
JOSE Working Group M. Jones
Internet-Draft Microsoft
Updates: 7519 (if approved) December 13, 2015
Intended status: Standards Track
Expires: June 15, 2016

JWS Unencoded Payload Option
draft-ietf-jose-jws-signing-input-options-07

Abstract

 JSON Web Signature (JWS) represents the payload of a JWS as a
 base64url encoded value and uses this value in the JWS Signature
 computation. While this enables arbitrary payloads to be integrity
 protected, some have described use cases in which the base64url
 encoding is unnecessary and/or an impediment to adoption, especially
 when the payload is large and/or detached. This specification
 defines a means of accommodating these use cases by defining an
 option to change the JWS Signing Input computation to not base64url-
 encode the payload. This option is intended to broaden the set of
 use cases for which the use of JWS is a good fit.

 This specification updates RFC 7519 by prohibiting the use of the
 unencoded payload option in JSON Web Tokens (JWTs).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 15, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Jones Expires June 15, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft JWS Unencoded Payload Option December 2015

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3

2. Terminology . 4
3. The "b64" Header Parameter 4
4. Examples . 4
4.1. Example with Header Parameters {"alg":"HS256"} 5

 4.2. Example with Header Parameters
 {"alg":"HS256","b64":false} 6

5. Unencoded Payload Content Restrictions 6
5.1. Unencoded Detached Payload 7
5.2. Unencoded JWS Compact Serialization Payload 7
5.3. Unencoded JWS JSON Serialization Payload 7

6. Intended Use by Applications 8
7. Security Considerations 8
8. IANA Considerations . 9
8.1. JWS and JWE Header Parameter Registration 9
8.1.1. Registry Contents 9

9. References . 10
9.1. Normative References 10
9.2. Informative References 11

Appendix A. Acknowledgements 11
Appendix B. Document History 11

 Author's Address . 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Jones Expires June 15, 2016 [Page 2]

Internet-Draft JWS Unencoded Payload Option December 2015

1. Introduction

 The "JSON Web Signature (JWS)" [JWS] specification defines the JWS
 Signing Input as the input to the digital signature or MAC
 computation, with the value ASCII(BASE64URL(UTF8(JWS Protected
 Header)) || '.' || BASE64URL(JWS Payload)). While this works well in
 practice for many use cases, including those accommodating arbitrary
 payload values, other use cases have been described in which
 base64url-encoding the payload is unnecessary and/or an impediment to
 adoption, particularly when the payload is large and/or detached.

 This specification introduces a new JWS Header Parameter value that
 generalizes the JWS Signing Input computation in a manner that makes
 base64url-encoding the payload selectable and optional. The primary
 set of use cases where this enhancement may be helpful are those in
 which the payload may be very large and where means are already in
 place to enable the payload to be communicated between the parties
 without modifications. Appendix F of [JWS] describes how to
 represent JWSs with detached content, which would typically be used
 for these use cases.

 The advantages of not having to base64url-encode a large payload are
 that allocation of the additional storage to hold the base64url-
 encoded form is avoided and the base64url-encoding computation never
 has to be performed. In summary, this option can help avoid
 unnecessary copying and transformations of the potentially large
 payload, resulting in sometimes significant space and time
 improvements for deployments.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].
 The interpretation should only be applied when the terms appear in
 all capital letters.

 BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per
 Section 2 of [JWS].

 UTF8(STRING) denotes the octets of the UTF-8 [RFC3629] representation
 of STRING, where STRING is a sequence of zero or more Unicode
 [UNICODE] characters.

 ASCII(STRING) denotes the octets of the ASCII [RFC20] representation
 of STRING, where STRING is a sequence of zero or more ASCII
 characters.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc20

Jones Expires June 15, 2016 [Page 3]

Internet-Draft JWS Unencoded Payload Option December 2015

 The concatenation of two values A and B is denoted as A || B.

2. Terminology

 This specification uses the same terminology as the "JSON Web
 Signature (JWS)" [JWS] and "JSON Web Algorithms (JWA)" [JWA]
 specifications.

3. The "b64" Header Parameter

 This Header Parameter modifies the JWS Payload representation and the
 JWS Signing Input computation in the following way:

 b64
 The "b64" (base64url-encode payload) Header Parameter determines
 whether the payload is represented in the JWS and the JWS Signing
 Input as ASCII(BASE64URL(JWS Payload)) or as the JWS Payload value
 itself with no encoding performed. When the "b64" value is
 "false", the payload is represented simply as the JWS Payload
 value; otherwise, it is represented as ASCII(BASE64URL(JWS
 Payload)). The "b64" value is a JSON boolean, with a default
 value of "true". When used, this Header Parameter MUST be
 integrity protected; therefore, it MUST occur only within the JWS
 Protected Header. Use of this Header Parameter is OPTIONAL. If
 the JWS has multiple signatures and/or MACs, the "b64" Header
 Parameter value MUST be the same for all of them. Note that
 unless the payload is detached, many payload values would cause
 errors parsing the resulting JWSs, as described in Section 5.

 The following table shows the JWS Signing Input computation,
 depending upon the value of this parameter:

 +-------+---+
 | "b64" | JWS Signing Input Formula |
 +-------+---+
true	ASCII(BASE64URL(UTF8(JWS Protected Header))		'.'		
	BASE64URL(JWS Payload))				
false	ASCII(BASE64URL(UTF8(JWS Protected Header))		'.')		
	JWS Payload				
 +-------+---+

4. Examples

 This section gives examples of JWSs showing the difference that using
 the "b64" Header Parameter makes. The examples all use the JWS

Jones Expires June 15, 2016 [Page 4]

Internet-Draft JWS Unencoded Payload Option December 2015

 Payload value [36, 46, 48, 50]. This octet sequence represents the
 ASCII characters "$.02"; its base64url-encoded representation is
 "JC4wMg".

 The following table shows a set of Header Parameter values without
 using a false "b64" Header Parameter value and a set using it, with
 the resulting JWS Signing Input values represented as ASCII
 characters:

 +-----------------------------+-------------------------------------+
 | JWS Protected Header | JWS Signing Input Value |
 +-----------------------------+-------------------------------------+
{"alg":"HS256"}	eyJhbGciOiJIUzI1NiJ9.JC4wMg
{"alg":"HS256","b64":false}	eyJhbGciOiJIUzI1NiIsImI2NCI6ZmFsc2V
	9.$.02
 +-----------------------------+-------------------------------------+

 These examples use the HMAC key from Appendix A.1 of [JWS], which is
 represented below as a JWK [JWK] (with line breaks within values for
 display purposes only):

 {
 "kty":"oct",
 "k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-1qS0gZH75
 aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow"
 }

 The rest of this section shows complete representations for the two
 JWSs above.

4.1. Example with Header Parameters {"alg":"HS256"}

 The complete JWS representation for this example using the JWS
 Compact Serialization and a non-detached payload (with line breaks
 for display purposes only) is:

 eyJhbGciOiJIUzI1NiJ9
 .
 JC4wMg
 .
 5mvfOroL-g7HyqJoozehmsaqmvTYGEq5jTI1gVvoEoQ

 Note that this JWS uses only features defined by [JWS] and does not
 use the new "b64" Header Parameter. It is the "control", so that
 differences when it is used can be easily seen.

 The equivalent representation for this example using the flattened
 JWS JSON Serialization is:

Jones Expires June 15, 2016 [Page 5]

Internet-Draft JWS Unencoded Payload Option December 2015

 {
 "protected":
 "eyJhbGciOiJIUzI1NiJ9",
 "payload":
 "JC4wMg",
 "signature":
 "5mvfOroL-g7HyqJoozehmsaqmvTYGEq5jTI1gVvoEoQ"
 }

4.2. Example with Header Parameters {"alg":"HS256","b64":false}

 The complete JWS representation for this example using the JWS
 Compact Serialization and a detached payload (with line breaks for
 display purposes only) is:

 eyJhbGciOiJIUzI1NiIsImI2NCI6ZmFsc2V9
 .
 .
 GsyM6AQJbQHY8aQKCbZSPJHzMRWo3HKIlcDuXof7nqs

 Note that the payload "$.02" cannot be represented in this JWS in its
 unencoded form because it contains a period ('.') character, which
 would cause parsing problems. This JWS is therefore shown with a
 detached payload.

 The complete JWS representation for this example using the flattened
 JWS JSON Serialization and a non-detached payload is:

 {
 "protected":
 "eyJhbGciOiJIUzI1NiIsImI2NCI6ZmFsc2V9",
 "payload":
 "$.02",
 "signature":
 "GsyM6AQJbQHY8aQKCbZSPJHzMRWo3HKIlcDuXof7nqs"
 }

 If using a detached payload with the JWS JSON Serialization, the
 "payload" element would be omitted.

5. Unencoded Payload Content Restrictions

 When the "b64" value is "false", different restrictions on the
 payload contents apply, depending upon the circumstances, as
 described in this section. The restrictions prevent the use of
 payload values that would cause errors parsing the resulting JWSs.

Jones Expires June 15, 2016 [Page 6]

Internet-Draft JWS Unencoded Payload Option December 2015

 Note that because the character sets that can be used for unencoded
 non-detached payloads differ between the two serializations, some
 JWSs using a "b64" value of "false" cannot be syntactically converted
 between the JWS JSON Serialization and the JWS Compact Serialization.
 See Section 7 for security considerations on using unencoded
 payloads.

5.1. Unencoded Detached Payload

Appendix F of [JWS] describes how to represent JWSs with detached
 content. A detached payload can contain any octet sequence
 representable by the application. The payload value will not cause
 problems parsing the JWS, since it is not represented as part of the
 JWS. If an application uses a content encoding when representing the
 payload, then it MUST specify whether the signature or MAC is
 performed over the content-encoded representation or over the
 unencoded content.

5.2. Unencoded JWS Compact Serialization Payload

 When using the JWS Compact Serialization, unencoded non-detached
 payloads using period ('.') characters would cause parsing errors;
 such payloads MUST NOT be used with the JWS Compact Serialization.
 Similarly, if a JWS using the JWS Compact Serialization and a non-
 detached payload is to be transmitted in a context that requires URL
 safe characters, then the application MUST ensure that the payload
 contains only the URL-safe characters 'a'-'z', 'A'-'Z', '0'-'9', dash
 ('-'), underscore ('_'), and tilde ('~'). The payload value is the
 ASCII representation of the characters in the payload string. The
 ASCII space character and all printable ASCII characters other than
 period ('.') (those characters in the ranges %x20-2D and %x2F-7E) MAY
 be included in a non-detached payload using the JWS Compact
 Serialization, provided that the application can transmit the
 resulting JWS without modification.

 No meaning or special semantics are attached to any characters in the
 payload. For instance, the percent ('%') character represents
 itself, and is not used by JWS objects for percent-encoding
 [RFC3986]. Applications, of course, are free to utilize content
 encoding rules of their choosing, provided that the encoded
 representations utilize only allowed payload characters.

5.3. Unencoded JWS JSON Serialization Payload

 When using the JWS JSON Serialization, unencoded non-detached
 payloads must consist of the octets of the UTF-8 encoding of a
 sequence of Unicode code points that are representable in a JSON
 string. The payload value is determined after performing any JSON

https://datatracker.ietf.org/doc/html/rfc3986

Jones Expires June 15, 2016 [Page 7]

Internet-Draft JWS Unencoded Payload Option December 2015

 string escape processing, per Section 8.3 of RFC 7159 [RFC7159], and
 then UTF-8-encoding the resulting Unicode code points. This means,
 for instance, that these payloads represented as JSON strings are
 equivalent ("$.02", "\u0024.02"). Unassigned Unicode code point
 values MUST NOT be used to represent the payload.

6. Intended Use by Applications

 It is intended that application profiles specify up front whether
 "b64" with a "false" value is to be used by the application in each
 application context or not, with it then being consistently applied
 in each application context. For instance, an application that uses
 detached payloads might specify that "b64" with a "false" value
 always be used. It is NOT RECOMMENDED that this parameter value be
 dynamically varied with different payloads in the same application
 context.

 For interoperability reasons, JSON Web Tokens (JWTs) [JWT] MUST NOT
 use "b64" with a "false" value.

7. Security Considerations

 [JWS] base64url-encodes the JWS Payload to restrict the set of
 characters used to represent it so that the representation does not
 contain characters used for delimiters in JWS representations. Those
 delimiters are the period ('.') character for the JWS Compact
 Serialization and the double-quote ('"') character for the JWS JSON
 Serialization. When the "b64" (base64url-encode payload) value is
 "false", these properties are lost. It then becomes the
 responsibility of the application to ensure that payloads only
 contain characters that will not cause parsing problems for the
 serialization used, as described in Section 5. The application also
 incurs the responsibility to ensure that the payload will not be
 modified during transmission.

 Note that if a JWS is created with a "b64" value of "false" and is
 received by an implementation not supporting the "b64" Header
 Parameter, then the signature or MAC may still verify but the
 recipient will believe that the intended JWS Payload value is the
 base64url decoding of the payload value received, rather than the
 payload value received itself. For example, if the payload value
 received is "NDA1", an implementation not supporting this extension
 will think that the intended payload is the base64url decoding of
 this value, which is "405".

 There are several ways for applications using this extension to

https://datatracker.ietf.org/doc/html/rfc7159#section-8.3
https://datatracker.ietf.org/doc/html/rfc7159

Jones Expires June 15, 2016 [Page 8]

Internet-Draft JWS Unencoded Payload Option December 2015

 address this situation:

 1. They can require that only JWS implementations that support this
 extension be used. Then the potential confusion between encoded
 and unencoded payload values cannot occur. This is necessary for
 JWSs using this extension to be successfully used by any
 application.

 2. They can require the use of the "crit" Header Parameter with
 "b64" in the set of values. Then any JWS using this extension
 will be rejected by implementations not supporting this
 extension.

 3. They can always send unencoded payloads that contain characters
 outside the set used for base64url-encoding (such as including a
 '$' character), if this is reasonable for the application to do.
 Then JWS implementations not understanding this extension will
 reject the JWS because the attempt to base64url-decode the
 payload value will fail.

 Note that methods 2 and 3 are sufficient to cause JWSs using this
 extension to be rejected by implementations not supporting this
 extension but they are not sufficient to enable JWSs using this
 extension to be successfully used by applications. Thus, method 1 -
 requiring support for this extension - is the preferred approach and
 the only means for this extension to be practically useful to
 applications. Method 2 - requiring the use of "crit" - while
 theoretically useful to ensure that confusion between encoded and
 unencoded payloads cannot occur, is not particularly useful in
 practice, since method 1 is still required for the extension to be
 usable. When method 1 is employed, method 2 doesn't add any value
 and since it increases the size of the JWS, its use is not required
 by this specification.

8. IANA Considerations

8.1. JWS and JWE Header Parameter Registration

 This specification registers the "b64" Header Parameter defined in
Section 3 in the IANA "JSON Web Signature and Encryption Header

 Parameters" registry [IANA.JOSE] established by [JWS].

8.1.1. Registry Contents

 o Header Parameter Name: "b64"

Jones Expires June 15, 2016 [Page 9]

Internet-Draft JWS Unencoded Payload Option December 2015

 o Header Parameter Description: Base64url-Encode Payload
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 3 of [[this specification]]

9. References

9.1. Normative References

 [IANA.JOSE]
 IANA, "JSON Object Signing and Encryption (JOSE)",
 <http://www.iana.org/assignments/jose>.

 [JWA] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515,
 May 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC20] Cerf, V., "ASCII format for Network Interchange", STD 80,
RFC 20, October 1969,

 <http://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
 November 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159,
 March 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

http://www.iana.org/assignments/jose
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc20
http://www.rfc-editor.org/info/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
http://www.unicode.org/versions/latest/

Jones Expires June 15, 2016 [Page 10]

Internet-Draft JWS Unencoded Payload Option December 2015

9.2. Informative References

 [JWK] Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/
RFC7517, May 2015,

 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

Appendix A. Acknowledgements

 Anders Rundgren, Richard Barnes, Phillip Hallam-Baker, Jim Schaad,
 Matt Miller, Martin Thomson, and others have all made the case for
 being able to use a representation of the payload that is not
 base64url-encoded in contexts in which it safe to do so.

 Thanks to Sergey Beryozkin, Benjamin Kaduk, James Manger, Kathleen
 Moriarty, Axel Nennker, Anders Rundgren, Nat Sakimura, Jim Schaad,
 Robert Sparks, and Matias Woloski for their reviews of the
 specification and thanks to Vladimir Dzhuvinov for verifying the
 examples.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -06

 o Addressed Gen-Art review comments by Robert Sparks and Sec-Dir
 review comments by Benjamin Kaduk.

 -06

 o Addressed review comments by Kathleen Moriarty.

 -05

 o Reworked the security considerations text on preventing confusion
 between encoded and unencoded payloads.

 -04

 o Corrected a typo in the JWS JSON Serialization example.

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986

Jones Expires June 15, 2016 [Page 11]

Internet-Draft JWS Unencoded Payload Option December 2015

 o Added to the security considerations, including adding a statement
 about when "crit" should be used.

 o Addressed the document shepherd comments.

 -03

 o Allowed the ASCII space character and all printable ASCII
 characters other than period ('.') in non-detached unencoded
 payloads using the JWS Compact Serialization.

 o Updated the abstract to say that that the spec updates RFC 7519.

 o Removed unused references.

 o Changed the change controller to IESG.

 -02

 o Required that "b64" be integrity protected.

 o Stated that if the JWS has multiple signatures and/or MACs, the
 "b64" Header Parameter value MUST be the same for all of them.

 o Stated that if applications use content encoding, they MUST
 specify whether the encoded or unencoded payload is used as the
 JWS Payload value.

 o Reorganized the Unencoded Payload Content Restrictions section.

 o Added an "updates" clause for RFC 7519 because this specification
 prohibits JWTs from using "b64":false.

 -01

 o Removed the "sph" (secure protected header) Header Parameter.

 o Changed the title to "JWS Unencoded Payload Option".

 o Added the section "Unencoded Payload Content Restrictions".

 o Added an example using the JWS JSON Serialization.

 -00

 o Created the -00 JOSE working group draft from
draft-jones-jose-jws-signing-input-options-00 with no normative

 changes.

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/draft-jones-jose-jws-signing-input-options-00

Jones Expires June 15, 2016 [Page 12]

Internet-Draft JWS Unencoded Payload Option December 2015

Author's Address

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

Jones Expires June 15, 2016 [Page 13]

http://self-issued.info/

