
Workgroup: JSONPath WG

Internet-Draft: draft-ietf-jsonpath-base-06

Published: 16 August 2022

Intended Status: Standards Track

Expires: 17 February 2023

Authors: S. Gössner, Ed.

Fachhochschule Dortmund

G. Normington, Ed.

C. Bormann, Ed.

Universität Bremen TZI

JSONPath: Query expressions for JSON

Abstract

JSONPath defines a string syntax for selecting and extracting values

within a JSON (RFC 8259) value.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-jsonpath-base/.

Discussion of this document takes place on the JSON Path Working

Group mailing list (mailto:jsonpath@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/jsonpath/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 February 2023.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/
https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/
mailto:jsonpath@ietf.org
https://mailarchive.ietf.org/arch/browse/jsonpath/
https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base
https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. History

1.3. Overview of JSONPath Expressions

2. JSONPath Examples

3. JSONPath Syntax and Semantics

3.1. Overview

3.2. Syntax

3.3. Semantics

3.4. Selectors

3.4.1. Root Selector

3.4.2. Dot Selector

3.4.3. Dot Wildcard Selector

3.4.4. Index Selector

3.4.5. Index Wildcard Selector

3.4.6. Array Slice Selector

3.4.7. Filter Selector

3.4.8. List Selector

3.4.9. Descendant Selectors

3.5. Semantics of null

3.6. Normalized Paths

4. IANA Considerations

4.1. Registration of Media Type application/jsonpath

5. Security Considerations

5.1. Attack vectors on JSONPath Implementations

5.2. Attacks on Security Mechanisms that Employ JSONPath

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Inspired by XPath

A.1. JSONPath and XPath

Appendix B. JSON Pointer

¶

¶

https://trustee.ietf.org/license-info

Value:

Type:

Member:

Name:

Acknowledgements

Contributors

Authors' Addresses

1. Introduction

JSON [RFC8259] is a popular representation format for structured

data values. JSONPath defines a string syntax for identifying values

within a JSON value.

JSONPath is not intended as a replacement for, but as a more

powerful companion to, JSON Pointer [RFC6901]. See Appendix B.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The grammatical rules in this document are to be interpreted as

ABNF, as described in [RFC5234]. ABNF terminal values in this

document define Unicode code points rather than their UTF-8

encoding. For example, the Unicode PLACE OF INTEREST SIGN (U+2318)

would be defined in ABNF as %x2318.

The terminology of [RFC8259] applies except where clarified below.

The terms "Primitive" and "Structured" are used to group the types

as in Section 1 of [RFC8259]. Definitions for "Object", "Array",

"Number", and "String" remain unchanged. Importantly "object" and

"array" in particular do not take on a generic meaning, such as they

would in a general programming context.

Additional terms used in this specification are defined below.

As per [RFC8259], a structure complying to the generic data

model of JSON, i.e., composed of components such as structured

values, namely JSON objects and arrays, and primitive data,

namely numbers and text strings as well as the special values

null, true, and false.

As per [RFC8259], one of the six JSON types (strings,

numbers, booleans, null, objects, arrays).

A name/value pair in an object. (Not itself a value.)

The name in a name/value pair constituting a member. (Also

known as "key", "tag", or "label".) This is also used in

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-1

Element:

Index:

Query:

Argument:

Node:

Root Node:

Children (of a node):

Descendants (of a node):

Nodelist:

Normalized Path:

Unicode Scalar Value:

Singular Path:

[RFC8259], but that specification does not formally define it. It

is included here for completeness.

A value in an array. (Not to be confused with XML

element.)

A non-negative integer that identifies a specific element in

an array. Note that the term indexing is also used for accessing

elements using negative integers (Section "Semantics"), and for

accessing member values in an object using their member name.

Short name for JSONPath expression.

Short name for the value a JSONPath expression is applied

to.

The pair of a value along with its location within the

argument.

The unique node whose value is the entire argument.

If the node is an array, each of its

elements, or if the node is an object, each of its member values

(but not its member names). If the node is neither an array nor

an object, it has no descendants.

The children of the node, together with

the children of its children, and so forth recursively. More

formally, the descendants relation between nodes is the

transitive closure of the children relation.

A list of nodes. The output of applying a query to an

argument is manifested as a list of nodes. While this list can be

represented in JSON, e.g. as an array, the nodelist is an

abstract concept unrelated to JSON values.

A simple form of JSONPath expression that

identifies a node by providing a query that results in exactly

that node. Similar to, but syntactically different from, a JSON

Pointer [RFC6901].

Any Unicode [UNICODE] code point except high-

surrogate and low-surrogate code points. In other words, base 16

integers in either of the inclusive ranges 0 to D7FF and E000 to

10FFFF. JSON values of type string are sequences of Unicode

scalar values.

A JSONPath expression built from selectors which

each select at most one node.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

For the purposes of this specification, a value as defined by

[RFC8259] is also viewed as a tree of nodes. Each node, in turn,

holds a value. Further nodes within each value are the elements of

arrays and the member values of objects and are themselves values.

(The type of the value held by a node may also be referred to as the

type of the node.)

A query is applied to an argument, and the output is a nodelist.

1.2. History

This document picks up Stefan Goessner's popular JSONPath proposal

dated 2007-02-21 [JSONPath-orig] and provides a normative definition

for it.

Appendix A describes how JSONPath was inspired by XML's XPath

[XPath].

JSONPath was intended as a light-weight companion to JSON

implementations on platforms such as PHP and JavaScript, so instead

of defining its own expression language like XPath did, JSONPath

delegated this to the expression language of the platform. While the

languages in which JSONPath is used do have significant

commonalities, over time this caused non-portability of JSONPath

expressions between the ensuing platform-specific dialects.

The present specification intends to remove platform dependencies

and serve as a common JSONPath specification that can be used across

platforms. Obviously, this means that backwards compatibility could

not always be achieved; a design principle of this specification is

to go with a "consensus" between implementations even if it is

rough, as long as that does not jeopardize the objective of

obtaining a usable, stable JSON query language.

1.3. Overview of JSONPath Expressions

JSONPath expressions are applied to a JSON value, the argument.

Within the JSONPath expression, the abstract name $ is used to refer

to the root node of the argument, i.e., to the argument as a whole.

JSONPath expressions can use the dot notation

or the more general bracket notation

to build paths that are input to a JSONPath implementation.

¶

¶

¶

¶

¶

¶

¶

¶

$.store.book[0].title¶

¶

$['store']['book'][0]['title']¶

¶

JSONPath allows the wildcard symbol * to select any member of an

object or any element of an array (Section 3.4.3). The descendant

operators (which start with ..) select some or all of the

descendants (Section 3.4.9) of a node. The array slice syntax

[start:end:step] allows selecting a regular selection of an element

from an array, giving a start position, an end position, and

possibly a step value that moves the position from the start to the

end (Section 3.4.6).

Filter expressions are supported via the syntax ?(<boolean expr>) as

in

Table 1 provides a quick overview of the JSONPath syntax elements.

JSONPath Description

$ the root node (Section 3.4.1)

@ the current node: within filter selectors (Section 3.4.7)

.name
child selectors for JSON objects: dot selector (Section

3.4.2)

['name']
child selectors for JSON objects: index selector (Section

3.4.4)

..name

..[3]
descendants: descendant selector (Section 3.4.9)

*

all child member values and array elements: dot wildcard

selector (Section 3.4.3), index wildcard selector (Section

3.4.5)

[3]
index (subscript) selector (Section 3.4.4): index current

node as an array (from 0)

[..,..]
list selector (Section 3.4.8): allow combining selector

styles

[0:100:5] array slice selector (Section 3.4.6): start:end:step

?... filter selector (Section 3.4.7)

() expression: within filter selectors (Section 3.4.7)

Table 1: Overview of JSONPath

2. JSONPath Examples

This section provides some more examples for JSONPath expressions.

The examples are based on the simple JSON value shown in Figure 1,

representing a bookstore (that also has bicycles).

¶

¶

$.store.book[?(@.price < 10)].title¶

¶

¶

{ "store": {

 "book": [

 { "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 { "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.99

 },

 { "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

 "price": 19.95

 }

 }

}

Figure 1: Example JSON value

The examples in Table 2 use the expression mechanism to obtain the

number of elements in an array, to test for the presence of a member

in an object, and to perform numeric comparisons of member values

with a constant.

JSONPath Result

$.store.book[*].author the authors of all books in the store

$..author all authors

$.store.*
all things in store, which are some books and

a red bicycle

$.store..price the prices of everything in the store

$..book[2] the third book

$..book[-1] the last book in order

the first two books

¶

JSONPath Result

$..book[0,1]

$..book[:2]

$..book[?(@.isbn)] filter all books with isbn number

$..book[?(@.price<10)] filter all books cheaper than 10

$..*
all member values and array elements

contained in input value

Table 2: Example JSONPath expressions applied to the example JSON value

3. JSONPath Syntax and Semantics

3.1. Overview

A JSONPath query is a string which selects zero or more nodes of a

JSON value.

A query MUST be encoded using UTF-8. The grammar for queries given

in this document assumes that its UTF-8 form is first decoded into

Unicode code points as described in [RFC3629]; implementation

approaches that lead to an equivalent result are possible.

A string to be used as a JSONPath query needs to be well-formed and

valid. A string is a well-formed JSONPath query if it conforms to

the ABNF syntax in this document. A well-formed JSONPath query is

valid if it also fulfills all semantic requirements posed by this

document.

To be valid, integer numbers in the JSONPath query that are relevant

to the JSONPath processing (e.g., index values and steps) MUST be

within the range of exact values defined in I-JSON [RFC7493], namely

within the interval [-(2)+1, (2)-1]).

To be valid, strings on the right hand side of the =~ regex matching

operator need to conform to [I-D.draft-bormann-jsonpath-iregexp].

The well-formedness and the validity of JSONPath queries are

independent of the JSON value the query is applied to; no further

errors can be raised during application of the query to a value.

Obviously, an implementation can still fail when executing a

JSONPath query, e.g., because of resource depletion, but this is not

modeled in the present specification. However, the implementation

MUST NOT silently malfunction. Specifically, if a valid JSONPath

query is evaluated against a structured value whose size doesn't fit

in the range of exact values, interfering with the correct

interpretation of the query, the implementation MUST provide an

indication of overflow.

¶

¶

¶

53 53 ¶

¶

¶

¶

(Readers familiar with the HTTP error model may be reminded of 400

type errors when pondering well-formedness and validity, while

resource depletion and related errors are comparable to 500 type

errors.)

The JSON value the JSONPath query is applied to is, by definition, a

valid JSON value. The parsing of a JSON text into a JSON value and

what happens if a JSON text does not represent valid JSON are not

defined by this specification.

3.2. Syntax

Syntactically, a JSONPath query consists of a root selector ($),

which stands for a nodelist that contains the root node of the

argument, followed by a possibly empty sequence of selectors.

json-path = root-selector *(S (dot-selector /

 dot-wild-selector /

 index-selector /

 index-wild-selector /

 slice-selector /

 filter-selector /

 list-selector /

 descendant-selector))

The syntax and semantics of each selector is defined below.

3.3. Semantics

In this specification, the semantics of a JSONPath query define the

required results and do not prescribe the internal workings of an

implementation.

The semantics are that a valid query is executed against a value,

the argument, and produces a list of zero or more nodes of the

value.

The query is a sequence of zero or more selectors, each of which is

applied to the result of the previous selector and provides input to

the next selector. These results and inputs take the form of a

nodelist, i.e., a sequence of zero or more nodes.

The nodelist presented to the first selector contains a single node,

the argument. The nodelist resulting from the last selector is

presented as the result of the query; depending on the specific API,

it might be presented as an array of the JSON values at the nodes,

an array of Normalized Paths referencing the nodes, or both -- or

some other representation as desired by the implementation. Note

¶

¶

¶

¶

¶

¶

¶

¶

that the API must be capable of presenting an empty nodelist as the

result of the query.

A selector performs its function on each of the nodes in its input

nodelist, during such a function execution, such a node is referred

to as the "current node". Each of these function executions produces

a nodelist, which are then concatenated to produce the result of the

selector. A node may be selected more than once and appear that

number of times in the nodelist. Duplicate nodes are not removed.

The processing within a selector may execute nested queries, which

conform to the semantics defined here. Typically, the argument to

that query will be the current node of the selector or a set of

nodes subordinate to that current node.

A syntactically valid selector MUST NOT produce errors. This means

that some operations that might be considered erroneous, such as

indexing beyond the end of an array, simply result in fewer nodes

being selected.

Consider this example. With the argument {"a":[{"b":0},{"b":1},{"c":

2}]}, the query $.a[*].b selects the following list of nodes: 0, 1

(denoted here by their value).

The query consists of $ followed by three selectors: .a, [*],

and .b.

Firstly, $ selects the root node which is the argument. So the

result is a list consisting of just the root node.

Next, .a selects from any input node of type object and selects the

node of any member value of the input node corresponding to the

member name "a". The result is again a list of one node: [{"b":0},

{"b":1},{"c":2}].

Next, [*] selects from an input node of type array all its elements

(if the input note were of type object, it would select all its

member values, but not the member names). The result is a list of

three nodes: {"b":0}, {"b":1}, and {"c":2}.

Finally, .b selects from any input node of type object with a member

name b and selects the node of the member value of the input node

corresponding to that name. The result is a list containing 0, 1.

This is the concatenation of three lists, two of length one

containing 0, 1, respectively, and one of length zero.

As a consequence of this approach, if any of the selectors selects

no nodes, then the whole query selects no nodes.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In what follows, the semantics of each selector are defined for each

type of node.

3.4. Selectors

A JSONPath query consists of a sequence of selectors. Valid

selectors are

Root selector $ (used at the start of a query and in expressions)

Dot selector .<name>, used with object member names exclusively

Dot wildcard selector .*

Index selector [<index>], where <index> is either a (possibly

negative, see Section "Semantics") array index or an object

member name

Index wildcard selector [*]

Array slice selector [<start>:<end>:<step>], where the optional

values <start>, <end>, and <step> are integer literals

List selector [<sel1>,<sel2>,...,<selN>], holding a comma

separated list of index and slice selectors

Filter selector [?(<expr>)]

Current item selector @ (used in expressions)

Descendants selectors starting with a double dot ..

Note that processing the dot selector, string-valued index selector,

and filter selector all potentially require matching strings against

strings, with those strings coming from the JSONPath and from member

names and string values in the JSON to which it is being applied.

Two strings MUST be considered equal if and only if they are

identical sequences of Unicode scalar values. In other words,

normalization operations MUST NOT be applied to either the string

from the JSONPath or from the JSON prior to comparison.

3.4.1. Root Selector

Syntax

Every valid JSONPath query MUST begin with the root selector $.

root-selector = "$"

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

Semantics

The root selector $ selects the root node of the argument and

produces a nodelist consisting of that root node.

Examples

JSON:

Queries:

Query Result Result Path Comment

$ {"k": "v"} $ Root node

Table 3: Root selector examples

3.4.2. Dot Selector

Syntax

A dot selector starts with a dot . followed by an object's member

name.

dot-selector = "." dot-member-name

dot-member-name = name-first *name-char

name-first =

 ALPHA /

 "_" / ; _

 %x80-10FFFF ; any non-ASCII Unicode character

name-char = DIGIT / name-first

DIGIT = %x30-39 ; 0-9

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

Member names containing characters other than allowed by dot-

selector -- such as space ` , minus -, or dot . characters -- MUST

NOT be used with the dot-selector. (Such member names can be

addressed by the index-selector` instead.)

Semantics

The dot-selector selects the node of the member value corresponding

to the member name from any JSON object in its input nodelist. It

selects no nodes from any other JSON value.

¶

¶

{"k": "v"}¶

¶

¶

¶

¶

¶

Examples

JSON:

Queries:

Query Result Result Paths Comment

$.j {"k": 3} $['j'] Named value of an object

$.j.k 3 $['j']['k'] Named value in nested object

Table 4: Dot selector examples

3.4.3. Dot Wildcard Selector

Syntax

The dot wildcard selector has the form .* as defined in the

following syntax:

dot-wild-selector = "." wildcard ; dot followed by asterisk

wildcard = "*"

Semantics

A dot-wild-selector acts as a wildcard by selecting the nodes of all

member values of an object in its input nodelist as well as all

element nodes of an array in its input nodelist. Applying the dot-

wild-selector to a primitive JSON value (a number, a string, true,

false, or null) selects no node.

Examples

JSON:

Queries:

Query Result Result Paths Comment

$.o.*
1

2

$['o']['j']

$['o']['k']
Object values

$.o.* Alternative result

¶

{"j": {"k": 3}}¶

¶

¶

¶

¶

¶

{

 "o": {"j": 1, "k": 2},

 "a": [5, 3]

}

¶

¶

Query Result Result Paths Comment

2

1

$['o']['k']

$['o']['j']

$.a.*
5

3

$['a'][0]

$['a'][1]
Array members

Table 5: Dot wildcard selector examples

3.4.4. Index Selector

Syntax

An index selector [<index>] addresses at most one object member

value or at most one array element value.

index-selector = "[" S (quoted-member-name / element-index) S "]"

Applying the index-selector to an object value in its input

nodelist, a quoted-member-name string is required to select the

corresponding member value. In contrast to JSON, the JSONPath syntax

allows strings to be enclosed in single or double quotes.

¶

¶

¶

quoted-member-name = string-literal

string-literal = %x22 *double-quoted %x22 / ; "string"

 %x27 *single-quoted %x27 ; 'string'

double-quoted = unescaped /

 %x27 / ; '

 ESC %x22 / ; \"

 ESC escapable

single-quoted = unescaped /

 %x22 / ; "

 ESC %x27 / ; \'

 ESC escapable

ESC = %x5C ; \ backslash

unescaped = %x20-21 / ; s. RFC 8259

 %x23-26 / ; omit "

 %x28-5B / ; omit '

 %x5D-10FFFF ; omit \

escapable = (%x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t

 ; b / ; BS backspace U+0008

 ; t / ; HT horizontal tab U+0009

 ; n / ; LF line feed U+000A

 ; f / ; FF form feed U+000C

 ; r / ; CR carriage return U+000D

 "/" / ; / slash (solidus) U+002F

 "\" / ; \ backslash (reverse solidus) U+005C

 (%x75 hexchar) ; uXXXX U+XXXX

)

hexchar = non-surrogate / (high-surrogate "\" %x75 low-surrogate)

non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /

 ("D" %x30-37 2HEXDIG)

high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG

low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

; Task from 2021-06-15 interim: update ABNF later

Applying the index-selector to an array, a numerical element-index

is required to select the corresponding element. JSONPath allows it

to be negative (see Section "Semantics").

¶

¶

element-index = int ; decimal integer

int = ["-"] ("0" / (DIGIT1 *DIGIT)) ; - optional

DIGIT1 = %x31-39 ; 1-9 non-zero digit

Notes: 1. double-quoted strings follow the JSON string syntax

(Section 7 of [RFC8259]); single-quoted strings follow an analogous

pattern (Section "Syntax"). 2. An element-index is an integer (in

base 10, as in JSON numbers). 3. As in JSON numbers, the syntax does

not allow octal-like integers with leading zeros such as 01 or -01.

Semantics

A quoted-member-name string MUST be converted to a member name by

removing the surrounding quotes and replacing each escape sequence

with its equivalent Unicode character, as in the table below:

Escape Sequence Unicode Character Description

\b U+0008 BS backspace

\t U+0009 HT horizontal tab

\n U+000A LF line feed

\f U+000C FF form feed

\r U+000D CR carriage return

\" U+0022 quotation mark

\' U+0027 apostrophe

\/ U+002F slash (solidus)

\\ U+005C backslash (reverse solidus)

\uXXXX U+XXXX unicode character

Table 6: Escape Sequence Replacements

The index-selector applied with a quoted-member-name to an object

selects the node of the corresponding member value from it, if and

only if that object has a member with that name. Nothing is selected

from a value that is not a object.

The index-selector applied with an element-index to an array selects

an array element using a zero-based index. For example, selector [0]

selects the first and selector [4] the fifth element of a

sufficiently long array. Nothing is selected, and it is not an

error, if the index lies outside the range of the array. Nothing is

selected from a value that is not an array.

A negative element-index counts from the array end. For example,

selector [-1] selects the last and selector [-2] selects the

penultimate element of an array with at least two elements. As with

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-7

non-negative indexes, it is not an error if such an element does not

exist; this simply means that no element is selected.

Examples

JSON:

Queries:

Query Result Result Paths Comment

$.o['j j']

['k.k']
3

$['o']['j j']

['k.k']

Named value in nested

object

$.o["j j"]

["k.k"]
3

$['o']['j j']

['k.k']

Named value in nested

object

$.a[1] "b" $['a'][1] Member of array

$.a[-2] "a" $['a'][0]
Member of array, from

the end

$["'"]["@"] 2 $['\'']['@'] Unusual member names

Table 7: Index selector examples

3.4.5. Index Wildcard Selector

Syntax

The index wildcard selector has the form [*].

index-wild-selector = "[" wildcard "]" ; asterisk enclosed by brackets

Semantics

An index-wild-selector selects the nodes of all member values of an

object as well as of all elements of an array. Applying the index-

wild-selector to a primitive JSON value (that is, a number, a

string, true, false, or null) selects no node.

The index-wild-selector behaves identically to the dot-wild-

selector.

Examples

JSON:

¶

¶

{

 "o": {"j j": {"k.k": 3}},

 "a": ["a","b"],

 "'": {"@": 2}

}

¶

¶

¶

¶

¶

¶

¶

Queries:

Query Result Result Paths Comment

$.o[*]
1

2

$['o']['j']

$['o']['k']
Object values

$.o[*]
2

1

$['o']['k']

$['o']['j']
Alternative result

$.a[*]
5

3

$['a'][0]

$['a'][1]
Array members

Table 8: Index wildcard selector examples

3.4.6. Array Slice Selector

Syntax

The array slice selector has the form [<start>:<end>:<step>]. It

selects elements starting at index <start>, ending at -- but not

including -- <end>, while incrementing by step.

slice-selector = "[" S slice-index S "]"

slice-index = [start S] ":" S [end S] [":" [S step]]

start = int ; included in selection

end = int ; not included in selection

step = int ; default: 1

B = %x20 / ; Space

 %x09 / ; Horizontal tab

 %x0A / ; Line feed or New line

 %x0D ; Carriage return

S = *B ; optional blank space

RS = 1*B ; required blank space

The slice-selector consists of three optional decimal integers

separated by colons.

Semantics

The slice-selector was inspired by the slice operator of ECMAScript

4 (ES4), which was deprecated in 2014, and that of Python.

{

 "o": {"j": 1, "k": 2},

 "a": [5, 3]

}

¶

¶

¶

¶

¶

¶

Informal Introduction

This section is non-normative.

Array indexing is a way of selecting a particular element of an

array using a 0-based index. For example, the expression [0] selects

the first element of a non-empty array.

Negative indices index from the end of an array. For example, the

expression [-2] selects the last but one element of an array with at

least two elements.

Array slicing is inspired by the behavior of the

Array.prototype.slice method of the JavaScript language as defined

by the ECMA-262 standard [ECMA-262], with the addition of the step

parameter, which is inspired by the Python slice expression.

The array slice expression [start:end:step] selects elements at

indices starting at start, incrementing by step, and ending with end

(which is itself excluded). So, for example, the expression [1:3]

(where step defaults to 1) selects elements with indices 1 and 2 (in

that order) whereas [1:5:2] selects elements with indices 1 and 3.

When step is negative, elements are selected in reverse order. Thus,

for example, [5:1:-2] selects elements with indices 5 and 3, in that

order and [::-1] selects all the elements of an array in reverse

order.

When step is 0, no elements are selected. (This is the one case that

differs from the behavior of Python, which raises an error in this

case.)

The following section specifies the behavior fully, without

depending on JavaScript or Python behavior.

Detailed Semantics

An array selector is either an array slice or an array index, which

is defined in terms of an array slice.

A slice expression selects a subset of the elements of the input

array, in the same order as the array or the reverse order,

depending on the sign of the step parameter. It selects no nodes

from a node that is not an array.

A slice is defined by the two slice parameters, start and end, and

an iteration delta, step. Each of these parameters is optional. len

is the length of the input array.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The default value for step is 1. The default values for start and

end depend on the sign of step, as follows:

Condition start end

step >= 0 0 len

step < 0 len - 1 -len - 1

Table 9: Default array slice

start and end values

Slice expression parameters start and end are not directly usable as

slice bounds and must first be normalized. Normalization for this

purpose is defined as:

The result of the array indexing expression [i] applied to an array

of length len is defined to be the result of the array slicing

expression [i:Normalize(i, len)+1:1].

Slice expression parameters start and end are used to derive slice

bounds lower and upper. The direction of the iteration, defined by

the sign of step, determines which of the parameters is the lower

bound and which is the upper bound:

The slice expression selects elements with indices between the lower

and upper bounds. In the following pseudocode, the a(i) construct

expresses the 0-based indexing operation on the underlying array.

¶

¶

FUNCTION Normalize(i, len):

 IF i >= 0 THEN

 RETURN i

 ELSE

 RETURN len + i

 END IF

¶

¶

¶

FUNCTION Bounds(start, end, step, len):

 n_start = Normalize(start, len)

 n_end = Normalize(end, len)

 IF step >= 0 THEN

 lower = MIN(MAX(n_start, 0), len)

 upper = MIN(MAX(n_end, 0), len)

 ELSE

 upper = MIN(MAX(n_start, -1), len-1)

 lower = MIN(MAX(n_end, -1), len-1)

 END IF

 RETURN (lower, upper)

¶

¶

When step = 0, no elements are selected and the result array is

empty.

To be valid, the slice expression parameters MUST be in the I-JSON

range of exact values, see Section 3.1.

Examples

JSON:

Queries:

Query Result Result Paths Comment

$[1:3]
"b"

"c"

$[1]

$[2]
Slice with default step

$[1:5:2]
"b"

"d"

$[1]

$[3]
Slice with step 2

$[5:1:-2]
"f"

"d"

$[5]

$[3]
Slice with negative step

$[::-1]

"g"

"f"

"e"

"d"

"c"

"b"

"a"

$[6]

$[5]

$[4]

$[3]

$[2]

$[1]

$[0]

Slice in reverse order

Table 10: Array slice selector examples

IF step > 0 THEN

 i = lower

 WHILE i < upper:

 SELECT a(i)

 i = i + step

 END WHILE

ELSE if step < 0 THEN

 i = upper

 WHILE lower < i:

 SELECT a(i)

 i = i + step

 END WHILE

END IF

¶

¶

¶

¶

["a", "b", "c", "d", "e", "f", "g"]¶

¶

3.4.7. Filter Selector

Syntax

The filter selector has the form [?<expr>]. It works via iterating

over structured values, i.e. arrays and objects.

filter-selector = "[" S filter S "]"

filter = "?" S boolean-expr

During the iteration process each array element or object member is

visited and its value -- accessible via symbol @ -- or one of its

descendants -- uniquely defined by a relative path -- is tested

against a boolean expression boolean-expr.

The current item is selected if and only if the boolean expression

yields true.

boolean-expr = logical-or-expr

logical-or-expr = logical-and-expr *(S "||" S logical-and-expr)

 ; disjunction

 ; binds less tightly than conjunction

logical-and-expr = basic-expr *(S "&&" S basic-expr) ; conjunction

 ; binds more tightly than disjunction

basic-expr = exist-expr /

 paren-expr /

 relation-expr

exist-expr = [logical-not-op S] singular-path ; path existence or non-existence

Paths in filter expressions are Singular Paths, each of which

selects at most one node.

singular-path = rel-singular-path / abs-singular-path

rel-singular-path = "@" *(S (dot-selector / index-selector))

abs-singular-path = root-selector *(S (dot-selector / index-selector))

Parentheses can be used with boolean-expr for grouping. So filter

selection syntax in the original proposal [?(<expr>)] is naturally

contained in the current lean syntax [?<expr>] as a special case.

¶

¶

¶

¶

¶

¶

¶

¶

paren-expr = [logical-not-op S] "(" S boolean-expr S ")"

 ; parenthesized expression

logical-not-op = "!" ; logical NOT operator

relation-expr = comp-expr / ; comparison test

 regex-expr ; regular expression test

Comparisons are restricted to Singular Path values and primitive

values (that is, numbers, strings, true, false, and null).

comp-expr = comparable S comp-op S comparable

comparable = number / string-literal / ; primitive ...

 true / false / null / ; values only

 singular-path ; Singular Path value

comp-op = "==" / "!=" / ; comparison ...

 "<" / ">" / ; operators

 "<=" / ">="

Alphabetic characters in ABNF are case-insensitive, so "e" can be

either "e" or "E".

true, false, and null are lower-case only (case-sensitive).

number = int [frac] [exp] ; decimal number

frac = "." 1*DIGIT ; decimal fraction

exp = "e" ["-" / "+"] 1*DIGIT ; decimal exponent

true = %x74.72.75.65 ; true

false = %x66.61.6c.73.65 ; false

null = %x6e.75.6c.6c ; null

The syntax of regular expressions in the string-literals on the

right-hand side of =~ is as defined in [I-D.draft-bormann-jsonpath-

iregexp].

regex-expr = (singular-path / string-literal) S regex-op S regex

regex-op = "=~" ; regular expression match

regex = string-literal ; I-Regexp

The following table lists filter expression operators in order of

precedence from highest (binds most tightly) to lowest (binds least

tightly).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Precedence Operator type Syntax

5 Grouping (...)

4 Logical NOT !

3 Relations

== !=

< <= > >=

=~

2 Logical AND &&

1 Logical OR ||

Table 11: Filter expression operator

precedence

Semantics

The filter-selector works with arrays and objects exclusively. Its

result is a list of zero, one, multiple or all of their array

elements or member values, respectively. Applied to other value

types, it will select nothing.

A relative path, beginning with @, refers to the current array

element or member value as the filter selector iterates over the

array or object.

Existence Tests

A singular path by itself in a Boolean context is an existence test

which yields true if the path selects a node and yields false if the

path does not select a node. This existence test -- as an exception

to the general rule -- also works with nodes with structured values.

To test the value of a node selected by a path, an explicit

comparison is necessary. For example, to test whether the node

selected by the path @.foo has the value null, use @.foo == null

(see Section 3.5) rather than the negated existence test !@.foo

(which yields false if @.foo selects a node, regardless of the

node's value).

Comparisons

When a path resulting in an empty nodelist appears on either side of

a comparison, the comparison yields true if and only if:

the comparison operator is ==, >= or <= and the other side of the

comparison is also a path resulting in an empty nodelist, or

the comparison operator is != and the other side of the

comparison is not also a path resulting in an empty nodelist.

¶

¶

¶

¶

¶

*

¶

*

¶

When any path on either side of a comparison results in a nodelist

consisting of a single node, each such path is replaced by the value

of its node and then:

a comparison using the operator == yields true if and only if the

comparison is between:

values of the same primitive type (numbers, strings, booleans,

and null) which are equal,

equal arrays, that is arrays of the same length where each

element of the first array yields true when compared using ==

to the corresponding element of the second array, or

equal objects, that is objects where:

for each member of the first object with name n and value

v, there is a member of the second object with name n and

value w where v and w yield true when comparsed using ==,

and

for each member of the second object with name n and value

v, there is a member of the first object with name n and

value w where v and w yield true when comparsed using ==.

a comparison using the operator != yields true if and only if the

comparison is not between equal values of the same type.

a comparison using one of the operators <, <=, >, or >= yields

true if and only if the comparison is between values of the same

type which are both numbers or both strings and which satisfy the

comparison:

numbers in the I-JSON [RFC7493] range of exact values MUST

compare using the normal mathematical ordering; one or both

numbers outside that range MAY compare using an implementation

specific ordering

the empty string compares less than any non-empty string

a non-empty string compares less than another non-empty string

if and only if the first string starts with a lower Unicode

scalar value than the second string or if both strings start

with the same Unicode scalar value and the remainder of the

first string compares less than the remainder of the second

string.

Note that comparisons using any of the operators <, <=, >, or >=

yield false if either value being compared is an object, array,

boolean, or null.

¶

*

¶

-

¶

-

¶

- ¶

o

¶

o

¶

*

¶

*

¶

-

¶

- ¶

-

¶

¶

Examples

JSON:

Comparison Result Comment

$.nosuch1 == $.nosuch2 true Empty nodelists

$.nosuch1 == 'g' false Empty nodelist

$.nosuch1 != $.nosuch2 false Empty nodelists

$.nosuch1 != 'g' true Empty nodelist

1 <= 2 true Numeric comparison

1 > 2 false Strict, numeric comparison

13 == '13' false Type mismatch

'a' <= 'b' true String comparison

'a' > 'b' false Strict, string comparison

$.obj == $.arr false Type mismatch

$.obj != $.arr true Type mismatch

$.obj == $.obj true Object comparison

$.obj != $.obj false Object comparison

$.arr == $.arr true Array comparison

$.arr != $.arr false Array comparison

$.obj == 17 false Type mismatch

$.obj != 17 true Type mismatch

$.obj <= $.arr false Objects and arrays are not ordered

$.obj < $.arr false Objects and arrays are not ordered

$.obj <= $.obj false Objects are not ordered

$.arr <= $.arr false Arrays are not ordered

1 <= $.arr false Arrays are not ordered

1 >= $.arr false Arrays are not ordered

1 > $.arr false Arrays are not ordered

1 < $.arr false Arrays are not ordered

true <= true false Booleans are not ordered

true > true false Booleans are not ordered

Table 12: Comparison examples
Regular Expressions

A regular-expression test yields true if and only if the value on

the left-hand side of =~ is a string value and it matches the

regular expression on the right-hand side according to the semantics

of [I-D.draft-bormann-jsonpath-iregexp].

The semantics of regular expressions are as defined in [I-D.draft-

bormann-jsonpath-iregexp].

¶

{

 "obj": {"x": "y"},

 "arr": [2, 3]

}

¶

¶

¶

Boolean Operators

The logical AND, OR, and NOT operators have the normal semantics of

Boolean algebra and consequently obey these laws (where P, Q, and R

are any expressions with syntax logical-and-expr, T is any

expression that yields true, such as 1 == 1, and F is any expression

that yields false, such as 1 == 0):

Law Expression Equivalent expression

Associativity of OR P || (Q || R) (P || Q) || R

Associativity of AND P && (Q && R) (P && Q) && R

Commutativity of OR P || Q Q || R

Commutativity of AND P && Q Q && R

Distributivity of OR over AND P || (Q && R) (P || Q) && (P || R)

Distributivity of AND over OR P && (Q || R) (P && Q) || (P && R)

Identity for OR P || F P

Identity for AND P && T P

Annihilator for OR P || T T

Annihilator for AND P && F F

Idempotence of OR P || P P

Idempotence of AND P && P P

Absorption 1 P && (P || Q) P

Absorption 2 P || (P && Q) P

Complementation 1 P && !(P) F

Complementation 2 P || !(P) T

Double negation !(!(P)) P

De Morgan 1 !(P) && !(Q) !(P || Q)

De Morgan 2 !(P) || !(Q) !(P && Q)

Table 13: Logical operator laws

Examples

JSON:

Queries:

Query Result
Result

Paths
Comment

$.a[?@>3.5]

5

4

6

$['a']

[1]

$['a']
Array value comparison

¶

¶

{

 "a": [3, 5, 1, 2, 4, 6, {"b": "ij"}, {"b": "ik"}],

 "o": {"p": 1, "q": 2, "r": 3, "s": 5, "t": {"u": 6}}

}

¶

¶

Query Result
Result

Paths
Comment

[4]

$['a'][5]

$.a[?@.b]

{"b":

"ij"}

{"b":

"ik"}

$['a']

[6]

$['a'][7]

Array value existence

$.a[?@<2 || @.b

== "ik"]

1

{"b":

"ik"}

$['a']

[2]

$['a'][7]

Array value logical OR

$.a[?@.b =~

"i.*"]

{"b":

"ij"}

{"b":

"ik"}

$['a']

[6]

$['a'][7]

Array value regular

expression

$.o[?@>1 && @<4]
2

3

$['o']

['q']

$['o']

['r']

Object value logical AND

$.o[?@>1 && @<4]
3

2

$['o']

['r']

$['o']

['q']

Alternative result

$.o[?@.u || @.x] {"u": 6}
$['o']

['t']
Object value logical OR

$.a[?(@.b ==

$.x)]

3

5

1

2

4

6

$['a']

[0]

$['a']

[1]

$['a']

[2]

$['a']

[3]

$['a'][4]

Comparison of paths with

no values

$[?(@ == @)]
Comparison of structured

values

Table 14: Filter selector examples

3.4.8. List Selector

The list selector allows combining member names, array indices,

slices, and filters in a single selector.

Note: The list selector was called "union selector" in [JSONPath-

orig], as it was intended to solve use cases addressed by the union

selector in XPath. However, the term "union" has the connotation of

a set operation that involves merging input sets while avoiding

duplicates, so the concept was renamed into "list selector".

¶

¶

Syntax

The list selector is syntactically related to the dot-selector,

index-selector, slice-selector, and the filter-selector. It contains

two or more entries, separated by commas.

list-selector = "[" S list-entry 1*(S "," S list-entry) S "]"

list-entry = (quoted-member-name /

 element-index /

 slice-index /

 filter

)

Semantics

A list selector selects the nodes that are selected by at least one

of the selector entries in the list and yields the concatenation of

the lists (in the order of the selector entries) of nodes selected

by the selector entries. Note that any node selected in more than

one of the selector entries is kept as many times in the nodelist.

To be valid, integer values in the element-index and slice-index

components MUST be in the I-JSON [RFC7493] range of exact values,

see Section 3.1.

Examples

JSON:

Queries:

Query Result Result Paths Comment

$[0, 3]
"a"

"d"

$[0]

$[3]
Indices

$[0:2, 5]

"a"

"b"

"f"

$[0]

$[1]

$[5]

Slice and index

$[0, 0]
"a"

"a"

$[0]

$[0]
Duplicated entries

Table 15: List selector examples

¶

¶

¶

¶

¶

["a", "b", "c", "d", "e", "f", "g"]¶

¶

3.4.9. Descendant Selectors

Syntax

The descendant selectors start with a double dot .. and can be

followed by an object member name (similar to the dot-selector), a

wildcard (similar to the dot-wild-selector), an index-selector,

index-wild-selector, filter-selector, or list-selector acting on

objects or arrays, or a slice-selector acting on arrays.

descendant-selector = ".." (dot-member-name / ; ..<name>

 wildcard / ; ..*

 index-selector / ; ..[<index>]

 index-wild-selector / ; ..[*]

 slice-selector / ; ..[<slice-index>]

 filter-selector / ; ..[<filter>]

 list-selector ; ..[<list-entry>,...]

)

Note that .. on its own is not a valid selector.

Semantics

A descendant-selector selects certain descendants of a node:

the ..<name> form (and the ..[<index>] form where <index> is a

quoted-member-name) selects those descendants that are member

values of an object with the given member name.

the ..[<index>] form, where <index> is an element-index, selects

those descendants that are array elements with the given index.

the ..[<slice-index>] form selects those descendants that are

array elements selected by the given slice.

the ..[<filter>] form selects those descendants that are array

elements or object values selected by the given filter.

the ..[*] and ..* forms select all the descendants.

An array-sequenced preorder of the descendants of a node is a

sequence of all the descendants in which:

nodes of any array appear in array order,

nodes appear immediately before all their descendants.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

* ¶

* ¶

This definition does not stipulate the order in which the children

of an object appear, since JSON objects are unordered.

The resultant nodelist of a descendant-selector applied to a node

must be a sub-sequence of an array-sequenced preorder of the

descendants of the node.

Examples

JSON:

Queries:

Query Result Result Paths Comment

$..j
1

4

$['o']['j']

$['a'][2][0]['j']
Object values

$..j
4

1

$['a'][2][0]['j']

$['o']['j']
Alternative result

$..[0]
5

{"j": 4}

$['a'][0]

$['a'][2][0]
Array values

$..[0]
{"j": 4}

5

$['a'][2][0]

$['a'][0]
Alternative result

$..[*]

{"j": 1, "k" : 2}

[5, 3, [{"j": 4}]]

1

2

5

3

[{"j": 4}]

{"j": 4}

4

$['o']

$['a']

$['o']['j']

$['o']['k']

$['a'][0]

$['a'][1]

$['a'][2]

$['a'][2][0]

$['a'][2][0]['j']

All values

$..*

[5, 3, [{"j": 4}]]

{"j": 1, "k" : 2}

2

1

5

3

[{"j": 4}]

{"j": 4}

4

$['a']

$['o']

$['o']['k']

$['o']['j']

$['a'][0]

$['a'][1]

$['a'][2]

$['a'][2][0]

$['a'][2][0]['j']

All values

Table 16: Descendant selector examples

¶

¶

¶

{

 "o": {"j": 1, "k": 2},

 "a": [5, 3, [{"j": 4}]]

}

¶

¶

Note: The ordering of the results for the $..[*] and $..* examples

above is not guaranteed, except that:

{"j": 1, "k": 2} must appear before 1 and 2,

[5, 3, [{"j": 4}]] must appear before 5, 3, and [{"j": 4}],

5 must appear before 3 which must appear before [{"j": 4}],

5 and 3 must appear before {"j": 4} and 4,

[{"j": 4}] must appear before {"j": 4}, and

{"j": 4} must appear before 4.

3.5. Semantics of null

Note that JSON null is treated the same as any other JSON value: it

is not taken to mean "undefined" or "missing".

Examples

JSON:

Queries:

Query Result
Result

Paths
Comment

$.a null $['a'] Object value

$.a[0] null used as array

$.a.d null used as object

$.b[0] null $['b'][0] Array value

$.b[*] null $['b'][0] Array value

$.b[?@] null $['b'][0] Existence

$.b[?@==null] null $['b'][0] Comparison

$.c[?

(@.d==null)]
Comparison with "missing" value

$.null 1 $['null']
Not JSON null at all, just a

string as object key

Table 17: Examples involving (or not involving) null

3.6. Normalized Paths

A Normalized Path is a JSONPath with restricted syntax that

identifies a node by providing a query that results in exactly that

node. For example, the JSONPath expression $.book[?(@.price<10)]

could select two values with Normalized Paths $['book'][3] and $

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

{"a": null, "b": [null], "c": [{}], "null": 1}¶

¶

['book'][5]. For a given JSON value, there is a one to one

correspondence between the value's nodes and the Normalized Paths

that identify these nodes.

A JSONPath implementation may output Normalized Paths instead of, or

in addition to, the values identified by these paths.

Since bracket notation is more general than dot notation, it is used

to construct Normalized Paths. Single quotes are used to delimit

string member names. This reduces the number of characters that need

escaping when Normalized Paths appear as strings (which are

delimited with double quotes) in JSON texts.

The syntax of Normalized Paths is restricted so that there is one

and only one way of representing any given Normalized Path. Putting

this another way, for any two distinct Normalized Paths, a JSON

value exists that will yield distinct results when the Normalized

Paths are applied to it.

Certain characters are escaped, in one and only one way; all other

characters are unescaped.

Normalized Paths are Singular Paths. Not all Singular Paths are

Normalized Paths: $[-3], for example, is a Singular Path, but not a

Normalized Path.

¶

¶

¶

¶

¶

¶

normalized-path = root-selector *(normal-index-selector)

normal-index-selector = "[" (normal-quoted-member-name / normal-element-index) "]"

normal-quoted-member-name = %x27 *normal-single-quoted %x27 ; 'string'

normal-single-quoted = normal-unescaped /

 ESC normal-escapable

normal-unescaped = %x20-26 / ; omit control codes

 %x28-5B / ; omit '

 %x5D-10FFFF ; omit \

normal-escapable = (%x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t

 ; b / ; BS backspace U+0008

 ; t / ; HT horizontal tab U+0009

 ; n / ; LF line feed U+000A

 ; f / ; FF form feed U+000C

 ; r / ; CR carriage return U+000D

 "'" / ; ' apostrophe U+0027

 "\" / ; \ backslash (reverse solidus) U+005C

 (%x75 normal-hexchar) ; certain values u00xx U+00XX

)

normal-hexchar = "0" "0"

 (

 ("0" %x30-37) / ; "00"-"07"

 ("0" %x62) / ; "0b" ; omit U+0008-U+000A

 ("0" %x65-66) / ; "0e"-"0f" ; omit U+000C-U+000D

 ("1" normal-HEXDIG)

)

normal-HEXDIG = DIGIT / %x61-66 ; "0"-"9", "a"-"f"

normal-element-index = "0" / (DIGIT1 *DIGIT) ; non-negative decimal integer

Examples

Path Normalized Path Comment

$.a $['a'] Object value

$[1] $[1] Array index

$.a.b[1:2] $['a']['b'][1]
Nested

structure

$

["\u000B"]
$['\u000b'] Unicode escape

$

["\u0061"]
$['a']

Unicode

character

$

["\u00b1"]

$['±'] (U+0024 U+005B U+0027 U+00B1

U+0027 U+005D)

Unicode

character

Table 18: Normalized Path examples

$["\u00b1"] is normalized into $['±'] (noise in the table and lack

of typewriter font is due to RFCXMLv3 limitations).

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration? (standards tree only):

4. IANA Considerations

4.1. Registration of Media Type application/jsonpath

IANA is requested to register the following media type [RFC6838]:

application

jsonpath

N/A

N/A

binary (UTF-8)

See the Security Considerations section of

RFCXXXX.

N/A

RFCXXXX

Applications that need to

convey queries in JSON data

N/A

N/A

N/A

N/A

N/A

Person & email address to contact for further information:

iesg@ietf.org

COMMON

N/A

JSONPath WG

IESG

no

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5. Security Considerations

Security considerations for JSONPath can stem from

attack vectors on JSONPath implementations, and

the way JSONPath is used in security-relevant mechanisms.

5.1. Attack vectors on JSONPath Implementations

Historically, JSONPath has often been implemented by feeding parts

of the query to an underlying programming language engine, e.g.,

JavaScript. This approach is well known to lead to injection attacks

and would require perfect input validation to prevent these attacks

(see Section 12 of [RFC8259] for similar considerations for JSON

itself). Instead, JSONPath implementations need to implement the

entire syntax of the query without relying on the parsers of

programming language engines.

Attacks on availability may attempt to trigger unusually expensive

runtime performance exhibited by certain implementations in certain

cases. (See Section 10 of [RFC8949] for issues in hash-table

implementations, and Section 8 of [I-D.draft-bormann-jsonpath-

iregexp] for performance issues in regular expression

implementations.) Implementers need to be aware that good average

performance is not sufficient as long as an attacker can choose to

submit specially crafted JSONPath queries or arguments that trigger

surprisingly high, possibly exponential, CPU usage or, for example

via a naive recursive implementation of the descendant selector,

stack overflow. Implementations need to have appropriate resource

management to mitigate these attacks.

5.2. Attacks on Security Mechanisms that Employ JSONPath

Where JSONPath is used as a part of a security mechanism, attackers

can attempt to provoke unexpected or unpredictable behavior, or take

advantage of differences in behavior between JSONPath

implementations.

Unexpected or unpredictable behavior can arise from an argument with

certain constructs described as unpredictable by [RFC8259].

Predictable behavior can be expected, except in relation to the

ordering of objects, for any argument conforming with [RFC7493].

Other attacks can target the behavior of underlying technologies

such as UTF-8 (see Section 10 of [RFC3629]) and the Unicode

character set.

¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-12
https://rfc-editor.org/rfc/rfc8949#section-10
https://datatracker.ietf.org/doc/html/draft-bormann-jsonpath-iregexp-04#section-8
https://rfc-editor.org/rfc/rfc3629#section-10

[I-D.draft-bormann-jsonpath-iregexp]

[RFC2119]

[RFC3629]

[RFC5234]

[RFC6838]

[RFC7493]

[RFC8174]

[RFC8259]

[UNICODE]

[E4X]

6. References

6.1. Normative References

Bormann, C. and T. Bray, "I-

Regexp: An Interoperable Regexp Format", Work in

Progress, Internet-Draft, draft-bormann-jsonpath-

iregexp-04, 25 April 2022, <https://www.ietf.org/archive/

id/draft-bormann-jsonpath-iregexp-04.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

The Unicode Consortium, "The Unicode® Standard: Version

14.0 - Core Specification", September 2021, <https://

www.unicode.org/versions/Unicode14.0.0/

UnicodeStandard-14.0.pdf>.

6.2. Informative References

https://www.ietf.org/archive/id/draft-bormann-jsonpath-iregexp-04.txt
https://www.ietf.org/archive/id/draft-bormann-jsonpath-iregexp-04.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf

[ECMA-262]

[JSONPath-orig]

[RFC6901]

[RFC8949]

[SLICE]

[XPath]

ISO, "Information technology — ECMAScript for XML (E4X)

specification", ISO/IEC 22537:2006 , 2006.

Ecma International, "ECMAScript Language Specification,

Standard ECMA-262, Third Edition", December 1999,

<http://www.ecma-international.org/publications/files/

ECMA-ST-ARCH/ECMA-262,%203rd%20edition,

%20December%201999.pdf>.

Gössner, S., "JSONPath — XPath for JSON", 21

February 2007, <https://goessner.net/articles/JsonPath/>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

"Slice notation", n.d., <https://github.com/tc39/

proposal-slice-notation>.

Berglund, A., Ed., Chamberlin, D., Ed., Simeon, J., Ed.,

Robie, J., Ed., Fernandez, M., Ed., Kay, M., Ed., and S.

Boag, Ed., "XML Path Language (XPath) 2.0 (Second

Edition)", W3C REC REC-xpath20-20101214, W3C REC-

xpath20-20101214, 14 December 2010, <https://www.w3.org/

TR/2010/REC-xpath20-20101214/>.

Appendix A. Inspired by XPath

This appendix is informative.

At the time JSONPath was invented, XML was noted for the

availability of powerful tools to analyze, transform and selectively

extract data from XML documents. [XPath] is one of these tools.

In 2007, the need for something solving the same class of problems

for the emerging JSON community became apparent, specifically for:

Finding data interactively and extracting them out of [RFC8259]

JSON values without special scripting.

Specifying the relevant parts of the JSON data in a request by a

client, so the server can reduce the amount of data in its

response, minimizing bandwidth usage.

¶

¶

¶

*

¶

*

¶

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://github.com/tc39/proposal-slice-notation
https://github.com/tc39/proposal-slice-notation
https://www.w3.org/TR/2010/REC-xpath20-20101214/
https://www.w3.org/TR/2010/REC-xpath20-20101214/

(Note that XPath has evolved since 2007, and recent versions even

nominally support operating inside JSON values. This appendix only

discusses the more widely used version of XPath that was available

in 2007.)

JSONPath picks up the overall feeling of XPath, but maps the

concepts to syntax (and partially semantics) that would be familiar

to someone using JSON in a dynamic language.

E.g., in popular dynamic programming languages such as JavaScript,

Python and PHP, the semantics of the XPath expression

can be realized in the expression

or, in bracket notation,

with the variable x holding the argument.

The JSONPath language was designed to:

be naturally based on those language characteristics;

cover only the most essential parts of XPath 1.0;

be lightweight in code size and memory consumption;

be runtime efficient.

A.1. JSONPath and XPath

JSONPath expressions apply to JSON values in the same way as XPath

expressions are used in combination with an XML document. JSONPath

uses $ to refer to the root node of the argument, similar to

XPath's / at the front.

JSONPath expressions move further down the hierarchy using dot

notation ($.store.book[0].title) or the bracket notation ($['store']

['book'][0]['title']), a lightweight/limited, and a more heavyweight

syntax replacing XPath's / within query expressions.

Both JSONPath and XPath use * for a wildcard. The descendant

operators, starting with .., borrowed from [E4X], are similar to

XPath's //. The array slicing construct [start:end:step] is unique

to JSONPath, inspired by [SLICE] from ECMASCRIPT 4.

¶

¶

¶

/store/book[1]/title¶

¶

x.store.book[0].title¶

¶

x['store']['book'][0]['title']¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

Filter expressions are supported via the syntax ?(<boolean expr>) as

in

Table 19 extends Table 1 by providing a comparison with similar

XPath concepts.

XPath JSONPath Description

/ $ the root XML element

. @ the current XML element

/ . or [] child operator

.. n/a parent operator

//

..name, ..

[index], ..*, or ..

[*]

descendants (JSONPath borrows this

syntax from E4X)

* *
wildcard: All XML elements regardless

of their names

@ n/a
attribute access: JSON values do not

have attributes

[] []

subscript operator used to iterate

over XML element collections and for

predicates

| [,]

Union operator (results in a

combination of node sets); called list

operator in JSONPath, allows combining

member names, array indices, and

slices

n/a [start:end:step] array slice operator borrowed from ES4

[] ?() applies a filter (script) expression

seamless n/a expression engine

() n/a grouping

Table 19: XPath syntax compared to JSONPath

For further illustration, Table 20 shows some XPath expressions and

their JSONPath equivalents.

XPath JSONPath Result

/store/book/author $.store.book[*].author
the authors of all books

in the store

//author $..author all authors

/store/* $.store.*

all things in store,

which are some books and

a red bicycle

/store//price $.store..price
the prices of everything

in the store

¶

$.store.book[?(@.price < 10)].title¶

¶

¶

XPath JSONPath Result

//book[3] $..book[2] the third book

//book[last()] $..book[-1] the last book in order

//

book[position()<3]

$..book[0,1]

$..book[:2]
the first two books

//book[isbn] $..book[?(@.isbn)]
filter all books with

isbn number

//book[price<10] $..book[?(@.price<10)]
filter all books cheaper

than 10

//* $..*

all elements in XML

document; all member

values and array elements

contained in input value

Table 20: Example XPath expressions and their JSONPath equivalents

XPath has a lot more functionality (location paths in unabbreviated

syntax, operators and functions) than listed in this comparison.

Moreover, there are significant differences in how the subscript

operator works in XPath and JSONPath:

Square brackets in XPath expressions always operate on the node

set resulting from the previous path fragment. Indices always

start at 1.

With JSONPath, square brackets operate on the object or array

addressed by the previous path fragment. Array indices always

start at 0.

Appendix B. JSON Pointer

This appendix is informative.

JSONPath is not intended as a replacement for, but as a more

powerful companion to, JSON Pointer [RFC6901]. The purposes of the

two standards are different.

JSON Pointer is for identifying a single value within a JSON value

whose structure is known.

JSONPath can identify a single value within a JSON value, for

example by using a Normalized Path. But JSONPath is also a query

syntax that can be used to search for and extract multiple values

from JSON values whose structure is known only in a general way.

A Normalized JSONPath can be converted into a JSON Pointer by

converting the syntax, without knowledge of any JSON value. The

inverse is not generally true: a numeric path component in a JSON

Pointer may identify a member of a JSON object or may index an

¶

*

¶

*

¶

¶

¶

¶

¶

array. For conversion to a JSONPath query, knowledge of the

structure of the JSON value is needed to distinguish these cases.

Acknowledgements

This specification is based on Stefan Gössner's original online

article defining JSONPath [JSONPath-orig].

The books example was taken from http://coli.lili.uni-bielefeld.de/

~andreas/Seminare/sommer02/books.xml -- a dead link now.

Contributors

Marko Mikulicic

InfluxData, Inc.

Pisa

Italy

Email: mmikulicic@gmail.com

Edward Surov

TheSoul Publishing Ltd.

Limassol

Cyprus

Email: esurov.tsp@gmail.com

Authors' Addresses

Stefan Gössner (editor)

Fachhochschule Dortmund

Sonnenstraße 96

D-44139 Dortmund

Germany

Email: stefan.goessner@fh-dortmund.de

Glyn Normington (editor)

Winchester

United Kingdom

Email: glyn.normington@gmail.com

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

¶

¶

¶

mailto:mmikulicic@gmail.com
mailto:esurov.tsp@gmail.com
mailto:stefan.goessner@fh-dortmund.de
mailto:glyn.normington@gmail.com
tel:+49-421-218-63921

Email: cabo@tzi.org

mailto:cabo@tzi.org

	JSONPath: Query expressions for JSON
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. History
	1.3. Overview of JSONPath Expressions

	2. JSONPath Examples
	3. JSONPath Syntax and Semantics
	3.1. Overview
	3.2. Syntax
	3.3. Semantics
	3.4. Selectors
	3.4.1. Root Selector
	Syntax
	Semantics
	Examples

	3.4.2. Dot Selector
	Syntax
	Semantics
	Examples

	3.4.3. Dot Wildcard Selector
	Syntax
	Semantics
	Examples

	3.4.4. Index Selector
	Syntax
	Semantics
	Examples

	3.4.5. Index Wildcard Selector
	Syntax
	Semantics
	Examples

	3.4.6. Array Slice Selector
	Syntax
	Semantics
	Informal Introduction
	Detailed Semantics

	Examples

	3.4.7. Filter Selector
	Syntax
	Semantics
	Existence Tests
	Comparisons
	Examples
	Regular Expressions
	Boolean Operators

	Examples

	3.4.8. List Selector
	Syntax
	Semantics
	Examples

	3.4.9. Descendant Selectors
	Syntax
	Semantics
	Examples

	3.5. Semantics of null
	Examples

	3.6. Normalized Paths
	Examples

	4. IANA Considerations
	4.1. Registration of Media Type application/jsonpath

	5. Security Considerations
	5.1. Attack vectors on JSONPath Implementations
	5.2. Attacks on Security Mechanisms that Employ JSONPath

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Inspired by XPath
	A.1. JSONPath and XPath

	Appendix B. JSON Pointer
	Acknowledgements
	Contributors
	Authors' Addresses

