
json N. Williams
Internet-Draft Cryptonector
Intended status: Standards Track December 18, 2014
Expires: June 21, 2015

JavaScript Object Notation (JSON) Text Sequences
draft-ietf-json-text-sequence-12

Abstract

 This document describes the JSON text sequence format and associated
 media type, "application/json-seq". A JSON text sequence consists of
 any number of JSON texts, all encoded in UTF-8, each prefixed by an
 ASCII Record Separator (0x1E), and each ending with an ASCII Line
 Feed character (0x1A).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 21, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Williams Expires June 21, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Text Sequences December 2014

Table of Contents

1. Introduction and Motivation 3
1.1. Conventions used in this document 3
2. JSON Text Sequence Format 4
2.1. JSON text sequence parsing 4
2.2. JSON text sequence encoding 5
2.3. Incomplete/invalid JSON texts need not be fatal 5
2.4. Top-level numeric, 'true', 'false', and 'null' values . . . 6
3. Security Considerations 7
4. IANA Considerations . 8
5. Acknowledgements . 9
6. Normative References . 10

 Author's Address . 11

Williams Expires June 21, 2015 [Page 2]

Internet-Draft JSON Text Sequences December 2014

1. Introduction and Motivation

 The JavaScript Object Notation (JSON) [RFC7159] is a very handy
 serialization format. However, when serializing a large sequence of
 values as an array, or a possibly indeterminate-length or never-
 ending sequence of values, JSON becomes difficult to work with.

 Consider a sequence of one million values, each possibly 1 kilobyte
 when encoded -- roughly one gigabyte. It is often desirable to
 process such a dataset in an incremental manner: without having to
 first read all of it before beginning to produce results.
 Traditionally the way to do this with JSON is to use a "streaming"
 parser, but these are neither widely available, widely used, nor easy
 to use.

 This document describes the concept and format of "JSON text
 sequences", which are specifically not JSON texts themselves but are
 composed of (possible) JSON texts. JSON text sequences can be parsed
 (and produced) incrementally without having to have a streaming
 parser (nor streaming encoder).

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119

Williams Expires June 21, 2015 [Page 3]

Internet-Draft JSON Text Sequences December 2014

2. JSON Text Sequence Format

 Two different sets of ABNF rules are provided for the definition of
 JSON text sequences: one for parsers, and one for encoders. Having
 two different sets of rules permits recovery by parsers from
 sequences where some the elements are truncated for whatever reason.
 The syntax for parsers is specified in terms of octet strings which
 are then interpreted as JSON texts if possible. The syntax for
 encoders, on the other hand, assumes that sequence elements are not
 truncated.

 JSON text sequences MUST use UTF-8 encoding; other encodings of JSON
 (i.e., UTF-16 and UTF-32) MUST NOT be used.

2.1. JSON text sequence parsing

 The ABNF [RFC5234] for the JSON text sequence parser is as given in
 Figure 1.

 JSON-sequence = *(1*RS possible-JSON)
 RS = %x1E; "record separator" (RS), see RFC20
 ; Also known as: Unicode Character 'INFORMATION SEPARATOR
 ; TWO' (U+001E)
 possible-JSON = 1*(not-RS); attempt to parse as UTF-8-encoded
 ; JSON text (see RFC7159)
 not-RS = %x00-1d / %x1f-ff; any octets other than RS

 Figure 1: JSON text sequence ABNF

 In prose: a series of octet strings, each containing any octet other
 than a record separator (RS) (0x1E) [RFC0020], all octet strings
 separated from each other by RS octets. Each octet string in the
 sequence is to be parsed as a JSON text in the UTF-8 encoding
 [RFC3629].

 If parsing of such an octet string as a UTF-8-encoded JSON text
 fails, the parser SHOULD nonetheless continue parsing the remainder
 of the sequence. The parser can report such failures to applications
 (which might then choose to terminate parsing of a sequence).
 Multiple consecutive RS octets do not denote empty sequence elements
 between them, and can be ignored.

 This document does not define a mechanism for reliably identifying
 text sequence by position (for example, when sending individual
 elements of an array as unique text sequences). For applications
 where truncation is a possibility, this means that intended sequence
 elements can be truncated, and can even be missing entirely,
 therefore a reference to an nth element would be unreliable.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc20
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc0020
https://datatracker.ietf.org/doc/html/rfc3629

Williams Expires June 21, 2015 [Page 4]

Internet-Draft JSON Text Sequences December 2014

 There is no end of sequence indicator.

2.2. JSON text sequence encoding

 The ABNF for the JSON text sequence encoder is given in Figure 2.

 JSON-sequence = *(RS JSON-text LF)
 RS = %x1E; see RFC20
 ; Also known as: Unicode Character 'INFORMATION SEPARATOR
 ; TWO' (U+001E)
 LF = %x0A; "line feed" (LF), see RFC20
 JSON-text = <given by RFC7159, using UTF-8 encoding>

 Figure 2: JSON text sequence ABNF

 In prose: any number of JSON texts, each encoded in UTF-8 [RFC3629],
 each preceded by one ASCII RS character, and each followed by a line
 feed (LF). Since RS is an ASCII control character it may only appear
 in JSON strings in escaped form (see [RFC7159]), and since RS may not
 appear in JSON texts in any other form, RS unambiguously delimits the
 start of any element in the sequence. RS is sufficient to
 unambiguously delimit all top-level JSON value types other than
 numbers. Following each JSON text in the sequence with an LF allows
 detection of truncated JSON texts consisting of a number at the top-
 level; see Section 2.4.

 JSON text sequence encoders are expected to ensure that the sequence
 elements are properly formed. When the JSON text sequence encoder
 does the JSON text encoding, the sequence elements will naturally be
 properly formed. When the JSON text sequence encoder accepts
 already-encoded JSON texts, the JSON text sequence encoder ought to
 to parse them before adding them to a sequence.

 Note that on some systems it's possible to input RS by typing
 'ctrl-^'; on some system or applications the correct sequence may be
 'ctrl-v crtl-^'. This is helpful when constructing a sequence
 manually with a text editor.

2.3. Incomplete/invalid JSON texts need not be fatal

 Per- Section 2.1, JSON text sequence parsers should not abort when an
 octet string contains a malformed JSON text, instead the JSON text
 sequence parser should skip to the next RS. Such a situation may
 arise in contexts where, for example, append-writes to log files are
 truncated by the filesystem (e.g., due to a crash, or administrative
 process termination).

 Incremental JSON text parsers may be used, though of course failure

https://datatracker.ietf.org/doc/html/rfc20
https://datatracker.ietf.org/doc/html/rfc20
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires June 21, 2015 [Page 5]

Internet-Draft JSON Text Sequences December 2014

 to parse a given text may result after first producing some
 incremental parse results.

 Sequence parsers should have an option to warn about truncated JSON
 texts.

2.4. Top-level numeric, 'true', 'false', and 'null' values

 While objects, arrays, and strings are self-delimited in JSON texts,
 numbers, and the values 'true', 'false', and 'null' are not. Only
 whitespace can delimit the latter four kinds of values.

 JSON text sequences use 0x0A as a "canary" octet to detect
 truncation.

 Parsers MUST check that any JSON texts that are a top-level number,
 or which might be 'true', 'false', or 'null' include JSON whitespace
 (at least one byte matching the "ws" ABNF rule from [RFC7159]) after
 that value, otherwise the JSON-text may have been truncated. Note
 that the LF following each JSON text matches the "ws" ABNF rule.

 Parsers MUST drop JSON-text sequence elements consisting of non-self-
 delimited top-level values that may have been truncated (that are not
 delimited by whitespace). Parsers can report such texts as warnings
 (including, optionally, the parsed text and/or the original octet
 string).

 For example, '<RS>123<RS>' might have been intended to carry the top-
 level number 1234, but must have been truncated. Similarly,
 '<RS>true<RS>' might have been intended to carry the invalid text
 'trueish'. '<RS>truefalse<RS>' is not two top-level values, 'true',
 and 'false'; it is simply not a valid JSON text.

 Implementations may produce a value when parsing '<RS>"foo"<RS>'
 because their JSON text parser might be able to consume bytes
 incrementally, and since the JSON text in this case is a self-
 delimiting top-level value, the parser can produce the result without
 consuming an additional byte. Such implementations ought to skip to
 the next RS byte, possibly reporting any intervening non-whitespace
 bytes.

https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires June 21, 2015 [Page 6]

Internet-Draft JSON Text Sequences December 2014

3. Security Considerations

 All the security considerations of JSON [RFC7159] apply. This format
 provides no cryptographic integrity protection of any kind.

 As usual, parsers must operate on as-good-as untrusted input. This
 means that parsers must fail gracefully in the face of malicious
 inputs.

 Note that incremental JSON text parsers can produce partial results
 and later indicate failure to parse the remainder of a text. A
 sequence parser that uses an incremental JSON text parser might treat
 a sequence like '<RS>"foo"<LF>456<LF><RS>' as a sequence of one
 element ("foo"), while a sequence parser that uses a non-incremental
 JSON text parser might treat the same sequence as being empty. This
 effect, and texts that fail to parse and are ignored can be used to
 smuggle data past sequence parsers that don't warn about JSON text
 failures.

 Repeated parsing and re-encoding of a JSON text sequence can result
 in the addition (or stripping) of trailing LF bytes from (to)
 individual sequence element JSON texts. This can break signature
 validation. JSON has no canonical form for JSON texts, therefore
 neither does the JSON text sequence format.

https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires June 21, 2015 [Page 7]

Internet-Draft JSON Text Sequences December 2014

4. IANA Considerations

 The MIME media type for JSON text sequences is application/json-seq.

 Type name: application

 Subtype name: json-seq

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See <this document, once published>,
Section 3.

 Interoperability considerations: Described herein.

 Published specification: <this document, once published>.

 Applications that use this media type: <by publication time
 <https://stedolan.github.io/jq> is likely to support this format>.

 Fragment identifier considerations: N/A.

 Additional information:

 o Deprecated alias names for this type: N/A.

 o Magic number(s): N/A

 o File extension(s): N/A.

 o Macintosh file type code(s): N/A.

 o Person & email address to contact for further information:

 * json@ietf.org

 o Intended usage: COMMON

 o Author: See the "Authors' Addresses" section of this document.

 o Change controller: IETF

https://stedolan.github.io/jq

Williams Expires June 21, 2015 [Page 8]

Internet-Draft JSON Text Sequences December 2014

5. Acknowledgements

 Phillip Hallam-Baker proposed the use of JSON text sequences for
 logfiles and pointed out the need for resynchronization. Stephen
 Dolan created <https://github.com/stedolan/jq>, which uses something
 like JSON text sequences (with LF as the separator between texts on
 output, and requiring only such whitespace as needed to disambiguate
 on input). Carsten Bormann suggested the use of ASCII RS, and Joe
 Hildebrand suggested the use of LF in addition to RS for
 disambiguating top-level number values. Paul Hoffman shepherded the
 Internet-Draft. Many others contributed reviews and comments on the
 JSON Working Group mailing list.

https://github.com/stedolan/jq

Williams Expires June 21, 2015 [Page 9]

Internet-Draft JSON Text Sequences December 2014

6. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc20
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7159

Williams Expires June 21, 2015 [Page 10]

Internet-Draft JSON Text Sequences December 2014

Author's Address

 Nicolas Williams
 Cryptonector, LLC

 Email: nico@cryptonector.com

Williams Expires June 21, 2015 [Page 11]

