
Workgroup: JSONPath WG

Internet-Draft: draft-ietf-jsonpath-base-01

Published: 8 July 2021

Intended Status: Standards Track

Expires: 9 January 2022

Authors: S. Gössner, Ed.

Fachhochschule Dortmund

G. Normington, Ed.

C. Bormann, Ed.

Universität Bremen TZI

JSONPath: Query expressions for JSON

Abstract

JSONPath defines a string syntax for identifying values within a

JavaScript Object Notation (JSON) document.

Contributing

This document picks up the popular JSONPath specification dated

2007-02-21 and provides a normative definition for it. In its

current state, it is a strawman document showing what needs to be

covered.

Comments and issues may be directed to this document's github

repository.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-jsonpath
https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-jsonpath
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Inspired by XPath

1.3. Overview of JSONPath Expressions

2. JSONPath Examples

3. JSONPath Syntax and Semantics

3.1. Overview

3.2. Processing Model

3.3. Syntax

3.4. Semantics

3.5. Selectors

3.5.1. Root Selector

3.5.2. Dot Selector

3.5.3. Dot Wild Card Selector

3.5.4. Index Selector

3.5.5. Index Wild Card Selector

3.5.6. Array Slice Selector

3.5.7. Descendant Selector

3.5.8. Union Selector

3.5.8.1. Syntax

3.5.8.2. Semantics

3.5.9. Filter Selector

3.5.9.1. Syntax

3.5.9.2. Semantics

4. Expression Language

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Contributors

Authors' Addresses

¶

https://trustee.ietf.org/license-info

Value:

Member:

Name:

1. Introduction

This document picks up the popular JSONPath specification dated

2007-02-21 [JSONPath-orig] and provides a normative definition for

it. In its current state, it is a strawman document showing what

needs to be covered.

JSON is defined by [RFC8259].

JSONPath is not intended as a replacement, but as a more powerful

companion, to JSON Pointer [RFC6901]. [insert reference to section

where the relationship is detailed. The purposes of the two syntaxes

are different. Pointer is for isolating a single location within a

document. Path is a query syntax that can also be used to pull

multiple locations.]

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The grammatical rules in this document are to be interpreted as

ABNF, as described in [RFC5234]. ABNF terminal values in this

document define Unicode code points rather than their UTF-8

encoding. For example, the Unicode PLACE OF INTEREST SIGN (U+2318)

would be defined in ABNF as %x2318.

The terminology of [RFC8259] applies except where clarified below.

The terms "Primitive" and "Structured" are used to group the types

as in Section 1 of [RFC8259]. Definitions for "Object", "Array",

"Number", and "String" remain unchanged. Importantly "object" and

"array" in particular do not take on a generic meaning, such as they

would in a general programming context.

Additional terms used in this specification are defined below.

As per [RFC8259], a structure complying to the generic data

model of JSON, i.e., composed of components such as containers,

namely JSON objects and arrays, and atomic data, namely null,

true, false, numbers, and text strings.

A name/value pair in an object. (Not itself a value.)

The name in a name/value pair constituting a member. (Also

known as "key", "tag", or "label".) This is also used in

[RFC8259], but that specification does not formally define it. It

is included here for completeness.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-1

Element:

Index:

Query:

Argument:

Node:

Root Node:

Nodelist:

Normalized Path:

A value in an array. (Also used with a distinct meaning in

XML context for XML elements.)

A non-negative integer that identifies a specific element in

an array.

Short name for JSONPath expression.

Short name for the value a JSONPath expression is applied

to.

The pair of a value along with its location within the

argument.

The unique node whose value is the entire argument.

A list of nodes. The output of applying a query to an

argument is manifested as a list of nodes. While this list can be

represented in JSON, e.g. as an array, the nodelist is an

abstract concept unrelated to JSON values.

A simple form of JSONPath expression that

identifies a node by providing a query that results in exactly

that node. Similar to, but syntactically different from, a JSON

Pointer [RFC6901].

For the purposes of this specification, a value as defined by

[RFC8259] is also viewed as a tree of nodes. Each node, in turn,

holds a value. Further nodes within each value are the elements of

arrays and the member values of objects and are themselves values.

(The type of the value held by a node may also be referred to as the

type of the node.)

A query is applied to an argument, and the output is a nodelist.

1.2. Inspired by XPath

A frequently emphasized advantage of XML is the availability of

powerful tools to analyse, transform and selectively extract data

from XML documents. [XPath] is one of these tools.

In 2007, the need for something solving the same class of problems

for the emerging JSON community became apparent, specifically for:

Finding data interactively and extracting them out of [RFC8259]

JSON values without special scripting.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

Specifying the relevant parts of the JSON data in a request by a

client, so the server can reduce the amount of data in its

response, minimizing bandwidth usage.

So what does such a tool look like for JSON? When defining a

JSONPath, how should expressions look?

The XPath expression

looks like

or

in popular programming languages such as JavaScript, Python and PHP,

with a variable x holding the argument. Here we observe that such

languages already have a fundamentally XPath-like feature built in.

The JSONPath tool in question should:

be naturally based on those language characteristics.

cover only essential parts of XPath 1.0.

be lightweight in code size and memory consumption.

be runtime efficient.

1.3. Overview of JSONPath Expressions

JSONPath expressions always apply to a value in the same way as

XPath expressions are used in combination with an XML document.

Since a value is anonymous, JSONPath uses the abstract name $ to

refer to the root node of the argument.

JSONPath expressions can use the dot notation

or the bracket notation

for paths input to a JSONPath processor. [1] Where a JSONPath

processor uses JSONPath expressions as output paths, these will

always be converted to Output Paths which employ the more general

*

¶

¶

¶

/store/book[1]/title¶

¶

x.store.book[0].title¶

¶

x['store']['book'][0]['title']¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

$.store.book[0].title¶

¶

$['store']['book'][0]['title']¶

bracket notation. [2] Bracket notation is more general than dot

notation and can serve as a canonical form when a JSONPath processor

uses JSONPath expressions as output paths.

JSONPath allows the wildcard symbol * for member names and array

indices. It borrows the descendant operator .. from [E4X] and the

array slice syntax proposal [start:end:step] [SLICE] from ECMASCRIPT

4.

JSONPath was originally designed to employ an underlying scripting

language for computing expressions. The present specification

defines a simple expression language that is independent from any

scripting language in use on the platform.

JSONPath can use expressions, written in parentheses: (<expr>), as

an alternative to explicit names or indices as in:

The symbol @ is used for the current node. Filter expressions are

supported via the syntax ?(<boolean expr>) as in

Here is a complete overview and a side by side comparison of the

JSONPath syntax elements with their XPath counterparts.

XPath JSONPath Description

/ $ the root element/node

. @ the current element/node

/ . or [] child operator

.. n/a parent operator

// ..
nested descendants (JSONPath borrows this

syntax from E4X)

* *
wildcard: All elements/nodes regardless of

their names

@ n/a
attribute access: JSON values do not have

attributes

[] []

subscript operator: XPath uses it to iterate

over element collections and for predicates;

native array indexing as in JavaScript here

| [,]

Union operator in XPath (results in a

combination of node sets); JSONPath allows

alternate names or array indices as a set

n/a [start:end:step] array slice operator borrowed from ES4

[] ?() applies a filter (script) expression

n/a () expression engine

() n/a grouping in Xpath

¶

¶

¶

¶

$.store.book[(@.length-1)].title¶

¶

$.store.book[?(@.price < 10)].title¶

¶

Table 1: Overview over JSONPath, comparing to XPath

XPath has a lot more to offer (location paths in unabbreviated

syntax, operators and functions) than listed here. Moreover there is

a significant difference how the subscript operator works in Xpath

and JSONPath:

Square brackets in XPath expressions always operate on the node

set resulting from the previous path fragment. Indices always

start at 1.

With JSONPath, square brackets operate on the object or array

addressed by the previous path fragment. Array indices always

start at 0.

2. JSONPath Examples

This section provides some more examples for JSONPath expressions.

The examples are based on the simple JSON value shown in Figure 1,

which was patterned after a typical XML example representing a

bookstore (that also has bicycles).

¶

*

¶

*

¶

¶

{ "store": {

 "book": [

 { "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 { "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.99

 },

 { "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

 "price": 19.95

 }

 }

}

Figure 1: Example JSON value

The examples in Table 2 use the expression mechanism to obtain the

number of elements in an array, to test for the presence of a member

in a object, and to perform numeric comparisons of member values

with a constant.

XPath JSONPath Result

/store/book/author $.store.book[*].author
the authors of all books

in the store

//author $..author all authors

/store/* $.store.*

all things in store,

which are some books and

a red bicycle

/store//price $.store..price
the prices of everything

in the store

¶

XPath JSONPath Result

//book[3] $..book[2] the third book

//book[last()]
$..book[(@.length-1)]

$..book[-1]
the last book in order

//

book[position()<3]

$..book[0,1]

$..book[:2]
the first two books

//book[isbn] $..book[?(@.isbn)]
filter all books with

isbn number

//book[price<10] $..book[?(@.price<10)]
filter all books cheaper

than 10

//* $..*

all elements in XML

document; all member

values and array elements

contained in input value

Table 2: Example JSONPath expressions applied to the example JSON value

3. JSONPath Syntax and Semantics

3.1. Overview

A JSONPath query is a string which selects zero or more nodes of a

piece of JSON. A valid query conforms to the ABNF syntax defined by

this document.

A query MUST be encoded using UTF-8. To parse a query according to

the grammar in this document, its UTF-8 form SHOULD first be decoded

into Unicode code points as described in [RFC3629].

A string to be used as a JSONPath query needs to be well-formed and

valid. A string is a well-formed JSONPath query if it conforms to

the syntax of JSONPath. A well-formed JSONPath query is valid if it

also fulfills all semantic requirements posed by this document.

The well-formedness and the validity of JSONPath queries are

independent of the value the query is applied to; no further errors

can be raised during application of the query to a value.

(Obviously, an implementation can still fail when executing a

JSONPath query, e.g., because of resource depletion, but this is not

modeled in the present specification.)

3.2. Processing Model

In this specification, the semantics of a JSONPath query are defined

in terms of a processing model. That model is not prescriptive of

the internal workings of an implementation: Implementations may wish

(or need) to design a different process that yields results that

conform to the model.

¶

¶

¶

¶

¶

¶

In the processing model, a valid query is executed against a value,

the argument, and produces a list of zero or more nodes of the

value.

The query is a sequence of zero or more selectors, each of which is

applied to the result of the previous selector and provides input to

the next selector. These results and inputs take the form of a

nodelist, i.e., a sequence of zero or more nodes.

The nodelist going into the first selector contains a single node,

the argument. The nodelist resulting from the last selector is

presented as the result of the query; depending on the specific API,

it might be presented as an array of the JSON values at the nodes,

an array of Output Paths referencing the nodes, or both -- or some

other representation as desired by the implementation. Note that the

API must be capable of presenting an empty nodelist as the result of

the query.

A selector performs its function on each of the nodes in its input

nodelist, during such a function execution, such a node is referred

to as the "current node". Each of these function executions produces

a nodelist, which are then concatenated into the result of the

selector.

The processing within a selector may execute nested queries, which

are in turn handled with the processing model defined here.

Typically, the argument to that query will be the current node of

the selector or a set of nodes subordinate to that current node.

3.3. Syntax

Syntactically, a JSONPath query consists of a root selector ($),

which stands for a nodelist that contains the root node of the

argument, followed by a possibly empty sequence of selectors.

json-path = root-selector *(dot-selector /

 dot-wild-selector /

 index-selector /

 index-wild-selector /

 union-selector /

 slice-selector /

 descendant-selector /

 filter-selector)

The syntax and semantics of each selector is defined below.

¶

¶

¶

¶

¶

¶

¶

¶

3.4. Semantics

The root selector $ not only selects the root node of the argument,

but it also produces as output a list consisting of one node: the

argument itself.

A selector may select zero or more nodes for further processing. A

syntactically valid selector MUST NOT produce errors. This means

that some operations which might be considered erroneous, such as

indexing beyond the end of an array, simply result in fewer nodes

being selected.

But a selector doesn't just act on a single node: a selector acts on

each of the nodes in its input nodelist and concatenates the

resultant nodelists to form the result nodelist of the selector.

For each node in the list, the selector selects zero or more nodes,

each of which is a descendant of the node or the node itself.

For instance, with the argument {"a":[{"b":0},{"b":1},{"c":2}]}, the

query $.a[*].b selects the following list of nodes: 0, 1 (denoted

here by their value). Let's walk through this in detail.

The query consists of $ followed by three selectors: .a, [*],

and .b.

Firstly, $ selects the root node which is the argument. So the

result is a list consisting of just the root node.

Next, .a selects from any input node of type object and selects the

node of any member value of the input node corresponding to the

member name "a". The result is again a list of one node: [{"b":0},

{"b":1},{"c":2}].

Next, [*] selects from any input node which is an array and selects

all the elements of the input node. The result is a list of three

nodes: {"b":0}, {"b":1}, and {"c":2}.

Finally, .b selects from any input node of type object with a member

name b and selects the node of the member value of the input node

corresponding to that name. The result is a list containing 0, 1.

This is the concatenation of three lists, two of length one

containing 0, 1, respectively, and one of length zero.

As a consequence of this approach, if any of the selectors selects

no nodes, then the whole query selects no nodes.

In what follows, the semantics of each selector are defined for each

type of node.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.5. Selectors

A JSONPath query consists of a sequence of selectors. Valid

selectors are

Root selector $

Dot selector .<name>, used with object member names exclusively.

Dot wild card selector .*.

Index selector [<index>], where <index> is either an (possibly

negative) array index or an object member name.

Index wild card selector [*].

Array slice selector [<start>:<end>:<step>], where <start>,

<end>, <step> are integer literals.

Nested descendants selector ...

Union selector [<sel1>,<sel2>,...,<selN>], holding a comma

delimited list of index, index wild card, array slice, and filter

selectors.

Filter selector [?(<expr>)]

Current item selector @

3.5.1. Root Selector

Syntax

Every valid JSONPath query MUST begin with the root selector $.

root-selector = "$"

Semantics

The Argument -- the root JSON value -- becomes the root node, which

is addressed by the root selector $.

3.5.2. Dot Selector

Syntax

A dot selector starts with a dot . followed by an object's member

name.

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

dot-selector = "." dot-member-name

dot-member-name = name-first *name-char

name-first =

 ALPHA /

 "_" / ; _

 %x80-10FFFF ; any non-ASCII Unicode character

name-char = DIGIT / name-first

DIGIT = %x30-39 ; 0-9

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

Member names containing other characters than allowed by dot-

selector -- such as space ` ` and minus - characters -- MUST NOT be

used with the dot-selector. (Such member names can be addressed by

the index-selector instead.)

Semantics

The dot-selector selects the node of the member value corresponding

to the member name from any JSON object. It selects no nodes from

any other JSON value.

Note that the dot-selector follows the philosophy of JSON strings

and is allowed to contain bit sequences that cannot encode Unicode

characters (a single unpaired UTF-16 surrogate, for example). The

behaviour of an implementation is undefined for member names which

do not encode Unicode characters.

3.5.3. Dot Wild Card Selector

Syntax

The dot wild card selector has the form .*.

dot-wild-selector = "." "*" ; dot followed by asterisk

Semantics

A dot-wild-selector acts as a wild card by selecting the nodes of

all member values of an object as well as all element nodes of an

array. Applying the dot-wild-selector to a primitive JSON value

(number, string, or true/false/null) selects no node.

¶

¶

¶

¶

¶

¶

¶

3.5.4. Index Selector

Syntax

An index selector [<index>] addresses at most one object member

value or at most one array element value.

index-selector = "[" (quoted-member-name / element-index) "]"

Applying the index-selector to an object value, a quoted-member-name

string is required. JSONPath allows it to be enclosed in single or

double quotes.

¶

¶

¶

quoted-member-name = string-literal

string-literal = %x22 *double-quoted %x22 / ; "string"

 %x27 *single-quoted %x27 ; 'string'

double-quoted = unescaped /

 %x27 / ; '

 ESC %x22 / ; \"

 ESC escapable

single-quoted = unescaped /

 %x22 / ; "

 ESC %x27 / ; \'

 ESC escapable

ESC = %x5C ; \ backslash

unescaped = %x20-21 / ; s. RFC 8259

 %x23-26 / ; omit "

 %x28-5B / ; omit '

 %x5D-10FFFF ; omit \

escapable = (%x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t

 ; b / ; BS backspace U+0008

 ; t / ; HT horizontal tab U+0009

 ; n / ; LF line feed U+000A

 ; f / ; FF form feed U+000C

 ; r / ; CR carriage return U+000D

 "/" / ; / slash (solidus)

 "\" / ; \ backslash (reverse solidus)

 (%x75 hexchar) ; uXXXX U+XXXX

)

hexchar = non-surrogate / (high-surrogate "\" %x75 low-surrogate)

non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /

 ("D" %x30-37 2HEXDIG)

high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG

low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

; Task from 2021-06-15 interim: update ABNF later

Applying the index-selector to an array, a numerical element-index

is required. JSONPath allows it to be negative.

¶

¶

element-index = int ; decimal integer

int = ["-"] ("0" / (DIGIT1 *DIGIT)) ; - optional

DIGIT1 = %x31-39 ; 1-9 non-zero digit

Notes: 1. double-quoted strings follow JSON in [RFC8259]; single-

quoted strings follow an analogous pattern. 2. An element-index is

an integer (in base 10, as in JSON numbers). 3. As in JSON numbers,

the syntax does not allow octal-like integers with leading zeros

such as 01 or -01.

Semantics

A quoted-member-name string MUST be converted to a member name by

removing the surrounding quotes and replacing each escape sequence

with its equivalent Unicode character, as in the table below:

Escape Sequence Unicode Character Description

\b U+0008 BS backspace

\t U+0009 HT horizontal tab

\n U+000A LF line feed

\f U+000C FF form feed

\r U+000D CR carriage return

\" U+0022 quotation mark

\' U+0027 apostrophe

\/ U+002F slash (solidus)

\\ U+005C backslash (reverse solidus)

\uXXXX U+XXXX unicode character

Table 3: Escape Sequence Replacements

The index-selector applied with a quoted-member-name to an object

selects the node of the corresponding member value from it, if and

only if that object has a member with that name. Nothing is selected

from a value which is not a object.

Array indexing via element-index is a way of selecting a particular

array element using a zero-based index. For example, selector [0]

selects the first and selector [4] the fifth element of a

sufficiently long array.

A negative element-index counts from the array end. For example,

selector [-1] selects the last and selector [-2] selects the last

but one element of an array with at least two elements.

¶

¶

¶

¶

¶

¶

3.5.5. Index Wild Card Selector

Syntax

The index wild card selector has the form [*].

index-wild-selector = "[" "*" "]" ; asterisk enclosed by brackets

Semantics

An index-wild-selector selects the nodes of all member values of an

object as well as of all elements of an array. Applying the index-

wild-selector to a primitive JSON value (such as a number, string,

or true/false/null) selects no node.

The index-wild-selector behaves identically to the dot-wild-

selector.

3.5.6. Array Slice Selector

Syntax

The array slice selector has the form [<start>:<end>:<step>]. It

selects elements starting at index <start>, ending at -- but not

including -- <end>, while incrementing by step.

slice-selector = "[" slice-index "]"

slice-index = ws [start] ws ":" ws [end] [ws ":" ws [step] ws]

start = int ; included in selection

end = int ; not included in selection

step = int ; default: 1

ws = *(%x20 / ; Space

 %x09 / ; Horizontal tab

 %x0A / ; Line feed or New line

 %x0D) ; Carriage return

The slice-selector consists of three optional decimal integers

separated by colons.

Semantics

The slice-selector was inspired by the slice operator of ECMAScript

4 (ES4), which was deprecated in 2014, and that of Python.

¶

¶

¶

¶

¶

¶

¶

¶

Informal Introduction

This section is non-normative.

Array indexing is a way of selecting a particular element of an

array using a 0-based index. For example, the expression [0] selects

the first element of a non-empty array.

Negative indices index from the end of an array. For example, the

expression [-2] selects the last but one element of an array with at

least two elements.

Array slicing is inspired by the behaviour of the

Array.prototype.slice method of the JavaScript language as defined

by the ECMA-262 standard [ECMA-262], with the addition of the step

parameter, which is inspired by the Python slice expression.

The array slice expression [start:end:step] selects elements at

indices starting at start, incrementing by step, and ending with end

(which is itself excluded). So, for example, the expression [1:3]

(where step defaults to 1) selects elements with indices 1 and 2 (in

that order) whereas [1:5:2] selects elements with indices 1 and 3.

When step is negative, elements are selected in reverse order. Thus,

for example, [5:1:-2] selects elements with indices 5 and 3, in that

order and [::-1] selects all the elements of an array in reverse

order.

When step is 0, no elements are selected. This is the one case which

differs from the behaviour of Python, which raises an error in this

case.

The following section specifies the behaviour fully, without

depending on JavaScript or Python behaviour.

Detailed Semantics

An array selector is either an array slice or an array index, which

is defined in terms of an array slice.

A slice expression selects a subset of the elements of the input

array, in the same order as the array or the reverse order,

depending on the sign of the step parameter. It selects no nodes

from a node which is not an array.

A slice is defined by the two slice parameters, start and end, and

an iteration delta, step. Each of these parameters is optional. len

is the length of the input array.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The default value for step is 1. The default values for start and

end depend on the sign of step, as follows:

Condition start end

step >= 0 0 len

step < 0 len - 1 -len - 1

Table 4: Default array slice

start and end values

Slice expression parameters start and end are not directly usable as

slice bounds and must first be normalized. Normalization for this

purpose is defined as:

The result of the array indexing expression [i] applied to an array

of length len is defined to be the result of the array slicing

expression [i:Normalize(i, len)+1:1].

Slice expression parameters start and end are used to derive slice

bounds lower and upper. The direction of the iteration, defined by

the sign of step, determines which of the parameters is the lower

bound and which is the upper bound:

The slice expression selects elements with indices between the lower

and upper bounds. In the following pseudocode, the a(i) construct

expresses the 0-based indexing operation on the underlying array.

¶

¶

FUNCTION Normalize(i, len):

 IF i >= 0 THEN

 RETURN i

 ELSE

 RETURN len + i

 END IF

¶

¶

¶

FUNCTION Bounds(start, end, step, len):

 n_start = Normalize(start, len)

 n_end = Normalize(end, len)

 IF step >= 0 THEN

 lower = MIN(MAX(n_start, 0), len)

 upper = MIN(MAX(n_end, 0), len)

 ELSE

 upper = MIN(MAX(n_start, -1), len-1)

 lower = MIN(MAX(n_end, -1), len-1)

 END IF

 RETURN (lower, upper)

¶

¶

When step = 0, no elements are selected and the result array is

empty.

An implementation MUST raise an error if any of the slice expression

parameters does not fit in the implementation's representation of an

integer. If a successfully parsed slice expression is evaluated

against an array whose size doesn't fit in the implementation's

representation of an integer, the implementation MUST raise an

error.

3.5.7. Descendant Selector

Syntax

The descendant selector starts with a double dot .. and can be

followed by an object member name (similar to the dot-selector), by

an index-selector acting on objects or arrays, or by a wild card.

descendant-selector = ".." (dot-member-name / ; ..<name>

 index-selector / ; ..[<index>]

 index-wild-selector / ; ..[*]

 "*" ; ..*

)

Semantics

The descendant-selector is inspired by ECMAScript for XML (E4X). It

selects the node and all its descendants.

IF step > 0 THEN

 i = lower

 WHILE i < upper:

 SELECT a(i)

 i = i + step

 END WHILE

ELSE if step < 0 THEN

 i = upper

 WHILE lower < i:

 SELECT a(i)

 i = i + step

 END WHILE

END IF

¶

¶

¶

¶

¶

¶

3.5.8. Union Selector

3.5.8.1. Syntax

The union selector is syntactically related to the index-selector.

It contains multiple, comma separated entries.

union-selector = "[" ws union-entry 1*(ws "," ws union-entry) ws "]"

union-entry = (quoted-member-name /

 element-index /

 slice-index

)

Task (T1): This, besides slice-index, is currently one of only

two places in the document that mentions whitespace. Whitespace

needs to be handled throughout the ABNF syntax. Room Consensus at

the 2021-06-15 interim was that JSONPath generally is generous

with allowing insignificant whitespace throughout. Minimizing the

impact of the many whitespace insertion points by choosing a rule

name such as "S" was mentioned. Some conventions will probably

help with minimizing the number of places where S needs to be

inserted.

3.5.8.2. Semantics

A union selects any node which is selected by at least one of the

union selectors and selects the concatenation of the lists (in the

order of the selectors) of nodes selected by the union elements.

Note that any node selected in more than one of the union selectors

is kept as many times in the node list.

3.5.9. Filter Selector

3.5.9.1. Syntax

The filter selector has the form [?<expr>]. It works via iterating

over structured values, i.e. arrays and objects.

filter-selector = "[?" boolean-expr "]"

During iteration process each array element or object member is

visited and its value -- accessible via symbol @ -- or one of its

descendants -- uniquely defined by a relative path -- is tested

against a boolean expression boolean-expr.

¶

¶

¶

¶

¶

¶

¶

The current item is selected if and only if the result is true.

boolean-expr = logical-expr

logical-expr = ([neg-op] primary-expr) / logical-or-expr

neg-op = "!" ; not operator

primary-expr = "(" logical-or-expr ")"

logical-or-expr = logical-and-expr *["||" logical-and-expr]

logical-and-expr = comp-expr *["&&" comp-expr]

comp-expr = (rel-path-val /

 json-path) [(comp-op comparable / ; comparison

 regex-op regex / ; RegEx test

 in-op container)] ; containment test

comp-op = "==" / "!=" / ; comparison ...

 "<" / ">" / ; operators

 "<=" / ">="

regex-op = "~=" ; RegEx match

in-op = " in " ; in operator

comparable = number / string-literal / ; primitive ...

 true / false / null / ; values only

 rel-path-val / ; descendant value

 json-path ; any value

rel-path-val = "@" *(dot-selector / index-selector)

container = <TO BE DEFINED>

regex = <TO BE DEFINED>

Notes:

Parentheses can be used with boolean-expr for grouping. So filter

selection syntax in the original proposal [?(<expr>)] is

naturally contained in the current lean syntax [?<expr>] as a

special case.

Comparisons are restricted to primitive values (such as number,

string, true, false, null). Comparisons with complex values will

fail, i.e. no selection occurs.

Types are not implicitly converted in comparisons. So "13 ==

'13'" selects no node.

A member or element value by itself is falsy only, if it does not

exist. Otherwise it is truthy, resulting in its value. To be more

specific explicit comparisons are necessary. This existence test

-- as an exception of the general rule -- also works with complex

values.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

Regular expression tests can be applied to string values only.

Containment tests work with arrays and objects.

Explicit boolean type conversion is done by the not operator neg-

op.

The behaviour of operators is consistent with the 'C'-family of

programming languages.

3.5.9.2. Semantics

The filter-selector works with arrays and objects exclusively. Its

result might be a list of zero, one, multiple or all of their

element or member values then. Applied to other value types, it will

select nothing.

Negation operator neg-op allows to test falsiness of values.

Type Negation Result Comment

Number !0 true false for non-zero number

String
!""

!''
true false for non-empty string

null !null true --

true !true false --

false !false true --

Object
!{}

!{a:0}
false always false

Array
![]

![0]
false always false

Table 5: Test falsiness of JSON values

Applying negation operator twice !! gives us truthiness of values.

Some examples:

JSON Query Result Comment

{"a":1,"b":2}

[2,3,4]
$[?@]

[1,2]

[2,3,4]

Same as $.*

or $[*]

./. $[?@==2]
[2]

[2]

Select by

value.

{"a":{"b":

{"c":{}}}

$[?@.b]

$[?@.b.c]

[{"b":

{"c":{}}]
Existence

{"key":false}
$[?index(@)=='key']

$[?index(@)==0]

[false]

[]

Select object

member

[3,4,5]
$[?index(@)==2]

$[?index(@)==17]

[5]

[]

Select array

element

{"col":"red"} ["red"] Containment

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

[RFC2119]

JSON Query Result Comment

$[?@ in

['red','green','blue']]

{"a":{"b":

{5},c:0}}
$[?@.b==5 && !@.c]

[{"b":

{5},c:0}]
Existence

Table 6

4. Expression Language

Task (T2): Separate out expression language. For now, this

section is a repository for ABNF taken from [RFC8259]. This needs

to be deduplicated with definitions above.

number = [minus] jsint [frac] [exp]

decimal-point = %x2E ; .

digit1-9 = %x31-39 ; 1-9

e = %x65 / %x45 ; e E

exp = e [minus / plus] 1*DIGIT

frac = decimal-point 1*DIGIT

jsint = zero / (digit1-9 *DIGIT)

minus = %x2D ; -

plus = %x2B ; +

zero = %x30 ; 0

false = %x66.61.6c.73.65 ; false

null = %x6e.75.6c.6c ; null

true = %x74.72.75.65 ; true

5. IANA Considerations

TBD: Define a media type for JSONPath expressions.

6. Security Considerations

This section gives security considerations, as required by

[RFC3552].

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

[RFC3629]

[RFC5234]

[RFC8174]

[RFC8259]

[E4X]

[E4X-overview]

[ECMA-262]

[JSONPath-orig]

[RFC3552]

[RFC6901]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

7.2. Informative References

ISO, "Information technology — ECMAScript for XML (E4X)

specification", ISO/IEC 22537:2006 , 2006.

Adobe Systems Inc., The Mozilla Foundation, Opera

Software ASA, and others, "Proposed ECMAScript 4 Edition

— Language Overview", 2007.

Ecma International, "ECMAScript Language Specification,

Standard ECMA-262, Third Edition", December 1999,

<http://www.ecma-international.org/publications/files/

ECMA-ST-ARCH/ECMA-262,%203rd%20edition,

%20December%201999.pdf>.

Gössner, S., "JSONPath — XPath for JSON", 21

February 2007, <https://goessner.net/articles/JsonPath/>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552

[SLICE]

[XPath]

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

"Slice notation", n.d., <https://github.com/tc39/

proposal-slice-notation>.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,

Kay, M., Robie, J., and J. Simeon, "XML Path Language

(XPath) 2.0 (Second Edition)", World Wide Web Consortium

Recommendation REC-xpath20-20101214, 14 December 2010,

<https://www.w3.org/TR/2010/REC-xpath20-20101214>.

Acknowledgements

This specification is based on Stefan Gössner's original online

article defining JSONPath [JSONPath-orig].

The books example was taken from http://coli.lili.uni-bielefeld.de/

~andreas/Seminare/sommer02/books.xml -- a dead link now.

Contributors

Marko Mikulicic

InfluxData, Inc.

Pisa

Italy

Email: mmikulicic@gmail.com

Edward Surov

TheSoul Publishing Ltd.

Limassol

Cyprus

Email: esurov.tsp@gmail.com

Authors' Addresses

Stefan Gössner (editor)

Fachhochschule Dortmund

Sonnenstraße 96

D-44139 Dortmund

Germany

Email: stefan.goessner@fh-dortmund.de

Glyn Normington (editor)

Winchester

United Kingdom

¶

¶

https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://github.com/tc39/proposal-slice-notation
https://github.com/tc39/proposal-slice-notation
https://www.w3.org/TR/2010/REC-xpath20-20101214
mailto:mmikulicic@gmail.com
mailto:esurov.tsp@gmail.com
mailto:stefan.goessner@fh-dortmund.de

Email: glyn.normington@gmail.com

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

mailto:glyn.normington@gmail.com
tel:+49-421-218-63921
mailto:cabo@tzi.org

	JSONPath: Query expressions for JSON
	Abstract
	Contributing
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Inspired by XPath
	1.3. Overview of JSONPath Expressions

	2. JSONPath Examples
	3. JSONPath Syntax and Semantics
	3.1. Overview
	3.2. Processing Model
	3.3. Syntax
	3.4. Semantics
	3.5. Selectors
	3.5.1. Root Selector
	Syntax
	Semantics

	3.5.2. Dot Selector
	Syntax
	Semantics

	3.5.3. Dot Wild Card Selector
	Syntax
	Semantics

	3.5.4. Index Selector
	Syntax
	Semantics

	3.5.5. Index Wild Card Selector
	Syntax
	Semantics

	3.5.6. Array Slice Selector
	Syntax
	Semantics
	Informal Introduction
	Detailed Semantics

	3.5.7. Descendant Selector
	Syntax
	Semantics

	3.5.8. Union Selector
	3.5.8.1. Syntax
	3.5.8.2. Semantics

	3.5.9. Filter Selector
	3.5.9.1. Syntax
	3.5.9.2. Semantics

	4. Expression Language
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Contributors
	Authors' Addresses

