
Operations Area Working Group D. Crockford
Internet-Draft JSON.org
Intended status: Standards Track June 06, 2013
Expires: December 08, 2013

The JSON Data Interchange Format
draft-ietf-json-rfc4627bis-01

Abstract

 JSON is a lightweight, text-based, language-independent data
 interchange format. It was derived from the ECMAScript Programming
 Language Standard. JSON defines a small set of formatting rules for
 the portable representation of structured data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 08, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Crockford Expires December 08, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON bis June 2013

Table of Contents

1. Introduction . 2
1.1. Conventions Used in This Document 2
1.2. Changes from RFC 4627 3

2. JSON Grammar . 3
2.1. Values . 4
2.2. Objects . 4
2.3. Arrays . 4
2.4. Numbers . 4
2.5. Strings . 5

3. Parsers . 6
4. Generators . 7
5. Security Considerations 7
6. Examples . 8
7. Normative References . 9

 Author's Address . 9

1. Introduction

 JSON is a text format for the serialization of structured data. It
 was inspired by the object literals of JavaScript, as defined in the
 ECMAScript Programming Language Standard, Fifth Edition[ECMA].

 JSON can represent four primitive types (strings, numbers, booleans,
 and null) and two structured types (objects and arrays).

 A string is a sequence of zero or more characters.

 An object is an unordered collection of zero or more name/value
 pairs, where a name is a string and a value is a string, number,
 boolean, null, object, or array.

 An array is an ordered sequence of zero or more values.

 The terms "object" and "array" come from the conventions of
 JavaScript.

 JSON's design goals were for it to be minimal, portable, textual, and
 a subset of JavaScript. JSON stands for JavaScript Object Notation.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2119

Crockford Expires December 08, 2013 [Page 2]

Internet-Draft JSON bis June 2013

 The grammatical rules in this document are to be interpreted as
 described in [RFC5234].

1.2. Changes from RFC 4627

 This section lists all changes between this document and the text in
RFC 4627.

 o Applied errata #607 from RFC 4627 to correctly align the artwork
 for the definition of "object".

2. JSON Grammar

 A JSON text is a sequence of tokens. The set of tokens includes six
 structural characters, strings, numbers, and three literal names.

 A JSON text is a serialized object or array.

 JSON-text = object / array

 These are the six structural characters:

 begin-array = ws %x5B ws ; [left square bracket

 begin-object = ws %x7B ws ; { left curly bracket

 end-array = ws %x5D ws ;] right square bracket

 end-object = ws %x7D ws ; } right curly bracket

 name-separator = ws %x3A ws ; : colon

 value-separator = ws %x2C ws ; , comma

 Insignificant whitespace is allowed before or after any of the six
 structural characters.

 ws = *(
 %x20 / ; Space
 %x09 / ; Horizontal tab
 %x0A / ; Line feed or New line
 %x0D ; Carriage return
)

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Crockford Expires December 08, 2013 [Page 3]

Internet-Draft JSON bis June 2013

2.1. Values

 A JSON value MUST be an object, array, number, or string, or one of
 the following three literal names:

 false null true

 The literal names MUST be lowercase. No other literal names are
 allowed.

 value = false / null / true / object / array / number / string

 false = %x66.61.6c.73.65 ; false

 null = %x6e.75.6c.6c ; null

 true = %x74.72.75.65 ; true

2.2. Objects

 An object structure is represented as a pair of curly brackets
 surrounding zero or more name/value pairs (or members). A name is a
 string. A single colon comes after each name, separating the name
 from the value. A single comma separates a value from a following
 name. The names within an object SHOULD be unique. If a key is
 duplicated, a parser MAY reject. If it does not reject, then it MUST
 take only the last of the duplicated key pairs.

 object = begin-object [member *(value-separator member)]
 end-object

 member = string name-separator value

2.3. Arrays

 An array structure is represented as square brackets surrounding zero
 or more values (or elements). Elements are separated by commas.

 array = begin-array [value *(value-separator value)] end-array

2.4. Numbers

 A number is represented in base 10 with no superfluous leading zeroes
 or punctuation such as commas or spaces. It may have a preceding

Crockford Expires December 08, 2013 [Page 4]

Internet-Draft JSON bis June 2013

 minus sign. It may have a "."-prefixed fractional part. It may have
 an exponent, prefixed by "e" or "E" and optionally "+" or "-".

 Numeric values that cannot be represented as sequences of digits
 (such as Infinity and NaN) are not permitted.

 number = [minus] int [frac] [exp]

 decimal-point = %x2E ; .

 digit1-9 = %x31-39 ; 1-9

 e = %x65 / %x45 ; e E

 exp = e [minus / plus] 1*DIGIT

 frac = decimal-point 1*DIGIT

 int = zero / (digit1-9 *DIGIT)

 minus = %x2D ; -

 plus = %x2B ; +

 zero = %x30 ; 0

2.5. Strings

 The representation of strings is similar to conventions used in the C
 family of programming languages. A string is a sequence of code
 units wrapped with quotation marks. All characters may be placed
 within the quotation marks except for the characters that must be
 escaped: quotation mark, reverse solidus, and the control characters
 (U+0000 through U+001F).

 Any character may be escaped. If the character is in the Basic
 Multilingual Plane (U+0000 through U+FFFF), then it may be
 represented as a six-character sequence: a reverse solidus, followed
 by the lowercase letter u, followed by four hexadecimal digits that
 encode the character's Unicode code point. The hexadecimal letters A
 though F can be upper or lowercase. So, for example, a string
 containing only a single reverse solidus character may be represented
 as "\u005C".

Crockford Expires December 08, 2013 [Page 5]

Internet-Draft JSON bis June 2013

 Alternatively, there are two-character sequence escape
 representations of some popular characters. So, for example, a
 string containing only a single reverse solidus character may be
 represented more compactly as "\\".

 string = quotation-mark *char quotation-mark

 char = unescaped /
 escape (
 %x22 / ; " quotation mark U+0022
 %x5C / ; \ reverse solidus U+005C
 %x2F / ; / solidus U+002F
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D
 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX

 escape = %x5C ; \

 quotation-mark = %x22 ; "

 unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

 The following four cases MUST all produce the same result:

 "\u002F"
 "\u002F"
 "\/"
 "/"

 To escape an extended character that is not in the Basic Multilingual
 Plane, the character is represented as a twelve-character sequence,
 encoding the UTF-16 surrogate pair. So for example, a string
 containing only the G clef character (U+1D11E) may be represented as
 "\uD834\uDD1E". A generator SHOULD NOT emit unpaired surrogates. A
 parser MAY reject JSON text containing unpaired surrogates.

3. Parsers

 A JSON parser transforms a JSON text into another representation. A
 JSON parser MUST accept all texts that conform to the JSON grammar.
 A JSON parser MAY accept non-JSON forms or extensions.

Crockford Expires December 08, 2013 [Page 6]

Internet-Draft JSON bis June 2013

 An implementation may set limits on the size of texts that it
 accepts. An implementation may set limits on the maximum depth of
 nesting. An implementation may set limits on the range of numbers.
 An implementation may set limits on the length and character contents
 of strings.

4. Generators

 A JSON generator produces JSON text. The resulting text MUST
 strictly conform to the JSON grammar.

5. Security Considerations

 With any data format, it is important to encode correctly. Care must
 be taken when constructing JSON texts by concatenation. For example:

 account = 4627;
 comment = "\",\"account\":262"; // provided by attacker
 json_text = "(\"account\":" + account + ",\"comment\":\"" + comment + "\"}";

 The result will be

 {"account":4627,"comment":"","account":262}

 which some parsers MAY see as being the same as

 {"comment":"","account":262}

 This confusion allows an attacker to modify the account property or
 any other property.

 It is much wiser to use JSON generators, which are available in many
 forms for most programming languages, to do the encoding, avoiding
 the confusion hazard.

 JSON is so similar to some programming languages that the native
 parsing ability of the language processors can be used to parse JSON
 texts. This should be avoided because the native parser will accept
 code which is not JSON.

 For example, JavaScript's eval() function is able parse JSON text,
 but is can also parse programs. If an attacker can inject code into
 the JSON text (as we saw above), then it can compromise the system.
 JSON parsers should always be used instead.

Crockford Expires December 08, 2013 [Page 7]

Internet-Draft JSON bis June 2013

 The web browser's script tag is an alias for the eval() function. It
 should not be used to deliver JSON text to web browsers.

6. Examples

 This is a JSON object:

 {
 "Image": {
 "Width": 800,
 "Height": 600,
 "Title": "View from 15th Floor",
 "Thumbnail": {
 "Url": "http://www.example.com/image/481989943",
 "Height": 125,
 "Width": "100"
 },
 "IDs": [116, 943, 234, 38793]
 }
 }

 Its Image member is an object whose Thumbnail member is an object and
 whose IDs member is an array of numbers.

 This is a JSON array containing two objects:

 [
 {
 "precision": "zip",
 "Latitude": 37.7668,
 "Longitude": -122.3959,
 "Address": "",
 "City": "SAN FRANCISCO",
 "State": "CA",
 "Zip": "94107",
 "Country": "US"
 },
 {
 "precision": "zip",
 "Latitude": 37.371991,
 "Longitude": -122.026020,
 "Address": "",
 "City": "SUNNYVALE",
 "State": "CA",
 "Zip": "94085",
 "Country": "US"
 }

Crockford Expires December 08, 2013 [Page 8]

Internet-Draft JSON bis June 2013

]

7. Normative References

 [ECMA] European Computer Manufacturers Association, "ECMAScript
 Language Specification Fifth Edition ", December 2009,
 <http://www.ecma-international.org/publications/files/

ecma-st/ECMA-262.pdf>.

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version 6.2
 ", 2012, <http://www.unicode.org/versions/Unicode6.2.0/>.

Author's Address

 Douglas Crockford
 JSON.org

 Email: douglas@crockford.com

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
https://datatracker.ietf.org/doc/html/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
http://www.unicode.org/versions/Unicode6.2.0/

Crockford Expires December 08, 2013 [Page 9]

