JOSE Working Group M. Jones

Internet-Draft Microsoft
Intended status: Standards Track J. Bradley
Expires: October 2, 2014 Ping Identity
N. Sakimura

NRI

March 31, 2014

JSON Web Signature (JWS)
draft-ietf-jose-json-web-signature-25

Abstract

JSON Web Signature (JWS) represents content secured with digital
signatures or Message Authentication Codes (MACs) using JavaScript
Object Notation (JSON) based data structures. Cryptographic
algorithms and identifiers for use with this specification are
described in the separate JSON Web Algorithms (JWA) specification and
an IANA registry defined by that specification. Related encryption
capabilities are described in the separate JSON Web Encryption (JWE)
specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 2, 2014.
Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

Jones, et al. Expires October 2, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Web Signature (JWS) March 2014

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction .
1.1. Notational Conventlons
Terminology .
JSON Web Signature (JWS) Overview
3.1. Example JwS
JWS Header . .
1. Registered Header Parameter Names
"alg" (Algorithm) Header Parameter
"jku" (JWK Set URL) Header Parameter
"jwk" (JSON Web Key) Header Parameter
4 "kid" (Key ID) Header Parameter
.5. "x5u" (X.509 URL) Header Parameter
6
7

W IN [

[

INETNTN
(R [(Y
w N R

"x5c" (X.509 Certificate Chain) Header Parameter
"x5t" (X.509 Certificate SHA-1 Thumbprint) Header
Parameter .
4.1.8. "typ" (Type) Header Parameter .
4.1.9. '"cty" (Content Type) Header Parameter
4.1.10. "crit" (Critical) Header Parameter
2 Public Header Parameter Names
Private Header Parameter Names
Producing and Consuming JWSs
Message Signature or MAC Computatlon
Message Signature or MAC Validation
String Comparison Rules
Key Identification
Serializations e
7.1. JWS Compact Serialization
7.2. JWS JSON Serialization
TLS Requirements
IANA Considerations . .o e e e
9.1. JSON Web Signature and Encryptlon Header Parameters
Registry .o .
9.1.1. Registration Template
9.1.2. Initial Registry Contents
9.2. Media Type Registration
9.2.1. Registry Contents
10. Security Considerations e e
10.1. Cryptographic Security Considerations

o
w N |- w

N o

|© |0

PRRRRPRERERERRRRERERRR R I G O T [
LlokkRibeoaRrERrREERKE EREBEEBE w00 ®o 0N~

NININININININ
RREERRE

Jones, et al. Expires October 2, 2014 [Page 2]

Internet-Draft JSON Web Signature (JWS)

10.2.
10.3.

JSON Security Considerations
Unicode Comparison Security Con31derat10ns

11. References

11.1.
11.2.

Normative References
Informative References

Appendix A. JWS Examples

A.1. Example JWS using HMAC SHA-256
A.1.1. Encoding
A.1.2. Validating .o

A.2 Example JWS using RSASSA-PKCS-v1_5 SHA-256
A.2.1. Encoding
A.2.2. Validating .o

A.3. Example JWS using ECDSA P- 256 SHA 256
A.3.1. Encoding
A.3.2. Validating .

A.4. Example JWS using ECDSA P- 521 SHA 512
A.4.1. Encoding
A.4.2. Validating .

A.5. Example Plaintext JwS .

A.6. Example JWS Using JWS JSON Serlallzatlon
A.6.1. JWS Per-Signature Protected Headers
A.6.2. JWS Per-Signature Unprotected Headers
A.6.3. Complete JWS Header Values
A.6.4. Complete JWS JSON Serialization Representatlon

Appendix B. "x5c" (X.509 Certificate Chain) Example

March 2014

BIA (DD |D W (W [W [W[W [WI[wW W [WI[w[wI[w N INININININININ
EEEEEEBREEERERREREREBREBER S B K

Appendix C. Notes on implementing base64url encoding without

padding

Appendix D. Notes on Key Selection

Appendix E. Negative Test Case for "crit" Header Parameter

Appendix F. Detached Content
Appendix G. Acknowledgements
Appendix H. Document History

Authors'

Addresses

(& L e e B B P
GIREEE RIS

Jones, et al. Expires October 2, 2014 [Page 3]

Internet-Draft JSON Web Signature (JWS) March 2014

1.

Introduction

JSON Web Signature (JWS) represents content secured with digital
signatures or Message Authentication Codes (MACs) using JavaScript
Object Notation (JSON) [REC7159] based data structures. The JWS
cryptographic mechanisms provide integrity protection for an
arbitrary sequence of octets.

Two closely related serializations for JWS objects are defined. The
JWS Compact Serialization is a compact, URL-safe representation
intended for space constrained environments such as HTTP
Authorization headers and URI query parameters. The JWS JSON
Serialization represents JWS objects as JSON objects and enables
multiple signatures and/or MACs to be applied to the same content.
Both share the same cryptographic underpinnings.

Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA)
[JWA] specification and an IANA registry defined by that
specification. Related encryption capabilities are described in the
separate JSON Web Encryption (JWE) [JWE] specification.

Names defined by this specification are short because a core goal is
for the resulting representations to be compact.

.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in Key
words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
these words are used without being spelled in uppercase then they are
to be interpreted with their normal natural language meanings.

BASE64URL (OCTETS) denotes the base64url encoding of OCTETS, per
Section 2.

UTF8(STRING) denotes the octets of the UTF-8 [REC3629] representation
of STRING.

ASCII(STRING) denotes the octets of the ASCII [USASCITI]
representation of STRING.

The concatenation of two values A and B is denoted as A || B.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629

Jones, et al. Expires October 2, 2014 [Page 4]

Internet-Draft JSON Web Signature (JWS) March 2014

2.

Terminology

JSON Web Signature (JWS)
A data structure representing a digitally signed or MACed message.

JWS Header
JSON object containing the parameters describing the cryptographic
operations and parameters employed. The JWS Header members are
the union of the members of the JWS Protected Header and the JWS
Unprotected Header. The members of the JWS Header are Header
Parameters.

JWS Payload
The sequence of octets to be secured -- a.k.a., the message. The
payload can contain an arbitrary sequence of octets.

JWS Signature
Digital signature or MAC over the JWS Protected Header and the JWS
Payload.

Header Parameter
A name/value pair that is member of the JWS Header.

JWS Protected Header
JSON object that contains the JWS Header Parameters that are
integrity protected by the JWS Signature digital signature or MAC
operation. For the JWS Compact Serialization, this comprises the
entire JWS Header. For the JWS JSON Serialization, this is one
component of the JWS Header.

JWS Unprotected Header
JSON object that contains the JWS Header Parameters that are not
integrity protected. This can only be present when using the JWS
JSON Serialization.

Base64url Encoding
Base64 encoding using the URL- and filename-safe character set
defined in Section 5 of RFC 4648 [RFC4648], with all trailing '='
characters omitted (as permitted by Section 3.2) and without the
inclusion of any line breaks, white space, or other additional
characters. (See Appendix C for notes on implementing base64url
encoding without padding.)

JWS Signing Input
The input to the digital signature or MAC computation. Its value
is ASCII(BASE64URL(UTF8(JWS Protected Header)) || '."' ||
BASE64URL (JWS Payload)).

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648

Jones, et al. Expires October 2, 2014 [Page 5]

Internet-Draft JSON Web Signature (JWS) March 2014

3.

JWS Compact Serialization

A representation of the JWS as a compact, URL-safe string.

JWS JSON Serialization

A representation of the JWS as a JSON object. Unlike the JWS
Compact Serialization, the JWS JSON Serialization enables multiple
digital signatures and/or MACs to be applied to the same content.
This representation is neither optimized for compactness nor URL-
safe.

Collision-Resistant Name

A name in a namespace that enables names to be allocated in a
manner such that they are highly unlikely to collide with other
names. Examples of collision-resistant namespaces include: Domain
Names, Object Identifiers (0IDs) as defined in the ITU-T X.660 and
X.670 Recommendation series, and Universally Unique IDentifiers
(UUIDs) [REC4122]. When using an administratively delegated
namespace, the definer of a name needs to take reasonable
precautions to ensure they are in control of the portion of the
namespace they use to define the name.

StringOruRI

A JSON string value, with the additional requirement that while
arbitrary string values MAY be used, any value containing a ":"
character MUST be a URI [RFC3986]. StringOrURI values are
compared as case-sensitive strings with no transformations or
canonicalizations applied.

JSON Web Signature (JWS) Overview
JWS represents digitally signed or MACed content using JSON data
structures and base64url encoding. A JWS represents these logical

values:

JWS Header

JSON object containing the parameters describing the cryptographic
operations and parameters employed. The JWS Header members are
the union of the members of the JWS Protected Header and the JWS
Unprotected Header, as described below.

JWS Payload

The sequence of octets to be secured -- a.k.a., the message. The
payload can contain an arbitrary sequence of octets.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc3986

Jones, et al. Expires October 2, 2014 [Page 6]

Internet-Draft JSON Web Signature (JWS) March 2014

JWS Signature
Digital signature or MAC over the JWS Protected Header and the JWS
Payload.

The JWS Header represents the combination of these values:

JWS Protected Header
JSON object that contains the JWS Header Parameters that are
integrity protected by the JWS Signature digital signature or MAC
operation.

JWS Unprotected Header
JSON object that contains the JWS Header Parameters that are not
integrity protected.

This document defines two serializations for JWS objects: a compact,
URL-safe serialization called the JWS Compact Serialization and a
JSON serialization called the JWS JSON Serialization. In both
serializations, the JWS Protected Header, JWS Payload, and JWS
Signature are base64url encoded for transmission, since JSON lacks a
way to directly represent octet sequences.

In the JWS Compact Serialization, no JWS Unprotected Header is used.
In this case, the JWS Header and the JWS Protected Header are the
same.

In the JWS Compact Serialization, a JWS object is represented as the
combination of these three string values,

BASE64URL (UTF8(JWS Protected Header)),

BASE64URL (JWS Payload), and

BASE64URL (JWS Signature),
concatenated in that order, with the three strings being separated by
two period ('.') characters.

In the JWS JSON Serialization, one or both of the JWS Protected
Header and JWS Unprotected Header MUST be present. In this case, the
members of the JWS Header are the combination of the members of the
JWS Protected Header and the JWS Unprotected Header values that are
present.

In the JWS JSON Serialization, a JWS object is represented as the
combination of these four values,

BASE64URL (UTF8(JWS Protected Header)),

JWS Unprotected Header,

BASE64URL (JWS Payload), and

BASE64URL (JWS Signature),
with the three base64url encoding result strings and the JWS
Unprotected Header value being represented as members within a JSON

Jones, et al. Expires October 2, 2014 [Page 7]

Internet-Draft JSON Web Signature (JWS) March 2014

object. The inclusion of some of these values is OPTIONAL. The JWS
JSON Serialization can also represent multiple signature and/or MAC
values, rather than just one. See Section 7.2 for more information
about the JWS JSON Serialization.

3.1. Example JWS

This section provides an example of a JWS. 1Its computation is
described in more detail in Appendix A.1, including specifying the
exact octet sequences representing the JSON values used and the key
value used.

The following example JWS Protected Header declares that the encoded
object is a JSON Web Token (JWT) [JWT] and the JWS Protected Header
and the JWS Payload are secured using the HMAC SHA-256 algorithm:

{lltypll . "JWT",
"alg":"HS256"}

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJ0eXAi01JKV1QiLAOGKICJIhbGci01iJIUZIINiJ9

The UTF-8 representation of following JSON object is used as the JWS
Payload. (Note that the payload can be any content, and need not be
a representation of a JSON object.)

{llissll : ||j0ell,
"exp":1300819380,
"http://example.com/is_root":true}

Encoding this JWS Payload as BASE64URL(JWS Payload) gives this value
(with line breaks for display purposes only):

eyJpc3Mi0iJgb2UiLAGKICJI1eHA10]jEzMDA4MTkz0ODAsDQogImhOdHAGLY91eGFt
CGX1LmMNVbS9pc19yb290IjpOcnV1fQ

Computing the HMAC of the JWS Signing Input ASCII(BASE64URL(UTF8(JWS
Protected Header)) || '.' || BASE64URL(JWS Payload)) with the HMAC
SHA-256 algorithm using the key specified in Appendix A.1 and
base64url encoding the result yields this BASEG64URL(JWS Signature)
value:

dBjftJeZ4CVP-mB92K27uhbUJUlplr_wwW1lgFWFOEjXk

Concatenating these values in the order Header.Payload.Signature with
period ('.') characters between the parts yields this complete JWS

Jones, et al. Expires October 2, 2014 [Page 8]

Internet-Draft JSON Web Signature (JWS) March 2014

[

representation using the JWS Compact Serialization (with line breaks
for display purposes only):

eyJ0eXA101JKV1QiLAOGKICJIhbGci01JIUZIINiJ9

eyJpc3Mi0iJgb2UiLAGKICJI1eHA10]jEzZMDA4MTkz0ODAsSDQogImhOdHAG6LY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

dBjftJezZ4CVP-mB92K27uhbUJUlplr_wwW1lgFWFOEjXk

See Appendix A for additional examples.

JWS Header

The members of the JSON object(s) representing the JWS Header
describe the digital signature or MAC applied to the JWS Protected
Header and the JWS Payload and optionally additional properties of
the JWS. The Header Parameter names within the JWS Header MUST be
unique; recipients MUST either reject JwWSs with duplicate Header
Parameter names or use a JSON parser that returns only the lexically
last duplicate member name, as specified in Section 15.12 (The JSON
Object) of ECMAScript 5.1 [ECMAScript].

Implementations are required to understand the specific Header
Parameters defined by this specification that are designated as "MUST
be understood" and process them in the manner defined in this
specification. All other Header Parameters defined by this
specification that are not so designated MUST be ignored when not
understood. Unless listed as a critical Header Parameter, per
Section 4.1.10, all Header Parameters not defined by this
specification MUST be ignored when not understood.

There are three classes of Header Parameter names: Registered Header
Parameter names, Public Header Parameter names, and Private Header
Parameter names.

Registered Header Parameter Names

The following Header Parameter names are registered in the IANA JSON

Web Signature and Encryption Header Parameters registry defined in
Section 9.1, with meanings as defined below.

As indicated by the common registry, JWSs and JWEs share a common

Header Parameter space; when a parameter is used by both
specifications, its usage must be compatible between the
specifications.

Jones, et al. Expires October 2, 2014 [Page 9]

Internet-Draft JSON Web Signature (JWS) March 2014

4.1.1. "alg" (Algorithm) Header Parameter

The "alg" (algorithm) Header Parameter identifies the cryptographic
algorithm used to secure the JWS. The signature, MAC, or plaintext
value is not valid if the "alg" value does not represent a supported
algorithm, or if there is not a key for use with that algorithm
associated with the party that digitally signed or MACed the content.
"alg" values should either be registered in the IANA JSON Web
Signature and Encryption Algorithms registry defined in [JWA] or be a
value that contains a Collision-Resistant Name. The "alg" value is a
case-sensitive string containing a StringOrURI value. This Header
Parameter MUST be present and MUST be understood and processed by
implementations.

A list of defined "alg" values for this use can be found in the IANA
JSON Web Signature and Encryption Algorithms registry defined in
[JWA]; the initial contents of this registry are the values defined
in Section 3.1 of the JSON Web Algorithms (JWA) [JWA] specification.

4.1.2. "jku" (JWK Set URL) Header Parameter

The "jku" (JWK Set URL) Header Parameter is a URI [RFC3986] that
refers to a resource for a set of JSON-encoded public keys, one of
which corresponds to the key used to digitally sign the JWS. The
keys MUST be encoded as a JSON Web Key Set (JWK Set) [JwWK]. The
protocol used to acquire the resource MUST provide integrity
protection; an HTTP GET request to retrieve the JWK Set MUST use TLS
[REC2818] [RFC5246]; the identity of the server MUST be validated, as
per Section 3.1 of HTTP Over TLS [RFC2818]. Use of this Header
Parameter is OPTIONAL.

4.1.3. "jwk" (JSON Web Key) Header Parameter

The "jwk" (JSON Web Key) Header Parameter is the public key that
corresponds to the key used to digitally sign the JwWS. This key is
represented as a JSON Web Key [JWK]. Use of this Header Parameter is
OPTIONAL.

4.1.4. "kid" (Key ID) Header Parameter

The "kid" (key ID) Header Parameter is a hint indicating which key
was used to secure the JWS. This parameter allows originators to
explicitly signal a change of key to recipients. The structure of
the "kid" value is unspecified. 1Its value MUST be a string. Use of
this Header Parameter is OPTIONAL.

When used with a JWK, the "kid" value is used to match a JWK "kid"
parameter value.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818

Jones, et al. Expires October 2, 2014 [Page 10]

Internet-Draft JSON Web Signature (JWS) March 2014

4

.1.5. "x5u" (X.509 URL) Header Parameter

4.

1

The "x5u" (X.509 URL) Header Parameter is a URI [RFC3986] that refers
to a resource for the X.509 public key certificate or certificate
chain [REC5280] corresponding to the key used to digitally sign the
JWS. The identified resource MUST provide a representation of the
certificate or certificate chain that conforms to RFC 5280 [RFC5280]
in PEM encoded form [REC1421]. The certificate containing the public
key corresponding to the key used to digitally sign the JWS MUST be
the first certificate. This MAY be followed by additional
certificates, with each subsequent certificate being the one used to
certify the previous one. The protocol used to acquire the resource
MUST provide integrity protection; an HTTP GET request to retrieve
the certificate MUST use TLS [RFC2818] [RFC5246]; the identity of the
server MUST be validated, as per Section 3.1 of HTTP Over TLS
[REC2818]. Use of this Header Parameter is OPTIONAL.

.6. "xb5c" (X.509 Certificate Chain) Header Parameter

4.1.7. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter

1

The "x5c" (X.509 Certificate Chain) Header Parameter contains the
X.509 public key certificate or certificate chain [RFC5280]
corresponding to the key used to digitally sign the JWS. The
certificate or certificate chain is represented as a JSON array of
certificate value strings. Each string in the array is a base64
encoded ([RFC4648] Section 4 -- not base64url encoded) DER
[ITU.X690.1994] PKIX certificate value. The certificate containing
the public key corresponding to the key used to digitally sign the
JWS MUST be the first certificate. This MAY be followed by
additional certificates, with each subsequent certificate being the
one used to certify the previous one. The recipient MUST validate
the certificate chain according to [REC5280] and reject the signature
if any validation failure occurs. Use of this Header Parameter is
OPTIONAL.

See Appendix B for an example "x5c" value.

The "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter is a
base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
encoding of the X.509 certificate [RFC5280] corresponding to the key
used to digitally sign the JWS. Use of this Header Parameter is
OPTIONAL.

If, in the future, certificate thumbprints need to be computed using
hash functions other than SHA-1, it is suggested that additional
related Header Parameters be defined for that purpose. For example,
it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Jones, et al. Expires October 2, 2014 [Page 11]

Internet-Draft JSON Web Signature (JWS) March 2014

using SHA-256) Header Parameter could be defined by registering it in
the IANA JSON Web Signature and Encryption Header Parameters registry
defined in Section 9.1.

4.1.8. "typ" (Type) Header Parameter

The "typ" (type) Header Parameter is used to declare the MIME Media
Type [IANA.MediaTypes] of this complete JWS object in contexts where
this is useful to the application. This parameter has no effect upon
the JWS processing. Use of this Header Parameter is OPTIONAL.

Per [REC2045], all media type values, subtype values, and parameter
names are case-insensitive. However, parameter values are case-
sensitive unless otherwise specified for the specific parameter.

To keep messages compact in common situations, it is RECOMMENDED that
senders omit an "application/" prefix of a media type value in a
"typ" Header Parameter when no other '/' appears in the media type
value. A recipient using the media type value MUST treat it as if
"application/" were prepended to any "typ" value not containing a
'/'. For instance, a "typ" value of "example" SHOULD be used to
represent the "application/example" media type; whereas, the media
type "application/example;part="1/2"" cannot be shortened to
"example;part="1/2"".

The "typ" value "JOSE" can be used by applications to indicate that
this object is a JWS or JWE using the JWS Compact Serialization or
the JWE Compact Serialization. The "typ" value "JOSE+JSON" can be
used by applications to indicate that this object is a JWS or JWE
using the JWS JSON Serialization or the JWE JSON Serialization.
Other type values can also be used by applications.

4.1.9. '"cty" (Content Type) Header Parameter

The "cty" (content type) Header Parameter is used to declare the MIME
Media Type [IANA.MediaTypes] of the secured content (the payload) in
contexts where this is useful to the application. This parameter has
no effect upon the JWS processing. Use of this Header Parameter is
OPTIONAL.

Per [RFC2045], all media type values, subtype values, and parameter
names are case-insensitive. However, parameter values are case-
sensitive unless otherwise specified for the specific parameter.

To keep messages compact in common situations, it is RECOMMENDED that
senders omit an "application/" prefix of a media type value in a
"cty" Header Parameter when no other '/' appears in the media type
value. A recipient using the media type value MUST treat it as if

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

Jones, et al. Expires October 2, 2014 [Page 12]

Internet-Draft JSON Web Signature (JWS) March 2014

"application/" were prepended to any '"cty" value not containing a
'/'. For instance, a "cty" value of "example" SHOULD be used to
represent the "application/example" media type; whereas, the media
type "application/example;part="1/2"" cannot be shortened to
"example;part="1/2"".

4.1.10. "crit" (Critical) Header Parameter

The "crit" (critical) Header Parameter indicates that extensions to
the initial RFC versions of [[this specification]] and [JWA] are
being used that MUST be understood and processed. 1Its value is an
array listing the Header Parameter names present in the JWS Header
that use those extensions. If any of the listed extension Header
Parameters are not understood and supported by the receiver, it MUST
reject the JWS. Senders MUST NOT include Header Parameter names
defined by the initial RFC versions of [[this specification]] or
[JWA] for use with JWS, duplicate names, or names that do not occur
as Header Parameter names within the JWS Header in the "crit" 1list.
Senders MUST NOT use the empty list "[]" as the "crit" value.
Recipients MAY reject the JwWS if the critical list contains any
Header Parameter names defined by the initial RFC versions of [[this
specification]] or [JWA] for use with JWS, or any other constraints
on its use are violated. This Header Parameter MUST be integrity
protected, and therefore MUST occur only within the JWS Protected
Header, when used. Use of this Header Parameter is OPTIONAL. This
Header Parameter MUST be understood and processed by implementations.

An example use, along with a hypothetical "exp" (expiration-time)
field is:

{"alg":"ES256",
Nerit": [llexpll] ,
"exp":1363284000

}

4.2. Public Header Parameter Names

Additional Header Parameter names can be defined by those using JWSs.
However, in order to prevent collisions, any new Header Parameter
name should either be registered in the IANA JSON Web Signature and
Encryption Header Parameters registry defined in Section 9.1 or be a
Public Name: a value that contains a Collision-Resistant Name. 1In
each case, the definer of the name or value needs to take reasonable
precautions to make sure they are in control of the part of the
namespace they use to define the Header Parameter name.

New Header Parameters should be introduced sparingly, as they can
result in non-interoperable JWSs.

Jones, et al. Expires October 2, 2014 [Page 13]

Internet-Draft JSON Web Signature (JWS) March 2014

4.3.

Private Header Parameter Names

A producer and consumer of a JWS may agree to use Header Parameter
names that are Private Names: names that are not Registered Header
Parameter names Section 4.1 or Public Header Parameter names
Section 4.2. Unlike Public Header Parameter names, Private Header
Parameter names are subject to collision and should be used with
caution.

5.

5.1.

Producing and Consuming JWSs

Message Signature or MAC Computation

To create a JWS, one MUST perform these steps. The order of the
steps is not significant in cases where there are no dependencies
between the inputs and outputs of the steps.

1.
2.
3.

Create the content to be used as the JWS Payload.

Compute the encoded payload value BASE64URL(JWS Payload).

Create the JSON object(s) containing the desired set of Header
Parameters, which together comprise the JWS Header: the JWS
Protected Header, and if the JWS JSON Serialization is being
used, the JWS Unprotected Header.

Compute the encoded header value BASE64URL(UTF8(JWS Protected
Header)). If the JWS Protected Header is not present (which can
only happen when using the JWS JSON Serialization and no
"protected" member is present), let this value be the empty
string.

Compute the JWS Signature in the manner defined for the
particular algorithm being used over the JWS Signing Input
ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.' ||

BASE64URL (JWS Payload)). The "alg" (algorithm) Header Parameter
MUST be present in the JWS Header, with the algorithm value
accurately representing the algorithm used to construct the JwS
Signature.

Compute the encoded signature value BASE64URL(JWS Signature).
These three encoded values are used in both the JWS Compact
Serialization and the JWS JSON Serialization representations.

If the JWS JSON Serialization is being used, repeat this process
(steps 3-7) for each digital signature or MAC operation being
performed.

Create the desired serialized output. The JWS Compact
Serialization of this result is BASE64URL(UTF8(JWS Protected
Header)) || '.' || BASE64URL(JWS Payload) || '.' || BASEG4URL(JWS
Signature). The JWS JSON Serialization is described in

Section 7.2.

Jones, et al. Expires October 2, 2014 [Page 14]

Internet-Draft JSON Web Signature (JWS) March 2014

5.2. Message Signature or MAC Validation

When validating a JWS, the following steps MUST be taken. The order
of the steps is not significant in cases where there are no
dependencies between the inputs and outputs of the steps. If any of
the listed steps fails, then the signature or MAC cannot be
validated.

It is an application decision which signatures, MACs, or plaintext
values must successfully validate for the JWS to be accepted. 1In
some cases, all must successfully validate or the JWS will be
rejected. In other cases, only a specific signature, MAC, or
plaintext value needs to be successfully validated. However, in all
cases, at least one signature, MAC, or plaintext value MUST
successfully validate or the JWS MUST be rejected.

1. Parse the JWS representation to extract the serialized values
for the components of the JWS -- when using the JWS Compact
Serialization, the base64url encoded representations of the JWS
Protected Header, the JWS Payload, and the JWS Signature, and
when using the JWS JSON Serialization, also the unencoded JWS
Unprotected Header value. When using the JWS Compact
Serialization, the JWS Protected Header, the JWS Payload, and
the JWS Signature are represented as base64url encoded values in
that order, separated by two period ('.') characters. The JWS
JSON Serialization is described in Section 7.2.

2. The encoded representation of the JWS Protected Header MUST be
successfully base64url decoded following the restriction that no
padding characters have been used.

3. The resulting octet sequence MUST be a UTF-8 encoded
representation of a completely valid JSON object conforming to
[REC7159], which is the JWS Protected Header.

4, If using the JWS Compact Serialization, let the JWS Header be
the JWS Protected Header; otherwise, when using the JWS JSON
Serialization, let the JWS Header be the union of the members of
the corresponding JWS Protected Header and JWS Unprotected
Header, all of which must be completely valid JSON objects.

5. The resulting JWS Header MUST NOT contain duplicate Header
Parameter names. When using the JWS JSON Serialization, this
restriction includes that the same Header Parameter name also
MUST NOT occur in distinct JSON object values that together
comprise the JWS Header.

6. Verify that the implementation understands and can process all
fields that it is required to support, whether required by this
specification, by the algorithm being used, or by the "crit"
Header Parameter value, and that the values of those parameters
are also understood and supported.

https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires October 2, 2014 [Page 15]

Internet-Draft JSON Web Signature (JWS) March 2014

5.

7. The encoded representation of the JWS Payload MUST be
successfully base64url decoded following the restriction that no
padding characters have been used.

8. The encoded representation of the JWS Signature MUST be
successfully base64url decoded following the restriction that no
padding characters have been used.

9. The JWS Signature MUST be successfully validated against the JWS
Signing Input ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.'
| | BASE64URL(JWS Payload)) in the manner defined for the
algorithm being used, which MUST be accurately represented by
the value of the "alg" (algorithm) Header Parameter, which MUST
be present.

10. If the JWS JSON Serialization is being used, repeat this process
(steps 4-9) for each digital signature or MAC value contained in
the representation.

3. String Comparison Rules

Processing a JWS inevitably requires comparing known strings to
members and values in a JSON object. For example, in checking what
the algorithm is, the Unicode string "alg" will be checked against
the member names in the JWS Header to see if there is a matching
Header Parameter name. The same process is then used to determine if
the value of the "alg" Header Parameter represents a supported
algorithm.

Since the only string comparison operations that are performed are
equality and inequality, the same rules can be used for comparing
both member names and member values against known strings. The JSON
rules for doing member name comparison are described in Section 8.3
of [RFC7159].

o

Also, see the JSON security considerations in Section 10.2 and the
Unicode security considerations in Section 10.3.

Key Identification

It is necessary for the recipient of a JWS to be able to determine
the key that was employed for the digital signature or MAC operation.
The key employed can be identified using the Header Parameter methods
described in Section 4.1 or can be identified using methods that are
outside the scope of this specification. Specifically, the Header
Parameters "jku", "jwk", "kid", "x5u", "x5c", and "x5t" can be used
to identify the key used. These Header Parameters MUST be integrity
protected if the information that they convey is to be utilized in a
trust decision.

https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/rfc7159#section-8.3

Jones, et al. Expires October 2, 2014 [Page 16]

Internet-Draft JSON Web Signature (JWS) March 2014

I~

The sender SHOULD include sufficient information in the Header
Parameters to identify the key used, unless the application uses
another means or convention to determine the key used. Validation of
the signature or MAC fails when the algorithm used requires a key
(which is true of all algorithms except for '"none") and the key used
cannot be determined.

The means of exchanging any shared symmetric keys used is outside the
scope of this specification.

Also, see Appendix D for notes on possible key selection algorithms.

Serializations

JWS objects use one of two serializations, the JWS Compact
Serialization or the JWS JSON Serialization. Applications using this
specification need to specify what serialization and serialization
features are used for that application. For instance, applications
might specify that only the JWS JSON Serialization is used, that only
JWS JSON Serialization support for a single signature or MAC value is
used, or that support for multiple signatures and/or MAC values 1is
used. JWS implementations only need to implement the features needed
for the applications they are designed to support.

.1. JWS Compact Serialization

The JWS Compact Serialization represents digitally signed or MACed
content as a compact URL-safe string. This string is

BASE64URL (UTF8(JWS Protected Header)) || '.' || BASE64URL(JWS
Payload) || '.' || BASE64URL(JWS Signature). Only one signature/MAC
is supported by the JWS Compact Serialization and it provides no
syntax to represent a JWS Unprotected Header value.

.2. JWS JSON Serialization

The JWS JSON Serialization represents digitally signed or MACed
content as a JSON object. Content using the JWS JSON Serialization
can be secured with more than one digital signature and/or MAC
operation. This representation is neither optimized for compactness
nor URL-safe.

The following members are defined for use in top-level JSON objects
used for the JWS JSON Serialization:

Jones, et al. Expires October 2, 2014 [Page 17]

Internet-Draft JSON Web Signature (JWS) March 2014

payload
The "payload" member MUST be present and contain the value
BASE64URL (JWS Payload).

signatures
The "signatures" member value MUST be an array of JSON objects.
Each object represents a signature or MAC over the JWS Payload and
the JWS Protected Header.

The following members are defined for use in the JSON objects that

are elements of the "signatures" array:

protected
The "protected" member MUST be present and contain the value
BASE64URL (UTF8(JWS Protected Header)) when the JWS Protected
Header value is non-empty; otherwise, it MUST be absent. These
Header Parameter values are integrity protected.

header
The "header" member MUST be present and contain the value JWS
Unprotected Header when the JWS Unprotected Header value is non-
empty; otherwise, it MUST be absent. This value is represented as
an unencoded JSON object, rather than as a string. These Header
Parameter values are not integrity protected.

signature
The "signature" member MUST be present and contain the value
BASE64URL (JWS Signature).

At least one of the "protected" and "header" members MUST be present
for each signature/MAC computation so that an "alg" Header Parameter
value is conveyed.

Additional members can be present in both the JSON objects defined
above; if not understood by implementations encountering them, they
MUST be ignored.

The Header Parameter values used when creating or validating
individual signature or MAC values are the union of the two sets of
Header Parameter values that may be present: (1) the JWS Protected
Header represented in the '"protected" member of the signature/MAC's
array element, and (2) the JWS Unprotected Header in the "header"
member of the signature/MAC's array element. The union of these sets
of Header Parameters comprises the JWS Header. The Header Parameter
names in the two locations MUST be disjoint.

Each JWS Signature value is computed using the parameters of the
corresponding JWS Header value in the same manner as for the JWS
Compact Serialization. This has the desirable property that each JWS
Signature value represented in the "signatures" array is identical to
the value that would have been computed for the same parameter in the
JWS Compact Serialization, provided that the JWS Protected Header

Jones, et al. Expires October 2, 2014 [Page 18]

Internet-Draft JSON Web Signature (JWS) March 2014

=]

[©

value for that signature/MAC computation (which represents the
integrity-protected Header Parameter values) matches that used in the
JWS Compact Serialization.

In summary, the syntax of a JWS using the JWS JSON Serialization is
as follows:

{
"payload":'"<payload contents>",
"signatures":[
{"protected":"<integrity-protected header 1 contents>",
"header":<non-integrity-protected header 1 contents>,
"signature":'"<signature 1 contents>"},

{"protected":"<integrity-protected header N contents>",
"header":<non-integrity-protected header N contents>,
"signature":'"<signature N contents>"}]

}

See Appendix A.6 for an example of computing a JWS using the JWS JSON
Serialization.

TLS Requirements

Implementations MUST support TLS. Which version(s) ought to be
implemented will vary over time, and depend on the widespread
deployment and known security vulnerabilities at the time of
implementation. At the time of this writing, TLS version 1.2
[REC5246] is the most recent version, but has very limited actual
deployment, and might not be readily available in implementation
toolkits.

To protect against information disclosure and tampering,
confidentiality protection MUST be applied using TLS with a
ciphersuite that provides confidentiality and integrity protection.

Whenever TLS is used, a TLS server certificate check MUST be
performed, per RFC 6125 [RFC6125].

IANA Considerations

The following registration procedure is used for all the registries
established by this specification.

Values are registered with a Specification Required [REC5226] after a
two-week review period on the [TBD]@ietf.org mailing list, on the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc5226

Jones, et al. Expires October 2, 2014 [Page 19]

Internet-Draft JSON Web Signature (JWS) March 2014

advice of one or more Designated Experts. However, to allow for the
allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a
specification will be published.

Registration requests must be sent to the [TBD]@ietf.org mailing list
for review and comment, with an appropriate subject (e.g., "Request
for access token type: example"). [[Note to the RFC Editor: The name
of the mailing list should be determined in consultation with the
IESG and IANA. Suggested name: jose-reg-review.]]

wWithin the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and IANA. Denials should include an explanation
and, if applicable, suggestions as to how to make the request
successful. Registration requests that are undetermined for a period
longer than 21 days can be brought to the IESG's attention (using the
iesg@iesg.org mailing list) for resolution.

Criteria that should be applied by the Designated Expert(s) includes
determining whether the proposed registration duplicates existing
functionality, determining whether it is likely to be of general
applicability or whether it is useful only for a single application,
and whether the registration makes sense.

IANA must only accept registry updates from the Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

It is suggested that multiple Designated Experts be appointed who are
able to represent the perspectives of different applications using
this specification, in order to enable broadly-informed review of
registration decisions. In cases where a registration decision could
be perceived as creating a conflict of interest for a particular
Expert, that Expert should defer to the judgment of the other
Expert(s).

9.1. JSON Web Signature and Encryption Header Parameters Registry

This specification establishes the IANA JSON Web Signature and
Encryption Header Parameters registry for JWS and JWE Header
Parameter names. The registry records the Header Parameter name and
a reference to the specification that defines it. The same Header
Parameter name can be registered multiple times, provided that the
parameter usage is compatible between the specifications. Different
registrations of the same Header Parameter name will typically use
different Header Parameter Usage Location(s) values.

Jones, et al. Expires October 2, 2014 [Page 20]

Internet-Draft JSON Web Signature (JWS) March 2014

9.1.1. Registration Template

9.1.2. Initial Registry Contents

1

1

Header Parameter Name:
The name requested (e.g., "example"). Because a core goal of this
specification is for the resulting representations to be compact,
it is RECOMMENDED that the name be short -- not to exceed 8
characters without a compelling reason to do so. This name is
case-sensitive. Names may not match other registered names in a
case-insensitive manner unless the Designated Expert(s) state that
there is a compelling reason to allow an exception in this
particular case.

Header Parameter Description:
Brief description of the Header Parameter (e.g., "Example
description").

Header Parameter Usage Location(s):
The Header Parameter usage locations, which should be one or more
of the values "JWS" or "JWE".

Change Controller:
For Standards Track RFCs, state "IESG". For others, give the name
of the responsible party. Other details (e.g., postal address,
email address, home page URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter,
preferably including URI(s) that can be used to retrieve copies of
the document(s). An indication of the relevant sections may also
be included but is not required.

This specification registers the Header Parameter names defined in
Section 4.1 in this registry.

0 Header Parameter Name: "alg"

0 Header Parameter Description: Algorithm

0 Header Parameter Usage Location(s): JWS

0 Change Controller: IESG

0 Specification Document(s): Section 4.1.1 of [[this document]]
0 Header Parameter Name: "jku"

0 Header Parameter Description: JWK Set URL

0 Header Parameter Usage Location(s): JWS

o Change Controller: IESG

0 Specification Document(s): Section 4.1.2 of [[this document]]
0 Header Parameter Name: "jwk"

0 Header Parameter Description: JSON Web Key

Jones, et al. Expires October 2, 2014 [Page 21]

Internet-Draft JSON Web Signature (JWS) March 2014

0 Header Parameter Usage Location(s): JWS

0o Change Controller: IESG

0 Specification document(s): Section 4.1.3 of [[this document]]
0 Header Parameter Name: "kid"

0 Header Parameter Description: Key ID

0 Header Parameter Usage Location(s): JWS

o Change Controller: IESG

0 Specification Document(s): Section 4.1.4 of [[this document]]
0 Header Parameter Name: '"x5u"

0 Header Parameter Description: X.509 URL

0 Header Parameter Usage Location(s): JWS

0o Change Controller: IESG

o Specification Document(s): Section 4.1.5 of [[this document]]
0 Header Parameter Name: '"x5c"

0 Header Parameter Description: X.509 Certificate Chain

0 Header Parameter Usage Location(s): JWS

o Change Controller: IESG

0 Specification Document(s): Section 4.1.6 of [[this document]]
0 Header Parameter Name: "x5t"

0 Header Parameter Description: X.509 Certificate SHA-1 Thumbprint
0 Header Parameter Usage Location(s): JWS

o Change Controller: IESG

0 Specification Document(s): Section 4.1.7 of [[this document]]
0 Header Parameter Name: "typ"

0 Header Parameter Description: Type

0 Header Parameter Usage Location(s): JWS

0o Change Controller: IESG

0 Specification Document(s): Section 4.1.8 of [[this document]]
0 Header Parameter Name: "cty"

0 Header Parameter Description: Content Type

0 Header Parameter Usage Location(s): JWS

o Change Controller: IESG

0 Specification Document(s): Section 4.1.9 of [[this document]]
0 Header Parameter Name: "crit"

0 Header Parameter Description: Critical

0 Header Parameter Usage Location(s): JWS

0 Change Controller: IESG

0 Specification Document(s): Section 4.1.10 of [[this document]]

Jones, et al. Expires October 2, 2014 [Page 22]

Internet-Draft JSON Web Signature (JWS) March 2014

9.2.

9.2.

Media Type Registration

Registry Contents

This specification registers the "application/jose" Media Type
[REC2046] in the MIME Media Types registry [IANA.MediaTypes], which
can be used to indicate that the content is a JWS or JWE object using
the JWS Compact Serialization or the JWE Compact Serialization and
the "application/jose+json" Media Type in the MIME Media Types
registry, which can be used to indicate that the content is a JWS or
JWE object using the JWS JSON Serialization or the JWE JSON

Serialization.

o Type name: application

0 Subtype name: jose

0 Required parameters: n/a

0 Optional parameters: n/a

0 Encoding considerations: 8bit; application/jose values are encoded

o O O O

O O O O O

as a series of base64url encoded values (some of which may be the
empty string) separated by period ('.') characters.

Security considerations: See the Security Considerations section
of [[this document]]

Interoperability considerations: n/a

Published specification: [[this document]]

Applications that use this media type: OpenID Connect, Mozilla
Persona, Salesforce, Google, Android, Windows Azure, Xbox One, and
numerous others that use JWTs

Additional information: Magic number(s): n/a, File extension(s):
n/a, Macintosh file type code(s): n/a

Person & email address to contact for further information: Michael
B. Jones, mbj@microsoft.com

Intended usage: COMMON

Restrictions on usage: none

Author: Michael B. Jones, mbj@microsoft.com

Change Controller: IESG

Type name: application

Subtype name: jose+json

Required parameters: n/a

Optional parameters: n/a

Encoding considerations: 8bit; application/jose+json values are

represented as a JSON Object; UTF-8 encoding SHOULD be employed

for the JSON object.

Security considerations: See the Security Considerations section
of [[this document]]

Interoperability considerations: n/a

https://datatracker.ietf.org/doc/html/rfc2046

Jones, et al. Expires October 2, 2014 [Page 23]

Internet-Draft JSON Web Signature (JWS) March 2014

0 Published specification: [[this document 1]

0o Applications that use this media type: TBD

0 Additional information: Magic number(s): n/a, File extension(s):
n/a, Macintosh file type code(s): n/a

0 Person & email address to contact for further information: Michael

B. Jones, mbj@microsoft.com

Intended usage: COMMON

Restrictions on usage: none

Author: Michael B. Jones, mbj@microsoft.com

Change Controller: IESG

O O O O

Security Considerations

.1. Cryptographic Security Considerations

All of the security issues faced by any cryptographic application
must be faced by a JWS/JWE/JWK agent. Among these issues are
protecting the user's private and symmetric keys, preventing various
attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of
security considerations is beyond the scope of this document, but
some significant concerns are listed here.

All the security considerations in XML DSIG 2.0
[W3C.CR-xmldsig-core2-20120124], also apply to this specification,
other than those that are XML specific. Likewise, many of the best
practices documented in XML Signature Best Practices
[W3C.WD-xmldsig-bestpractices-20110809] also apply to this
specification, other than those that are XML specific.

Keys are only as strong as the amount of entropy used to generate
them. A minimum of 128 bits of entropy should be used for all keys,
and depending upon the application context, more may be required. 1In
particular, it may be difficult to generate sufficiently random
values in some browsers and application environments.

Creators of JWSs should not allow third parties to insert arbitrary
content into the message without adding entropy not controlled by the
third party.

When utilizing TLS to retrieve information, the authority providing
the resource MUST be authenticated and the information retrieved MUST
be free from modification.

When cryptographic algorithms are implemented in such a way that
successful operations take a different amount of time than
unsuccessful operations, attackers may be able to use the time

Jones, et al. Expires October 2, 2014 [Page 24]

Internet-Draft JSON Web Signature (JWS) March 2014

10.

difference to obtain information about the keys employed. Therefore,
such timing differences must be avoided.

A SHA-1 hash is used when computing "x5t" (x.509 certificate
thumbprint) values, for compatibility reasons. Should an effective
means of producing SHA-1 hash collisions be developed, and should an
attacker wish to interfere with the use of a known certificate on a
given system, this could be accomplished by creating another
certificate whose SHA-1 hash value is the same and adding it to the
certificate store used by the intended victim. A prerequisite to
this attack succeeding is the attacker having write access to the
intended victim's certificate store.

If, in the future, certificate thumbprints need to be computed using
hash functions other than SHA-1, it is suggested that additional
related Header Parameters be defined for that purpose. For example,
it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint
using SHA-256) Header Parameter could be defined and used.

2. JSON Security Considerations

Strict JSON validation is a security requirement. If malformed JSON
is received, then the intent of the sender is impossible to reliably
discern. Ambiguous and potentially exploitable situations could

arise if the JSON parser used does not reject malformed JSON syntax.

Section 4 of the JSON Data Interchange Format specification [RFEC7159]
states "The names within an object SHOULD be unique", whereas this
specification states that "Header Parameter names within this object
MUST be unique; recipients MUST either reject JwWSs with duplicate
Header Parameter names or use a JSON parser that returns only the
lexically last duplicate member name, as specified in Section 15.12
(The JSON Object) of ECMAScript 5.1 [ECMAScript]". Thus, this
specification requires that the Section 4 "SHOULD" be treated as a
"MUST" by senders and that it be either treated as a "MUST" or in the
manner specified in ECMAScript 5.1 by receivers. Ambiguous and
potentially exploitable situations could arise if the JSON parser
used does not enforce the uniqueness of member names or returns an
unpredictable value for duplicate member names.

Some JSON parsers might not reject input that contains extra
significant characters after a valid input. For instance, the input
"{"tag":"value"}ABCD" contains a valid JSON object followed by the
extra characters "ABCD". Such input MUST be rejected in its
entirety.

https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires October 2, 2014 [Page 25]

Internet-Draft JSON Web Signature (JWS) March 2014

10.

3. Unicode Comparison Security Considerations

Header Parameter names and algorithm names are Unicode strings. For
security reasons, the representations of these names must be compared
verbatim after performing any escape processing (as per Section 8.3
of [RFC7159]). This means, for instance, that these JSON strings

11.

11

must compare as being equal ("sig", "\uG073ig"), whereas these must
all compare as being not equal to the first set or to each other
("SIG", "Sig", "si\uoe47").

JSON strings can contain characters outside the Unicode Basic
Multilingual Plane. For instance, the G clef character (U+1D11E) may
be represented in a JSON string as "\uD834\uDD1E". Ideally, JWS
implementations SHOULD ensure that characters outside the Basic
Multilingual Plane are preserved and compared correctly;
alternatively, if this is not possible due to these characters
exercising limitations present in the underlying JSON implementation,
then input containing them MUST be rejected.

References

.1. Normative References

[ECMAScript]
Ecma International, "ECMAScript Language Specification,
5.1 Edition", ECMA 262, June 2011.

[IANA.MediaTypes]
Internet Assigned Numbers Authority (IANA), "MIME Media
Types", 2005.

[ITU.X690.1994]
International Telecommunications Union, "Information
Technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)", ITU-T Recommendation

X.690, 1994.

[JwA] Jones, M., "JSON Web Algorithms (JWA)",
draft-ietf-jose-json-web-algorithms (work in progress),
March 2014.

[IWK] Jones, M., "JSON Web Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),
March 2014.

[RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic

https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key

Jones, et al. Expires October 2, 2014 [Page 26]

Internet-Draft JSON Web Signature (JWS) March 2014

Mail: Part I: Message Encryption and Authentication
Procedures", RFC 1421, February 1993.

[RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.

[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
REC 3986, January 2005.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, October 2006.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", REC 6125, March 2011.

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, March 2014.

[USASCII] American National Standards Institute, "Coded Character
Set -- 7-bit American Standard Code for Information
Interchange", ANSI X3.4, 1986.

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires October 2, 2014 [Page 27]

Internet-Draft JSON Web Signature (JWS) March 2014

11.2. Informative References

[CanvasApp]

Facebook, "Canvas Applications", 2010.

[JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
September 2010.

[JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
draft-ietf-jose-json-web-encryption (work in progress),
March 2014.

[IWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", draft-ietf-oauth-json-web-token (work in
progress), March 2014.

[MagicSignatures]
Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
Signatures", January 2011.

[RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
Unique IDentifier (UUID) URN Namespace", RFC 4122,
July 2005.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an

IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[W3C.CR-xmldsig-core2-20120124]

Cantor, S., Roessler, T., Eastlake, D., Yiu, K., Reagle,
J., Solo, D., Datta, P., and F. Hirsch, "XML Signature
Syntax and Processing Version 2.0", World wWide Web
Consortium CR CR-xmldsig-core2-20120124, January 2012,
<http://www.w3.0rg/TR/2012/CR-xmldsig-core2-20120124>.

[W3C.WD-xmldsig-bestpractices-20110809]

Appendix A.

Datta, P. and F. Hirsch, "XML Signature Best Practices",
World wide Web Consortium WD WD-xmldsig-bestpractices-
20110809, August 2011, <http://www.w3.o0rg/TR/2011/
WD-xmldsig-bestpractices-20110809>.

JWS Examples

This section provides several examples of JWSs. While the first
three examples all represent JSON Web Tokens (JWTs) [JWT], the
payload can be any octet sequence, as shown in Appendix A.4.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809

Jones, et al. Expires October 2, 2014 [Page 28]

Internet-Draft JSON Web Signature (JWS) March 2014

A.1. Example JWS using HMAC SHA-256
A.1.1. Encoding

The following example JWS Protected Header declares that the data
structure is a JSON Web Token (JWT) [JWT] and the JWS Signing Input
is secured using the HMAC SHA-256 algorithm.

{lltypll SUIWT" ,
"alg":"HS256"}

The octets representing UTF8(JWS Protected Header) in this case are:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJ0eXA101JKV1QiLAOGKICJIhbGci01JIUZIINiJ9

The JWS Payload used in this example is the octets of the UTF-8
representation of the JSON object below. (Note that the payload can
be any base64url encoded octet sequence, and need not be a base64url
encoded JSON object.)

{”iSS" : |ljoell,
"exp":1300819380,
"http://example.com/is_root":true}

The following octet sequence, which is the UTF-8 representation of
the JSON object above, is the JWS Payload:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56,
48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97,
109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111,
111, 116, 34, 58, 116, 114, 117, 101, 125]

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value (with line breaks for display purposes
only):

eyJpc3Mi0iJgb2UiLAGKICJI1eHA10jEzMDA4MTkz0ODAsDQogImhOdHAGLY91eGFt
CGX1LmMNVbS9pc19yb290IjpOcnV1fQ

Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
BASE64URL (JWS Payload) gives this string (with line breaks for

Jones, et al. Expires October 2, 2014 [Page 29]

Internet-Draft JSON Web Signature (JWS) March 2014

display purposes only):
eyJOeXAi10iJKV1QiLAGKICJIhbGci0iJIUZzI1NiJ9

eyJpc3Mi0iJqb2UiLAGKICJI1eHAIO]jEzMDA4MTkz0ODASDQogImhOdHAGLY91eGFt
CGX1LmMNVbS9pc19yb290IjpOcnV1fQ

The resulting JWS Signing Input value, which is the ASCII
representation of above string, is the following octet sequence:

[101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81,
105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74,
73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51,
77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67,
74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84,
107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100,
72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76,
109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73,
106, 112, 48, 99, 110, 86, 108, 102, 81]

HMACs are generated using keys. This example uses the symmetric key
represented in JSON Web Key [JWK] format below (with line breaks for
display purposes only):

{llktyll : “OCt",
"k":"AyM1SysPpbyDfgzld3umjlgqzKObwVMkoqQ-EstJQLr_T-1qSO@QZH75
aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow"
}

Running the HMAC SHA-256 algorithm on the JWS Signing Input with this
key yields this JWS Signature octet sequence:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
132, 141, 121]

Encoding this JWS Signature as BASE64URL(JWS Signature) gives this
value:

dBjftJez4CVP-mB92K27uhbUJU1pir_wWigFWFOEjXk

Concatenating these values in the order Header.Payload.Signature with
period ('.') characters between the parts yields this complete JWS
representation using the JWS Compact Serialization (with line breaks
for display purposes only):

Jones, et al. Expires October 2, 2014 [Page 30]

Internet-Draft JSON Web Signature (JWS) March 2014

eyJOeXA101JKV1QiLAOGKICJIhbGci01iJIUZIINiJ9

eyJpc3Mi0iJqb2UiLAOKICI1eHAi10jEzMDA4MTkzODASDQogImhOdHA6LY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

dBjftJezZ4CVP-mB92K27uhbUJUlplr_wW1gFWFOEjXk
A.1.2. Validating

Since the "alg" Header Parameter is "HS256", we validate the HMAC
SHA-256 value contained in the JWS Signature.

To validate the HMAC value, we repeat the previous process of using
the correct key and the JWS Signing Input as input to the HMAC SHA-
256 function and then taking the output and determining if it matches
the JWS Signature. If it matches exactly, the HMAC has been
validated.

A.2. Example JWS using RSASSA-PKCS-v1_5 SHA-256
A.2.1. Encoding

The JWS Protected Header in this example is different from the
previous example in two ways: First, because a different algorithm is
being used, the "alg" value is different. Second, for illustration
purposes only, the optional "typ" parameter is not used. (This
difference is not related to the algorithm employed.) The JWS
Protected Header used is:

{"alg":"RS256"}
The octets representing UTF8(JWS Protected Header) in this case are:
[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJhbGci0i1JSUzI1INiJ9

The JWS Payload used in this example, which follows, is the same as
in the previous example. Since the BASE64URL(JWS Payload) value will
therefore be the same, its computation is not repeated here.

{llissll : ||j0ell,
"exp'":1300819380,
"http://example.com/is_root":true}

Jones, et al. Expires October 2, 2014 [Page 31]

Internet-Draft JSON Web Signature (JWS) March 2014

Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
BASE64URL (JWS Payload) gives this string (with line breaks for
display purposes only):

eyJhbGci0iJSUzI1NiJ9

eyJpc3Mi0iJqb2UiLAGKICI1eHAi10jEzMDA4MTkzODASDQogImhOdHA6LY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

The resulting JWS Signing Input value, which is the ASCII
representation of above string, is the following octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73,
49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,
65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This example uses the RSA key represented in JSON Web Key [JWK]
format below (with line breaks for display purposes only):

{"kty":"RSA",
"n":"ofgWCuLjybR1zo0tZWJIjNiuSTb4p4fAkd_wwWIcyQoThbjiokol8w26mPddx
HmfHQp -Vaw-4qPCJrcS2mJPMEzP1Pt0Bm4d4QlL-yRT-SFd21ZS-pCgNMs
D1W_YpRPEWOWVG6b32690r23jZ247s0MZ09wGzjb_70MgOLOL-bSTf63kpaSH
SXndS5z5rexMdbBYUsLA9e -KXBdQOS-UTo7WTBEMa2R2CapHg665xsmtdV
MTBQY4uDZ1xvb3gqCo5ZwKh9kG4LT6_I5Ihl1JH7aGhyxXFvUK-DWNmoudF8
NAco9_h9iaGNj8g2ethFkMLs91kzk2PAcDTWI9gbh54h4FRWyuXpoQ",
"e":"AQAB",
"d":"Eq5xpGnNCivDf1JsRQBXHx1hdR1k6Ulwe2JZD50LpXyWPEAeP88VLNO97I
J1A7_GQ5sLKMgvfTeXZx9SE-7YwV012NX00AJe46sui395IW_GO-pwWJ100
BKTGOVENn2bKVRUCgu-GjBVaYLU6T319kJFFNS3EOQbVdxzubSu3Mkqzjkn
439X0M_V51gfpRLI9JIYanrC4D4gAdGeopV_0ZHHzQ1BjudU2QvXt4ehNYT
CBr6XCcLQUShb1juu01ZdiYoFaFQT5Tw8bGULl_x_jTj3ccPDVZFD9pIuhLh
BOneufuBiB4cS9812SR_RQyGWSeWjnczTOQU91p1DhOVRuUOopznQ"
}

The RSA private key is then passed to the RSA signing function, which
also takes the hash type, SHA-256, and the JWS Signing Input as
inputs. The result of the digital signature is an octet sequence,
which represents a big endian integer. 1In this example, it is:

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69,
243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173, 209, 113, 125,
131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115, 162, 102, 62, 81,

Jones, et al. Expires October 2, 2014 [Page 32]

Int

A.2.

ernet-Draft JSON Web Signature (JWS) March 2014

102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69,
229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219,
61, 184, 151, 91, 23, 208, 148, 2, 190, 237, 213, 217, 217, 112, 7,
16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184, 31,
190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244,
74, 230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1,
48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129,
253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239,
177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202,
173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157,
105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, 14, 96, 69,
34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202,
234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90,
193, 167, 72, 160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238,
251, 71]

Encoding the signature as BASE64URL(JWS Signature) produces this
value (with line breaks for display purposes only):

cC4hiUP0j9Eetdgtv3hF80EGrhuB__dzERatOXF9g2vtQgr9PJbu3X0iZj5RZmh7
AAUHIM4Bh-0Qc_lF5YKt_08W2Fp5jujGbds9uldbFOCUAr7tidnZcAcQjbKBYNX4
BAynRFdiuB--f_nZLgrnbyTyWz075VvRK5h6XBAr LIARNPVkSjtQBMH1b1L07Qe7K
0GarZRmB_eSN9383LcOLn6_d0--xil12jzDwusC-eOkHWESqQtFZESc6BfI7no0Pqv
hJ1phCnvWh6IeYI2w9QOYEUipUTI8NP6LbYGYIFS98rqVt5AXLIhWKWywlVmtVrB
pOigcN_IoypGlUPQGe77Rw

Concatenating these values in the order Header.Payload.Signature with
period ('.') characters between the parts yields this complete JWS
representation using the JWS Compact Serialization (with line breaks
for display purposes only):

eyJhbGci0iJSUzI1NiJ9

eyJpc3Mi0iJqb2UiLAOKICI1eHAi10jEzMDA4MTkzODASDQogImhOdHA6LY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

cC4hiUPoj9Eetdgtv3hF8OEGrhuB__dzERat®XF9g2VtQgroPJbu3X0izj5RZmh7
AAUHIM4Bh-0Qc_lF5YKt_08W2Fp5jujGbds9uJdbFOCUAr7ti1dnZcAcQjbKBYNX4
BAYynRFdiuB--f_nZLgrnbyTyWz075VvRK5h6XBAr LIARNPVKSjtQBMH1b1L07Qe7K
0GarZRmB_eSN9383LcOLn6_d0--xi12jzbwusC-eOKkHWESqtFZESc6BfI7noOPqv
hJ1phCnvWh6IeYI2w9QOYEUipUTI8Np6LbgGYIFs98rqVEt5AXLIhWkWywlVmtVrB
pOigcN_IoypGlUPQGe77Rw

2. Validating

Since the "alg" Header Parameter is "RS256", we validate the RSASSA-
PKCS-v1_5 SHA-256 digital signature contained in the JWS Signature.

Jones, et al. Expires October 2, 2014 [Page 33]

Internet-Draft JSON Web Signature (JWS) March 2014

Validating the JWS Signature is a little different from the previous
example. We pass (n, e), JWS Signature, and the JWS Signing Input to
an RSASSA-PKCS-v1_5 signature verifier that has been configured to
use the SHA-256 hash function.

A.3. Example JWS using ECDSA P-256 SHA-256
A.3.1. Encoding

The JWS Protected Header for this example differs from the previous
example because a different algorithm is being used. The JWS
Protected Header used is:

{"alg":"ES256"}
The octets representing UTF8(JWS Protected Header) in this case are:
[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJhbGci0iJFUzI1NiJ9

The JWS Payload used in this example, which follows, is the same as
in the previous examples. Since the BASE64URL(JWS Payload) value
will therefore be the same, its computation is not repeated here.

{llissll : ||j0ell,
"exp":1300819380,
"http://example.com/is_root":true}

Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
BASE64URL (JWS Payload) gives this string (with line breaks for
display purposes only):

eyJhbGciOiJFUZIINiJQ

eyJpc3Mi0iJqb2UiLAOKICI1eHA10jEzMDA4MTkzODASDQogImhOdHA6LY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

The resulting JWS Signing Input value, which is the ASCII
representation of above string, is the following octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73,
49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105,
74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72,
65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68,

Jones, et al. Expires October 2, 2014 [Page 34]

Internet-Draft JSON Web Signature (JWS) March 2014

65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76,
121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This example uses the elliptic curve key represented in JSON Web Key
[JWK] format below:

{"kty":"EC",
"crv":"P-256",
"x":"f830J3D2xF1Bg8vub9tLelgHMzV76e8TusQuPHVRVEU",
"y":"X_FEzZRU9M36HLN_tue659LNpXW6pCyStikYjKIWI5a0",
"d":"jpsQnnGQmML-YBIffH1136CcsSpYG6-01iY7X1fCE9-E9LI"

3

The ECDSA private part d is then passed to an ECDSA signing function,
which also takes the curve type, P-256, the hash type, SHA-256, and
the JWS Signing Input as inputs. The result of the digital signature
is the EC point (R, S), where R and S are unsigned integers. 1In this
example, the R and S values, given as octet sequences representing
big endian integers are:

Fommm - g +

| Result | value

| Name | |

Fomm e g +
R [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88,

7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129,
154, 195, 22, 158, 166, 101]

S [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175,
8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154,
143, 63, 127, 138, 131, 163, 84, 213]
Fommman T +
The JWS Signature is the value R || S. Encoding the signature as

BASE64URL (JWS Signature) produces this value (with line breaks for
display purposes only):

DtEhU31jbEg8L38VWATUAQOYKAMG - XX - FAGawxaepmXFCgfTjDxw5djxLa8IS1SA
pmWQx FKTUJqPP3-Kg6NU1Q

Concatenating these values in the order Header.Payload.Signature with
period ('.') characters between the parts yields this complete JWS
representation using the JWS Compact Serialization (with line breaks
for display purposes only):

Jones, et al. Expires October 2, 2014 [Page 35]

Internet-Draft JSON Web Signature (JWS) March 2014

eyJhbGci0iJFUzI1NiJ9

eyJpc3Mi0iJqb2UiLAOKICI1eHAi10jEzMDA4MTkzODASDQogImhOdHA6LY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

DtEhU31jbEg8L38VWAFUAGOYKAMG - XX - FAGawxaepmXFCgfTjDxw5djxLa8IS1SA
pMWQXFKTUJQPP3-Kg6NU1Q

A.3.2. Validating

Since the "alg" Header Parameter is "ES256", we validate the ECDSA
P-256 SHA-256 digital signature contained in the JWS Signature.

Validating the JWS Signature is a little different from the first
example. We need to split the 64 member octet sequence of the JWS
Signature into two 32 octet sequences, the first R and the second S.
We then pass (x, y), (R, S) and the JWS Signing Input to an ECDSA
signature verifier that has been configured to use the P-256 curve
with the SHA-256 hash function.

A.4. Example JWS using ECDSA P-521 SHA-512

A.4.1. Encoding

The JWS Protected Header for this example differs from the previous
example because different ECDSA curves and hash functions are used.
The JWS Protected Header used is:

{"alg":"ES512"}
The octets representing UTF8(JWS Protected Header) in this case are:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125]

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJhbGci0iJFUzUXM1J9

The JWS Payload used in this example, is the ASCII string "Payload".
The representation of this string is the octet sequence:

[80, 97, 121, 168, 111, 97, 100]
Encoding this JWS Payload as BASE64URL(JWS Payload) gives this value:

UGF5bG9hZA

Jones, et al. Expires October 2, 2014 [Page 36]

Internet-Draft JSON Web Signature (JWS) March 2014

Combining these as BASE64URL(UTF8(JWS Protected Header)) || '.' ||
BASE64URL (JWS Payload) gives this string (with line breaks for
display purposes only):

eyJhbGci0iJFUzUxMiJ9.UGF5bG9hZA

The resulting JWS Signing Input value, which is the ASCII
representation of above string, is the following octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85,
120, 77, 105, 74, 57, 46, 85, 71, 70, 53, 98, 71, 57, 104, 90, 65]

This example uses the elliptic curve key represented in JSON Web Key
[JWK] format below (with line breaks for display purposes only):

{"kty":"EC",
"crv":"P-521",
"x":"AekpBQ8ST8a8VcfVOTNL353vSrDCLLIXmMPKO6WT jXrrjcBpXp5EONYG_
NjFZ60vLFV1jSfS9tsz4qUxcWceqwQGk",
"y":"ADSMRA43Z1DSNX_RvcLI87cdLO0716]jQyyBXMoxVg_12Th-x3S1wWDhjD1l
y79ajL4KkdoAZMazmh9ubmf63e3kyMj2",
"d":"AY5pb7AOUFiB3RELSD64fTLOSV_jazdF7fLYyuTw81l0fRhWg6Y6rUrPA
xerEzgdRhajnu@ferB0d53vMImE15]j2C"

}

The ECDSA private part d is then passed to an ECDSA signing function,
which also takes the curve type, P-521, the hash type, SHA-512, and
the JWS Signing Input as inputs. The result of the digital signature
is the EC point (R, S), where R and S are unsigned integers. 1In this
example, the R and S values, given as octet sequences representing
big endian integers are:

oo oo ot oo o o o o o o e e e e e e e +

| Result | Vvalue

| Name | |

oo oo o e o o e e e e o e e e e e e e e e e e e mmm e o—ooo - +
R [1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233,

117, 247, 105, 122, 210, 26, 125, 192, 1, 217, 21, 82,
91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147,
152, 105, 18, 53, 108, 163, 214, 68, 231, 62, 153, 150,
106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133,
206, 209, 172, 63, 237, 119, 109]

Jones, et al. Expires October 2, 2014 [Page 37]

Internet-Draft JSON Web Signature (JWS) March 2014

[0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92,
61, 152, 4, 150, 66, 60, 69, 247, 196, 170, 81, 193,
199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131,
48, 206, 238, 34, 175, 83, 203, 220, 159, 3, 107, 155,
22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148,
188, 222, 59, 242, 103]

The JWS Signature is the value R || S. Encoding the signature as
BASE64URL (JWS Signature) produces this value (with line breaks for
display purposes only):

AdwMgeerwtHoh-1192160hp9wAHZFVJIbLTD_UxMi70cwnZ0YaRI1bKPWROC-mZZq
w(QT2SI-KGDKB34X00aw_7XdtAG8GaSwFKACAPZgoXD2YBJZCPEX3XxKpRwcd0OO8Kp
EHwJjyq0gzD07iKvU8vcnwNrmxYbSWOERBXukOXolLzeO_Jn

Concatenating these values in the order Header.Payload.Signature with
period ('.') characters between the parts yields this complete JWS
representation using the JWS Compact Serialization (with line breaks

for display purposes only):

eyJhbGci0iJFUzUXM1J9
UGF5bG9hZA

AdwMgeerwtHoh-1192160hp9wAHZFVJIbLTD_UxMi70cwnZ0YaRI1bKPWROC-mZZq
w(gT2SI-KGDKB34X00aw_7XdtAG8GaSWFKACAPZgoXD2YBJZCPEX3XxKpRwcdO0O8Kp
EHwJjyq0gzD07iKvU8vcnwNrmxYbSWOERBXukOXolLzeO _Jn

A.4.2. Validating

Since the "alg" Header Parameter is "ES512", we validate the ECDSA
P-521 SHA-512 digital signature contained in the JWS Signature.

Validating the JWS Signature is similar to the previous example. We
need to split the 132 member octet sequence of the JWS Signature into
two 66 octet sequences, the first R and the second S. We then pass
(X, ¥), (R, S) and the JWS Signing Input to an ECDSA signature
verifier that has been configured to use the P-521 curve with the
SHA-512 hash function.

A.5. Example Plaintext JWS

The following example JWS Protected Header declares that the encoded
object is a Plaintext JWS:

{llalgll : ||n0nell}

Jones, et al. Expires October 2, 2014 [Page 38]

Internet-Draft JSON Web Signature (JWS) March 2014

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJhbGci0iJub251In0

The JWS Payload used in this example, which follows, is the same as
in the previous examples. Since the BASE64URL(JWS Payload) value
will therefore be the same, its computation is not repeated here.

{IIiSSII : |lj0ell,
"exp":1300819380,
"http://example.com/is_root":true}

The JWS Signature is the empty octet string and BASE64URL(JWS
Signature) is the empty string.

Concatenating these parts in the order Header.Payload.Signature with
period ('.') characters between the parts yields this complete JWS
(with line breaks for display purposes only):

eyJhbGci0iJub251In0

eyJpc3Mi0iJqb2UiLAOKICI1eHAi10jEzMDA4MTkzODASDQogImhOdHA6LY91eGFt
CcGx1LmNvbS9pc19yb290IjpOcnV1fQ

A.6. Example JWS Using JWS JSON Serialization

This section contains an example using the JWS JSON Serialization.
This example demonstrates the capability for conveying multiple
digital signatures and/or MACs for the same payload.

The JWS Payload used in this example is the same as that used in the
examples in Appendix A.2 and Appendix A.3 (with line breaks for
display purposes only):

eyJpc3Mi0iJqb2UiLAGKICJI1eHALO]jEzMDA4MTkz0ODASDQogImhO@dHAGLY91eGFt
CGx1LmNvbS9pc19yb290IjpOcnV1fQ

Two digital signatures are used in this example: the first using
RSASSA-PKCS-v1_5 SHA-256 and the second using ECDSA P-256 SHA-256.
For the first, the JWS Protected Header and key are the same as in
Appendix A.2, resulting in the same JWS Signature value; therefore,
its computation is not repeated here. For the second, the JWS
Protected Header and key are the same as in Appendix A.3, resulting
in the same JWS Signature value; therefore, its computation is not
repeated here.

Jones, et al. Expires October 2, 2014 [Page 39]

Internet-Draft JSON Web Signature (JWS) March 2014

A.6.1. JWS Per-Signature Protected Headers
The JWS Protected Header value used for the first signature is:
{"alg":"RS256"}

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJhbGci01JSUzI1NiJ9
The JWS Protected Header value used for the second signature is:
{"alg":"ES256"}

Encoding this JWS Protected Header as BASE64URL(UTF8(JWS Protected
Header)) gives this value:

eyJhbGciOiJFUzI1IN1iJ9
A.6.2. JWS Per-Signature Unprotected Headers

Key ID values are supplied for both keys using per-signature Header
Parameters. The two values used to represent these Key IDs are:

{"kid":"2010-12-29"}
and
{"kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"}
A.6.3. Complete JWS Header Values
Combining the protected and unprotected header values supplied, the
JWS Header values used for the first and second signatures

respectively are:

{"alg":"RS256",
"kid":"2010-12-29"}

and

{"alg":"ES256",
"kid":"e9bc097a-ce51-4036-9562-d2ade882dbod"}

Jones, et al. Expires October 2, 2014 [Page 40]

Internet-Draft JSON Web Signature (JWS) March 2014

A.6.4. Complete JWS JSON Serialization Representation

The complete JSON Web Signature JSON Serialization for these values
is as follows (with line breaks for display purposes only):

{"payload":
"eyJpc3Mi0iJqb2UiLABGKICJI1eHAiOjEZMDA4MTkzODASDQogImhO@dHA6LY91eGF
tcGx1LmNvbS9pc19yb290IjpOcnvlfQ”,
"signatures":[
{"protected":"eyJhbGci0iJSUzI1NiJ9",

"header":
{"kid":"2010-12-29"},
"signature":

"cC4hiUP0j9Eetdgtv3hF8OEGrhuB__dzERat®OXF9g2VtQgr9oPJbu3X0izZj5RZ
mh7AAUHIM4Bh-0Qc_lF5YKt_08W2Fp5jujGbds9uJdbF9CUAr7tidnZcAcQjb
KBYNX4BAynRFdiuB--f_nZLgrnbyTyWz075vRK5h6XBAr LIARNPVkSjtQBMH1
b1L07Qe7KOGarZRmB_eSN9383LcOLn6_d0--xil1l2jzDwusC-eOkHWESQqQtFZES
c6BfI7no0PqvhJ1phCnvWh6IeYI2w9QOYEUipUTI8Np6LbgGYIFSs98rqVE5AX
LIhWkWywlVmtVrBpO@igcN_IoypGlUPQGe77Rw"},

{"protected":"eyJhbGciOiJFUzI1NiJ9",

"header":
{"kid":"e9bcO97a-ce51-4036-9562-d2ade882db0d"},
"signature":

"DtEhU31jbEg8L38VWATUAQOYKAME - XX - FAGawxaepmXFCgfTjDxw5djxLa8IS
1SApmWQXFKTUJQPP3-Kg6NU1Q"}]

Appendix B. "x5c" (X.509 Certificate Chain) Example

The JSON array below is an example of a certificate chain that could
be used as the value of an "x5c" (X.509 Certificate Chain) Header
Parameter, per Section 4.1.6. Note that since these strings contain
base64 encoded (not base64url encoded) values, they are allowed to
contain white space and line breaks.

["MIIE3jCCA8agAwIBAgICAWEWDQYJK0ZIhvcNAQEFBQAWYZELMAKGALUEBhMCVVM
XITATBgNVBAOTGFR0OZSBHbyBEYWRkeSBHcm91cCwgSW5jLjEXMC8GALUECXMOR2
89gRGFkZHkgQ2xhc3MgMiBDZXJ0aWZpY2F0aWOuIEF1dGhvcmlOeTAeFwOWNjEXM
TYWMTUOMzdaFwOyNjEXMTYWMTUOMzdaMIHKMQswCQYDVQQGEwJVUZEQMA4GA1UE
CBMHQXJpem9uYTETMBEGA1UEBXMKU2NVdHRZzZGFsZTEaMBgGA1UEChMRR29EYWR
keS5jb20sIEluYy4xMzAXBgNVBASTKMhOAHAGLY9]ZXJ0aWZpY2FOZXMuUZ29kYW
RkeS5jb20vcmVwb3NpdG9ye TEWMC4GALUEAXMNR28gRGFKkZHKkgU2VjdXJ1IENLC
NRpZm1ljYXRpb24gQXVeaGoyaXR5MREwDWYDVQQFEWgWNzk20TI4NzZCCASIwDQYJ
KoZIhvcNAQEBBQADggEPADCCAQOCGgEBAMQt1RWMNCZM7DI161+4WQFapmGBWTt
wY6V3j3D3HKrjIMIN55Dr tPDAJhI6zMBS2s0fDPZVUBJ7fmdOLIR4h3mUpTjWoqV
Tr9vey0odQmVZwt7/v+WIbXnvQAjYwgDL1CBM6NPWT270Dyqu9SowWlm2r4arv3al
GbgGmu75RpRSgAVSMeYddi5Kcju+GZtCpyz8/x4fKL40/K1lw/05epHBp+Y1lLpyo

Jones, et al. Expires October 2, 2014 [Page 41]

Internet-Draft JSON Web Signature (JWS) March 2014

7RJI1bmr2EKRTcDCVwW5WrWCS9CHRK8r5RSL+HOEWNWGUINcWdrxcx+AuP7q2BNgW
JCJjP0q81h8BJI6qF9Z/dFjpfMFDNniNowlfho3/Rb2cRGadDAW/hOUoZz+EDUSCAW
EAAaOCATIWQgEUMBOGA1UdDgQWBBTOrGEYyk2xFluLuhV+auud2mwjM5zAfBgNVH
SMEGDAWQBTSXLDSkdRMEXGzYcs90f7dqGrU4zASBgNVHRMBATSECDAGAQH/AQEA
MDMGCCsGAQUFBWEBBCcwJITAjBggrBgEFBQCWAYYXaHROCDOVL29jc3AuZ29kYWR
keS5jb20wRgYDVROTBD8WPTA70DmgN4Y1aHROcDovL2N1lcnRpZmljYXR1lcy5nb2
RhZGR5LmMNvbS9yzZXBvc210b3J5L2dkcm9vdC5jcmwwSwYDVROGBEQWQjBABgRVH
SAAMDgWNQGYIKwYBBQUHAGEWKMhOAHABLY9jZXJ0aWzZpY2FOZXMuZ29k YWRkeS5 j
b20vemvwb3NpdG9ye TAOBgNVHQ8BATS8EBAMCAQYWDQY JKoZIhvcNAQEFBQADgQE
BANKGWOYy9+aG2Z+5mC6IGOgRQjhVYyrEpO@1lVPLN8tESe8HkGsz2ZbwlFalEZAFPI
UyIXvIxwgqoJKSQ3kbTJISMUA2FCENZvD117esyfxVgqwcSeIaha86ykRvOe5GPLL
5CkKSkB2XIsKd83ASe8T+500yGPWLPkIQntOhCqU7S+8MxZC9Y71hyVIENnfzuz9
pPOiRFEUO0jZv2kWzRaJBYdTXRE4+uXR21aITVSzGh601mawGhId/dQb8vXxRMDsXx
UxXN89txJIx90jXUUALIKENgHUUHQDTMBQLAELlrRhjZkAzVvb3du6/KFUJheqwNTrZ
EjYx8WnM25sgVjOuHOaBsXBTWVU+4=",
"MIIE+zCCBGSgAWIBAgICAQOWDQYJK0ZIhvcNAQEFBQAWghsxJDA1IBgNVBACTG1Z
hbG1DZXJOIFZhbG1lkYXRpb24gTmVOd29yazEXMBUGALIUEChMOVmMFsaUN1cnQsIE
1uYy4xNTAzBgNVBASTLFZhbG1DZXJOIENSYXNzIDIgUG9saWN5IFZhbG1kYXRpb
24gQXV0eaG9yaXR5MSEwHWYDVQQDExhodHRwW0i18vd3d3LnZhbG1ljZXJOLMNvbS8Xx
IDAeBgkghkiGOwOBCQEWEWluZm9AdmFsaWN1lcnQuY29tMBAXDTAOMDYYOTE3MDY
YMFOXDTIOMDYYOTE3MDYyMFowYZzELMAKGALIUEBhMCVVMXITATBgNVBAOTGFROZS
BHbyBEYWRkeSBHcm91cCwgSW5jLjEXMC8GALUECXMOR28gRGFkZHkgQ2xhc3MgM
iBDZXJ0awZpY2FRawWOuIEF1dGhvcmlOeTCCASAWDQYJKoZIhvcNAQEBBQADQQEN
ADCCAQQCgQgEBAN6d1+pXGEMhW+vXX01iG6r7d/+TvZxz0ZWizV3GgXne77ZtJ6XC
APVYYYwhv2vLMOD9/A1QiVBDYsoHUwWHU9S3/Hd8M+eKsaA7Ugay9qK7HFiH7Eux
6wwdhFJ2+qN1j3hybX2C32qRe3H3I2TqYXP2WYktsqbl2i/0jgC95/5Y0V4evLO
tXiEQITLdi0r18SPaAIBQi2XKV10ARFMR6jYGBOXUGlcmIbYsUfbl18aQr4Cuwwo
riMyavx4A61Nf4DD+qta/KFApMoZFv6yy09ecw3ud72a9nmYVLEHZ6IVDd2gwWMZ
Eewo+YihfukEHU1jPEX44dMX4/7VpkI+EdOqXG68CAQOjggHhMIIB3TAdBgNVHQ
4EFgQUOSSWOpHUTBFxs2HLPaH+3ahql10MwgdIGA1UdIwSBYjCBx6GBwaSBvjCBu
ZEKMCIGA1UEBxMbVmFsaUNlcnQgVmFsaWRhdG1lvbiB0ZXR3b3JrMRcwFQYDVQQK
EwSWYWxpQ2VydCwgSW5jLjEIMDMGALIUECXMsVmFsaUN1cnQgQ2xhc3MgMiBQb2x
pY3kgVmFsaWRhdG1lvbiBBdXRob3JpdHkXITATfBgNVBAMTGGhOAHAGLY93d3cudm
FsaWN1lcnQuY29tLzEgMB4GCSqGSIb3DQEJARYRaWs5mbhOB2YWxXpY2VydC5jb22CA
QEwDWYDVROTAQH/BAUWAWEB/zAzBggrBgEFBQCBAQQNMCUWIWY IKwYBBQUHMAGG
F2hOdHA6LY9VY3NwLmdvZGFkZHkuY29tMEQGA1UdHWQOMDswOaA30DWGM2hOdHA
6Ly97jZXJI0awzZpY2F0ZXMuz29kYWRkeS5jb20vemvwb3NpdGyeS9yb290LmNybD
BLBgNVHSAERDBCMEAGBFUdIAAWODA2BggrBgEFBQCCARYgaHROcDovL2N1cnRpZ
mljYXR1lcy5nb2RhZGR5LmMNvbS9yZXBvc210b3JI5MA4GA1IUdDWEB/WQEAWIBBJ AN
BgkghkiGOwOBAQUFAAOBQQC1QPmMnHTfbqg/qQaQlpE9xXUhUaJwL6e4+PrxeNYiY+
Sn1eocSxIOYGyeR+sBjUZsE40WBsUs5iBOQQeyAfJIg594RA0YC5jcdnplDQltgM
QLARzLrUc+ch53S8wGd9DOVmMsfSx0aFIqII6hR8INMgzW/Rn453HWKrugp++857
O9VZw=="",
"MIIC5zCCALIACAQEWDQYJK0ZIhvcNAQEFBQAWghsxJDAiIBgNVBACTG1ZhbG1DZXJ
OIFZhbGlkYXRpb24gTmvVed29yazEXMBUGALUEChMOVmMFsaUN1cnQSIELuYy4xNT
AzBgNVBASTLFZhbG1DZXJOIENSYXNzIDIgUG9saWNSIFZhbG1kYXRpb24gQXVoa
G9yaXR5MSEwHWYDVQQDEXhodHRw0i8vd3d3LnZhbG1ljZXJOLmNvbS8xIDAeBgkq
hkiGOwOBCQEWEW1luzZm9OAdmFsawWNlcnQuY29tMB4XDTK5MDYYNjAWMTKINFOXDTE

Jones, et al. Expires October 2, 2014 [Page 42]

Internet-Draft JSON Web Signature (JWS) March 2014

5MDYyYNJjAwWMTk1NFowgbsxJDAiBgNVBACTG1ZhbG1DZXJIOIFZhbG1kYXRpb24gTm
VOd29yazEXMBUGALUEChMOVmMFsaUN1cnQSIEluYy4xNTAzBgNVBASTLFZhbG1DZ
XJOIENSYXNzIDIgUG9saWN5IFZhbG1lkYXRpb24gQXV0aG9yaXR5MSEwWHWYDVQQD
ExhodHRw0i8vd3d3LnZhbG1jZzXJOLmNvbS8XxIDAeBgkqhkiGOwOBCQEWEW1uZm9
AdmFsaWN1lcnQuY29tMIGFMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDOONHK5a
vIWZJIV16vYdA757tn2vUdZZUcOBVXc6592PFXTXdMwzzjsvUGI7SVCCSRrCl6zf
N1SLUzZmINZOWImpZdRIEYOKTRXQb7XBhVQ7/nHkO1XxC+YDgkRoKWzKk2Z/M/VXwb
P7RfZHMO47QSv4dk+NoS/zcnwbNDu+97bi5p9wIDAQABMAOGCSqGSIb3DQEBBQU
AA4GBADt/UG9VUJISZSWI40BI9L+KXIPqeCgfYrx+jFzug6EILLGACOTb20WH+heQ
Clu+mNrOHZDzTUuIYEZ0ODJJKPTE]1lbVUjPOUNV+mWwD5MIM/Mtsq2azSiGM5bUMM
j4QssxsodyamEwCW/POuzZ61cg5Ktz885hzo+L7tdEYy8WIOViHOPd"]

Appendix C. Notes on implementing base64url encoding without padding

This appendix describes how to implement base64url encoding and
decoding functions without padding based upon standard base64
encoding and decoding functions that do use padding.

To be concrete, example C# code implementing these functions is shown

below. Similar code could be used in other languages.

static string base64urlencode(byte [] arg)

{

}

string s = Convert.ToBase64String(arg); // Regular base64 encoder

s = s.Split('=")[0]; // Remove any trailing '='s

s = s.Replace('+', '-'); // 62nd char of encoding
s = s.Replace('/', '_'); // 63rd char of encoding
return s;

static byte [] base64urldecode(string arg)

{

}

string s = arg;

s = s.Replace('-', '+'); // 62nd char of encoding
s = s.Replace('_', '/'); // 63rd char of encoding
switch (s.Length % 4) // Pad with trailing '='s

{
case 0: break; // No pad chars in this case
case 2: s += "=="; break; // Two pad chars
case 3: s += "="; break; // One pad char

default: throw new System.Exception(
"Illegal base64url string!");

}

return Convert.FromBase64String(s); // Standard base64 decoder

As per the example code above, the number of '=' padding characters

Jones, et al. Expires October 2, 2014 [Page 43]

Internet-Draft JSON Web Signature (JWS) March 2014

that needs to be added to the end of a base64url encoded string
without padding to turn it into one with padding is a deterministic
function of the length of the encoded string. Specifically, if the
length mod 4 is 0, no padding is added; if the length mod 4 is 2, two
'=' padding characters are added; if the length mod 4 is 3, one '='
padding character is added; if the length mod 4 is 1, the input is
malformed.

An example correspondence between unencoded and encoded values
follows. The octet sequence below encodes into the string below,
which when decoded, reproduces the octet sequence.

3 236 255 224 193

A-z_4ME

Appendix D. Notes on Key Selection

This appendix describes a set of possible algorithms for selecting
the key to be used to validate the digital signature or MAC of a JWS
object or for selecting the key to be used to decrypt a JWE object.
This guidance describes a family of possible algorithms, rather than
a single algorithm, because in different contexts, not all the
sources of keys will be used, they can be tried in different orders,
and sometimes not all the collected keys will be tried; hence,
different algorithms will be used in different application contexts.

The steps below are described for illustration purposes only;
specific applications can and are likely to use different algorithms
or perform some of the steps in different orders. Specific
applications will frequently have a much simpler method of
determining the keys to use, as there may be one or two key selection
methods that are profiled for the application's use. This appendix
supplements the normative information on key location in Section 6.

These algorithms include the following steps. Note that the steps
can be performed in any order and do not need to be treated as

distinct. For example, keys can be tried as soon as they are found,
rather than collecting all the keys before trying any.

1. Collect the set of potentially applicable keys. Sources of keys
may include:

* Keys supplied by the application protocol being used.
* Keys referenced by the "jku" (JWK Set URL) Header Parameter.

* The key provided by the "jwk" (JSON Web Key) Header Parameter.

Jones, et al. Expires October 2, 2014 [Page 44]

Internet-Draft JSON Web Signature (JWS) March 2014

* The key referenced by the "x5u" (X.509 URL) Header Parameter.

* The key provided by the "x5c¢" (X.509 Certificate Chain) Header
Parameter.

* Other applicable keys available to the application.

The order for collecting and trying keys from different key
sources is typically application dependent. For example,
frequently all keys from a one set of locations, such as local
caches, will be tried before collecting and trying keys from
other locations.

2. Filter the set of collected keys. For instance, some
applications will use only keys referenced by "kid" (key ID) or
"x5t" (X.509 certificate SHA-1 thumbprint) parameters. If the
application uses the "alg" (algorithm), "use" (public key use),
or "key_ops" (key operations) parameters, keys with keys with
inappropriate values of those parameters would be excluded.
Additionally, keys might be filtered to include or exclude keys
with certain other member values in an application specific
manner. For some applications, no filtering will be applied.

3. Order the set of collected keys. For instance, keys referenced
by "kid" (Key ID) or "x5t" (X.509 Certificate SHA-1 Thumbprint)
parameters might be tried before keys with neither of these
values. Likewise, keys with certain member values might be
ordered before keys with other member values. For some
applications, no ordering will be applied.

4. Make trust decisions about the keys. Signatures made with keys
not meeting the application's trust criteria would not be
accepted. Such criteria might include, but is not limited to the
source of the key, whether the TLS certificate validates for keys
retrieved from URLs, whether a key in an X.509 certificate is
backed by a valid certificate chain, and other information known
by the application.

5. Attempt signature or MAC validation for a JWS object or
decryption of a JWE object with some or all of the collected and
possibly filtered and/or ordered keys. A limit on the number of
keys to be tried might be applied. This process will normally
terminate following a successful validation or decryption.

Note that it is reasonable for some applications to perform signature
or MAC validation prior to making a trust decision about a key, since
keys for which the validation fails need no trust decision.

Jones, et al. Expires October 2, 2014 [Page 45]

Internet-Draft JSON Web Signature (JWS) March 2014

Appendix E. Negative Test Case for "crit" Header Parameter

Conforming implementations must reject input containing critical
extensions that are not understood or cannot be processed. The
following JWS must be rejected by all implementations, because it
uses an extension Header Parameter name
"http://example.invalid/UNDEFINED" that they do not understand. Any
other similar input, in which the use of the value
"http://example.invalid/UNDEFINED" is substituted for any other
Header Parameter name not understood by the implementation, must also
be rejected.

The JWS Protected Header value for this JWS is:

{Ilalgll : |ln0nelll
"crit":["http://example.invalid/UNDEFINED"],
"http://example.invalid/UNDEFINED": true

by

The complete JWS that must be rejected is as follows (with line
breaks for display purposes only):

eyJhbGci0iJub251IiwNCiAiY3JpdCI6WyJodHRWOi8vZXhhbXBszS5jb20vVUSERU
ZJTKVEI10sDQogImhOdHAG6LY91eGFtcGx1LmMNVbS9VTKRFRK1IORUQiONRYdWUNCNO.
RKFJTA.

Appendix F. Detached Content

In some contexts, it is useful integrity protect content that is not
itself contained in a JWS object. One way to do this is create a JWS
object in the normal fashion using a representation of the content as
the payload, but then delete the payload representation from the JWS,
and send this modified object to the recipient, rather than the JWS.
When using the JWS Compact Serialization, the deletion is
accomplished by replacing the second field (which contains

BASE64URL (JWS Payload)) value with the empty string; when using the
JWS JSON Serialization, the deletion is accomplished by deleting the
"payload" member. This method assumes that the recipient can
reconstruct the exact payload used in the JWS. To use the modified
object, the recipient reconstructs the JWS by re-inserting the
payload representation into the modified object, and uses the
resulting JWS in the usual manner. Note that this method needs no
support from JwWS libraries, as applications can use this method by
modifying the inputs and outputs of standard JWS libraries.

Jones, et al. Expires October 2, 2014 [Page 46]

Internet-Draft JSON Web Signature (JWS) March 2014

Appendix G. Acknowledgements

Solutions for signing JSON content were previously explored by Magic
Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas
Applications [CanvasApp], all of which influenced this draft.

Thanks to Axel Nennker for his early implementation and feedback on
the JWS and JWE specifications.

This specification is the work of the JOSE Working Group, which
includes dozens of active and dedicated participants. 1In particular,
the following individuals contributed ideas, feedback, and wording
that influenced this specification:
Dirk Balfanz, Richard Barnes, Brian Campbell, Breno de Medeiros, Dick
Hardt, Joe Hildebrand, Jeff Hodges, Edmund Jay, Yaron Y. Goland, Ben
Laurie, James Manger, Matt Miller, Tony Nadalin, Hideki Nara, Axel
Nennker, John Panzer, Emmanuel Raviart, Eric Rescorla, Jim Schaad,
Paul Tarjan, Hannes Tschofenig, and Sean Turner.
Jim Schaad and Karen 0'Donoghue chaired the JOSE working group and
Sean Turner and Stephen Farrell served as Security area directors
during the creation of this specification.

Appendix H. Document History
[[to be removed by the RFC Editor before publication as an RFC]]
-25
o No changes were made, other than to the version number and date.
-24
0 Updated the JSON reference to REC 7159.

-23

o Clarified that the base64url encoding includes no line breaks,
white space, or other additional characters.

-22
0o Corrected RFC 2119 terminology usage.

0 Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis
https://datatracker.ietf.org/doc/html/rfc7158

Jones, et al. Expires October 2, 2014 [Page 47]

Internet-Draft JSON Web Signature (JWS) March 2014

-21

0 Applied review comments to the appendix "Notes on Key Selection",
addressing issue #93.

0o Changed some references from being normative to informative,
addressing issue #90.

0o Applied review comments to the JSON Serialization section,
addressing issue #121.

-20

0 Made terminology definitions more consistent, addressing issue
#165.

0 Restructured the JSON Serialization section to call out the
parameters used in hanging lists, addressing issue #121.

o Described key filtering and refined other aspects of the text in
the appendix "Notes on Key Selection", addressing issue #93.

0 Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis,
addressing issue #90.

-19

o Added the appendix "Notes on Validation Key Selection", addressing
issue #93.

0 Reordered the key selection parameters.
-18

o Updated the mandatory-to-implement (MTI) language to say that
applications using this specification need to specify what
serialization and serialization features are used for that
application, addressing issue #119.

o Changes to address editorial and minor issues #25, #89, #97, #110,
#114, #115, #116, #117, #120, and #184.

0 Added and used Header Parameter Description registry field.
-17

o Refined the "typ" and "cty" definitions to always be MIME Media
Types, with the omission of "application/" prefixes recommended

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis

Jones, et al. Expires October 2, 2014 [Page 48]

Internet-Draft JSON Web Signature (JWS) March 2014

for brevity, addressing issue #50.

o Updated the mandatory-to-implement (MTI) language to say that
general-purpose implementations must implement the single
signature/MAC value case for both serializations whereas special-
purpose implementations can implement just one serialization if
that meets the needs of the use cases the implementation is
designed for, addressing issue #119.

0 Explicitly named all the logical components of a JWS and defined
the processing rules and serializations in terms of those
components, addressing issues #60, #61, and #62.

0 Replaced verbose repetitive phases such as "base64url encode the
octets of the UTF-8 representation of X" with mathematical
notation such as "BASEG64URL(UTF8(X))".

o Terms used in multiple documents are now defined in one place and
incorporated by reference. Some lightly used or obvious terms
were also removed. This addresses issue #58.

-16

o Changes to address editorial and minor issues #50, #98, #99, #102,
#104, #106, #107, #111, and #112.

-15

o Clarified that it is an application decision which signatures,
MACs, or plaintext values must successfully validate for the JWS
to be accepted, addressing issue #35.

0o Corrected editorial error in "ES512" example.

o Changes to address editorial and minor issues #34, #96, #100,
#101, #104, #105, and #106.

-14

o Stated that the "signature" parameter is to be omitted in the JWS
JSON Serialization when its value would be empty (which is only
the case for a Plaintext JWS).

-13

0 Made all header parameter values be per-signature/MAC, addressing
issue #24.

Jones, et al. Expires October 2, 2014 [Page 49]

Internet-Draft JSON Web Signature (JWS) March 2014

-12

o Clarified that the "typ" and "cty" header parameters are used in
an application-specific manner and have no effect upon the JWS
processing.

0o Replaced the MIME types "application/jws+json" and
"application/jws" with "application/jose+json" and
"application/jose".

o Stated that recipients MUST either reject JWSs with duplicate
Header Parameter Names or use a JSON parser that returns only the
lexically last duplicate member name.

0 Added a Serializations section with parallel treatment of the JWS
Compact Serialization and the JWS JSON Serialization and also
moved the former Implementation Considerations content there.

-11
0 Added Key Identification section.

o For the JWS JSON Serialization, enable header parameter values to
be specified in any of three parameters: the "protected" member
that is integrity protected and shared among all recipients, the
"unprotected" member that is not integrity protected and shared
among all recipients, and the "header" member that is not
integrity protected and specific to a particular recipient. (This
does not affect the JWS Compact Serialization, in which all header
parameter values are in a single integrity protected JWE Header
value.)

0 Removed suggested compact serialization for multiple digital
signatures and/or MACs.

o Changed the MIME type name "application/jws-js" to
"application/jws+json", addressing issue #22.

0o Tightened the description of the "crit" (critical) header
parameter.

0 Added a negative test case for the "crit" header parameter
-10

0o Added an appendix suggesting a possible compact serialization for
JWSs with multiple digital signatures and/or MACs.

Jones, et al. Expires October 2, 2014 [Page 50]

Internet-Draft JSON Web Signature (JWS) March 2014

-09

0o Added JWS JSON Serialization, as specified by
draft-jones-jose-jws-json-serialization-04.

0 Registered "application/jws-js" MIME type and "JWS-JS" typ header
parameter value.

o Defined that the default action for header parameters that are not
understood is to ignore them unless specifically designated as
"MUST be understood" or included in the new "crit" (critical)
header parameter list. This addressed issue #6.

0o Changed term "JWS Secured Input" to "JWS Signing Input".

o Changed from using the term "byte" to "octet" when referring to 8
bit values.

o Changed member name from "recipients" to "signatures" in the JWS
JSON Serialization.

0 Added complete values using the JWS Compact Serialization for all
examples.

-08

0 Applied editorial improvements suggested by Jeff Hodges and Hannes
Tschofenig. Many of these simplified the terminology used.

0 Clarified statements of the form "This header parameter is
OPTIONAL" to "Use of this header parameter is OPTIONAL".

0 Added a Header Parameter Usage Location(s) field to the IANA JSON
Web Signature and Encryption Header Parameters registry.

0 Added seriesInfo information to Internet Draft references.

-07

0 Updated references.

-06

o Changed "x5c" (X.509 Certificate Chain) representation from being
a single string to being an array of strings, each containing a

single base64 encoded DER certificate value, representing elements
of the certificate chain.

https://datatracker.ietf.org/doc/html/draft-jones-jose-jws-json-serialization-04

Jones, et al. Expires October 2, 2014 [Page 51]

Internet-Draft JSON Web Signature (JWS) March 2014

o Applied changes made by the RFC Editor to RFC 6749's registry
language to this specification.

-05

0 Added statement that "StringOrURI values are compared as case-
sensitive strings with no transformations or canonicalizations
applied".

0 Indented artwork elements to better distinguish them from the body
text.

-04

o Completed JSON Security Considerations section, including
considerations about rejecting input with duplicate member names.

0 Completed security considerations on the use of a SHA-1 hash when
computing "x5t" (x.509 certificate thumbprint) values.

o Refer to the registries as the primary sources of defined values
and then secondarily reference the sections defining the initial
contents of the registries.

o Normatively reference XML DSIG 2.0 [W3C.CR-xmldsig-core2-20120124]
for its security considerations.

0 Added this language to Registration Templates: "This name is case
sensitive. Names that match other registered names in a case
insensitive manner SHOULD NOT be accepted."

0 Reference draft-jones-jose-jws-json-serialization instead of
draft-jones-json-web-signature-json-serialization.

0o Described additional open issues.
0o Applied editorial suggestions.
-03

o Added the '"cty" (content type) header parameter for declaring type
information about the secured content, as opposed to the "typ"
(type) header parameter, which declares type information about
this object.

0 Added "Collision Resistant Namespace" to the terminology section.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/draft-jones-jose-jws-json-serialization
https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-json-serialization

Jones, et al. Expires October 2, 2014 [Page 52]

Internet-Draft JSON Web Signature (JWS) March 2014

0 Reference ITU.X690.1994 for DER encoding.

0 Added an example JWS using ECDSA P-521 SHA-512. This has
particular illustrative value because of the use of the 521 bit
integers in the key and signature values. This is also an example
in which the payload is not a base64url encoded JSON object.

0 Added an example "x5c" value.

o No longer say "the UTF-8 representation of the JWS Secured Input
(which is the same as the ASCII representation)". Just call it
"the ASCII representation of the JWS Secured Input".

0 Added Registration Template sections for defined registries.
0 Added Registry Contents sections to populate registry values.

o Changed name of the JSON Web Signature and Encryption "typ" Values
registry to be the JSON Web Signature and Encryption Type Values
registry, since it is used for more than just values of the "typ"
parameter.

0 Moved registries JSON Web Signature and Encryption Header
Parameters and JSON Web Signature and Encryption Type Values to
the JWS specification.

0 Numerous editorial improvements.
-02

o Clarified that it is an error when a "kid" value is included and
no matching key is found.

0 Removed assumption that "kid" (key ID) can only refer to an
asymmetric key.

0 Clarified that JwWSs with duplicate Header Parameter Names MUST be
rejected.

o Clarified the relationship between "typ" header parameter values
and MIME types.

0 Registered application/jws MIME type and "JWS" typ header
parameter value.

o Simplified JWK terminology to get replace the "JWK Key Object" and
"JWK Container Object" terms with simply "JSON Web Key (JWK)" and
"JSON Web Key Set (JWK Set)" and to eliminate potential confusion

Jones, et al. Expires October 2, 2014 [Page 53]

Internet-Draft JSON Web Signature (JWS) March 2014

between single keys and sets of keys. As part of this change, the
Header Parameter Name for a public key value was changed from
"jpk" (JSON Public Key) to "jwk" (JSON Web Key).

0 Added suggestion on defining additional header parameters such as
"x5t#S256" in the future for certificate thumbprints using hash
algorithms other than SHA-1.

0 Specify RFC 2818 server identity validation, rather than REC 6125
(paralleling the same decision in the OAuth specs).

0 Generalized language to refer to Message Authentication Codes
(MACs) rather than Hash-based Message Authentication Codes (HMACs)
unless in a context specific to HMAC algorithms.

o Reformatted to give each header parameter its own section heading.
-01

0 Moved definition of Plaintext JWSs (using "alg":"none") here from
the JWT specification since this functionality is likely to be
useful in more contexts that just for JWTs.

o Added "jpk" and "x5c" header parameters for including JWK public
keys and X.509 certificate chains directly in the header.

o Clarified that this specification is defining the JWS Compact
Serialization. Referenced the new JWS-JS spec, which defines the
JWS JSON Serialization.

0 Added text "New header parameters should be introduced sparingly
since an implementation that does not understand a parameter MUST
reject the Jws".

o Clarified that the order of the creation and validation steps is
not significant in cases where there are no dependencies between

the inputs and outputs of the steps.

o Changed "no canonicalization is performed" to "no canonicalization
need be performed".

0 Corrected the Magic Signatures reference.

0 Made other editorial improvements suggested by JOSE working group
participants.

-00

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125

Jones, et al. Expires October 2, 2014 [Page 54]

Internet-Draft JSON Web Signature (JWS) March 2014

0 Created the initial IETF draft based upon
draft-jones-json-web-signature-04 with no normative changes.

o Changed terminology to no longer call both digital signatures and
HMACs "signatures".
Authors' Addresses

Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

John Bradley
Ping Identity

Email: ve7jtb@ve7jtb.com
URI: http://www.thread-safe.com/

Nat Sakimura
Nomura Research Institute

Email: n-sakimura@nri.co.jp
URI: http://nat.sakimura.org/

https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-04
http://self-issued.info/
http://www.thread-safe.com/
http://nat.sakimura.org/

Jones, et al. Expires October 2, 2014 [Page 55]

