workgroup: JSONPath WG
Internet-Draft: draft-ietf-jsonpath-base-02
Published: 25 October 2021
Intended Status: Standards Track
Expires: 28 April 2022
Authors: S. Gossner, Ed. G. Normington, Ed.
Fachhochschule Dortmund
C. Bormann, Ed.
Universitat Bremen TZI
JSONPath: Query expressions for JSON

Abstract

JSONPath defines a string syntax for identifying values within a
JavaScript Object Notation (JSON) document.

Contributing

This document picks up the popular JSONPath specification dated
2007-02-21 and provides a normative definition for it. In its
current state, it is a strawman document showing what needs to be
covered.

Comments and issues may be directed to this document's github
repository.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.
Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-jsonpath
https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-jsonpath
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1 Terminology
1.2 Inspired by XPath
1.3 Overview of JSONPath Expressions
2. JSONPath Examples
3. JSONPath Syntax and Semantics
3.1. Overview
3.2. Processing Model
3.3. Syntax
3.4. Semantics
3.5. Selectors
3.5.1. Root Selector
3.5.2. Dot Selector
3.5.3. Dot Wild Card Selector
3.5.4. 1Index Selector
3.5.5. Index Wild Card Selector
3.5.6. Array Slice Selector
3.5.7. Descendant Selector
3.5.8. Union Selector
3.5.8.1. Syntax
3.5.8.2. Semantics
3.5.9. Filter Selector
3.5.9.1. Syntax
3.5.9.2. Semantics
4. Expression Language
5. IANA Considerations
6. Security Considerations
7. References

7.1. Normative References
7.2. Informative References
Acknowledgements
Contributors
Authors' Addresses

https://trustee.ietf.org/license-info

1.

1.

Introduction

This document picks up the popular JSONPath specification dated
2007-02-21 [JSONPath-orig] and provides a normative definition for
it. In its current state, it is a strawman document showing what
needs to be covered.

JSON is defined by [RFC8259].

JSONPath is not intended as a replacement, but as a more powerful
companion, to JSON Pointer [RFC6901]. [insert reference to section
where the relationship is detailed. The purposes of the two syntaxes
are different. Pointer is for isolating a single location within a
document. Path is a query syntax that can also be used to pull
multiple locations.]

1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFEC2119] [REC8174] when, and only when, they appear in all
capitals, as shown here.

The grammatical rules in this document are to be interpreted as
ABNF, as described in [REC5234]. ABNF terminal values in this
document define Unicode code points rather than their UTF-8
encoding. For example, the Unicode PLACE OF INTEREST SIGN (U+2318)
would be defined in ABNF as %x2318.

The terminology of [REC8259] applies except where clarified below.
The terms "Primitive" and "Structured" are used to group the types
as in Section 1 of [RFC8259]. Definitions for "Object", "Array",
"Number", and "String" remain unchanged. Importantly "object" and
"array" in particular do not take on a generic meaning, such as they
would in a general programming context.

Additional terms used in this specification are defined below.

Value: As per [RFC8259], a structure complying to the generic data
model of JSON, i.e., composed of components such as containers,
namely JSON objects and arrays, and atomic data, namely null,
true, false, numbers, and text strings.

Member: A name/value pair in an object. (Not itself a value.)

Name: The name in a name/value pair constituting a member. (Also
known as "key", "tag", or "label".) This is also used in
[REC8259], but that specification does not formally define it. It
is included here for completeness.

https://rfc-editor.org/rfc/rfc8259#section-1

Element:
A value in an array. (Also used with a distinct meaning in
XML context for XML elements.)

Index: A non-negative integer that identifies a specific element in
an array.

Query: Short name for JSONPath expression.

Argument: Short name for the value a JSONPath expression is applied
to.

Node: The pair of a value along with its location within the
argument.

Root Node: The unique node whose value is the entire argument.

Nodelist: A list of nodes. The output of applying a query to an
argument is manifested as a list of nodes. While this list can be
represented in JSON, e.g. as an array, the nodelist is an
abstract concept unrelated to JSON values.

Normalized Path: A simple form of JSONPath expression that
identifies a node by providing a query that results in exactly
that node. Similar to, but syntactically different from, a JSON
Pointer [RFC6901].

For the purposes of this specification, a value as defined by
[REC8259] is also viewed as a tree of nodes. Each node, in turn,
holds a value. Further nodes within each value are the elements of
arrays and the member values of objects and are themselves values.
(The type of the value held by a node may also be referred to as the
type of the node.)

A query is applied to an argument, and the output is a nodelist.
1.2. Inspired by XPath

A frequently emphasized advantage of XML is the availability of

powerful tools to analyse, transform and selectively extract data

from XML documents. [XPath] is one of these tools.

In 2007, the need for something solving the same class of problems
for the emerging JSON community became apparent, specifically for:

*Finding data interactively and extracting them out of [RFEC8259]
JSON values without special scripting.

*Specifying the relevant parts of the JSON data in a request by a
client, so the server can reduce the amount of data in its
response, minimizing bandwidth usage.

So what does such a tool look like for JSON? When defining a
JSONPath, how should expressions look?

The XPath expression
/store/book[1]/title
looks like
x.store.book[0].title
or
x['store']['book'][O]['title']
in popular programming languages such as JavaScript, Python and PHP,
with a variable x holding the argument. Here we observe that such
languages already have a fundamentally XPath-like feature built in.
The JSONPath tool in question should:
*be naturally based on those language characteristics.
*cover only essential parts of XPath 1.0.
*be lightweight in code size and memory consumption.
*be runtime efficient.
1.3. Overview of JSONPath Expressions
JSONPath expressions always apply to a value in the same way as
XPath expressions are used in combination with an XML document.
Since a value is anonymous, JSONPath uses the abstract name $ to
refer to the root node of the argument.
JSONPath expressions can use the dot notation
$.store.book[0].title
or the bracket notation
$['store']['book'][O]['title']
for paths input to a JSONPath processor. [1] Where a JSONPath

processor uses JSONPath expressions as output paths, these will
always be converted to Output Paths which employ the more general

bracket notation.

[2] Bracket notation is more general than dot

notation and can serve as a canonical form when a JSONPath processor
uses JSONPath expressions as output paths.

JSONPath allows the wildcard symbol * for member names and array

indices.

It borrows the descendant operator

from [E4X] and the

array slice syntax proposal [start:end:step] [SLICE] from ECMASCRIPT

4,

JSONPath was originally designed to employ an underlying scripting
language for computing expressions. The present specification
defines a simple expression language that is independent from any
scripting language in use on the platform.

JSONPath can use expressions, written in parentheses:

(<expr>), as

an alternative to explicit names or indices as in:

$.store.book[(@.length-1)].title

The symbol @ is used for the current node. Filter expressions are
supported via the syntax ?(<boolean expr>) as in

$.store.book[?(@.price < 10)].title

Here is a complete overview and a side by side comparison of the
JSONPath syntax elements with their XPath counterparts.

XPath

//

[]

n/a

[]

n/a

0

JSONPath
$
@

or []

n/a

n/a

[]

(/]

[start:end:step]
?()
0

n/a

Description

the root element/node

the current element/node

child operator

parent operator

nested descendants (JSONPath borrows this
syntax from E4X)

wildcard: All elements/nodes regardless of
their names
attribute access: JSON values do not have
attributes

subscript operator: XPath uses it to iterate
over element collections and for predicates;
native array indexing as in JavaScript here
Union operator in XPath (results in a
combination of node sets); JSONPath allows
alternate names or array indices as a set
array slice operator borrowed from ES4
applies a filter (script) expression
expression engine

grouping in Xpath

Table 1: Overview over JSONPath, comparing to XPath

XPath has a lot more to offer (location paths in unabbreviated
syntax, operators and functions) than listed here. Moreover there is
a significant difference how the subscript operator works in Xpath
and JSONPath:

*Square brackets in XPath expressions always operate on the node
set resulting from the previous path fragment. Indices always
start at 1.

*With JSONPath, square brackets operate on the object or array
addressed by the previous path fragment. Array indices always
start at 0.

JSONPath Examples

This section provides some more examples for JSONPath expressions.
The examples are based on the simple JSON value shown in Figure 1,
which was patterned after a typical XML example representing a
bookstore (that also has bicycles).

{ "store": {

"book": [
{ "category": "reference",
"author": '"Nigel Rees",

"title": "Sayings of the Century",
"price": 8.95

3
{ "category": "fiction",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"price": 12.99
3
{ "category": "fiction",
"author": "Herman Melville",
"title": "Moby Dick",
"isbn": "@-553-21311-3",
"price": 8.99
3
{ "category": "fiction",
"author": "J. R. R. Tolkien",
"title": "The Lord of the Rings",
"isbn": "©0-395-19395-8",
"price": 22.99
}
1
"bicycle": {
"color": "red",
"price": 19.95
}
}
}
Figure 1: Example JSON value
The examples in Table 2 use the expression mechanism to obtain the
number of elements in an array, to test for the presence of a member
in a object, and to perform numeric comparisons of member values
with a constant.
XPath JSONPath Result

the authors of all books

/store/book/author $.store.book[*].author .
in the store

//author $..author all authors
all things in store,
/store/* $.store.* which are some books and

a red bicycle
the prices of everything

/store//price .store..price .
P $ P in the store

XPath
//book[3]

//book[last()]

//
book[position()<3]

//book[isbn]

//book[price<10]

/7%

JSONPath

$..book[2]
$..book[(@.1length-1)]
$..book[-1]
$..book[0,1]
$..book[:2]
$..book[?(@.1isbn)]
$..book[?(@.price<10)]
$. *

Result
the third book

the last book in order

the first two books

filter all books with
isbn number

filter all books cheaper
than 10

all elements in XML
document; all member
values and array elements
contained in input value

Table 2: Example JSONPath expressions applied to the example JSON value

3. JSONPath Syntax and Semantics

3.1. Overview

A JSONPath query is a string which selects zero or more nodes of a
piece of JSON. A valid query conforms to the ABNF syntax defined by

this document.

A query MUST be encoded using UTF-8. To parse a query according to
the grammar in this document, its UTF-8 form SHOULD first be decoded
into Unicode code points as described in [RFC3629].

A string to be used as a JSONPath query needs to be well-formed and
valid. A string is a well-formed JSONPath query if it conforms to
the syntax of JSONPath. A well-formed JSONPath query is valid if it
also fulfills all semantic requirements posed by this document.

The well-formedness and the validity of JSONPath queries are
independent of the value the query is applied to; no further errors
can be raised during application of the query to a value.

(Obviously, an implementation can still fail when executing a
because of resource depletion, but this is not
modeled in the present specification.)

JSONPath query, e.g.,

3.2. Processing Model

In this specification,

conform to the model.

the semantics of a JSONPath query are defined
in terms of a processing model. That model is not prescriptive of
the internal workings of an implementation: Implementations may wish
(or need) to design a different process that yields results that

In the processing model, a valid query is executed against a value,
the argument, and produces a list of zero or more nodes of the
value.

The query is a sequence of zero or more selectors, each of which is
applied to the result of the previous selector and provides input to
the next selector. These results and inputs take the form of a
nodelist, i.e., a sequence of zero or more nodes.

The nodelist going into the first selector contains a single node,
the argument. The nodelist resulting from the last selector is
presented as the result of the query; depending on the specific API,
it might be presented as an array of the JSON values at the nodes,
an array of Output Paths referencing the nodes, or both -- or some
other representation as desired by the implementation. Note that the
API must be capable of presenting an empty nodelist as the result of
the query.

A selector performs its function on each of the nodes in its input
nodelist, during such a function execution, such a node is referred
to as the "current node". Each of these function executions produces
a nodelist, which are then concatenated into the result of the
selector.

The processing within a selector may execute nested queries, which
are in turn handled with the processing model defined here.
Typically, the argument to that query will be the current node of
the selector or a set of nodes subordinate to that current node.

3.3. Syntax

Syntactically, a JSONPath query consists of a root selector ($),
which stands for a nodelist that contains the root node of the
argument, followed by a possibly empty sequence of selectors.

json-path = root-selector *(dot-selector /
dot-wild-selector /
index-selector /
index-wild-selector /
union-selector /
slice-selector /
descendant-selector /

filter-selector)

The syntax and semantics of each selector is defined below.

3.4.

Semantics

The root selector $ not only selects the root node of the argument,
but it also produces as output a list consisting of one node: the
argument itself.

A selector may select zero or more nodes for further processing. A
syntactically valid selector MUST NOT produce errors. This means
that some operations which might be considered erroneous, such as
indexing beyond the end of an array, simply result in fewer nodes
being selected.

But a selector doesn't just act on a single node: a selector acts on
each of the nodes in its input nodelist and concatenates the
resultant nodelists to form the result nodelist of the selector.

For each node in the list, the selector selects zero or more nodes,
each of which is a descendant of the node or the node itself.

For instance, with the argument {"a":[{"b":0},{"b":1},{"c":2}]}, the
query $.a[*].b selects the following list of nodes: 0, 1 (denoted
here by their value). Let's walk through this in detail.

The query consists of $ followed by three selectors: .a, [*],
and .b.

Firstly, $ selects the root node which is the argument. So the
result is a list consisting of just the root node.

Next, .a selects from any input node of type object and selects the
node of any member value of the input node corresponding to the
member name "a". The result is again a list of one node: [{"b":0},

{llbll :1}, {IICII :2}] .

Next, [*] selects from any input node which is an array and selects
all the elements of the input node. The result is a list of three
nodes: {"b":0}, {"b":1}, and {"c":2}.

Finally, .b selects from any input node of type object with a member
name b and selects the node of the member value of the input node
corresponding to that name. The result is a list containing 0, 1.
This is the concatenation of three lists, two of length one
containing O, 1, respectively, and one of length zero.

As a consequence of this approach, if any of the selectors selects
no nodes, then the whole query selects no nodes.

In what follows, the semantics of each selector are defined for each
type of node.

3.5. Selectors

A JSONPath query consists of a sequence of selectors. Vvalid
selectors are

*Root selector $
*Dot selector .<name>, used with object member names exclusively.
Dot wild card selector ..

*Index selector [<index>], where <index> is either an (possibly
negative) array index or an object member name.

Index wild card selector [].

*Array slice selector [<start>:<end>:<step>], where <start>,
<end>, <step> are integer literals.

*Nested descendants selector
*Union selector [<sell>,<sel2>,...,<selN>], holding a comma
delimited list of index, index wild card, array slice, and filter
selectors.
*Filter selector [?(<expr>)]
*Current item selector @

3.5.1. Root Selector

Syntax

Every valid JSONPath query MUST begin with the root selector $.

root-selector = "g$"

Semantics

The Argument -- the root JSON value -- becomes the root node, which
is addressed by the root selector $.

3.5.2. Dot Selector
Syntax

A dot selector starts with a dot . followed by an object's member
name.

dot-selector = "." dot-member-name
dot-member-name = name-first *name-char
name-first =

ALPHA /
ll_ll / ,. _
%x80-10FFFF ; any non-ASCII Unicode character

name-char = DIGIT / name-first

DIGIT
ALPHA

%Xx30 -39 ; 0-9
%x41-5A / %x61-7A ; A-Z / a-z

Member names containing other characters than allowed by dot-
selector -- such as space °~ °~ and minus - characters -- MUST NOT be
used with the dot-selector. (Such member names can be addressed by
the index-selector instead.)

Semantics

The dot-selector selects the node of the member value corresponding
to the member name from any JSON object. It selects no nodes from
any other JSON value.

Note that the dot-selector follows the philosophy of JSON strings

and is allowed to contain bit sequences that cannot encode Unicode
characters (a single unpaired UTF-16 surrogate, for example). The

behaviour of an implementation is undefined for member names which
do not encode Unicode characters.

3.5.3. Dot wild Card Selector
Syntax
The dot wild card selector has the form .*.

dot-wild-selector EEL ; dot followed by asterisk

Semantics

A dot-wild-selector acts as a wild card by selecting the nodes of
all member values of an object as well as all element nodes of an
array. Applying the dot-wild-selector to a primitive JSON value
(number, string, or true/false/null) selects no node.

3.5.4. 1Index Selector
Syntax

An index selector [<index>] addresses at most one object member
value or at most one array element value.

index-selector = "[" (quoted-member-name / element-index) "]"

Applying the index-selector to an object value, a quoted-member-name
string is required. JSONPath allows it to be enclosed in single or
double quotes.

quoted-member -name string-literal

string-literal = %x22 *double-quoted %x22 / ; "string"
%x27 *single-quoted %x27 ; 'string'
double-quoted = unescaped /
%X27 / ;!
ESC %x22 / ;o \"

ESC escapable

single-quoted = unescaped /
%X22 / ;"
ESC %x27 / ;o\

ESC escapable

ESC = %Xx5C ; \ backslash
unescaped = %x20-21 / ; S. RFC 8259
%x23-26 / ; omit "
%X28-5B / ; omit !
%Xx5D-10FFFF ; omit \
escapable =

(%x62 / %x66 / %X6E / %x72 / %x74 / ; \b \f \n \r \t

; b/ ; BS backspace U+0008

; t/ ; HT horizontal tab U+0009

;n / ; LF line feed U+000A

; T/ ; FF form feed U+000C

, r / ; CR carriage return U+000D

"/ ; / slash (solidus)

"\" / ;\ backslash (reverse solidus)
(%x75 hexchar) ; uXXXX U+XXXX

hexchar = non-surrogate / (high-surrogate "\" %x75 low-surrogate)
non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
("D" %x30-37 2HEXDIG)
high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG
low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG

HEXDIG = DIGIT / ||All / "BH / "C" / IID" / ||Ell / "F||

; Task from 2021-06-15 interim: update ABNF later

Applying the index-selector to an array, a numerical element-index
is required. JSONPath allows it to be negative.

element-index int ; decimal integer

int
DIGIT1

["-"] ("e" / (DIGIT1 *DIGIT)) ; - optional
%x31-39 ; 1-9 non-zero digit

Notes: 1. double-quoted strings follow JSON in [RFC8259]; single-
gquoted strings follow an analogous pattern. 2. An element-index is
an integer (in base 10, as in JSON numbers). 3. As in JSON numbers,
the syntax does not allow octal-like integers with leading zeros
such as 01 or -01.

Semantics
A quoted-member-name string MUST be converted to a member name by

removing the surrounding quotes and replacing each escape sequence
with its equivalent Unicode character, as in the table below:

Escape Sequence Unicode Character Description

\b U+0008 BS backspace

\t U+0009 HT horizontal tab

\n U+000A LF line feed

\f U+000C FF form feed

\r U+0006D CR carriage return

\" u+0022 quotation mark

\' u+0027 apostrophe

\/ U+002F slash (solidus)

\\ U+005C backslash (reverse solidus)
\UXXXX U+XXXX unicode character

Table 3: Escape Sequence Replacements

The index-selector applied with a quoted-member-name to an object
selects the node of the corresponding member value from it, if and
only if that object has a member with that name. Nothing is selected
from a value which is not a object.

Array indexing via element-index is a way of selecting a particular
array element using a zero-based index. For example, selector [0]
selects the first and selector [4] the fifth element of a
sufficiently long array.

A negative element-index counts from the array end. For example,
selector [-1] selects the last and selector [-2] selects the last
but one element of an array with at least two elements.

3.5.5. Index Wild Card Selector
Syntax
The index wild card selector has the form [*].

index-wild-selector = "[" "o, asterisk enclosed by brackets

Semantics

An index-wild-selector selects the nodes of all member values of an
object as well as of all elements of an array. Applying the index-
wild-selector to a primitive JSON value (such as a number, string,
or true/false/null) selects no node.

The index-wild-selector behaves identically to the dot-wild-
selector.

3.5.6. Array Slice Selector
Syntax
The array slice selector has the form [<start>:<end>:<step>]. It

selects elements starting at index <start>, ending at -- but not
including -- <end>, while incrementing by step.

slice-selector "[" slice-index "]"

slice-index = ws [start] ws ":" ws [end] [ws ":" ws [step] ws]
start = int ; included in selection

end = int ; not included in selection

step = int ; default: 1

wSs *(%x20 / ; Space
%x09 / ; Horizontal tab
%X0A / ; Line feed or New line

%x0D) ; Carriage return

The slice-selector consists of three optional decimal integers
separated by colons.

Semantics

The slice-selector was inspired by the slice operator of ECMAScript
4 (ES4), which was deprecated in 2014, and that of Python.

Informal Introduction
This section is non-normative.

Array indexing is a way of selecting a particular element of an
array using a 0-based index. For example, the expression [0] selects
the first element of a non-empty array.

Negative indices index from the end of an array. For example, the
expression [-2] selects the last but one element of an array with at
least two elements.

Array slicing is inspired by the behaviour of the
Array.prototype.slice method of the JavaScript language as defined
by the ECMA-262 standard [ECMA-262], with the addition of the step
parameter, which is inspired by the Python slice expression.

The array slice expression [start:end:step] selects elements at
indices starting at start, incrementing by step, and ending with end
(which is itself excluded). So, for example, the expression [1:3]
(where step defaults to 1) selects elements with indices 1 and 2 (in
that order) whereas [1:5:2] selects elements with indices 1 and 3.

When step is negative, elements are selected in reverse order. Thus,
for example, [5:1:-2] selects elements with indices 5 and 3, in that
order and [::-1] selects all the elements of an array in reverse
order.

When step is 0, no elements are selected. This is the one case which
differs from the behaviour of Python, which raises an error in this
case.

The following section specifies the behaviour fully, without
depending on JavaScript or Python behaviour.

Detailed Semantics

An array selector is either an array slice or an array index, which
is defined in terms of an array slice.

A slice expression selects a subset of the elements of the input
array, in the same order as the array or the reverse order,
depending on the sign of the step parameter. It selects no nodes
from a node which is not an array.

A slice is defined by the two slice parameters, start and end, and
an iteration delta, step. Each of these parameters is optional. len
is the length of the input array.

The default value for step is 1. The default values for start and
end depend on the sign of step, as follows:

Condition start end

step >= 0 0 len

step < 0 len - 1 -len - 1

Table 4: Default array slice
start and end values

Slice expression parameters start and end are not directly usable as
slice bounds and must first be normalized. Normalization for this
purpose is defined as:

FUNCTION Normalize(i, len):
IF 1 >= @ THEN
RETURN i
ELSE
RETURN len + i
END IF

The result of the array indexing expression [i] applied to an array
of length len is defined to be the result of the array slicing
expression [i:Normalize(i, len)+1:1].

Slice expression parameters start and end are used to derive slice
bounds lower and upper. The direction of the iteration, defined by
the sign of step, determines which of the parameters is the lower
bound and which is the upper bound:

FUNCTION Bounds(start, end, step, len):
n_start = Normalize(start, len)
n_end = Normalize(end, len)

IF step >= 0 THEN

lower = MIN(MAX(n_start, 0), len)
upper = MIN(MAX(n_end, 0), len)
ELSE
upper = MIN(MAX(n_start, -1), len-1)
lower = MIN(MAX(n_end, -1), len-1)
END IF

RETURN (lower, upper)

The slice expression selects elements with indices between the lower
and upper bounds. In the following pseudocode, the a(i) construct
expresses the 0-based indexing operation on the underlying array.

IF step > 0 THEN

i = lower

WHILE i < upper:
SELECT a(i)
i=1+ step

END WHILE

ELSE if step < @ THEN

i = upper

WHILE lower < 1i:
SELECT a(i)
i=1i+ step

END WHILE

END IF

When step = 0, no elements are selected and the result array is
empty.

An implementation MUST raise an error if any of the slice expression
parameters does not fit in the implementation's representation of an
integer. If a successfully parsed slice expression is evaluated
against an array whose size doesn't fit in the implementation's

representation of an integer, the implementation MUST raise an
error.

3.5.7. Descendant Selector

Syntax

The descendant selector starts with a double dot .. and can be
followed by an object member name (similar to the dot-selector), by
an index-selector acting on objects or arrays, or by a wild card.

descendant-selector = ".." (dot-member-name / ; ..<name>
index-selector / ; ..[<index>]
index-wild-selector / ; ..[*]
*

m%an

Semantics

The descendant-selector is inspired by ECMAScript for XML (E4X). It
selects the node and all its descendants.

3.5.8. Union Selector
3.5.8.1. Syntax

The union selector is syntactically related to the index-selector.
It contains multiple, comma separated entries.

union-selector = "[" ws union-entry 1*(ws "," ws union-entry) ws "]"

union-entry (quoted-member-name /
element-index /

slice-index

Task (T1): This, besides slice-index, is currently one of only
two places in the document that mentions whitespace. Whitespace
needs to be handled throughout the ABNF syntax. Room Consensus at
the 2021-06-15 interim was that JSONPath generally is generous
with allowing insignificant whitespace throughout. Minimizing the
impact of the many whitespace insertion points by choosing a rule
name such as "S" was mentioned. Some conventions will probably
help with minimizing the number of places where S needs to be
inserted.

3.5.8.2. Semantics

A union selects any node which is selected by at least one of the
union selectors and selects the concatenation of the lists (in the
order of the selectors) of nodes selected by the union elements.
Note that any node selected in more than one of the union selectors
is kept as many times in the node 1list.

3.5.9. Filter Selector
3.5.9.1. Syntax

The filter selector has the form [?<expr>]. It works via iterating
over structured values, i.e. arrays and objects.

filter-selector = "[?" boolean-expr "]"

During iteration process each array element or object member is
visited and its value -- accessible via symbol @ -- or one of its
descendants -- uniquely defined by a relative path -- is tested
against a boolean expression boolean-expr.

The current item is selected if and only if the result is true.

boolean-expr

logical-or-expr

logical-and-expr

basic-expr
exist-expr
path
rel-path
paren-expr
neg-op

relation-expr

comp-expr
comparable

comp-op

regex-expr
regex-op
regex

contain-expr
containable

in-op
container

Notes:

logical-or-expr

basic-expr *("&&" basic-expr)

4
4
4

4

= logical-and-expr *("||" logical-and-expr)

disjunction
binds less tightly than conjunction
conjunction
binds more tightly than disjunction

exist-expr / paren-expr / (neg-op paren-expr) / relation-expr

[neg-op] path
rel-path / json-path

= "@" *(dot-selector / index-selector)
= ll(ll boolean_expr Il)ll

comp-expr /
regex-expr /
contain-expr

comparable comp-op comparable
number / string-literal /

true / false / null /
path

==t/ ="/
"<t/

H<:l| / |I>:||

regex-op regex

<TO BE DEFINED>

containable in-op container

rel-path / json-path /

number / string-literal

"oip "

rel-path / json-path / array-literal

4

4

path existence or non-existence

parenthesized expression
not operator

comparison test
regular expression test
containment test

primitive
values only
path value
comparison
operators

regular expression match

path to primitive value

in operator
resolves to array

*Parentheses can be used with boolean-expr for grouping. So filter
selection syntax in the original proposal [?(<expr>)] is
naturally contained in the current lean syntax [?<expr>] as a
special case.

*Comparisons are restricted to primitive values (such as number,

string,
i.e.

fail,

true,

false,
no selection occurs.

null). Comparisons with complex values will

*Types are not implicitly converted in comparisons. So "13 ==
'13'" selects no node.

*A member or element value by itself is falsy only, if it does not
exist. Otherwise it is truthy, resulting in its value. To be more
specific explicit comparisons are necessary. This existence test
-- as an exception of the general rule -- also works with
structured values.

*Regular expression tests can be applied to string values only.

*The value of the first operand (containable) of a contain-expr is
compared to every single element of the RHS container. In case of
a match a selection occurs. Containment tests -- like comparisons
-- are restricted to primitive values. So even if a structured
containable value is equal to a certain structured value in
container, no selection is done.

*The value of the second operand (container) of a contain-expr
needs to be resolved to an array. Otherwise nothing is selected.

The following table lists filter expression operators in order of

precedence from highest (binds most tightly) to lowest (binds least
tightly).

Precedence Operator type Syntax

5 Grouping (...)
4 Logical NOT !
== 1=
3 Relations) <fﬂ? 7
in
2 Logical AND &&
1 Logical OR N\
Table 5: Filter expression operator
precedence

3.5.9.2. Semantics

The filter-selector works with arrays and objects exclusively. Its
result might be a list of zero, one, multiple or all of their
element or member values then. Applied to other value types, it will
select nothing.

Negation operator neg-op allows to test falsiness of values.

Type Negation Result Comment

Number 10 true false for non-zero number
|llll
String ;,| true false for non-empty string
null 'null true --
true ltrue false --
false Ifalse true --
. {3
Object false always false
J 1{a:0} way
|
Array lt%g false always false

Table 6: Test falsiness of JSON values
Applying negation operator twice !! gives us truthiness of values.

Some examples:

JSON Query Result Comment
{"a":l,"b":2} [1,2] Same as $.*
[2,3,4] s[-e] [2,3,4] or $[*]
__ [2] Select by

/e s[ee==2] [2] value.
{"a":{"b": $[?@.b] [{"b":)

{"c": {11} $[2@.b.c] e (1] Existence

" " $[?index(@)=="key'] [false] Select object
{(Tkey":Talse} $[?index(@)==0] [] member

345 $[?index(@)==2] [5] Select array
[3,4,5] $[?index(@)==17] [] element

n ARLERL da" $[7@ in n d" C tai t
{"col":"red"} ['red', 'green', 'blue']] ["red"] ontainmen
{llall:{llbﬂ: L [{llbll: .
(5},c:0}} $[?@.b==5 && '@.c] (5},c:0}] Existence

Table 7

4. Expression Language

Task (T2): Separate out expression language. For now, this
section is a repository for ABNF taken from [RFC8259]. This needs
to be deduplicated with definitions above.

number = [minus] jsint [frac] [exp]

decimal-point = %x2E -
digit1-9 = %x31-39 ; 1-9
e = %X65 / %x45 ; e E

exp = e [minus / plus] 1*DIGIT
frac = decimal-point 1*DIGIT
jsint = zero / (digit1-9 *DIGIT)

minus = %x2D ;-
plus = %x2B HEE S
zero = %x30 ; 0
false = %x66.61.6C.73.65 ; false
null = %x6e.75.6cCc.6C ; null
true = %x74.72.75.65 ; true

5. TIANA Considerations
TBD: Define a media type for JSONPath expressions.
6. Security Considerations

This section gives security considerations, as required by
[RFC3552].

7. References
7.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <https://www.rfc-editor.org/info/rfc3629>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", STD 68, RFC 5234, DOI
10.17487/RFC5234, January 2008, <https://www.rfc-
editor.org/info/rfc5234>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON)
Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc8174

RFC8259, December 2017, <https://www.rfc-editor.org/info/
rfc8259>.

7.2. Informative References

[E4X]

[ECMA-262]

IS0, "Information technology — ECMAScript for XML (E4X)
specification", ISO/IEC 22537:2006 , 2006.

Ecma International, "ECMAScript Language Specification,
Standard ECMA-262, Third Edition", December 1999,
<http://www.ecma-international.org/publications/files/
ECMA-ST-ARCH/ECMA-262,%203rd%20edition,
%20December%201999.pdf>.

[JSONPath-orig] Gdssner, S., "JSONPath — XPath for JSON", 21

[RFC3552]

[RFC6901]

[SLICE]

[XPath]

February 2007, <https://goessner.net/articles/JsonPath/>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC
Text on Security Considerations", BCP 72, RFC 3552, DOI
10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/
info/rfc3552>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
"JavaScript Object Notation (JSON) Pointer", RFC 6901,
DOI 10.17487/RFC6901, April 2013, <https://www.rfc-
editor.org/info/rfc6901>.

"Slice notation", n.d., <https://github.com/tc39/
proposal-slice-notation>.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,
Kay, M., Robie, J., and J. Simeon, "XML Path Language
(XPath) 2.0 (Second Edition)", World Wide Web Consortium
Recommendation REC-xpath20-20101214, 14 December 2010,
<https://www.w3.0rg/TR/2010/REC-xpath20-20101214>.

Acknowledgements

This specification is based on Stefan Gossner's original online
article defining JSONPath [JSONPath-orig].

The books example was taken from http://coli.lili.uni-bielefeld.de/
~andreas/Seminare/sommer®2/books.xml -- a dead link now.

Contributors

Marko Mikulicic

InfluxData,

Pisa
Italy

Inc.

https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://github.com/tc39/proposal-slice-notation
https://github.com/tc39/proposal-slice-notation
https://www.w3.org/TR/2010/REC-xpath20-20101214

Email: mmikulicic@gmail.com

Edward Surov

TheSoul Publishing Ltd.
Limassol

Cyprus

Email: esurov.tsp@gmail.com

Authors' Addresses

Stefan GOssner (editor)
Fachhochschule Dortmund
Sonnenstralle 96

D-44139 Dortmund
Germany

Email: stefan.goessner@fh-dortmund.de

Glyn Normington (editor)
Winchester
United Kingdom

Email: glyn.normington@gmail.com

Carsten Bormann (editor)
Universitat Bremen TZI
Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921
Email: cabo@tzi.org

mailto:mmikulicic@gmail.com
mailto:esurov.tsp@gmail.com
mailto:stefan.goessner@fh-dortmund.de
mailto:glyn.normington@gmail.com
tel:+49-421-218-63921
mailto:cabo@tzi.org

	JSONPath: Query expressions for JSON
	Abstract
	Contributing
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Inspired by XPath
	1.3. Overview of JSONPath Expressions

	2. JSONPath Examples
	3. JSONPath Syntax and Semantics
	3.1. Overview
	3.2. Processing Model
	3.3. Syntax
	3.4. Semantics
	3.5. Selectors
	3.5.1. Root Selector
	Syntax
	Semantics

	3.5.2. Dot Selector
	Syntax
	Semantics

	3.5.3. Dot Wild Card Selector
	Syntax
	Semantics

	3.5.4. Index Selector
	Syntax
	Semantics

	3.5.5. Index Wild Card Selector
	Syntax
	Semantics

	3.5.6. Array Slice Selector
	Syntax
	Semantics
	Informal Introduction
	Detailed Semantics

	3.5.7. Descendant Selector
	Syntax
	Semantics

	3.5.8. Union Selector
	3.5.8.1. Syntax
	3.5.8.2. Semantics

	3.5.9. Filter Selector
	3.5.9.1. Syntax
	3.5.9.2. Semantics

	4. Expression Language
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Contributors
	Authors' Addresses

