
json N. Williams
Internet-Draft Cryptonector
Intended status: Standards Track May 23, 2014
Expires: November 24, 2014

JavaScript Object Notation (JSON) Text Sequences
draft-ietf-json-text-sequence-04

Abstract

 This document describes the JSON text sequence format and associated
 media type.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Williams Expires November 24, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Text Sequences May 2014

Table of Contents

1. Introduction and Motivation 3
1.1. JSON Parser Types . 3
1.2. Conventions used in this document 3
2. JSON Text Sequence Format 4
2.1. Ambiguities . 4
2.1.1. Ambiguities Resulting from Partial Texts 4
2.2. Rationale for Choice of LF as the Text Separator 5

 3. Use for Logfiles, or How to Resynchronize Following
 Truncated entries . 6

4. Security Considerations 8
5. IANA Considerations 9
6. Acknowledgements . 10
7. Normative References 11

 Author's Address . 12

Williams Expires November 24, 2014 [Page 2]

Internet-Draft JSON Text Sequences May 2014

1. Introduction and Motivation

 The JavaScript Object Notation (JSON) [RFC7159] is a very handy
 serialization format. However, when serializing a large sequence of
 values as an array, or a possibly indeterminate-length or never-
 ending sequence of values, JSON becomes difficult to work with.

 Consider a sequence of one million values, each possibly 1 kilobyte
 when encoded, which would be roughly one gigabyte. It is often
 desirable to process such a dataset in an incremental manner: without
 having to first read all of it before beginning to produce results.
 Traditionally the way to do this with JSON is to use a "streaming"
 parser (see Section 1.1), but these are neither widely available,
 widely used, nor easy to use.

 This document describes the concept and format of "JSON text
 sequences", which are specifically not JSON texts themselves but are
 composed of JSON texts. JSON text sequences can be parsed (and
 produced) incrementally without having to have a streaming parser
 (nor encoder).

1.1. JSON Parser Types

 For the purposes of this document we shall classify JSON parsers as
 follows:

 Streaming Consumes a text incrementally, outputs values
 incrementally (e.g., as (path, leaf value) pairs).

 Online Consumes a text incrementally.

 Off-line Consumes only complete texts.

1.2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119

Williams Expires November 24, 2014 [Page 3]

Internet-Draft JSON Text Sequences May 2014

2. JSON Text Sequence Format

 The ABNF [RFC5234] for the JSON text sequence format is as given in
 Figure 1. Note that this ABNF does not work if we assume greedy
 matching. Therefore, in prose, a JSON text sequence is a sequence of
 zero or more JSON texts, each surrounded by any number of JSON
 whitespace characters and always followed by a newline.

 JSON-sequence = ws *(JSON-text ws LF ws)
 LF = <given by RFC5234>
 ws = <given by RFC7159>
 JSON-text = <given by RFC7159>

 Figure 1: JSON text sequence ABNF

 As long as a JSON text sequence consist of complete JSON texts, the
 only requirement is that whitespace separate any non-object, array,
 string top-level values from neighboring texts. The simplest way to
 ensure this is to require such whitespace, and furthermore it is
 convenient to use a newline, as we'll see in Section 2.1. Therefore
 we impose one requirement:

 o JSON text sequence encoders MUST emit a newline after any JSON
 text.

2.1. Ambiguities

 Otherwise An input of 'truefalse' is not a valid sequence of two JSON
 values, true and false! Neither is 'true0' a valid sequence of true
 and zero. Some existing JSON parsers that might be used to construct
 sequence parsers might in fact accept such sequences, resulting in
 erroneous parsing of sequences of two or more numbers. E.g., a
 sequence of two numbers, 4 and 2, encoded without the required
 whitespace between them would parse incorrectly as the number 42.

 Such ambiguities is resolved by requiring that encoders emit a
 whitespace separator (specifically: a newline) after each text.

2.1.1. Ambiguities Resulting from Partial Texts

 Another kind of ambiguity arises when a JSON text sequence contains
 partial texts. Such a sequence can result when using "append writes"
 to write to a file. For example, many systems might commit partial
 writes to stable storage then fail to complete the remainder of a
 write as a result of, e.g., power failures; upon recovery the file
 may then end with a partial JSON text.

 [[anchor1: Perhaps we should add a note about what POSIX requires

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires November 24, 2014 [Page 4]

Internet-Draft JSON Text Sequences May 2014

 w.r.t. O_APPEND, and how POSIX is agnostic as to power failures and
 so on. The point being that even where a standard imposes strong
 atomicity requirements as to append writes, there are good reasons
 why that might be difficult to obtain under exceptional
 circumstances.]]

 Consider a portion of a JSON text sequence such as:

 { "foo":
 { "bar": 42 }
 }

 How can we tell that the first line isn't part of an incomplete JSON
 text? We can't, especially if the third line were missing.

 In the common case JSON text sequence parsers assume every text is
 complete, and abort processing if any one text fails to parse.
 However, for logfiles, there is value is being able to recover from
 such situations. Recovery is described in Section 3.

2.2. Rationale for Choice of LF as the Text Separator

 A variety of characters or character sequences (even non-whitespace
 characters) could have been used as the JSON text separator in JSON
 text sequences. The rationale for using newline (LF) as the
 separator is as follows:

 o it matches the 'ws' ABNF rule in [RFC7159] (as do CR, HTAB, and
 SP);

 o it is always escaped in encoded JSON strings, therefore it is safe
 remove LFs (or replace then with other JSON whitespace characters)
 from any JSON text (this is also true of CR and HTAB, but not SP);

 o it is generally understood as the end-of-line marker by line-
 oriented tools;

 o at least one JSON text sequence implementation exists and has
 existed for some time [XXX add external informative reference to

https://stedolan.github.com/jq], and it uses LF as the JSON text
 separator.

 Note that JSON text sequence writers may (and should) use CR LF as
 the text separator where the end-of-line marker is expected to be CR
 LF.

https://datatracker.ietf.org/doc/html/rfc7159
https://stedolan.github

Williams Expires November 24, 2014 [Page 5]

Internet-Draft JSON Text Sequences May 2014

3. Use for Logfiles, or How to Resynchronize Following Truncated
 entries

 The JSON Text Sequence format is useful for logfiles, as those are
 generally (and atomically) appended to on an ongoing basis. I.e.,
 logfiles are of indeterminate length, at least right up until they
 are closed.

 The partial-write ambiguities described in Section 2.1.1 come up in
 the case of logfiles.

 As long as all texts in the logfile sequence are followed by a
 newline, it is possible to detect a subsequent JSON text written
 after an entry that fails to parse: either the first or the second
 subsequent, complete JSON texts. Figure 2 shows an ABNF rule for
 detecting the boundary between a non-truncated [and some truncated]
 JSON text and the next JSON text in a sequence. This rule assumes
 that only valid JSON texts are written to a sequence.

 boundary = endchar *text-sep *ws startchar
 text-sep = *(SP / HTAB / CR) LF ; these are from RFC5234
 endchar = ("}" / "]" / DQUOTE / "e" / "l" / DIGIT)
 startchar = ("{" / "[" / DQUOTE / "t" / "f" / "n" / "-" / DIGIT)
 ws = <given by RFC7159>

 Figure 2: ABNF for resynchronization

 To resynchronize after failing to parse a JSON text, simply search
 for a boundary as described in figure 2. A boundary found this way
 might be the boundary between the truncated entry and the subsequent
 entry, or it might be a subsequent boundary.

 This method does not support scanning backwards for boundaries.

 To make resynchronization reliable, and work both forwards and
 backwards, the writer MUST first ensure that the JSON text being
 written is valid, and SHOULD apply either (or both) of the following:

 1. Remove internal newlines (not including escaped newlines in
 strings) from any JSON text being written.

 2. Prefix any JSON text with a null value and a newline. The append
 write must still be atomic (one write), and contain both texts.

 Method #1 permits scanning for newlines (in either direction) as the
 resynchronization method.

 Method #2 permits scanning for "null" LF (in either direction) as the

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires November 24, 2014 [Page 6]

Internet-Draft JSON Text Sequences May 2014

 resynchronization method.

 Consider a JSON text sequence such as:

 null
 { "foo":"hello world" }
 "a broken writenull
 "a complete write"

 Resynchronization methods #1 and #2 will correctly detect that the
 third line is an incomplete JSON text, and that the next complete
 text starts at the fourth line. We can't tell which of method #1 or
 #2 the writer was using, but either method works for the parser. The
 parser SHOULD know which method the writer was using, as to know
 whether to discard the nulls, and whether to attempt
 resynchronization at all.

 Method #1 is RECOMMENDED for JSON text sequence logfile writers.

Williams Expires November 24, 2014 [Page 7]

Internet-Draft JSON Text Sequences May 2014

4. Security Considerations

 All the security considerations of JSON [RFC7159] apply.

 There is no end of sequence indicator. This means that "end of
 file", "end of transmission", and so on, can be indistinguishable
 from a logical end of sequence. Applications where this matters
 should denote end of sequence by convention (e.g., Content-Length in
 HTTP).

 The resynchronization ABNF heuristic is imperfect and might skip a
 valid entry following a truncated one. Purposefully appending a
 truncated (or invalid) JSON text to a JSON text sequence logfile can
 cause the subsequent entry to be invisible.

 JSON text sequence writers MUST validate (parse) any JSON text inputs
 from untrusted third parties.

 JSON text sequence logfile writers SHOULD apply one of the
 resynchronization methods described in Figure 2, preferably method
 #1.

https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires November 24, 2014 [Page 8]

Internet-Draft JSON Text Sequences May 2014

5. IANA Considerations

 The MIME media type for JSON text sequences is application/json-seq.

 Type name: application

 Subtype name: json-seq

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: binary

 Security considerations: See <this document, once published>,
Section 4.

 Interoperability considerations: Described herein.

 Published specification: <this document, once published>.

 Applicat<http://xml2rfc.tools.ietf.org/public/rfc/bibxml/
reference.RFC.2119.xml>ions that use this media type: JSON text

 sequences have been used in applications written with the jq
 programming language.

http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml
http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml

Williams Expires November 24, 2014 [Page 9]

Internet-Draft JSON Text Sequences May 2014

6. Acknowledgements

 Phillip Hallam-Baker proposed the use of JSON text sequences for
 logfiles and pointed out the need for resynchronization. James
 Manger contributed the ABNF for resynchronization.

Williams Expires November 24, 2014 [Page 10]

Internet-Draft JSON Text Sequences May 2014

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

Williams Expires November 24, 2014 [Page 11]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7159

Internet-Draft JSON Text Sequences May 2014

Author's Address

 Nicolas Williams
 Cryptonector, LLC

 Email: nico@cryptonector.com

Williams Expires November 24, 2014 [Page 12]

