature),
 concatenated in that order, with the three strings being separated by
 two period ('.') characters.

 In the JWS JSON Serialization, one or both of the JWS Protected
 Header and JWS Unprotected Header MUST be present. In this case, the
 members of the JWS Header are the combination of the members of the
 JWS Protected Header and the JWS Unprotected Header values that are
 present.

 In the JWS JSON Serialization, a JWS object is represented as the
 combination of these four values,
 BASE64URL(UTF8(JWS Protected Header)),
 JWS Unprotected Header,
 BASE64URL(JWS Payload), and
 BASE64URL(JWS Signature),
 with the three base64url encoding result strings and the JWS
 Unprotected Header value being represented as members within a JSON

Jones, et al. Expires September 19, 2014 [Page 7]

Internet-Draft JSON Web Signature (JWS) March 2014

 object. The inclusion of some of these values is OPTIONAL. The JWS
 JSON Serialization can also represent multiple signature and/or MAC
 values, rather than just one. See Section 7.2 for more information
 about the JWS JSON Serialization.

3.1. Example JWS

 This section provides an example of a JWS. Its computation is
 described in more detail in Appendix A.1, including specifying the
 exact octet sequences representing the JSON values used and the key
 value used.

 The following example JWS Protected Header declares that the encoded
 object is a JSON Web Token (JWT) [JWT] and the JWS Protected Header
 and the JWS Payload are secured using the HMAC SHA-256 algorithm:

 {"typ":"JWT",
 "alg":"HS256"}

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

 The UTF-8 representation of following JSON object is used as the JWS
 Payload. (Note that the payload can be any content, and need not be
 a representation of a JSON object.)

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 Encoding this JWS Payload as BASE64URL(JWS Payload) gives this value
 (with line breaks for display purposes only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 Computing the HMAC of the JWS Signing Input ASCII(BASE64URL(UTF8(JWS
 Protected Header)) || '.' || BASE64URL(JWS Payload)) with the HMAC
 SHA-256 algorithm using the key specified in Appendix A.1 and
 base64url encoding the result yields this BASE64URL(JWS Signature)
 value:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 Concatenating these values in the order Header.Payload.Signature with
 period ('.') characters between the parts yields this complete JWS

Jones, et al. Expires September 19, 2014 [Page 8]

Internet-Draft JSON Web Signature (JWS) March 2014

 representation using the JWS Compact Serialization (with line breaks
 for display purposes only):

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 See Appendix A for additional examples.

4. JWS Header

 The members of the JSON object(s) representing the JWS Header
 describe the digital signature or MAC applied to the JWS Protected
 Header and the JWS Payload and optionally additional properties of
 the JWS. The Header Parameter names within the JWS Header MUST be
 unique; recipients MUST either reject JWSs with duplicate Header
 Parameter names or use a JSON parser that returns only the lexically
 last duplicate member name, as specified in Section 15.12 (The JSON
 Object) of ECMAScript 5.1 [ECMAScript].

 Implementations are required to understand the specific Header
 Parameters defined by this specification that are designated as "MUST
 be understood" and process them in the manner defined in this
 specification. All other Header Parameters defined by this
 specification that are not so designated MUST be ignored when not
 understood. Unless listed as a critical Header Parameter, per

Section 4.1.10, all Header Parameters not defined by this
 specification MUST be ignored when not understood.

 There are three classes of Header Parameter names: Registered Header
 Parameter names, Public Header Parameter names, and Private Header
 Parameter names.

4.1. Registered Header Parameter Names

 The following Header Parameter names are registered in the IANA JSON
 Web Signature and Encryption Header Parameters registry defined in

Section 9.1, with meanings as defined below.

 As indicated by the common registry, JWSs and JWEs share a common
 Header Parameter space; when a parameter is used by both
 specifications, its usage must be compatible between the
 specifications.

Jones, et al. Expires September 19, 2014 [Page 9]

Internet-Draft JSON Web Signature (JWS) March 2014

4.1.1. "alg" (Algorithm) Header Parameter

 The "alg" (algorithm) Header Parameter identifies the cryptographic
 algorithm used to secure the JWS. The signature, MAC, or plaintext
 value is not valid if the "alg" value does not represent a supported
 algorithm, or if there is not a key for use with that algorithm
 associated with the party that digitally signed or MACed the content.
 "alg" values should either be registered in the IANA JSON Web
 Signature and Encryption Algorithms registry defined in [JWA] or be a
 value that contains a Collision-Resistant Name. The "alg" value is a
 case-sensitive string containing a StringOrURI value. This Header
 Parameter MUST be present and MUST be understood and processed by
 implementations.

 A list of defined "alg" values for this use can be found in the IANA
 JSON Web Signature and Encryption Algorithms registry defined in
 [JWA]; the initial contents of this registry are the values defined
 in Section 3.1 of the JSON Web Algorithms (JWA) [JWA] specification.

4.1.2. "jku" (JWK Set URL) Header Parameter

 The "jku" (JWK Set URL) Header Parameter is a URI [RFC3986] that
 refers to a resource for a set of JSON-encoded public keys, one of
 which corresponds to the key used to digitally sign the JWS. The
 keys MUST be encoded as a JSON Web Key Set (JWK Set) [JWK]. The
 protocol used to acquire the resource MUST provide integrity
 protection; an HTTP GET request to retrieve the JWK Set MUST use TLS
 [RFC2818] [RFC5246]; the identity of the server MUST be validated, as
 per Section 3.1 of HTTP Over TLS [RFC2818]. Use of this Header
 Parameter is OPTIONAL.

4.1.3. "jwk" (JSON Web Key) Header Parameter

 The "jwk" (JSON Web Key) Header Parameter is the public key that
 corresponds to the key used to digitally sign the JWS. This key is
 represented as a JSON Web Key [JWK]. Use of this Header Parameter is
 OPTIONAL.

4.1.4. "kid" (Key ID) Header Parameter

 The "kid" (key ID) Header Parameter is a hint indicating which key
 was used to secure the JWS. This parameter allows originators to
 explicitly signal a change of key to recipients. The structure of
 the "kid" value is unspecified. Its value MUST be a string. Use of
 this Header Parameter is OPTIONAL.

 When used with a JWK, the "kid" value is used to match a JWK "kid"
 parameter value.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Jones, et al. Expires September 19, 2014 [Page 10]

Internet-Draft JSON Web Signature (JWS) March 2014

4.1.5. "x5u" (X.509 URL) Header Parameter

 The "x5u" (X.509 URL) Header Parameter is a URI [RFC3986] that refers
 to a resource for the X.509 public key certificate or certificate
 chain [RFC5280] corresponding to the key used to digitally sign the
 JWS. The identified resource MUST provide a representation of the
 certificate or certificate chain that conforms to RFC 5280 [RFC5280]
 in PEM encoded form [RFC1421]. The certificate containing the public
 key corresponding to the key used to digitally sign the JWS MUST be
 the first certificate. This MAY be followed by additional
 certificates, with each subsequent certificate being the one used to
 certify the previous one. The protocol used to acquire the resource
 MUST provide integrity protection; an HTTP GET request to retrieve
 the certificate MUST use TLS [RFC2818] [RFC5246]; the identity of the
 server MUST be validated, as per Section 3.1 of HTTP Over TLS
 [RFC2818]. Use of this Header Parameter is OPTIONAL.

4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter

 The "x5c" (X.509 Certificate Chain) Header Parameter contains the
 X.509 public key certificate or certificate chain [RFC5280]
 corresponding to the key used to digitally sign the JWS. The
 certificate or certificate chain is represented as a JSON array of
 certificate value strings. Each string in the array is a base64
 encoded ([RFC4648] Section 4 -- not base64url encoded) DER
 [ITU.X690.1994] PKIX certificate value. The certificate containing
 the public key corresponding to the key used to digitally sign the
 JWS MUST be the first certificate. This MAY be followed by
 additional certificates, with each subsequent certificate being the
 one used to certify the previous one. The recipient MUST validate
 the certificate chain according to [RFC5280] and reject the signature
 if any validation failure occurs. Use of this Header Parameter is
 OPTIONAL.

 See Appendix B for an example "x5c" value.

4.1.7. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter

 The "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter is a
 base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
 encoding of the X.509 certificate [RFC5280] corresponding to the key
 used to digitally sign the JWS. Use of this Header Parameter is
 OPTIONAL.

 If, in the future, certificate thumbprints need to be computed using
 hash functions other than SHA-1, it is suggested that additional
 related Header Parameters be defined for that purpose. For example,
 it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Jones, et al. Expires September 19, 2014 [Page 11]

Internet-Draft JSON Web Signature (JWS) March 2014

 using SHA-256) Header Parameter could be defined by registering it in
 the IANA JSON Web Signature and Encryption Header Parameters registry
 defined in Section 9.1.

4.1.8. "typ" (Type) Header Parameter

 The "typ" (type) Header Parameter is used to declare the MIME Media
 Type [IANA.MediaTypes] of this complete JWS object in contexts where
 this is useful to the application. This parameter has no effect upon
 the JWS processing. Use of this Header Parameter is OPTIONAL.

 Per [RFC2045], all media type values, subtype values, and parameter
 names are case-insensitive. However, parameter values are case-
 sensitive unless otherwise specified for the specific parameter.

 To keep messages compact in common situations, it is RECOMMENDED that
 senders omit an "application/" prefix of a media type value in a
 "typ" Header Parameter when no other '/' appears in the media type
 value. A recipient using the media type value MUST treat it as if
 "application/" were prepended to any "typ" value not containing a
 '/'. For instance, a "typ" value of "example" SHOULD be used to
 represent the "application/example" media type; whereas, the media
 type "application/example;part="1/2"" cannot be shortened to
 "example;part="1/2"".

 The "typ" value "JOSE" can be used by applications to indicate that
 this object is a JWS or JWE using the JWS Compact Serialization or
 the JWE Compact Serialization. The "typ" value "JOSE+JSON" can be
 used by applications to indicate that this object is a JWS or JWE
 using the JWS JSON Serialization or the JWE JSON Serialization.
 Other type values can also be used by applications.

4.1.9. "cty" (Content Type) Header Parameter

 The "cty" (content type) Header Parameter is used to declare the MIME
 Media Type [IANA.MediaTypes] of the secured content (the payload) in
 contexts where this is useful to the application. This parameter has
 no effect upon the JWS processing. Use of this Header Parameter is
 OPTIONAL.

 Per [RFC2045], all media type values, subtype values, and parameter
 names are case-insensitive. However, parameter values are case-
 sensitive unless otherwise specified for the specific parameter.

 To keep messages compact in common situations, it is RECOMMENDED that
 senders omit an "application/" prefix of a media type value in a
 "cty" Header Parameter when no other '/' appears in the media type
 value. A recipient using the media type value MUST treat it as if

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

Jones, et al. Expires September 19, 2014 [Page 12]

Internet-Draft JSON Web Signature (JWS) March 2014

 "application/" were prepended to any "cty" value not containing a
 '/'. For instance, a "cty" value of "example" SHOULD be used to
 represent the "application/example" media type; whereas, the media
 type "application/example;part="1/2"" cannot be shortened to
 "example;part="1/2"".

4.1.10. "crit" (Critical) Header Parameter

 The "crit" (critical) Header Parameter indicates that extensions to
 the initial RFC versions of [[this specification]] and [JWA] are
 being used that MUST be understood and processed. Its value is an
 array listing the Header Parameter names present in the JWS Header
 that use those extensions. If any of the listed extension Header
 Parameters are not understood and supported by the receiver, it MUST
 reject the JWS. Senders MUST NOT include Header Parameter names
 defined by the initial RFC versions of [[this specification]] or
 [JWA] for use with JWS, duplicate names, or names that do not occur
 as Header Parameter names within the JWS Header in the "crit" list.
 Senders MUST NOT use the empty list "[]" as the "crit" value.
 Recipients MAY reject the JWS if the critical list contains any
 Header Parameter names defined by the initial RFC versions of [[this
 specification]] or [JWA] for use with JWS, or any other constraints
 on its use are violated. This Header Parameter MUST be integrity
 protected, and therefore MUST occur only within the JWS Protected
 Header, when used. Use of this Header Parameter is OPTIONAL. This
 Header Parameter MUST be understood and processed by implementations.

 An example use, along with a hypothetical "exp" (expiration-time)
 field is:

 {"alg":"ES256",
 "crit":["exp"],
 "exp":1363284000
 }

4.2. Public Header Parameter Names

 Additional Header Parameter names can be defined by those using JWSs.
 However, in order to prevent collisions, any new Header Parameter
 name should either be registered in the IANA JSON Web Signature and
 Encryption Header Parameters registry defined in Section 9.1 or be a
 Public Name: a value that contains a Collision-Resistant Name. In
 each case, the definer of the name or value needs to take reasonable
 precautions to make sure they are in control of the part of the
 namespace they use to define the Header Parameter name.

 New Header Parameters should be introduced sparingly, as they can
 result in non-interoperable JWSs.

Jones, et al. Expires September 19, 2014 [Page 13]

Internet-Draft JSON Web Signature (JWS) March 2014

4.3. Private Header Parameter Names

 A producer and consumer of a JWS may agree to use Header Parameter
 names that are Private Names: names that are not Registered Header
 Parameter names Section 4.1 or Public Header Parameter names

Section 4.2. Unlike Public Header Parameter names, Private Header
 Parameter names are subject to collision and should be used with
 caution.

5. Producing and Consuming JWSs

5.1. Message Signature or MAC Computation

 To create a JWS, one MUST perform these steps. The order of the
 steps is not significant in cases where there are no dependencies
 between the inputs and outputs of the steps.
 1. Create the content to be used as the JWS Payload.
 2. Compute the encoded payload value BASE64URL(JWS Payload).
 3. Create the JSON object(s) containing the desired set of Header
 Parameters, which together comprise the JWS Header: the JWS
 Protected Header, and if the JWS JSON Serialization is being
 used, the JWS Unprotected Header.
 4. Compute the encoded header value BASE64URL(UTF8(JWS Protected
 Header)). If the JWS Protected Header is not present (which can
 only happen when using the JWS JSON Serialization and no
 "protected" member is present), let this value be the empty
 string.
 5. Compute the JWS Signature in the manner defined for the
 particular algorithm being used over the JWS Signing Input
 ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.' ||
 BASE64URL(JWS Payload)). The "alg" (algorithm) Header Parameter
 MUST be present in the JWS Header, with the algorithm value
 accurately representing the algorithm used to construct the JWS
 Signature.
 6. Compute the encoded signature value BASE64URL(JWS Signature).
 7. These three encoded values are used in both the JWS Compact
 Serialization and the JWS JSON Serialization representations.
 8. If the JWS JSON Serialization is being used, repeat this process
 (steps 3-7) for each digital signature or MAC operation being
 performed.
 9. Create the desired serialized output. The JWS Compact
 Serialization of this result is BASE64URL(UTF8(JWS Protected
 Header)) || '.' || BASE64URL(JWS Payload) || '.' || BASE64URL(JWS
 Signature). The JWS JSON Serialization is described in

Section 7.2.

Jones, et al. Expires September 19, 2014 [Page 14]

Internet-Draft JSON Web Signature (JWS) March 2014

5.2. Message Signature or MAC Validation

 When validating a JWS, the following steps MUST be taken. The order
 of the steps is not significant in cases where there are no
 dependencies between the inputs and outputs of the steps. If any of
 the listed steps fails, then the signature or MAC cannot be
 validated.

 It is an application decision which signatures, MACs, or plaintext
 values must successfully validate for the JWS to be accepted. In
 some cases, all must successfully validate or the JWS will be
 rejected. In other cases, only a specific signature, MAC, or
 plaintext value needs to be successfully validated. However, in all
 cases, at least one signature, MAC, or plaintext value MUST
 successfully validate or the JWS MUST be rejected.

 1. Parse the JWS representation to extract the serialized values
 for the components of the JWS -- when using the JWS Compact
 Serialization, the base64url encoded representations of the JWS
 Protected Header, the JWS Payload, and the JWS Signature, and
 when using the JWS JSON Serialization, also the unencoded JWS
 Unprotected Header value. When using the JWS Compact
 Serialization, the JWS Protected Header, the JWS Payload, and
 the JWS Signature are represented as base64url encoded values in
 that order, separated by two period ('.') characters. The JWS
 JSON Serialization is described in Section 7.2.
 2. The encoded representation of the JWS Protected Header MUST be
 successfully base64url decoded following the restriction that no
 padding characters have been used.
 3. The resulting octet sequence MUST be a UTF-8 encoded
 representation of a completely valid JSON object conforming to
 [RFC7159], which is the JWS Protected Header.
 4. If using the JWS Compact Serialization, let the JWS Header be
 the JWS Protected Header; otherwise, when using the JWS JSON
 Serialization, let the JWS Header be the union of the members of
 the corresponding JWS Protected Header and JWS Unprotected
 Header, all of which must be completely valid JSON objects.
 5. The resulting JWS Header MUST NOT contain duplicate Header
 Parameter names. When using the JWS JSON Serialization, this
 restriction includes that the same Header Parameter name also
 MUST NOT occur in distinct JSON object values that together
 comprise the JWS Header.
 6. Verify that the implementation understands and can process all
 fields that it is required to support, whether required by this
 specification, by the algorithm being used, or by the "crit"
 Header Parameter value, and that the values of those parameters
 are also understood and supported.

https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires September 19, 2014 [Page 15]

Internet-Draft JSON Web Signature (JWS) March 2014

 7. The encoded representation of the JWS Payload MUST be
 successfully base64url decoded following the restriction that no
 padding characters have been used.
 8. The encoded representation of the JWS Signature MUST be
 successfully base64url decoded following the restriction that no
 padding characters have been used.
 9. The JWS Signature MUST be successfully validated against the JWS
 Signing Input ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.'
 || BASE64URL(JWS Payload)) in the manner defined for the
 algorithm being used, which MUST be accurately represented by
 the value of the "alg" (algorithm) Header Parameter, which MUST
 be present.
 10. If the JWS JSON Serialization is being used, repeat this process
 (steps 4-9) for each digital signature or MAC value contained in
 the representation.

5.3. String Comparison Rules

 Processing a JWS inevitably requires comparing known strings to
 members and values in a JSON object. For example, in checking what
 the algorithm is, the Unicode string "alg" will be checked against
 the member names in the JWS Header to see if there is a matching
 Header Parameter name. The same process is then used to determine if
 the value of the "alg" Header Parameter represents a supported
 algorithm.

 Since the only string comparison operations that are performed are
 equality and inequality, the same rules can be used for comparing
 both member names and member values against known strings. The JSON
 rules for doing member name comparison are described in Section 8.3
 of [RFC7159].

 Also, see the JSON security considerations in Section 10.2 and the
 Unicode security considerations in Section 10.3.

6. Key Identification

 It is necessary for the recipient of a JWS to be able to determine
 the key that was employed for the digital signature or MAC operation.
 The key employed can be identified using the Header Parameter methods
 described in Section 4.1 or can be identified using methods that are
 outside the scope of this specification. Specifically, the Header
 Parameters "jku", "jwk", "kid", "x5u", "x5c", and "x5t" can be used
 to identify the key used. These Header Parameters MUST be integrity
 protected if the information that they convey is to be utilized in a
 trust decision.

https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/rfc7159#section-8.3

Jones, et al. Expires September 19, 2014 [Page 16]

Internet-Draft JSON Web Signature (JWS) March 2014

 The sender SHOULD include sufficient information in the Header
 Parameters to identify the key used, unless the application uses
 another means or convention to determine the key used. Validation of
 the signature or MAC fails when the algorithm used requires a key
 (which is true of all algorithms except for "none") and the key used
 cannot be determined.

 The means of exchanging any shared symmetric keys used is outside the
 scope of this specification.

 Also, see Appendix D for notes on possible key selection algorithms.

7. Serializations

 JWS objects use one of two serializations, the JWS Compact
 Serialization or the JWS JSON Serialization. Applications using this
 specification need to specify what serialization and serialization
 features are used for that application. For instance, applications
 might specify that only the JWS JSON Serialization is used, that only
 JWS JSON Serialization support for a single signature or MAC value is
 used, or that support for multiple signatures and/or MAC values is
 used. JWS implementations only need to implement the features needed
 for the applications they are designed to support.

7.1. JWS Compact Serialization

 The JWS Compact Serialization represents digitally signed or MACed
 content as a compact URL-safe string. This string is
 BASE64URL(UTF8(JWS Protected Header)) || '.' || BASE64URL(JWS
 Payload) || '.' || BASE64URL(JWS Signature). Only one signature/MAC
 is supported by the JWS Compact Serialization and it provides no
 syntax to represent a JWS Unprotected Header value.

7.2. JWS JSON Serialization

 The JWS JSON Serialization represents digitally signed or MACed
 content as a JSON object. Content using the JWS JSON Serialization
 can be secured with more than one digital signature and/or MAC
 operation. This representation is neither optimized for compactness
 nor URL-safe.

 The following members are defined for use in top-level JSON objects
 used for the JWS JSON Serialization:

Jones, et al. Expires September 19, 2014 [Page 17]

Internet-Draft JSON Web Signature (JWS) March 2014

 payload
 The "payload" member MUST be present and contain the value
 BASE64URL(JWS Payload).
 signatures
 The "signatures" member value MUST be an array of JSON objects.
 Each object represents a signature or MAC over the JWS Payload and
 the JWS Protected Header.

 The following members are defined for use in the JSON objects that
 are elements of the "signatures" array:
 protected
 The "protected" member MUST be present and contain the value
 BASE64URL(UTF8(JWS Protected Header)) when the JWS Protected
 Header value is non-empty; otherwise, it MUST be absent. These
 Header Parameter values are integrity protected.
 header
 The "header" member MUST be present and contain the value JWS
 Unprotected Header when the JWS Unprotected Header value is non-
 empty; otherwise, it MUST be absent. This value is represented as
 an unencoded JSON object, rather than as a string. These Header
 Parameter values are not integrity protected.
 signature
 The "signature" member MUST be present and contain the value
 BASE64URL(JWS Signature).

 At least one of the "protected" and "header" members MUST be present
 for each signature/MAC computation so that an "alg" Header Parameter
 value is conveyed.

 Additional members can be present in both the JSON objects defined
 above; if not understood by implementations encountering them, they
 MUST be ignored.

 The Header Parameter values used when creating or validating
 individual signature or MAC values are the union of the two sets of
 Header Parameter values that may be present: (1) the JWS Protected
 Header represented in the "protected" member of the signature/MAC's
 array element, and (2) the JWS Unprotected Header in the "header"
 member of the signature/MAC's array element. The union of these sets
 of Header Parameters comprises the JWS Header. The Header Parameter
 names in the two locations MUST be disjoint.

 Each JWS Signature value is computed using the parameters of the
 corresponding JWS Header value in the same manner as for the JWS
 Compact Serialization. This has the desirable property that each JWS
 Signature value represented in the "signatures" array is identical to
 the value that would have been computed for the same parameter in the
 JWS Compact Serialization, provided that the JWS Protected Header

Jones, et al. Expires September 19, 2014 [Page 18]

Internet-Draft JSON Web Signature (JWS) March 2014

 value for that signature/MAC computation (which represents the
 integrity-protected Header Parameter values) matches that used in the
 JWS Compact Serialization.

 In summary, the syntax of a JWS using the JWS JSON Serialization is
 as follows:

 {
 "payload":"<payload contents>",
 "signatures":[
 {"protected":"<integrity-protected header 1 contents>",
 "header":<non-integrity-protected header 1 contents>,
 "signature":"<signature 1 contents>"},
 ...
 {"protected":"<integrity-protected header N contents>",
 "header":<non-integrity-protected header N contents>,
 "signature":"<signature N contents>"}]
 }

 See Appendix A.6 for an example of computing a JWS using the JWS JSON
 Serialization.

8. TLS Requirements

 Implementations MUST support TLS. Which version(s) ought to be
 implemented will vary over time, and depend on the widespread
 deployment and known security vulnerabilities at the time of
 implementation. At the time of this writing, TLS version 1.2
 [RFC5246] is the most recent version, but has very limited actual
 deployment, and might not be readily available in implementation
 toolkits.

 To protect against information disclosure and tampering,
 confidentiality protection MUST be applied using TLS with a
 ciphersuite that provides confidentiality and integrity protection.

 Whenever TLS is used, a TLS server certificate check MUST be
 performed, per RFC 6125 [RFC6125].

9. IANA Considerations

 The following registration procedure is used for all the registries
 established by this specification.

 Values are registered with a Specification Required [RFC5226] after a
 two-week review period on the [TBD]@ietf.org mailing list, on the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc5226

Jones, et al. Expires September 19, 2014 [Page 19]

Internet-Draft JSON Web Signature (JWS) March 2014

 advice of one or more Designated Experts. However, to allow for the
 allocation of values prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published.

 Registration requests must be sent to the [TBD]@ietf.org mailing list
 for review and comment, with an appropriate subject (e.g., "Request
 for access token type: example"). [[Note to the RFC Editor: The name
 of the mailing list should be determined in consultation with the
 IESG and IANA. Suggested name: jose-reg-review.]]

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful. Registration requests that are undetermined for a period
 longer than 21 days can be brought to the IESG's attention (using the
 iesg@iesg.org mailing list) for resolution.

 Criteria that should be applied by the Designated Expert(s) includes
 determining whether the proposed registration duplicates existing
 functionality, determining whether it is likely to be of general
 applicability or whether it is useful only for a single application,
 and whether the registration makes sense.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification, in order to enable broadly-informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular
 Expert, that Expert should defer to the judgment of the other
 Expert(s).

9.1. JSON Web Signature and Encryption Header Parameters Registry

 This specification establishes the IANA JSON Web Signature and
 Encryption Header Parameters registry for JWS and JWE Header
 Parameter names. The registry records the Header Parameter name and
 a reference to the specification that defines it. The same Header
 Parameter name can be registered multiple times, provided that the
 parameter usage is compatible between the specifications. Different
 registrations of the same Header Parameter name will typically use
 different Header Parameter Usage Location(s) values.

Jones, et al. Expires September 19, 2014 [Page 20]

Internet-Draft JSON Web Signature (JWS) March 2014

9.1.1. Registration Template

 Header Parameter Name:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.
 Header Parameter Description:
 Brief description of the Header Parameter (e.g., "Example
 description").
 Header Parameter Usage Location(s):
 The Header Parameter usage locations, which should be one or more
 of the values "JWS" or "JWE".
 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.
 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

9.1.2. Initial Registry Contents

 This specification registers the Header Parameter names defined in
Section 4.1 in this registry.

 o Header Parameter Name: "alg"
 o Header Parameter Description: Algorithm
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.1 of [[this document]]

 o Header Parameter Name: "jku"
 o Header Parameter Description: JWK Set URL
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.2 of [[this document]]

 o Header Parameter Name: "jwk"
 o Header Parameter Description: JSON Web Key

Jones, et al. Expires September 19, 2014 [Page 21]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification document(s): Section 4.1.3 of [[this document]]

 o Header Parameter Name: "kid"
 o Header Parameter Description: Key ID
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.4 of [[this document]]

 o Header Parameter Name: "x5u"
 o Header Parameter Description: X.509 URL
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.5 of [[this document]]

 o Header Parameter Name: "x5c"
 o Header Parameter Description: X.509 Certificate Chain
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.6 of [[this document]]

 o Header Parameter Name: "x5t"
 o Header Parameter Description: X.509 Certificate SHA-1 Thumbprint
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.7 of [[this document]]

 o Header Parameter Name: "typ"
 o Header Parameter Description: Type
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.8 of [[this document]]

 o Header Parameter Name: "cty"
 o Header Parameter Description: Content Type
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.9 of [[this document]]

 o Header Parameter Name: "crit"
 o Header Parameter Description: Critical
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.10 of [[this document]]

Jones, et al. Expires September 19, 2014 [Page 22]

Internet-Draft JSON Web Signature (JWS) March 2014

9.2. Media Type Registration

9.2.1. Registry Contents

 This specification registers the "application/jose" Media Type
 [RFC2046] in the MIME Media Types registry [IANA.MediaTypes], which
 can be used to indicate that the content is a JWS or JWE object using
 the JWS Compact Serialization or the JWE Compact Serialization and
 the "application/jose+json" Media Type in the MIME Media Types
 registry, which can be used to indicate that the content is a JWS or
 JWE object using the JWS JSON Serialization or the JWE JSON
 Serialization.

 o Type name: application
 o Subtype name: jose
 o Required parameters: n/a
 o Optional parameters: n/a
 o Encoding considerations: 8bit; application/jose values are encoded
 as a series of base64url encoded values (some of which may be the
 empty string) separated by period ('.') characters.
 o Security considerations: See the Security Considerations section
 of [[this document]]
 o Interoperability considerations: n/a
 o Published specification: [[this document]]
 o Applications that use this media type: OpenID Connect, Mozilla
 Persona, Salesforce, Google, Android, Windows Azure, Xbox One, and
 numerous others that use JWTs
 o Additional information: Magic number(s): n/a, File extension(s):
 n/a, Macintosh file type code(s): n/a
 o Person & email address to contact for further information: Michael
 B. Jones, mbj@microsoft.com
 o Intended usage: COMMON
 o Restrictions on usage: none
 o Author: Michael B. Jones, mbj@microsoft.com
 o Change Controller: IESG

 o Type name: application
 o Subtype name: jose+json
 o Required parameters: n/a
 o Optional parameters: n/a
 o Encoding considerations: 8bit; application/jose+json values are
 represented as a JSON Object; UTF-8 encoding SHOULD be employed
 for the JSON object.
 o Security considerations: See the Security Considerations section
 of [[this document]]
 o Interoperability considerations: n/a

https://datatracker.ietf.org/doc/html/rfc2046

Jones, et al. Expires September 19, 2014 [Page 23]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Published specification: [[this document]]
 o Applications that use this media type: TBD
 o Additional information: Magic number(s): n/a, File extension(s):
 n/a, Macintosh file type code(s): n/a
 o Person & email address to contact for further information: Michael
 B. Jones, mbj@microsoft.com
 o Intended usage: COMMON
 o Restrictions on usage: none
 o Author: Michael B. Jones, mbj@microsoft.com
 o Change Controller: IESG

10. Security Considerations

10.1. Cryptographic Security Considerations

 All of the security issues faced by any cryptographic application
 must be faced by a JWS/JWE/JWK agent. Among these issues are
 protecting the user's private and symmetric keys, preventing various
 attacks, and helping the user avoid mistakes such as inadvertently
 encrypting a message for the wrong recipient. The entire list of
 security considerations is beyond the scope of this document, but
 some significant concerns are listed here.

 All the security considerations in XML DSIG 2.0
 [W3C.CR-xmldsig-core2-20120124], also apply to this specification,
 other than those that are XML specific. Likewise, many of the best
 practices documented in XML Signature Best Practices
 [W3C.WD-xmldsig-bestpractices-20110809] also apply to this
 specification, other than those that are XML specific.

 Keys are only as strong as the amount of entropy used to generate
 them. A minimum of 128 bits of entropy should be used for all keys,
 and depending upon the application context, more may be required. In
 particular, it may be difficult to generate sufficiently random
 values in some browsers and application environments.

 Creators of JWSs should not allow third parties to insert arbitrary
 content into the message without adding entropy not controlled by the
 third party.

 When utilizing TLS to retrieve information, the authority providing
 the resource MUST be authenticated and the information retrieved MUST
 be free from modification.

 When cryptographic algorithms are implemented in such a way that
 successful operations take a different amount of time than
 unsuccessful operations, attackers may be able to use the time

Jones, et al. Expires September 19, 2014 [Page 24]

Internet-Draft JSON Web Signature (JWS) March 2014

 difference to obtain information about the keys employed. Therefore,
 such timing differences must be avoided.

 A SHA-1 hash is used when computing "x5t" (x.509 certificate
 thumbprint) values, for compatibility reasons. Should an effective
 means of producing SHA-1 hash collisions be developed, and should an
 attacker wish to interfere with the use of a known certificate on a
 given system, this could be accomplished by creating another
 certificate whose SHA-1 hash value is the same and adding it to the
 certificate store used by the intended victim. A prerequisite to
 this attack succeeding is the attacker having write access to the
 intended victim's certificate store.

 If, in the future, certificate thumbprints need to be computed using
 hash functions other than SHA-1, it is suggested that additional
 related Header Parameters be defined for that purpose. For example,
 it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint
 using SHA-256) Header Parameter could be defined and used.

10.2. JSON Security Considerations

 Strict JSON validation is a security requirement. If malformed JSON
 is received, then the intent of the sender is impossible to reliably
 discern. Ambiguous and potentially exploitable situations could
 arise if the JSON parser used does not reject malformed JSON syntax.

Section 4 of the JSON Data Interchange Format specification [RFC7159]
 states "The names within an object SHOULD be unique", whereas this
 specification states that "Header Parameter names within this object
 MUST be unique; recipients MUST either reject JWSs with duplicate
 Header Parameter names or use a JSON parser that returns only the
 lexically last duplicate member name, as specified in Section 15.12
 (The JSON Object) of ECMAScript 5.1 [ECMAScript]". Thus, this
 specification requires that the Section 4 "SHOULD" be treated as a
 "MUST" by senders and that it be either treated as a "MUST" or in the
 manner specified in ECMAScript 5.1 by receivers. Ambiguous and
 potentially exploitable situations could arise if the JSON parser
 used does not enforce the uniqueness of member names or returns an
 unpredictable value for duplicate member names.

 Some JSON parsers might not reject input that contains extra
 significant characters after a valid input. For instance, the input
 "{"tag":"value"}ABCD" contains a valid JSON object followed by the
 extra characters "ABCD". Such input MUST be rejected in its
 entirety.

https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires September 19, 2014 [Page 25]

Internet-Draft JSON Web Signature (JWS) March 2014

10.3. Unicode Comparison Security Considerations

 Header Parameter names and algorithm names are Unicode strings. For
 security reasons, the representations of these names must be compared
 verbatim after performing any escape processing (as per Section 8.3
 of [RFC7159]). This means, for instance, that these JSON strings
 must compare as being equal ("sig", "\u0073ig"), whereas these must
 all compare as being not equal to the first set or to each other
 ("SIG", "Sig", "si\u0047").

 JSON strings can contain characters outside the Unicode Basic
 Multilingual Plane. For instance, the G clef character (U+1D11E) may
 be represented in a JSON string as "\uD834\uDD1E". Ideally, JWS
 implementations SHOULD ensure that characters outside the Basic
 Multilingual Plane are preserved and compared correctly;
 alternatively, if this is not possible due to these characters
 exercising limitations present in the underlying JSON implementation,
 then input containing them MUST be rejected.

11. References

11.1. Normative References

 [ECMAScript]
 Ecma International, "ECMAScript Language Specification,
 5.1 Edition", ECMA 262, June 2011.

 [IANA.MediaTypes]
 Internet Assigned Numbers Authority (IANA), "MIME Media
 Types", 2005.

 [ITU.X690.1994]
 International Telecommunications Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, 1994.

 [JWA] Jones, M., "JSON Web Algorithms (JWA)",
draft-ietf-jose-json-web-algorithms (work in progress),

 March 2014.

 [JWK] Jones, M., "JSON Web Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),

 March 2014.

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic

https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key

Jones, et al. Expires September 19, 2014 [Page 26]

Internet-Draft JSON Web Signature (JWS) March 2014

 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires September 19, 2014 [Page 27]

Internet-Draft JSON Web Signature (JWS) March 2014

11.2. Informative References

 [CanvasApp]
 Facebook, "Canvas Applications", 2010.

 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
 September 2010.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
draft-ietf-jose-json-web-encryption (work in progress),

 March 2014.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token (work in
 progress), March 2014.

 [MagicSignatures]
 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
 Signatures", January 2011.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [W3C.CR-xmldsig-core2-20120124]
 Cantor, S., Roessler, T., Eastlake, D., Yiu, K., Reagle,
 J., Solo, D., Datta, P., and F. Hirsch, "XML Signature
 Syntax and Processing Version 2.0", World Wide Web
 Consortium CR CR-xmldsig-core2-20120124, January 2012,
 <http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124>.

 [W3C.WD-xmldsig-bestpractices-20110809]
 Datta, P. and F. Hirsch, "XML Signature Best Practices",
 World Wide Web Consortium WD WD-xmldsig-bestpractices-
 20110809, August 2011, <http://www.w3.org/TR/2011/

WD-xmldsig-bestpractices-20110809>.

Appendix A. JWS Examples

 This section provides several examples of JWSs. While the first
 three examples all represent JSON Web Tokens (JWTs) [JWT], the
 payload can be any octet sequence, as shown in Appendix A.4.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809

Jones, et al. Expires September 19, 2014 [Page 28]

Internet-Draft JSON Web Signature (JWS) March 2014

A.1. Example JWS using HMAC SHA-256

A.1.1. Encoding

 The following example JWS Protected Header declares that the data
 structure is a JSON Web Token (JWT) [JWT] and the JWS Signing Input
 is secured using the HMAC SHA-256 algorithm.

 {"typ":"JWT",
 "alg":"HS256"}

 The octets representing UTF8(JWS Protected Header) in this case are:

 [123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
 34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

 The JWS Payload used in this example is the octets of the UTF-8
 representation of the JSON object below. (Note that the payload can
 be any base64url encoded octet sequence, and need not be a base64url
 encoded JSON object.)

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 The following octet sequence, which is the UTF-8 representation of
 the JSON object above, is the JWS Payload:

 [123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
 32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56,
 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97,
 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111,
 111, 116, 34, 58, 116, 114, 117, 101, 125]

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value (with line breaks for display purposes
 only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
 BASE64URL(JWS Payload) gives this string (with line breaks for

Jones, et al. Expires September 19, 2014 [Page 29]

Internet-Draft JSON Web Signature (JWS) March 2014

 display purposes only):

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 The resulting JWS Signing Input value, which is the ASCII
 representation of above string, is the following octet sequence:

 [101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81,
 105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74,
 73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51,
 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67,
 74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84,
 107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100,
 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76,
 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73,
 106, 112, 48, 99, 110, 86, 108, 102, 81]

 HMACs are generated using keys. This example uses the symmetric key
 represented in JSON Web Key [JWK] format below (with line breaks for
 display purposes only):

 {"kty":"oct",
 "k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-1qS0gZH75
 aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow"
 }

 Running the HMAC SHA-256 algorithm on the JWS Signing Input with this
 key yields this JWS Signature octet sequence:

 [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
 132, 141, 121]

 Encoding this JWS Signature as BASE64URL(JWS Signature) gives this
 value:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 Concatenating these values in the order Header.Payload.Signature with
 period ('.') characters between the parts yields this complete JWS
 representation using the JWS Compact Serialization (with line breaks
 for display purposes only):

Jones, et al. Expires September 19, 2014 [Page 30]

Internet-Draft JSON Web Signature (JWS) March 2014

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

A.1.2. Validating

 Since the "alg" Header Parameter is "HS256", we validate the HMAC
 SHA-256 value contained in the JWS Signature.

 To validate the HMAC value, we repeat the previous process of using
 the correct key and the JWS Signing Input as input to the HMAC SHA-
 256 function and then taking the output and determining if it matches
 the JWS Signature. If it matches exactly, the HMAC has been
 validated.

A.2. Example JWS using RSASSA-PKCS-v1_5 SHA-256

A.2.1. Encoding

 The JWS Protected Header in this example is different from the
 previous example in two ways: First, because a different algorithm is
 being used, the "alg" value is different. Second, for illustration
 purposes only, the optional "typ" parameter is not used. (This
 difference is not related to the algorithm employed.) The JWS
 Protected Header used is:

 {"alg":"RS256"}

 The octets representing UTF8(JWS Protected Header) in this case are:

 [123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJhbGciOiJSUzI1NiJ9

 The JWS Payload used in this example, which follows, is the same as
 in the previous example. Since the BASE64URL(JWS Payload) value will
 therefore be the same, its computation is not repeated here.

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Jones, et al. Expires September 19, 2014 [Page 31]

Internet-Draft JSON Web Signature (JWS) March 2014

 Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
 BASE64URL(JWS Payload) gives this string (with line breaks for
 display purposes only):

 eyJhbGciOiJSUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 The resulting JWS Signing Input value, which is the ASCII
 representation of above string, is the following octet sequence:

 [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73,
 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
 99, 110, 86, 108, 102, 81]

 This example uses the RSA key represented in JSON Web Key [JWK]
 format below (with line breaks for display purposes only):

 {"kty":"RSA",
 "n":"ofgWCuLjybRlzo0tZWJjNiuSfb4p4fAkd_wWJcyQoTbji9k0l8W26mPddx
 HmfHQp-Vaw-4qPCJrcS2mJPMEzP1Pt0Bm4d4QlL-yRT-SFd2lZS-pCgNMs
 D1W_YpRPEwOWvG6b32690r2jZ47soMZo9wGzjb_7OMg0LOL-bSf63kpaSH
 SXndS5z5rexMdbBYUsLA9e-KXBdQOS-UTo7WTBEMa2R2CapHg665xsmtdV
 MTBQY4uDZlxvb3qCo5ZwKh9kG4LT6_I5IhlJH7aGhyxXFvUK-DWNmoudF8
 NAco9_h9iaGNj8q2ethFkMLs91kzk2PAcDTW9gb54h4FRWyuXpoQ",
 "e":"AQAB",
 "d":"Eq5xpGnNCivDflJsRQBXHx1hdR1k6Ulwe2JZD50LpXyWPEAeP88vLNO97I
 jlA7_GQ5sLKMgvfTeXZx9SE-7YwVol2NXOoAJe46sui395IW_GO-pWJ1O0
 BkTGoVEn2bKVRUCgu-GjBVaYLU6f3l9kJfFNS3E0QbVdxzubSu3Mkqzjkn
 439X0M_V51gfpRLI9JYanrC4D4qAdGcopV_0ZHHzQlBjudU2QvXt4ehNYT
 CBr6XCLQUShb1juUO1ZdiYoFaFQT5Tw8bGUl_x_jTj3ccPDVZFD9pIuhLh
 BOneufuBiB4cS98l2SR_RQyGWSeWjnczT0QU91p1DhOVRuOopznQ"
 }

 The RSA private key is then passed to the RSA signing function, which
 also takes the hash type, SHA-256, and the JWS Signing Input as
 inputs. The result of the digital signature is an octet sequence,
 which represents a big endian integer. In this example, it is:

 [112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69,
 243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173, 209, 113, 125,
 131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115, 162, 102, 62, 81,

Jones, et al. Expires September 19, 2014 [Page 32]

Internet-Draft JSON Web Signature (JWS) March 2014

 102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69,
 229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219,
 61, 184, 151, 91, 23, 208, 148, 2, 190, 237, 213, 217, 217, 112, 7,
 16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184, 31,
 190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244,
 74, 230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1,
 48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129,
 253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239,
 177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202,
 173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157,
 105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, 14, 96, 69,
 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202,
 234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90,
 193, 167, 72, 160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238,
 251, 71]

 Encoding the signature as BASE64URL(JWS Signature) produces this
 value (with line breaks for display purposes only):

 cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7
 AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
 BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K
 0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv
 hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
 p0igcN_IoypGlUPQGe77Rw

 Concatenating these values in the order Header.Payload.Signature with
 period ('.') characters between the parts yields this complete JWS
 representation using the JWS Compact Serialization (with line breaks
 for display purposes only):

 eyJhbGciOiJSUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7
 AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
 BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K
 0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv
 hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
 p0igcN_IoypGlUPQGe77Rw

A.2.2. Validating

 Since the "alg" Header Parameter is "RS256", we validate the RSASSA-
 PKCS-v1_5 SHA-256 digital signature contained in the JWS Signature.

Jones, et al. Expires September 19, 2014 [Page 33]

Internet-Draft JSON Web Signature (JWS) March 2014

 Validating the JWS Signature is a little different from the previous
 example. We pass (n, e), JWS Signature, and the JWS Signing Input to
 an RSASSA-PKCS-v1_5 signature verifier that has been configured to
 use the SHA-256 hash function.

A.3. Example JWS using ECDSA P-256 SHA-256

A.3.1. Encoding

 The JWS Protected Header for this example differs from the previous
 example because a different algorithm is being used. The JWS
 Protected Header used is:

 {"alg":"ES256"}

 The octets representing UTF8(JWS Protected Header) in this case are:

 [123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJhbGciOiJFUzI1NiJ9

 The JWS Payload used in this example, which follows, is the same as
 in the previous examples. Since the BASE64URL(JWS Payload) value
 will therefore be the same, its computation is not repeated here.

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
 BASE64URL(JWS Payload) gives this string (with line breaks for
 display purposes only):

 eyJhbGciOiJFUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 The resulting JWS Signing Input value, which is the ASCII
 representation of above string, is the following octet sequence:

 [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73,
 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,

Jones, et al. Expires September 19, 2014 [Page 34]

Internet-Draft JSON Web Signature (JWS) March 2014

 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
 99, 110, 86, 108, 102, 81]

 This example uses the elliptic curve key represented in JSON Web Key
 [JWK] format below:

 {"kty":"EC",
 "crv":"P-256",
 "x":"f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU",
 "y":"x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0",
 "d":"jpsQnnGQmL-YBIffH1136cspYG6-0iY7X1fCE9-E9LI"
 }

 The ECDSA private part d is then passed to an ECDSA signing function,
 which also takes the curve type, P-256, the hash type, SHA-256, and
 the JWS Signing Input as inputs. The result of the digital signature
 is the EC point (R, S), where R and S are unsigned integers. In this
 example, the R and S values, given as octet sequences representing
 big endian integers are:

 +--------+--+
 | Result | Value |
 | Name | |
 +--------+--+
R	[14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88,
	7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129,
	154, 195, 22, 158, 166, 101]
S	[197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175,
	8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154,
	143, 63, 127, 138, 131, 163, 84, 213]
 +--------+--+

 The JWS Signature is the value R || S. Encoding the signature as
 BASE64URL(JWS Signature) produces this value (with line breaks for
 display purposes only):

 DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA
 pmWQxfKTUJqPP3-Kg6NU1Q

 Concatenating these values in the order Header.Payload.Signature with
 period ('.') characters between the parts yields this complete JWS
 representation using the JWS Compact Serialization (with line breaks
 for display purposes only):

Jones, et al. Expires September 19, 2014 [Page 35]

Internet-Draft JSON Web Signature (JWS) March 2014

 eyJhbGciOiJFUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA
 pmWQxfKTUJqPP3-Kg6NU1Q

A.3.2. Validating

 Since the "alg" Header Parameter is "ES256", we validate the ECDSA
 P-256 SHA-256 digital signature contained in the JWS Signature.

 Validating the JWS Signature is a little different from the first
 example. We need to split the 64 member octet sequence of the JWS
 Signature into two 32 octet sequences, the first R and the second S.
 We then pass (x, y), (R, S) and the JWS Signing Input to an ECDSA
 signature verifier that has been configured to use the P-256 curve
 with the SHA-256 hash function.

A.4. Example JWS using ECDSA P-521 SHA-512

A.4.1. Encoding

 The JWS Protected Header for this example differs from the previous
 example because different ECDSA curves and hash functions are used.
 The JWS Protected Header used is:

 {"alg":"ES512"}

 The octets representing UTF8(JWS Protected Header) in this case are:

 [123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125]

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJhbGciOiJFUzUxMiJ9

 The JWS Payload used in this example, is the ASCII string "Payload".
 The representation of this string is the octet sequence:

 [80, 97, 121, 108, 111, 97, 100]

 Encoding this JWS Payload as BASE64URL(JWS Payload) gives this value:

 UGF5bG9hZA

Jones, et al. Expires September 19, 2014 [Page 36]

Internet-Draft JSON Web Signature (JWS) March 2014

 Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
 BASE64URL(JWS Payload) gives this string (with line breaks for
 display purposes only):

 eyJhbGciOiJFUzUxMiJ9.UGF5bG9hZA

 The resulting JWS Signing Input value, which is the ASCII
 representation of above string, is the following octet sequence:

 [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85,
 120, 77, 105, 74, 57, 46, 85, 71, 70, 53, 98, 71, 57, 104, 90, 65]

 This example uses the elliptic curve key represented in JSON Web Key
 [JWK] format below (with line breaks for display purposes only):

 {"kty":"EC",
 "crv":"P-521",
 "x":"AekpBQ8ST8a8VcfVOTNl353vSrDCLLJXmPk06wTjxrrjcBpXp5EOnYG_
 NjFZ6OvLFV1jSfS9tsz4qUxcWceqwQGk",
 "y":"ADSmRA43Z1DSNx_RvcLI87cdL07l6jQyyBXMoxVg_l2Th-x3S1WDhjDl
 y79ajL4Kkd0AZMaZmh9ubmf63e3kyMj2",
 "d":"AY5pb7A0UFiB3RELSD64fTLOSV_jazdF7fLYyuTw8lOfRhWg6Y6rUrPA
 xerEzgdRhajnu0ferB0d53vM9mE15j2C"
 }

 The ECDSA private part d is then passed to an ECDSA signing function,
 which also takes the curve type, P-521, the hash type, SHA-512, and
 the JWS Signing Input as inputs. The result of the digital signature
 is the EC point (R, S), where R and S are unsigned integers. In this
 example, the R and S values, given as octet sequences representing
 big endian integers are:

 +--------+--+
 | Result | Value |
 | Name | |
 +--------+--+
R	[1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233,
	117, 247, 105, 122, 210, 26, 125, 192, 1, 217, 21, 82,
	91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147,
	152, 105, 18, 53, 108, 163, 214, 68, 231, 62, 153, 150,
	106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133,
	206, 209, 172, 63, 237, 119, 109]

Jones, et al. Expires September 19, 2014 [Page 37]

Internet-Draft JSON Web Signature (JWS) March 2014

S	[0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92,
	61, 152, 4, 150, 66, 60, 69, 247, 196, 170, 81, 193,
	199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131,
	48, 206, 238, 34, 175, 83, 203, 220, 159, 3, 107, 155,
	22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148,
	188, 222, 59, 242, 103]
 +--------+--+

 The JWS Signature is the value R || S. Encoding the signature as
 BASE64URL(JWS Signature) produces this value (with line breaks for
 display purposes only):

 AdwMgeerwtHoh-l192l60hp9wAHZFVJbLfD_UxMi70cwnZOYaRI1bKPWROc-mZZq
 wqT2SI-KGDKB34XO0aw_7XdtAG8GaSwFKdCAPZgoXD2YBJZCPEX3xKpRwcdOO8Kp
 EHwJjyqOgzDO7iKvU8vcnwNrmxYbSW9ERBXukOXolLzeO_Jn

 Concatenating these values in the order Header.Payload.Signature with
 period ('.') characters between the parts yields this complete JWS
 representation using the JWS Compact Serialization (with line breaks
 for display purposes only):

 eyJhbGciOiJFUzUxMiJ9
 .
 UGF5bG9hZA
 .
 AdwMgeerwtHoh-l192l60hp9wAHZFVJbLfD_UxMi70cwnZOYaRI1bKPWROc-mZZq
 wqT2SI-KGDKB34XO0aw_7XdtAG8GaSwFKdCAPZgoXD2YBJZCPEX3xKpRwcdOO8Kp
 EHwJjyqOgzDO7iKvU8vcnwNrmxYbSW9ERBXukOXolLzeO_Jn

A.4.2. Validating

 Since the "alg" Header Parameter is "ES512", we validate the ECDSA
 P-521 SHA-512 digital signature contained in the JWS Signature.

 Validating the JWS Signature is similar to the previous example. We
 need to split the 132 member octet sequence of the JWS Signature into
 two 66 octet sequences, the first R and the second S. We then pass
 (x, y), (R, S) and the JWS Signing Input to an ECDSA signature
 verifier that has been configured to use the P-521 curve with the
 SHA-512 hash function.

A.5. Example Plaintext JWS

 The following example JWS Protected Header declares that the encoded
 object is a Plaintext JWS:

 {"alg":"none"}

Jones, et al. Expires September 19, 2014 [Page 38]

Internet-Draft JSON Web Signature (JWS) March 2014

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJhbGciOiJub25lIn0

 The JWS Payload used in this example, which follows, is the same as
 in the previous examples. Since the BASE64URL(JWS Payload) value
 will therefore be the same, its computation is not repeated here.

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 The JWS Signature is the empty octet string and BASE64URL(JWS
 Signature) is the empty string.

 Concatenating these parts in the order Header.Payload.Signature with
 period ('.') characters between the parts yields this complete JWS
 (with line breaks for display purposes only):

 eyJhbGciOiJub25lIn0
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .

A.6. Example JWS Using JWS JSON Serialization

 This section contains an example using the JWS JSON Serialization.
 This example demonstrates the capability for conveying multiple
 digital signatures and/or MACs for the same payload.

 The JWS Payload used in this example is the same as that used in the
 examples in Appendix A.2 and Appendix A.3 (with line breaks for
 display purposes only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 Two digital signatures are used in this example: the first using
 RSASSA-PKCS-v1_5 SHA-256 and the second using ECDSA P-256 SHA-256.
 For the first, the JWS Protected Header and key are the same as in

Appendix A.2, resulting in the same JWS Signature value; therefore,
 its computation is not repeated here. For the second, the JWS
 Protected Header and key are the same as in Appendix A.3, resulting
 in the same JWS Signature value; therefore, its computation is not
 repeated here.

Jones, et al. Expires September 19, 2014 [Page 39]

Internet-Draft JSON Web Signature (JWS) March 2014

A.6.1. JWS Per-Signature Protected Headers

 The JWS Protected Header value used for the first signature is:

 {"alg":"RS256"}

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJhbGciOiJSUzI1NiJ9

 The JWS Protected Header value used for the second signature is:

 {"alg":"ES256"}

 Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
 Header)) gives this value:

 eyJhbGciOiJFUzI1NiJ9

A.6.2. JWS Per-Signature Unprotected Headers

 Key ID values are supplied for both keys using per-signature Header
 Parameters. The two values used to represent these Key IDs are:

 {"kid":"2010-12-29"}

 and

 {"kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"}

A.6.3. Complete JWS Header Values

 Combining the protected and unprotected header values supplied, the
 JWS Header values used for the first and second signatures
 respectively are:

 {"alg":"RS256",
 "kid":"2010-12-29"}

 and

 {"alg":"ES256",
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"}

Jones, et al. Expires September 19, 2014 [Page 40]

Internet-Draft JSON Web Signature (JWS) March 2014

A.6.4. Complete JWS JSON Serialization Representation

 The complete JSON Web Signature JSON Serialization for these values
 is as follows (with line breaks for display purposes only):

 {"payload":
 "eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGF
 tcGxlLmNvbS9pc19yb290Ijp0cnVlfQ",
 "signatures":[
 {"protected":"eyJhbGciOiJSUzI1NiJ9",
 "header":
 {"kid":"2010-12-29"},
 "signature":
 "cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZ
 mh7AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjb
 KBYNX4BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHl
 b1L07Qe7K0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZES
 c6BfI7noOPqvhJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AX
 LIhWkWywlVmtVrBp0igcN_IoypGlUPQGe77Rw"},
 {"protected":"eyJhbGciOiJFUzI1NiJ9",
 "header":
 {"kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"},
 "signature":
 "DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8IS
 lSApmWQxfKTUJqPP3-Kg6NU1Q"}]
 }

Appendix B. "x5c" (X.509 Certificate Chain) Example

 The JSON array below is an example of a certificate chain that could
 be used as the value of an "x5c" (X.509 Certificate Chain) Header
 Parameter, per Section 4.1.6. Note that since these strings contain
 base64 encoded (not base64url encoded) values, they are allowed to
 contain white space and line breaks.

 ["MIIE3jCCA8agAwIBAgICAwEwDQYJKoZIhvcNAQEFBQAwYzELMAkGA1UEBhMCVVM
 xITAfBgNVBAoTGFRoZSBHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR2
 8gRGFkZHkgQ2xhc3MgMiBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAeFw0wNjExM
 TYwMTU0MzdaFw0yNjExMTYwMTU0MzdaMIHKMQswCQYDVQQGEwJVUzEQMA4GA1UE
 CBMHQXJpem9uYTETMBEGA1UEBxMKU2NvdHRzZGFsZTEaMBgGA1UEChMRR29EYWR
 keS5jb20sIEluYy4xMzAxBgNVBAsTKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYW
 RkeS5jb20vcmVwb3NpdG9yeTEwMC4GA1UEAxMnR28gRGFkZHkgU2VjdXJlIENlc
 nRpZmljYXRpb24gQXV0aG9yaXR5MREwDwYDVQQFEwgwNzk2OTI4NzCCASIwDQYJ
 KoZIhvcNAQEBBQADggEPADCCAQoCggEBAMQt1RWMnCZM7DI161+4WQFapmGBWTt
 wY6vj3D3HKrjJM9N55DrtPDAjhI6zMBS2sofDPZVUBJ7fmd0LJR4h3mUpfjWoqV
 Tr9vcyOdQmVZWt7/v+WIbXnvQAjYwqDL1CBM6nPwT27oDyqu9SoWlm2r4arV3aL
 GbqGmu75RpRSgAvSMeYddi5Kcju+GZtCpyz8/x4fKL4o/K1w/O5epHBp+YlLpyo

Jones, et al. Expires September 19, 2014 [Page 41]

Internet-Draft JSON Web Signature (JWS) March 2014

 7RJlbmr2EkRTcDCVw5wrWCs9CHRK8r5RsL+H0EwnWGu1NcWdrxcx+AuP7q2BNgW
 JCJjPOq8lh8BJ6qf9Z/dFjpfMFDniNoW1fho3/Rb2cRGadDAW/hOUoz+EDU8CAw
 EAAaOCATIwggEuMB0GA1UdDgQWBBT9rGEyk2xF1uLuhV+auud2mWjM5zAfBgNVH
 SMEGDAWgBTSxLDSkdRMEXGzYcs9of7dqGrU4zASBgNVHRMBAf8ECDAGAQH/AgEA
 MDMGCCsGAQUFBwEBBCcwJTAjBggrBgEFBQcwAYYXaHR0cDovL29jc3AuZ29kYWR
 keS5jb20wRgYDVR0fBD8wPTA7oDmgN4Y1aHR0cDovL2NlcnRpZmljYXRlcy5nb2
 RhZGR5LmNvbS9yZXBvc2l0b3J5L2dkcm9vdC5jcmwwSwYDVR0gBEQwQjBABgRVH
 SAAMDgwNgYIKwYBBQUHAgEWKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5j
 b20vcmVwb3NpdG9yeTAOBgNVHQ8BAf8EBAMCAQYwDQYJKoZIhvcNAQEFBQADggE
 BANKGwOy9+aG2Z+5mC6IGOgRQjhVyrEp0lVPLN8tESe8HkGsz2ZbwlFalEzAFPI
 UyIXvJxwqoJKSQ3kbTJSMUA2fCENZvD117esyfxVgqwcSeIaha86ykRvOe5GPLL
 5CkKSkB2XIsKd83ASe8T+5o0yGPwLPk9Qnt0hCqU7S+8MxZC9Y7lhyVJEnfzuz9
 p0iRFEUOOjZv2kWzRaJBydTXRE4+uXR21aITVSzGh6O1mawGhId/dQb8vxRMDsx
 uxN89txJx9OjxUUAiKEngHUuHqDTMBqLdElrRhjZkAzVvb3du6/KFUJheqwNTrZ
 EjYx8WnM25sgVjOuH0aBsXBTWVU+4=",
 "MIIE+zCCBGSgAwIBAgICAQ0wDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1Z
 hbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIE
 luYy4xNTAzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb
 24gQXV0aG9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8x
 IDAeBgkqhkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTA0MDYyOTE3MDY
 yMFoXDTI0MDYyOTE3MDYyMFowYzELMAkGA1UEBhMCVVMxITAfBgNVBAoTGFRoZS
 BHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR28gRGFkZHkgQ2xhc3MgM
 iBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTCCASAwDQYJKoZIhvcNAQEBBQADggEN
 ADCCAQgCggEBAN6d1+pXGEmhW+vXX0iG6r7d/+TvZxz0ZWizV3GgXne77ZtJ6XC
 APVYYYwhv2vLM0D9/AlQiVBDYsoHUwHU9S3/Hd8M+eKsaA7Ugay9qK7HFiH7Eux
 6wwdhFJ2+qN1j3hybX2C32qRe3H3I2TqYXP2WYktsqbl2i/ojgC95/5Y0V4evLO
 tXiEqITLdiOr18SPaAIBQi2XKVlOARFmR6jYGB0xUGlcmIbYsUfb18aQr4CUWWo
 riMYavx4A6lNf4DD+qta/KFApMoZFv6yyO9ecw3ud72a9nmYvLEHZ6IVDd2gWMZ
 Eewo+YihfukEHU1jPEX44dMX4/7VpkI+EdOqXG68CAQOjggHhMIIB3TAdBgNVHQ
 4EFgQU0sSw0pHUTBFxs2HLPaH+3ahq1OMwgdIGA1UdIwSByjCBx6GBwaSBvjCBu
 zEkMCIGA1UEBxMbVmFsaUNlcnQgVmFsaWRhdGlvbiBOZXR3b3JrMRcwFQYDVQQK
 Ew5WYWxpQ2VydCwgSW5jLjE1MDMGA1UECxMsVmFsaUNlcnQgQ2xhc3MgMiBQb2x
 pY3kgVmFsaWRhdGlvbiBBdXRob3JpdHkxITAfBgNVBAMTGGh0dHA6Ly93d3cudm
 FsaWNlcnQuY29tLzEgMB4GCSqGSIb3DQEJARYRaW5mb0B2YWxpY2VydC5jb22CA
 QEwDwYDVR0TAQH/BAUwAwEB/zAzBggrBgEFBQcBAQQnMCUwIwYIKwYBBQUHMAGG
 F2h0dHA6Ly9vY3NwLmdvZGFkZHkuY29tMEQGA1UdHwQ9MDswOaA3oDWGM2h0dHA
 6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5jb20vcmVwb3NpdG9yeS9yb290LmNybD
 BLBgNVHSAERDBCMEAGBFUdIAAwODA2BggrBgEFBQcCARYqaHR0cDovL2NlcnRpZ
 mljYXRlcy5nb2RhZGR5LmNvbS9yZXBvc2l0b3J5MA4GA1UdDwEB/wQEAwIBBjAN
 BgkqhkiG9w0BAQUFAAOBgQC1QPmnHfbq/qQaQlpE9xXUhUaJwL6e4+PrxeNYiY+
 Sn1eocSxI0YGyeR+sBjUZsE4OWBsUs5iB0QQeyAfJg594RAoYC5jcdnplDQ1tgM
 QLARzLrUc+cb53S8wGd9D0VmsfSxOaFIqII6hR8INMqzW/Rn453HWkrugp++85j
 09VZw==",
 "MIIC5zCCAlACAQEwDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1ZhbGlDZXJ
 0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNT
 AzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0a
 G9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkq
 hkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTk5MDYyNjAwMTk1NFoXDTE

Jones, et al. Expires September 19, 2014 [Page 42]

Internet-Draft JSON Web Signature (JWS) March 2014

 5MDYyNjAwMTk1NFowgbsxJDAiBgNVBAcTG1ZhbGlDZXJ0IFZhbGlkYXRpb24gTm
 V0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNTAzBgNVBAsTLFZhbGlDZ
 XJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9yaXR5MSEwHwYDVQQD
 ExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkqhkiG9w0BCQEWEWluZm9
 AdmFsaWNlcnQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDOOnHK5a
 vIWZJV16vYdA757tn2VUdZZUcOBVXc65g2PFxTXdMwzzjsvUGJ7SVCCSRrCl6zf
 N1SLUzm1NZ9WlmpZdRJEy0kTRxQb7XBhVQ7/nHk01xC+YDgkRoKWzk2Z/M/VXwb
 P7RfZHM047QSv4dk+NoS/zcnwbNDu+97bi5p9wIDAQABMA0GCSqGSIb3DQEBBQU
 AA4GBADt/UG9vUJSZSWI4OB9L+KXIPqeCgfYrx+jFzug6EILLGACOTb2oWH+heQ
 C1u+mNr0HZDzTuIYEZoDJJKPTEjlbVUjP9UNV+mWwD5MlM/Mtsq2azSiGM5bUMM
 j4QssxsodyamEwCW/POuZ6lcg5Ktz885hZo+L7tdEy8W9ViH0Pd"]

Appendix C. Notes on implementing base64url encoding without padding

 This appendix describes how to implement base64url encoding and
 decoding functions without padding based upon standard base64
 encoding and decoding functions that do use padding.

 To be concrete, example C# code implementing these functions is shown
 below. Similar code could be used in other languages.

 static string base64urlencode(byte [] arg)
 {
 string s = Convert.ToBase64String(arg); // Regular base64 encoder
 s = s.Split('=')[0]; // Remove any trailing '='s
 s = s.Replace('+', '-'); // 62nd char of encoding
 s = s.Replace('/', '_'); // 63rd char of encoding
 return s;
 }

 static byte [] base64urldecode(string arg)
 {
 string s = arg;
 s = s.Replace('-', '+'); // 62nd char of encoding
 s = s.Replace('_', '/'); // 63rd char of encoding
 switch (s.Length % 4) // Pad with trailing '='s
 {
 case 0: break; // No pad chars in this case
 case 2: s += "=="; break; // Two pad chars
 case 3: s += "="; break; // One pad char
 default: throw new System.Exception(
 "Illegal base64url string!");
 }
 return Convert.FromBase64String(s); // Standard base64 decoder
 }

 As per the example code above, the number of '=' padding characters

Jones, et al. Expires September 19, 2014 [Page 43]

Internet-Draft JSON Web Signature (JWS) March 2014

 that needs to be added to the end of a base64url encoded string
 without padding to turn it into one with padding is a deterministic
 function of the length of the encoded string. Specifically, if the
 length mod 4 is 0, no padding is added; if the length mod 4 is 2, two
 '=' padding characters are added; if the length mod 4 is 3, one '='
 padding character is added; if the length mod 4 is 1, the input is
 malformed.

 An example correspondence between unencoded and encoded values
 follows. The octet sequence below encodes into the string below,
 which when decoded, reproduces the octet sequence.
 3 236 255 224 193
 A-z_4ME

Appendix D. Notes on Key Selection

 This appendix describes a set of possible algorithms for selecting
 the key to be used to validate the digital signature or MAC of a JWS
 object or for selecting the key to be used to decrypt a JWE object.
 This guidance describes a family of possible algorithms, rather than
 a single algorithm, because in different contexts, not all the
 sources of keys will be used, they can be tried in different orders,
 and sometimes not all the collected keys will be tried; hence,
 different algorithms will be used in different application contexts.

 The steps below are described for illustration purposes only;
 specific applications can and are likely to use different algorithms
 or perform some of the steps in different orders. Specific
 applications will frequently have a much simpler method of
 determining the keys to use, as there may be one or two key selection
 methods that are profiled for the application's use. This appendix
 supplements the normative information on key location in Section 6.

 These algorithms include the following steps. Note that the steps
 can be performed in any order and do not need to be treated as
 distinct. For example, keys can be tried as soon as they are found,
 rather than collecting all the keys before trying any.

 1. Collect the set of potentially applicable keys. Sources of keys
 may include:

 * Keys supplied by the application protocol being used.

 * Keys referenced by the "jku" (JWK Set URL) Header Parameter.

 * The key provided by the "jwk" (JSON Web Key) Header Parameter.

Jones, et al. Expires September 19, 2014 [Page 44]

Internet-Draft JSON Web Signature (JWS) March 2014

 * The key referenced by the "x5u" (X.509 URL) Header Parameter.

 * The key provided by the "x5c" (X.509 Certificate Chain) Header
 Parameter.

 * Other applicable keys available to the application.

 The order for collecting and trying keys from different key
 sources is typically application dependent. For example,
 frequently all keys from a one set of locations, such as local
 caches, will be tried before collecting and trying keys from
 other locations.

 2. Filter the set of collected keys. For instance, some
 applications will use only keys referenced by "kid" (key ID) or
 "x5t" (X.509 certificate SHA-1 thumbprint) parameters. If the
 application uses the "alg" (algorithm), "use" (public key use),
 or "key_ops" (key operations) parameters, keys with keys with
 inappropriate values of those parameters would be excluded.
 Additionally, keys might be filtered to include or exclude keys
 with certain other member values in an application specific
 manner. For some applications, no filtering will be applied.

 3. Order the set of collected keys. For instance, keys referenced
 by "kid" (Key ID) or "x5t" (X.509 Certificate SHA-1 Thumbprint)
 parameters might be tried before keys with neither of these
 values. Likewise, keys with certain member values might be
 ordered before keys with other member values. For some
 applications, no ordering will be applied.

 4. Make trust decisions about the keys. Signatures made with keys
 not meeting the application's trust criteria would not be
 accepted. Such criteria might include, but is not limited to the
 source of the key, whether the TLS certificate validates for keys
 retrieved from URLs, whether a key in an X.509 certificate is
 backed by a valid certificate chain, and other information known
 by the application.

 5. Attempt signature or MAC validation for a JWS object or
 decryption of a JWE object with some or all of the collected and
 possibly filtered and/or ordered keys. A limit on the number of
 keys to be tried might be applied. This process will normally
 terminate following a successful validation or decryption.

 Note that it is reasonable for some applications to perform signature
 or MAC validation prior to making a trust decision about a key, since
 keys for which the validation fails need no trust decision.

Jones, et al. Expires September 19, 2014 [Page 45]

Internet-Draft JSON Web Signature (JWS) March 2014

Appendix E. Negative Test Case for "crit" Header Parameter

 Conforming implementations must reject input containing critical
 extensions that are not understood or cannot be processed. The
 following JWS must be rejected by all implementations, because it
 uses an extension Header Parameter name
 "http://example.invalid/UNDEFINED" that they do not understand. Any
 other similar input, in which the use of the value
 "http://example.invalid/UNDEFINED" is substituted for any other
 Header Parameter name not understood by the implementation, must also
 be rejected.

 The JWS Protected Header value for this JWS is:

 {"alg":"none",
 "crit":["http://example.invalid/UNDEFINED"],
 "http://example.invalid/UNDEFINED":true
 }

 The complete JWS that must be rejected is as follows (with line
 breaks for display purposes only):

 eyJhbGciOiJub25lIiwNCiAiY3JpdCI6WyJodHRwOi8vZXhhbXBsZS5jb20vVU5ERU
 ZJTkVEIl0sDQogImh0dHA6Ly9leGFtcGxlLmNvbS9VTkRFRklORUQiOnRydWUNCn0.
 RkFJTA.

Appendix F. Detached Content

 In some contexts, it is useful integrity protect content that is not
 itself contained in a JWS object. One way to do this is create a JWS
 object in the normal fashion using a representation of the content as
 the payload, but then delete the payload representation from the JWS,
 and send this modified object to the recipient, rather than the JWS.
 When using the JWS Compact Serialization, the deletion is
 accomplished by replacing the second field (which contains
 BASE64URL(JWS Payload)) value with the empty string; when using the
 JWS JSON Serialization, the deletion is accomplished by deleting the
 "payload" member. This method assumes that the recipient can
 reconstruct the exact payload used in the JWS. To use the modified
 object, the recipient reconstructs the JWS by re-inserting the
 payload representation into the modified object, and uses the
 resulting JWS in the usual manner. Note that this method needs no
 support from JWS libraries, as applications can use this method by
 modifying the inputs and outputs of standard JWS libraries.

Jones, et al. Expires September 19, 2014 [Page 46]

Internet-Draft JSON Web Signature (JWS) March 2014

Appendix G. Acknowledgements

 Solutions for signing JSON content were previously explored by Magic
 Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas
 Applications [CanvasApp], all of which influenced this draft.

 Thanks to Axel Nennker for his early implementation and feedback on
 the JWS and JWE specifications.

 This specification is the work of the JOSE Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that influenced this specification:

 Dirk Balfanz, Richard Barnes, Brian Campbell, Breno de Medeiros, Dick
 Hardt, Joe Hildebrand, Jeff Hodges, Edmund Jay, Yaron Y. Goland, Ben
 Laurie, James Manger, Matt Miller, Tony Nadalin, Hideki Nara, Axel
 Nennker, John Panzer, Emmanuel Raviart, Eric Rescorla, Jim Schaad,
 Paul Tarjan, Hannes Tschofenig, and Sean Turner.

 Jim Schaad and Karen O'Donoghue chaired the JOSE working group and
 Sean Turner and Stephen Farrell served as Security area directors
 during the creation of this specification.

Appendix H. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -24

 o Updated the JSON reference to RFC 7159.

 -23

 o Clarified that the base64url encoding includes no line breaks,
 white space, or other additional characters.

 -22

 o Corrected RFC 2119 terminology usage.

 o Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.

 -21

 o Applied review comments to the appendix "Notes on Key Selection",
 addressing issue #93.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis
https://datatracker.ietf.org/doc/html/rfc7158

Jones, et al. Expires September 19, 2014 [Page 47]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Changed some references from being normative to informative,
 addressing issue #90.

 o Applied review comments to the JSON Serialization section,
 addressing issue #121.

 -20

 o Made terminology definitions more consistent, addressing issue
 #165.

 o Restructured the JSON Serialization section to call out the
 parameters used in hanging lists, addressing issue #121.

 o Described key filtering and refined other aspects of the text in
 the appendix "Notes on Key Selection", addressing issue #93.

 o Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis,
 addressing issue #90.

 -19

 o Added the appendix "Notes on Validation Key Selection", addressing
 issue #93.

 o Reordered the key selection parameters.

 -18

 o Updated the mandatory-to-implement (MTI) language to say that
 applications using this specification need to specify what
 serialization and serialization features are used for that
 application, addressing issue #119.

 o Changes to address editorial and minor issues #25, #89, #97, #110,
 #114, #115, #116, #117, #120, and #184.

 o Added and used Header Parameter Description registry field.

 -17

 o Refined the "typ" and "cty" definitions to always be MIME Media
 Types, with the omission of "application/" prefixes recommended
 for brevity, addressing issue #50.

 o Updated the mandatory-to-implement (MTI) language to say that
 general-purpose implementations must implement the single
 signature/MAC value case for both serializations whereas special-

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis

Jones, et al. Expires September 19, 2014 [Page 48]

Internet-Draft JSON Web Signature (JWS) March 2014

 purpose implementations can implement just one serialization if
 that meets the needs of the use cases the implementation is
 designed for, addressing issue #119.

 o Explicitly named all the logical components of a JWS and defined
 the processing rules and serializations in terms of those
 components, addressing issues #60, #61, and #62.

 o Replaced verbose repetitive phases such as "base64url encode the
 octets of the UTF-8 representation of X" with mathematical
 notation such as "BASE64URL(UTF8(X))".

 o Terms used in multiple documents are now defined in one place and
 incorporated by reference. Some lightly used or obvious terms
 were also removed. This addresses issue #58.

 -16

 o Changes to address editorial and minor issues #50, #98, #99, #102,
 #104, #106, #107, #111, and #112.

 -15

 o Clarified that it is an application decision which signatures,
 MACs, or plaintext values must successfully validate for the JWS
 to be accepted, addressing issue #35.

 o Corrected editorial error in "ES512" example.

 o Changes to address editorial and minor issues #34, #96, #100,
 #101, #104, #105, and #106.

 -14

 o Stated that the "signature" parameter is to be omitted in the JWS
 JSON Serialization when its value would be empty (which is only
 the case for a Plaintext JWS).

 -13

 o Made all header parameter values be per-signature/MAC, addressing
 issue #24.

 -12

 o Clarified that the "typ" and "cty" header parameters are used in
 an application-specific manner and have no effect upon the JWS
 processing.

Jones, et al. Expires September 19, 2014 [Page 49]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Replaced the MIME types "application/jws+json" and
 "application/jws" with "application/jose+json" and
 "application/jose".

 o Stated that recipients MUST either reject JWSs with duplicate
 Header Parameter Names or use a JSON parser that returns only the
 lexically last duplicate member name.

 o Added a Serializations section with parallel treatment of the JWS
 Compact Serialization and the JWS JSON Serialization and also
 moved the former Implementation Considerations content there.

 -11

 o Added Key Identification section.

 o For the JWS JSON Serialization, enable header parameter values to
 be specified in any of three parameters: the "protected" member
 that is integrity protected and shared among all recipients, the
 "unprotected" member that is not integrity protected and shared
 among all recipients, and the "header" member that is not
 integrity protected and specific to a particular recipient. (This
 does not affect the JWS Compact Serialization, in which all header
 parameter values are in a single integrity protected JWE Header
 value.)

 o Removed suggested compact serialization for multiple digital
 signatures and/or MACs.

 o Changed the MIME type name "application/jws-js" to
 "application/jws+json", addressing issue #22.

 o Tightened the description of the "crit" (critical) header
 parameter.

 o Added a negative test case for the "crit" header parameter

 -10

 o Added an appendix suggesting a possible compact serialization for
 JWSs with multiple digital signatures and/or MACs.

 -09

 o Added JWS JSON Serialization, as specified by
draft-jones-jose-jws-json-serialization-04.

https://datatracker.ietf.org/doc/html/draft-jones-jose-jws-json-serialization-04

Jones, et al. Expires September 19, 2014 [Page 50]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Registered "application/jws-js" MIME type and "JWS-JS" typ header
 parameter value.

 o Defined that the default action for header parameters that are not
 understood is to ignore them unless specifically designated as
 "MUST be understood" or included in the new "crit" (critical)
 header parameter list. This addressed issue #6.

 o Changed term "JWS Secured Input" to "JWS Signing Input".

 o Changed from using the term "byte" to "octet" when referring to 8
 bit values.

 o Changed member name from "recipients" to "signatures" in the JWS
 JSON Serialization.

 o Added complete values using the JWS Compact Serialization for all
 examples.

 -08

 o Applied editorial improvements suggested by Jeff Hodges and Hannes
 Tschofenig. Many of these simplified the terminology used.

 o Clarified statements of the form "This header parameter is
 OPTIONAL" to "Use of this header parameter is OPTIONAL".

 o Added a Header Parameter Usage Location(s) field to the IANA JSON
 Web Signature and Encryption Header Parameters registry.

 o Added seriesInfo information to Internet Draft references.

 -07

 o Updated references.

 -06

 o Changed "x5c" (X.509 Certificate Chain) representation from being
 a single string to being an array of strings, each containing a
 single base64 encoded DER certificate value, representing elements
 of the certificate chain.

 o Applied changes made by the RFC Editor to RFC 6749's registry
 language to this specification.

 -05

https://datatracker.ietf.org/doc/html/rfc6749

Jones, et al. Expires September 19, 2014 [Page 51]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Added statement that "StringOrURI values are compared as case-
 sensitive strings with no transformations or canonicalizations
 applied".

 o Indented artwork elements to better distinguish them from the body
 text.

 -04

 o Completed JSON Security Considerations section, including
 considerations about rejecting input with duplicate member names.

 o Completed security considerations on the use of a SHA-1 hash when
 computing "x5t" (x.509 certificate thumbprint) values.

 o Refer to the registries as the primary sources of defined values
 and then secondarily reference the sections defining the initial
 contents of the registries.

 o Normatively reference XML DSIG 2.0 [W3C.CR-xmldsig-core2-20120124]
 for its security considerations.

 o Added this language to Registration Templates: "This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted."

 o Reference draft-jones-jose-jws-json-serialization instead of
draft-jones-json-web-signature-json-serialization.

 o Described additional open issues.

 o Applied editorial suggestions.

 -03

 o Added the "cty" (content type) header parameter for declaring type
 information about the secured content, as opposed to the "typ"
 (type) header parameter, which declares type information about
 this object.

 o Added "Collision Resistant Namespace" to the terminology section.

 o Reference ITU.X690.1994 for DER encoding.

 o Added an example JWS using ECDSA P-521 SHA-512. This has
 particular illustrative value because of the use of the 521 bit
 integers in the key and signature values. This is also an example
 in which the payload is not a base64url encoded JSON object.

https://datatracker.ietf.org/doc/html/draft-jones-jose-jws-json-serialization
https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-json-serialization

Jones, et al. Expires September 19, 2014 [Page 52]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Added an example "x5c" value.

 o No longer say "the UTF-8 representation of the JWS Secured Input
 (which is the same as the ASCII representation)". Just call it
 "the ASCII representation of the JWS Secured Input".

 o Added Registration Template sections for defined registries.

 o Added Registry Contents sections to populate registry values.

 o Changed name of the JSON Web Signature and Encryption "typ" Values
 registry to be the JSON Web Signature and Encryption Type Values
 registry, since it is used for more than just values of the "typ"
 parameter.

 o Moved registries JSON Web Signature and Encryption Header
 Parameters and JSON Web Signature and Encryption Type Values to
 the JWS specification.

 o Numerous editorial improvements.

 -02

 o Clarified that it is an error when a "kid" value is included and
 no matching key is found.

 o Removed assumption that "kid" (key ID) can only refer to an
 asymmetric key.

 o Clarified that JWSs with duplicate Header Parameter Names MUST be
 rejected.

 o Clarified the relationship between "typ" header parameter values
 and MIME types.

 o Registered application/jws MIME type and "JWS" typ header
 parameter value.

 o Simplified JWK terminology to get replace the "JWK Key Object" and
 "JWK Container Object" terms with simply "JSON Web Key (JWK)" and
 "JSON Web Key Set (JWK Set)" and to eliminate potential confusion
 between single keys and sets of keys. As part of this change, the
 Header Parameter Name for a public key value was changed from
 "jpk" (JSON Public Key) to "jwk" (JSON Web Key).

 o Added suggestion on defining additional header parameters such as
 "x5t#S256" in the future for certificate thumbprints using hash
 algorithms other than SHA-1.

Jones, et al. Expires September 19, 2014 [Page 53]

Internet-Draft JSON Web Signature (JWS) March 2014

 o Specify RFC 2818 server identity validation, rather than RFC 6125
 (paralleling the same decision in the OAuth specs).

 o Generalized language to refer to Message Authentication Codes
 (MACs) rather than Hash-based Message Authentication Codes (HMACs)
 unless in a context specific to HMAC algorithms.

 o Reformatted to give each header parameter its own section heading.

 -01

 o Moved definition of Plaintext JWSs (using "alg":"none") here from
 the JWT specification since this functionality is likely to be
 useful in more contexts that just for JWTs.

 o Added "jpk" and "x5c" header parameters for including JWK public
 keys and X.509 certificate chains directly in the header.

 o Clarified that this specification is defining the JWS Compact
 Serialization. Referenced the new JWS-JS spec, which defines the
 JWS JSON Serialization.

 o Added text "New header parameters should be introduced sparingly
 since an implementation that does not understand a parameter MUST
 reject the JWS".

 o Clarified that the order of the creation and validation steps is
 not significant in cases where there are no dependencies between
 the inputs and outputs of the steps.

 o Changed "no canonicalization is performed" to "no canonicalization
 need be performed".

 o Corrected the Magic Signatures reference.

 o Made other editorial improvements suggested by JOSE working group
 participants.

 -00

 o Created the initial IETF draft based upon
draft-jones-json-web-signature-04 with no normative changes.

 o Changed terminology to no longer call both digital signatures and
 HMACs "signatures".

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-04

Jones, et al. Expires September 19, 2014 [Page 54]

Internet-Draft JSON Web Signature (JWS) March 2014

Authors' Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

http://self-issued.info/
http://www.thread-safe.com/
http://nat.sakimura.org/

Jones, et al. Expires September 19, 2014 [Page 55]

