
Workgroup: JSONPath WG

Internet-Draft: draft-ietf-jsonpath-base-13

Published: 15 April 2023

Intended Status: Standards Track

Expires: 17 October 2023

Authors: S. Gössner, Ed.

Fachhochschule Dortmund

G. Normington, Ed.

C. Bormann, Ed.

Universität Bremen TZI

JSONPath: Query expressions for JSON

Abstract

JSONPath defines a string syntax for selecting and extracting JSON

(RFC 8259) values from a JSON value.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-jsonpath-base/.

Discussion of this document takes place on the JSON Path Working

Group mailing list (mailto:jsonpath@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/jsonpath/. Subscribe at

https://www.ietf.org/mailman/listinfo/jsonpath/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 October 2023.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/
https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/
mailto:jsonpath@ietf.org
https://mailarchive.ietf.org/arch/browse/jsonpath/
https://www.ietf.org/mailman/listinfo/jsonpath/
https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base
https://github.com/ietf-wg-jsonpath/draft-ietf-jsonpath-base
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.1.1. JSON Values as Trees of Nodes

1.2. History

1.3. JSON Values

1.4. Overview of JSONPath Expressions

1.4.1. Identifiers

1.4.2. Segments

1.4.3. Selectors

1.4.4. Summary

1.5. JSONPath Examples

2. JSONPath Syntax and Semantics

2.1. Overview

2.1.1. Syntax

2.1.2. Semantics

2.1.3. Example

2.2. Root Identifier

2.3. Selectors

2.3.1. Name Selector

2.3.2. Wildcard Selector

2.3.3. Index Selector

2.3.3.1. Syntax

2.3.3.2. Semantics

2.3.3.3. Examples

2.3.4. Array Slice selector

2.3.4.1. Syntax

2.3.4.2. Semantics

2.3.4.3. Examples

2.3.5. Filter selector

2.3.5.1. Syntax

2.3.5.2. Semantics

2.3.5.3. Examples

¶

¶

https://trustee.ietf.org/license-info

2.4. Function Extensions

2.4.1. Type System for Function Expressions

2.4.2. Type Conversion

2.4.3. Well-Typedness of Function Expressions

2.4.4. length() Function Extension

2.4.5. count() Function Extension

2.4.6. match() Function Extension

2.4.7. search() Function Extension

2.4.8. value() Function Extension

2.4.9. Examples

2.5. Segments

2.5.1. Child Segment

2.5.2. Descendant Segment

2.6. Semantics of null

2.7. Normalized Paths

3. IANA Considerations

3.1. Registration of Media Type application/jsonpath

3.2. Function Extensions

4. Security Considerations

4.1. Attack Vectors on JSONPath Implementations

4.2. Attack Vectors on How JSONPath Queries are Formed

4.3. Attacks on Security Mechanisms that Employ JSONPath

5. References

5.1. Normative References

5.2. Informative References

Appendix A. Inspired by XPath

A.1. JSONPath and XPath

Appendix B. JSON Pointer

Acknowledgements

Contributors

Authors' Addresses

1. Introduction

JSON [RFC8259] is a popular representation format for structured

data values. JSONPath defines a string syntax for selecting and

extracting JSON values from a JSON value.

JSONPath is not intended as a replacement for, but as a more

powerful companion to, JSON Pointer [RFC6901]. See Appendix B.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

Value:

Member:

Name:

Element:

Index:

Query:

Query Argument:

Location:

The grammatical rules in this document are to be interpreted as

ABNF, as described in [RFC5234]. ABNF terminal values in this

document define Unicode code points rather than their UTF-8

encoding. For example, the Unicode PLACE OF INTEREST SIGN (U+2318)

would be defined in ABNF as %x2318.

Functions are referred to using the function name followed by a pair

of parentheses, as in fname().

The terminology of [RFC8259] applies except where clarified below.

The terms "Primitive" and "Structured" are used to group different

kinds of values as in Section 1 of [RFC8259]; JSON Objects and

Arrays are structured, all other values are primitive. Definitions

for "Object", "Array", "Number", and "String" remain unchanged.

Importantly "object" and "array" in particular do not take on a

generic meaning, such as they would in a general programming

context.

Additional terms used in this document are defined below.

As per [RFC8259], a structure conforming to the generic data

model of JSON, i.e., composed of constituents such as structured

values, namely JSON objects and arrays, and primitive data,

namely numbers and text strings as well as the special values

null, true, and false. [RFC8259] focuses on the textual

representation of JSON values and does not fully define the value

abstraction assumed here.

A name/value pair in an object. (A member is not itself a

value.)

The name (a string) in a name/value pair constituting a

member. This is also used in [RFC8259], but that specification

does not formally define it. It is included here for

completeness.

A value in a JSON array.

An integer that identifies a specific element in an array.

Short name for a JSONPath expression.

Short name for the value a JSONPath expression is

applied to. (Also used for actual parameters of function-

expressions.)

the position of a value within the query argument. This

can be thought of as a sequence of names and indexes navigating

to the value through the objects and arrays in the query

argument, with the empty sequence indicating the query argument

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-1

Node:

Root Node:

Root Node Identifier:

Current Node Identifier:

Children (of a node):

Descendants (of a node):

Depth (of a descendant node within a value):

Segment:

Nodelist:

Parameter:

Normalized Path:

itself. A location can be represented as a Normalized Path

(defined below).

The pair of a value along with its location within the query

argument.

The unique node whose value is the entire query

argument.

The expression $ which refers to the root

node of the query argument.

The expression @ which refers to the

current node in the context of the evaluation of a filter

expression (described later).

If the node is an array, the nodes of its

elements. If the node is an object, the nodes of its member

values. If the node is neither an array nor an object, it has no

children.

The children of the node, together with

the children of its children, and so forth recursively. More

formally, the descendants relation between nodes is the

transitive closure of the children relation.

The number of

ancestors of the node within the value. The root node of the

value has depth zero, the children of the root node have depth

one, their children have depth two, and so forth.

One of the constructs which select children ([]) or

descendants (..[]) of an input value.

A list of nodes. While a nodelist can be represented in

JSON, e.g. as an array, this document does not require or assume

any particular representation.

Formal parameter (of a function) that can take a

function argument (an actual parameter) in a function-expression.

A form of JSONPath expression that identifies a

node in a value by providing a query that results in exactly that

node. Each node in a query argument is identified by exactly one

Normalized Path (we say, the Normalized Path is "unique" for that

node), and, to be a Normalized Path for a specific query

argument, the Normalized Path needs to identify exactly one node.

Similar to, but syntactically different from, a JSON Pointer

[RFC6901].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Unicode Scalar Value:

Singular Query:

Selector:

Any Unicode [UNICODE] code point except high-

surrogate and low-surrogate code points. In other words, integers

in either of the inclusive base 16 ranges 0 to D7FF and E000 to

10FFFF. JSON string values are sequences of Unicode scalar

values.

A JSONPath expression built from segments each of

which, regardless of the input value, produces a nodelist

containing at most one node.

A single item within a segment that takes the input value

and produces a nodelist consisting of child nodes of the input

value.

1.1.1. JSON Values as Trees of Nodes

This document models the query argument as a tree of JSON values,

each with its own node. A node is either the root node or one of its

descendants.

This document models the result of applying a query to the query

argument as a nodelist (a list of nodes).

Nodes are the selectable parts of the query argument. The only parts

of an object that can be selected by a query are the member values.

Member names and members (name/value pairs) cannot be selected.

Thus, member values have nodes, but members and member names do not.

Similarly, member values are children of an object, but members and

member names are not.

1.2. History

This section is informative.

This document is based on Stefan Gössner's popular JSONPath proposal

dated 2007-02-21 [JSONPath-orig], builds on the experience from the

widespread deployment of its implementations, and provides a

normative specification for it.

Appendix A describes how JSONPath was inspired by XML's XPath

[XPath].

JSONPath was intended as a light-weight companion to JSON

implementations in programming languages such as PHP and JavaScript,

so instead of defining its own expression language, like XPath did,

JSONPath delegated parts of a query to the underlying runtime, e.g.,

JavaScript's eval() function. As JSONPath was implemented in more

environments, JSONPath expressions became decreasingly portable. For

¶

¶

¶

¶

¶

¶

¶

¶

¶

example, regular expression processing was often delegated to a

convenient regular expression engine.

This document aims to remove such implementation-specific

dependencies and serve as a common JSONPath specification that can

be used across programming languages and environments. This means

that backwards compatibility is not always achieved; a design

principle of this document is to go with a "consensus" between

implementations even if it is rough, as long as that does not

jeopardize the objective of obtaining a usable, stable JSON query

language.

The term JSONPath was chosen because of the XPath inspiration and

also because the outcome of a query consists of paths identifying

nodes in the JSON query argument.

1.3. JSON Values

The JSON value a JSONPath query is applied to is, by definition, a

valid JSON value. A JSON value is often constructed by parsing a

JSON text.

The parsing of a JSON text into a JSON value and what happens if a

JSON text does not represent valid JSON are not defined by this

document. Sections 4 and 8 of [RFC8259] identify specific situations

that may conform to the grammar for JSON texts but are not

interoperable uses of JSON, as they may cause unpredictable

behavior. This document does not attempt to define predictable

behavior for JSONPath queries in these situations.

Specifically, the "Semantics" subsections of Sections 2.3.1, 2.3.2,

2.3.5, and 2.5.2 describe behavior that becomes unpredictable when

the JSON value for one of the objects under consideration was

constructed out of JSON text that exhibits multiple members for a

single object that share the same member name ("duplicate names",

see Section 4 of [RFC8259]). Also, selecting a child by name

(Section 2.3.1) and comparing strings (Section 2.3.5.2.2 in

Section 2.3.5) assume these strings are sequences of Unicode scalar

values, becoming unpredictable if they are not (Section 8.2 of

[RFC8259]).

1.4. Overview of JSONPath Expressions

This section is informative.

A JSONPath expression is applied to a JSON value, known as the query

argument. The output is a nodelist.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-4
https://rfc-editor.org/rfc/rfc8259#section-8
https://rfc-editor.org/rfc/rfc8259#section-4
https://rfc-editor.org/rfc/rfc8259#section-8.2

A JSONPath expression consists of an identifier followed by a series

of zero or more segments each of which contains one or more

selectors.

1.4.1. Identifiers

The root node identifier $ refers to the root node of the query

argument, i.e., to the argument as a whole.

The current node identifier @ refers to the current node in the

context of the evaluation of a filter expression (Section 2.3.5).

1.4.2. Segments

Segments select children ([]) or descendants (..[]) of an input

value.

Segments can use bracket notation, for example:

or the more compact dot notation, for example:

A JSONPath expression may use a combination of bracket and dot

notations.

This document treats the bracket notations as canonical and defines

the shorthand dot notation in terms of bracket notation. Examples

and descriptions use shorthands where convenient.

1.4.3. Selectors

A name selector, e.g. 'name', selects a named child of an object.

An index selector, e.g. 3, selects an indexed child of an array.

A wildcard * (Section 2.3.2) in the expression [*] selects all

children of a node and in the expression ..[*] selects all

descendants of a node.

An array slice start:end:step (Section 2.3.4) selects a series of

elements from an array, giving a start position, an end position,

and an optional step value that moves the position from the start to

the end.

Filter expressions ?<logical-expr> select certain children of an

object or array, as in:

¶

¶

¶

¶

¶

$['store']['book'][0]['title']¶

¶

$.store.book[0].title¶

¶

¶

¶

¶

¶

¶

¶

1.4.4. Summary

Table 1 provides a brief overview of JSONPath syntax.

Syntax

Element
Description

$ root node identifier (Section 2.2)

@
current node identifier (Section 2.3.5) (valid only

within filter selectors)

[<selectors>]

child segment (Section 2.5.1) selects zero or more

children of a node; contains one or more selectors,

separated by commas

.name shorthand for ['name']

.* shorthand for [*]

..

[<selectors>]

descendant segment (Section 2.5.2): selects zero or

more descendants of a node; contains one or more

selectors, separated by commas

..name shorthand for ..['name']

..* shorthand for ..[*]

'name'
name selector (Section 2.3.1): selects a named child

of an object

*
wildcard selector (Section 2.3.1): selects all

children of a node

3
index selector (Section 2.3.3): selects an indexed

child of an array (from 0)

0:100:5
array slice selector (Section 2.3.4): start:end:step

for arrays

?<logical-

expr>

filter selector (Section 2.3.5): selects particular

children using a logical expression

length(@.foo)
function extension (Section 2.4): invokes a function

in a filter expression

Table 1: Overview of JSONPath syntax

1.5. JSONPath Examples

This section is informative. It provides examples of JSONPath

expressions.

The examples are based on the simple JSON value shown in Figure 1,

representing a bookstore (that also has a bicycle).

$.store.book[?@.price < 10].title¶

¶

¶

¶

Figure 1: Example JSON value

Table 2 shows some JSONPath queries that might be applied to this

example and their intended results.

JSONPath Intended result

$.store.book[*].author the authors of all books in the store

$..author all authors

$.store.*
all things in store, which are some books and

a red bicycle

$.store..price the prices of everything in the store

$..book[2] the third book

$..book[-1] the last book in order

$..book[0,1]

$..book[:2]
the first two books

$..book[?(@.isbn)] all books with an ISBN number

{ "store": {

 "book": [

 { "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 { "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 { "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.99

 },

 { "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

 "price": 399

 }

 }

}

¶

JSONPath Intended result

$..book[?(@.price<10)] all books cheaper than 10

$..*
all member values and array elements

contained in the input value

Table 2: Example JSONPath expressions and their intended results when

applied to the example JSON value

2. JSONPath Syntax and Semantics

2.1. Overview

A JSONPath expression is a string which, when applied to a JSON

value, the query argument, selects zero or more nodes of the

argument and outputs these nodes as a nodelist.

A query MUST be encoded using UTF-8. The grammar for queries given

in this document assumes that its UTF-8 form is first decoded into

Unicode code points as described in [RFC3629]; implementation

approaches that lead to an equivalent result are possible.

A string to be used as a JSONPath query needs to be well formed and

valid. A string is a well-formed JSONPath query if it conforms to

the ABNF syntax in this document. A well-formed JSONPath query is

valid if it also fulfills all semantic requirements posed by this

document, which are:

Integer numbers in the JSONPath query that are relevant to the

JSONPath processing (e.g., index values and steps) MUST be

within the range of exact values defined in I-JSON [RFC7493],

namely within the interval [-(2)+1, (2)-1].

Uses of function extensions must be well typed, as described

in Section 2.4.

A JSONPath implementation MUST raise an error for any query which is

not well formed and valid. The well-formedness and the validity of

JSONPath queries are independent of the JSON value the query is

applied to. No further errors relating to the well-formedness and

the validity of a JSONPath query can be raised during application of

the query to a value.

Obviously, an implementation can still fail when executing a

JSONPath query, e.g., because of resource depletion, but this is not

modeled in this document. However, the implementation MUST NOT

silently malfunction. Specifically, if a valid JSONPath query is

evaluated against a structured value whose size does not fit in the

range of exact values, interfering with the correct interpretation

of the query, the implementation MUST provide an indication of

overflow.

¶

¶

¶

1.

53 53 ¶

2.

¶

¶

¶

(Readers familiar with the HTTP error model may be reminded of 400

type errors when pondering well-formedness and validity, while

resource depletion and related errors are comparable to 500 type

errors.)

2.1.1. Syntax

Syntactically, a JSONPath query consists of a root identifier ($),

which stands for a nodelist that contains the root node of the query

argument, followed by a possibly empty sequence of segments.

The syntax and semantics of segments are defined in Section 2.5.

2.1.2. Semantics

In this document, the semantics of a JSONPath query define the

required results and do not prescribe the internal workings of an

implementation. This document may describe semantics in a procedural

step-by-step fashion, but such descriptions are normative only in

the sense that any implementation MUST produce an identical result,

but not in the sense that implementors are required to use the same

algorithms.

The semantics are that a valid query is executed against a value,

the query argument, and produces a nodelist (i.e., a list of zero or

more nodes of the value).

The query is a root identifier followed by a sequence of zero or

more segments, each of which is applied to the result of the

previous root identifier or segment and provides input to the next

segment. These results and inputs take the form of nodelists.

The nodelist resulting from the root identifier contains a single

node, the query argument. The nodelist resulting from the last

segment is presented as the result of the query. Depending on the

specific API, it might be presented as an array of the JSON values

at the nodes, an array of Normalized Paths referencing the nodes, or

both — or some other representation as desired by the

implementation. Note: an empty nodelist is a valid query result.

A segment operates on each of the nodes in its input nodelist in

turn, and the resultant nodelists are concatenated in the order of

the input nodelist they were derived from to produce the result of

the segment. A node may be selected more than once and appears that

number of times in the nodelist. Duplicate nodes are not removed.

¶

¶

jsonpath-query = root-identifier segments

segments = *(S segment)

¶

¶

¶

¶

¶

¶

¶

A syntactically valid segment MUST NOT produce errors when executing

the query. This means that some operations that might be considered

erroneous, such as using an index lying outside the range of an

array, simply result in fewer nodes being selected.

As a consequence of this approach, if any of the segments produces

an empty nodelist, then the whole query produces an empty nodelist.

If a query may produce a nodelist with more than one possible

ordering, a particular implementation may also produce distinct

orderings in successive runs of the query.

2.1.3. Example

Consider this example. With the query argument {"a":[{"b":0},{"b":

1},{"c":2}]}, the query $.a[*].b selects the following list of

nodes: 0, 1 (denoted here by their value).

The query consists of $ followed by three segments: .a, [*], and .b.

Firstly, $ produces a nodelist consisting of just the query

argument.

Next, .a selects from any object input node and selects the node of

any member value of the input node corresponding to the member name

"a". The result is again a list of one node: [{"b":0},{"b":1},{"c":

2}].

Next, [*] selects from any array input node all its elements (for an

object input node, it would select all its member values, but not

the member names). The result is a list of three nodes: {"b":0},

{"b":1}, and {"c":2}.

Finally, .b selects from any object input node with a member name b

and selects the node of the member value of the input node

corresponding to that name. The result is a list containing 0, 1.

This is the concatenation of three lists, two of length one

containing 0, 1, respectively, and one of length zero.

2.2. Root Identifier

Syntax

Every JSONPath query (except those inside filter expressions, see

Section 2.3.5) MUST begin with the root identifier $.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

root-identifier = "$"¶

Semantics

The root identifier $ represents the root node of the query argument

and produces a nodelist consisting of that root node.

Examples

JSON:

Queries:

Query Result Result Path Comment

$ {"k": "v"} $ Root node

Table 3: Root identifier examples

2.3. Selectors

Selectors appear only inside child segments (Section 2.5.1) and

descendant segments (Section 2.5.2).

A selector produces a nodelist consisting of zero or more children

of the input value.

There are various kinds of selectors which produce children of

objects, children of arrays, or children of either objects or

arrays.

The syntax and semantics of each kind of selector are defined below.

2.3.1. Name Selector

Syntax

A name selector '<name>' selects at most one object member value.

In contrast to JSON, the JSONPath syntax allows strings to be

enclosed in single or double quotes.

¶

¶

{"k": "v"}¶

¶

¶

¶

¶

selector = name-selector /

 wildcard-selector /

 slice-selector /

 index-selector /

 filter-selector

¶

¶

¶

¶

Note: double-quoted strings follow the JSON string syntax (Section 7

of [RFC8259]); single-quoted strings follow an analogous pattern

(Section 2.3.3.1). No attempt was made to improve on this syntax, so

if it is desired to escape characters with scalar values above

0xFFFF, such as U+1F914 (" ", THINKING FACE), they need to be

represented by a pair of surrogate escapes ("\uD83E\uDD14" in this

case).

name-selector = string-literal

string-literal = %x22 *double-quoted %x22 / ; "string"

 %x27 *single-quoted %x27 ; 'string'

double-quoted = unescaped /

 %x27 / ; '

 ESC %x22 / ; \"

 ESC escapable

single-quoted = unescaped /

 %x22 / ; "

 ESC %x27 / ; \'

 ESC escapable

ESC = %x5C ; \ backslash

unescaped = %x20-21 / ; see RFC 8259

 ; omit 0x22 "

 %x23-26 /

 ; omit 0x27 '

 %x28-5B /

 ; omit 0x5C \

 %x5D-10FFFF

escapable = %x62 / ; b BS backspace U+0008

 %x66 / ; f FF form feed U+000C

 %x6E / ; n LF line feed U+000A

 %x72 / ; r CR carriage return U+000D

 %x74 / ; t HT horizontal tab U+0009

 "/" / ; / slash (solidus) U+002F

 "\" / ; \ backslash (reverse solidus) U+005C

 (%x75 hexchar) ; uXXXX U+XXXX

hexchar = non-surrogate /

 (high-surrogate "\" %x75 low-surrogate)

non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /

 ("D" %x30-37 2HEXDIG)

high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG

low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-7

Semantics

A name-selector string MUST be converted to a member name M by

removing the surrounding quotes and replacing each escape sequence

with its equivalent Unicode character, as shown in Table 4:

Escape Sequence Unicode Character Description

\b U+0008 BS backspace

\t U+0009 HT horizontal tab

\n U+000A LF line feed

\f U+000C FF form feed

\r U+000D CR carriage return

\" U+0022 quotation mark

\' U+0027 apostrophe

\/ U+002F slash (solidus)

\\ U+005C backslash (reverse solidus)

\uXXXX U+XXXX unicode character

Table 4: Escape Sequence Replacements

Applying the name-selector to an object node selects a member value

whose name equals the member name M, or selects nothing if there is

no such member value. Nothing is selected from a value that is not

an object.

Note: processing the name selector requires comparing the member

name string M with member name strings in the JSON to which the

selector is being applied. Two strings MUST be considered equal if

and only if they are identical sequences of Unicode scalar values.

In other words, normalization operations MUST NOT be applied to

either the member name string M from the JSONPath or to the member

name strings in the JSON prior to comparison.

Examples

JSON:

Queries:

The examples in Table 5 show the name selector in use by child

segments:

¶

¶

¶

¶

{

 "o": {"j j": {"k.k": 3}},

 "'": {"@": 2}

}

¶

¶

¶

Query Result Result Paths Comment

$.o['j j']

['k.k']
3

$['o']['j j']

['k.k']

Named value in nested

object

$.o["j j"]

["k.k"]
3

$['o']['j j']

['k.k']

Named value in nested

object

$["'"]["@"] 2 $['\'']['@'] Unusual member names

Table 5: Name selector examples

2.3.2. Wildcard Selector

Syntax

The wildcard selector consists of an asterisk.

Semantics

A wildcard selector selects the nodes of all children of an object

or array. The order in which the children of an object appear in the

resultant nodelist is not stipulated, since JSON objects are

unordered. Children of an array appear in array order in the

resultant nodelist.

The wildcard selector selects nothing from a primitive JSON value

(that is, a number, a string, true, false, or null).

Examples

JSON:

Queries:

The examples in Table 6 show the wildcard selector in use by a child

segment:

Query Result
Result

Paths
Comment

$[*]

{"j": 1, "k":

2}

[5, 3]

$['o']

$['a']
Object values

$.o[*]
1

2

$['o']

['j']

$['o']['k']

Object values

¶

wildcard-selector = "*"¶

¶

¶

¶

{

 "o": {"j": 1, "k": 2},

 "a": [5, 3]

}

¶

¶

¶

Query Result
Result

Paths
Comment

$.o[*]
2

1

$['o']

['k']

$['o']['j']

Alternative result

$.o[*,

*]

1

2

2

1

$['o']

['j']

$['o']

['k']

$['o']

['k']

$['o']['j']

Non-deterministic

ordering

$.a[*]
5

3

$['a'][0]

$['a'][1]
Array members

Table 6: Wildcard selector examples

The example above with the query $.o[*, *] shows that the wildcard

selector may produce nodelists in distinct orders each time it

appears in the child segment, when it is applied to an object node

with two or more members (but not when it is applied to object nodes

with fewer than two members or to array nodes).

2.3.3. Index Selector

2.3.3.1. Syntax

An index selector <index> matches at most one array element value.

Applying the numerical index-selector selects the corresponding

element. JSONPath allows it to be negative (see Section 2.3.3.2).

To be valid, the index selector value MUST be in the I-JSON range of

exact values, see Section 2.1.

Notes:

An index-selector is an integer (in base 10, as in JSON numbers).

As in JSON numbers, the syntax does not allow octal-like integers

with leading zeros such as 01 or -01.

¶

¶

index-selector = int ; decimal integer

int = "0" /

 (["-"] DIGIT1 *DIGIT) ; - optional

DIGIT1 = %x31-39 ; 1-9 non-zero digit

¶

¶

¶

¶

* ¶

*

¶

2.3.3.2. Semantics

A non-negative index-selector applied to an array selects an array

element using a zero-based index. For example, the selector 0

selects the first and the selector 4 selects the fifth element of a

sufficiently long array. Nothing is selected, and it is not an

error, if the index lies outside the range of the array. Nothing is

selected from a value that is not an array.

A negative index-selector counts from the array end. For example,

the selector -1 selects the last and the selector -2 selects the

penultimate element of an array with at least two elements. As with

non-negative indexes, it is not an error if such an element does not

exist; this simply means that no element is selected.

2.3.3.3. Examples

JSON:

Queries:

The examples in Table 7 show the index selector in use by a child

segment.

Query Result Result Paths Comment

$[1] "b" $[1] Element of array

$[-2] "a" $[0] Element of array, from the end

Table 7: Index selector examples

2.3.4. Array Slice selector

2.3.4.1. Syntax

The array slice selector has the form <start>:<end>:<step>. It

matches elements from arrays starting at index <start>, ending at —

but not including — <end>, while incrementing by step with a default

of 1.

¶

¶

¶

["a","b"]¶

¶

¶

¶

The slice selector consists of three optional decimal integers

separated by colons. The second colon can be omitted when the third

integer is.

To be valid, the integers provided MUST be in the I-JSON range of

exact values, see Section 2.1.

2.3.4.2. Semantics

The slice selector was inspired by the slice operator of ECMAScript

4 (ES4), which was deprecated in 2014, and that of Python.

Informal Introduction

This section is informative.

Array slicing is inspired by the behavior of the

Array.prototype.slice method of the JavaScript language as defined

by the ECMA-262 standard [ECMA-262], with the addition of the step

parameter, which is inspired by the Python slice expression.

The array slice expression start:end:step selects elements at

indices starting at start, incrementing by step, and ending with end

(which is itself excluded). So, for example, the expression 1:3

(where step defaults to 1) selects elements with indices 1 and 2 (in

that order) whereas 1:5:2 selects elements with indices 1 and 3.

When step is negative, elements are selected in reverse order. Thus,

for example, 5:1:-2 selects elements with indices 5 and 3, in that

order and ::-1 selects all the elements of an array in reverse

order.

When step is 0, no elements are selected. (This is the one case that

differs from the behavior of Python, which raises an error in this

case.)

slice-selector = [start S] ":" S [end S] [":" [S step]]

start = int ; included in selection

end = int ; not included in selection

step = int ; default: 1

B = %x20 / ; Space

 %x09 / ; Horizontal tab

 %x0A / ; Line feed or New line

 %x0D ; Carriage return

S = *B ; optional blank space

¶

¶

¶

¶

¶

¶

¶

¶

¶

The following section specifies the behavior fully, without

depending on JavaScript or Python behavior.

Normative Semantics

A slice expression selects a subset of the elements of the input

array, in the same order as the array or the reverse order,

depending on the sign of the step parameter. It selects no nodes

from a node that is not an array.

A slice is defined by the two slice parameters, start and end, and

an iteration delta, step. Each of these parameters is optional. In

the rest of this section, len denotes the length of the input array.

The default value for step is 1. The default values for start and

end depend on the sign of step, as shown in Table 8:

Condition start end

step >= 0 0 len

step < 0 len - 1 -len - 1

Table 8: Default array slice

start and end values

Slice expression parameters start and end are not directly usable as

slice bounds and must first be normalized. Normalization for this

purpose is defined as:

The result of the array index expression i applied to an array of

length len is the result of the array slicing expression

Normalize(i, len):Normalize(i, len)+1:1.

Slice expression parameters start and end are used to derive slice

bounds lower and upper. The direction of the iteration, defined by

the sign of step, determines which of the parameters is the lower

bound and which is the upper bound:

¶

¶

¶

¶

¶

FUNCTION Normalize(i, len):

 IF i >= 0 THEN

 RETURN i

 ELSE

 RETURN len + i

 END IF

¶

¶

¶

The slice expression selects elements with indices between the lower

and upper bounds. In the following pseudocode, a(i) is the i+1th

element of the array a (i.e., a(0) is the first element, a(1) the

second, and so forth).

When step = 0, no elements are selected and the result array is

empty.

2.3.4.3. Examples

JSON:

Queries:

The examples in Table 9 show the array slice selector in use by a

child segment:

FUNCTION Bounds(start, end, step, len):

 n_start = Normalize(start, len)

 n_end = Normalize(end, len)

 IF step >= 0 THEN

 lower = MIN(MAX(n_start, 0), len)

 upper = MIN(MAX(n_end, 0), len)

 ELSE

 upper = MIN(MAX(n_start, -1), len-1)

 lower = MIN(MAX(n_end, -1), len-1)

 END IF

 RETURN (lower, upper)

¶

¶

IF step > 0 THEN

 i = lower

 WHILE i < upper:

 SELECT a(i)

 i = i + step

 END WHILE

ELSE if step < 0 THEN

 i = upper

 WHILE lower < i:

 SELECT a(i)

 i = i + step

 END WHILE

END IF

¶

¶

¶

["a", "b", "c", "d", "e", "f", "g"]¶

¶

¶

Query Result Result Paths Comment

$[1:3]
"b"

"c"

$[1]

$[2]
Slice with default step

$[5:]
"f"

"g"

$[5]

$[6]
Slice with no end index

$[1:5:2]
"b"

"d"

$[1]

$[3]
Slice with step 2

$[5:1:-2]
"f"

"d"

$[5]

$[3]
Slice with negative step

$[::-1]

"g"

"f"

"e"

"d"

"c"

"b"

"a"

$[6]

$[5]

$[4]

$[3]

$[2]

$[1]

$[0]

Slice in reverse order

Table 9: Array slice selector examples

2.3.5. Filter selector

Filter selectors are used to iterate over the elements or members of

structured values, i.e., JSON arrays and objects. The structured

values are identified in the nodelist offered by the child or

descendant segment using the filter selector.

For each iteration (element/member), a logical expression, the

filter expression, is evaluated which decides whether the node of

the element/member is selected. (While a logical expression

evaluates to what mathematically is a Boolean value, this

specification uses the term logical to maintain a distinction from

the Boolean values that JSON can represent.)

During the iteration process, the filter expression receives the

node of each array element or object member value of the structured

value being filtered; this element or member value is then known as

the current node.

The current node can be used as the start of one or more JSONPath

queries in subexpressions of the filter expression, notated via the

current-node-identifier @. Each JSONPath query can be used either

for testing existence of a result of the query, for obtaining a

specific JSON value resulting from that query that can then be used

in a comparison, or as a function argument.

Filter selectors may use function extensions, which are covered in

Section 2.4. Within the logical expression for a filter selector,

function expressions can be used to operate on nodelists and values.

The set of available functions is extensible, with a number of

¶

¶

¶

¶

functions predefined, see Section 2.4, and the ability to register

further functions provided by the Function Extensions sub-registry

(Section 3.2). When a function is defined, it is given a unique

name, and its return value and each of its parameters is given a

declared type. The type system is limited in scope; its purpose is

to express restrictions that, without functions, are implicit in the

grammar of filter expressions. The type system also guides

conversions (Section 2.4.2) that mimic the way different kinds of

expressions are handled in the grammar when function expressions are

not in use.

2.3.5.1. Syntax

The filter selector has the form ?<logical-expr>.

As the filter expression is composed of side-effect free

constituents, the order of evaluation does not need to be (and is

not) defined. Similarly, for conjunction (&&) and disjunction (||)

(defined later), both a short-circuiting and a fully evaluating

implementation will lead to the same result; both implementation

strategies are therefore valid.

The current node is accessible via the current node identifier @.

This identifier addresses the current node of the filter-selector

that is directly enclosing the identifier. Note: within nested

filter-selectors, there is no syntax to address the current node of

any other than the directly enclosing filter-selector (i.e., of

filter-selectors enclosing the filter-selector that is directly

enclosing the identifier).

Logical expressions offer the usual Boolean operators (|| for OR, &&

for AND, and ! for NOT). They have the normal semantics of Boolean

algebra and obey its laws (see, for example, [BOOLEAN-LAWS]).

Parentheses MAY be used within logical-expr for grouping.

¶

¶

filter-selector = "?" S logical-expr¶

¶

¶

¶

A test expression either tests the existence of a node designated by

an embedded query (see Section 2.3.5.2.1) or tests the result of a

function expression (see Section 2.4). In the latter case, if the

function's declared result type is LogicalType (see Section 2.4.1),

it tests whether the result is LogicalTrue; if the function's

declared result type is NodesType, it tests whether the result is

non-empty. If the function's declared result type is ValueType, its

use in a test expression is not well typed (see Section 2.4.3).

Comparison expressions are available for comparisons between

primitive values (that is, numbers, strings, true, false, and null).

These can be obtained via literal values; singular queries, each of

which selects at most one node the value of which is then used; or

function expressions (see Section 2.4) of type ValueType.

logical-expr = logical-or-expr

logical-or-expr = logical-and-expr *(S "||" S logical-and-expr)

 ; disjunction

 ; binds less tightly than conjunction

logical-and-expr = basic-expr *(S "&&" S basic-expr)

 ; conjunction

 ; binds more tightly than disjunction

basic-expr = paren-expr /

 comparison-expr /

 test-expr

paren-expr = [logical-not-op S] "(" S logical-expr S ")"

 ; parenthesized expression

logical-not-op = "!" ; logical NOT operator

¶

¶

test-expr = [logical-not-op S]

 (filter-query / ; existence/non-existence

 function-expr) ; LogicalType or

 ; NodesType

filter-query = rel-query / jsonpath-query

rel-query = current-node-identifier segments

current-node-identifier = "@"

¶

¶

Literals can be notated in the way that is usual for JSON (with the

extension that strings can use single-quote delimiters). Alphabetic

characters in ABNF are case-insensitive, so within a floating point

number the ABNF expression "e" can be either the value 'e' or 'E'.

true, false, and null are lower-case only (case-sensitive).

Table 10 lists filter expression operators in order of precedence

from highest (binds most tightly) to lowest (binds least tightly).

Precedence Operator type Syntax

5 Grouping (...)

4 Logical NOT !

3 Relations
== !=

< <= > >=

2 Logical AND &&

1 Logical OR ||

Table 10: Filter expression operator

precedence

comparison-expr = comparable S comparison-op S comparable

literal = number / string-literal /

 true / false / null

comparable = literal /

 singular-query / ; singular query value

 function-expr ; ValueType

comparison-op = "==" / "!=" /

 "<=" / ">=" /

 "<" / ">"

singular-query = rel-singular-query / abs-singular-query

rel-singular-query = current-node-identifier singular-query-segments

abs-singular-query = root-identifier singular-query-segments

singular-query-segments = *(S (name-segment / index-segment))

name-segment = ("[" name-selector "]") /

 ("." member-name-shorthand)

index-segment = "[" index-selector "]"

¶

¶

¶

number = (int / "-0") [frac] [exp] ; decimal number

frac = "." 1*DIGIT ; decimal fraction

exp = "e" ["-" / "+"] 1*DIGIT ; decimal exponent

true = %x74.72.75.65 ; true

false = %x66.61.6c.73.65 ; false

null = %x6e.75.6c.6c ; null

¶

¶

2.3.5.2. Semantics

The filter selector works with arrays and objects exclusively. Its

result is a list of zero, one, multiple or all of their array

elements or member values, respectively. Applied to primitive

values, it selects nothing.

In the resultant nodelist, children of an array are ordered by their

position in the array. The order in which the children of an object

(as opposed to an array) appear in the resultant nodelist is not

stipulated, since JSON objects are unordered.

2.3.5.2.1. Existence Tests

A query by itself in a logical context is an existence test which

yields true if the query selects at least one node and yields false

if the query does not select any nodes.

Existence tests differ from comparisons in that:

they work with arbitrary relative or absolute queries (not just

singular queries).

they work with queries that select structured values.

To examine the value of a node selected by a query, an explicit

comparison is necessary. For example, to test whether the node

selected by the query @.foo has the value null, use @.foo == null

(see Section 2.6) rather than the negated existence test !@.foo

(which yields false if @.foo selects a node, regardless of the

node's value).

2.3.5.2.2. Comparisons

The comparison operators == and < are defined first and then these

are used to define !=, <=, >, and >=.

When either side of a comparison results in an empty nodelist or

Nothing (see Section 2.4.1):

a comparison using the operator == yields true if and only the

other side also results in an empty nodelist or Nothing.

a comparison using the operator < yields false.

¶

¶

¶

¶

*

¶

* ¶

¶

¶

¶

*

¶

* ¶

When any query or function expression on either side of a comparison

results in a nodelist consisting of a single node, that side is

replaced by the value of its node and then:

a comparison using the operator == yields true if and only if the

comparison is between:

numbers expected to interoperate as per Section 2.2 of I-JSON

[RFC7493] that compare equal using normal mathematical

equality,

numbers at least one of which is not expected to interoperate

as per I-JSON, where the numbers compare equal using an

implementation specific equality,

equal primitive values which are not numbers,

equal arrays, that is arrays of the same length where each

element of the first array is equal to the corresponding

element of the second array, or

equal objects with no duplicate names, that is where:

both objects have the same collection of names (with no

duplicates), and

for each of those names, the values associated with the

name by the objects are equal.

a comparison using the operator < yields true if and only if the

comparison is between values which are both numbers or both

strings and which satisfy the comparison:

numbers expected to interoperate as per Section 2.2 of I-JSON

[RFC7493] MUST compare using the normal mathematical ordering;

numbers not expected to interoperate as per I-JSON MAY compare

using an implementation specific ordering

the empty string compares less than any non-empty string

a non-empty string compares less than another non-empty string

if and only if the first string starts with a lower Unicode

scalar value than the second string or if both strings start

with the same Unicode scalar value and the remainder of the

first string compares less than the remainder of the second

string.

¶

*

¶

-

¶

-

¶

- ¶

-

¶

- ¶

o

¶

o

¶

*

¶

-

¶

- ¶

-

¶

https://rfc-editor.org/rfc/rfc7493#section-2.2
https://rfc-editor.org/rfc/rfc7493#section-2.2

!=, <=, >, and >= are defined in terms of the other comparison

operators. For any a and b:

The comparison a != b yields true if and only if a == b yields

false.

The comparison a <= b yields true if and only if a < b yields

true or a == b yields true.

The comparison a > b yields true if and only if b < a yields

true.

The comparison a >= b yields true if and only if b < a yields

true or a == b yields true.

2.3.5.3. Examples

The first set of examples shows some comparison expressions and

their result with a given JSON value as input.

JSON:

Comparisons:

Comparison Result Comment

$.absent1 == $.absent2 true Empty nodelists

$.absent1 <= $.absent2 true == implies <=

$.absent == 'g' false Empty nodelist

$.absent1 != $.absent2 false Empty nodelists

$.absent != 'g' true Empty nodelist

1 <= 2 true Numeric comparison

1 > 2 false Strict, numeric comparison

13 == '13' false Type mismatch

'a' <= 'b' true String comparison

'a' > 'b' false Strict, string comparison

$.obj == $.arr false Type mismatch

$.obj != $.arr true Type mismatch

$.obj == $.obj true Object comparison

$.obj != $.obj false Object comparison

$.arr == $.arr true Array comparison

$.arr != $.arr false Array comparison

$.obj == 17 false Type mismatch

$.obj != 17 true Type mismatch

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

{

 "obj": {"x": "y"},

 "arr": [2, 3]

}

¶

¶

Comparison Result Comment

$.obj <= $.arr false Objects and arrays are not ordered

$.obj < $.arr false Objects and arrays are not ordered

$.obj <= $.obj true == implies <=

$.arr <= $.arr true == implies <=

1 <= $.arr false Arrays are not ordered

1 >= $.arr false Arrays are not ordered

1 > $.arr false Arrays are not ordered

1 < $.arr false Arrays are not ordered

true <= true true == implies <=

true > true false Booleans are not ordered

Table 11: Comparison examples

The second set of examples shows some complete JSONPath queries that

make use of filter selectors, and the results of evaluating these

queries on a given JSON value as input. (Note: two of the queries

employ function extensions; please see Sections 2.4.6 and 2.4.7

below for details about these.)

JSON:

Queries:

The examples in Table 12 show the filter selector in use by a child

segment:

Query Result
Result

Paths
Comment

$.a[?@.b ==

'kilo']
{"b": "kilo"}

$['a']

[9]

Member value

comparison

$.a[?@>3.5]

5

4

6

$['a']

[1]

$['a']

[4]

$['a']

[5]

Array value

comparison

$.a[?@.b]

¶

¶

{

 "a": [3, 5, 1, 2, 4, 6,

 {"b": "j"},

 {"b": "k"},

 {"b": {}},

 {"b": "kilo"}

],

 "o": {"p": 1, "q": 2, "r": 3, "s": 5, "t": {"u": 6}},

 "e": "f"

}

¶

¶

¶

Query Result
Result

Paths
Comment

{"b": "j"}

{"b": "k"}

{"b": {}}

{"b": "kilo"}

$['a']

[6]

$['a']

[7]

$['a']

[8]

$['a']

[9]

Array value

existence

$[?@.*]

[3, 5, 1, 2, 4, 6,

{"b": "j"}, {"b":

"k"}, {"b": {}},

{"b": "kilo"}]

{"p": 1, "q": 2, "r":

3, "s": 5, "t": {"u":

6}}

$['a']

$['o']

Existence of non-

singular queries

$[?@[?@.b]]

[3, 5, 1, 2, 4, 6,

{"b": "j"}, {"b":

"k"}, {"b": {}},

{"b": "kilo"}]

$['a'] Nested filters

$.o[?@<3, ?

@<3]

1

2

2

1

$['o']

['p']

$['o']

['q']

$['o']

['q']

$['o']

['p']

Non-deterministic

ordering

$.a[?@<2 ||

@.b == "k"]

1

{"b": "k"}

$['a']

[2]

$['a']

[7]

Array value logical

OR

$.a[?

match(@.b,

"[jk]")]

{"b": "j"}

{"b": "k"}

$['a']

[6]

$['a']

[7]

Array value regular

expression match

$.a[?

search(@.b,

"[jk]")]

{"b": "j"}

{"b": "k"}

{"b": "kilo"}

$['a']

[6]

$['a']

[7]

$['a']

[9]

Array value regular

expression search

$.o[?@>1 &&

@<4]

2

3

$['o']

['q']

$['o']

['r']

Object value logical

AND

Alternative result

Query Result
Result

Paths
Comment

$.o[?@>1 &&

@<4]

3

2

$['o']

['r']

$['o']

['q']

$.o[?@.u ||

@.x]
{"u": 6}

$['o']

['t']

Object value logical

OR

$.a[?(@.b ==

$.x)]

3

5

1

2

4

6

$['a']

[0]

$['a']

[1]

$['a']

[2]

$['a']

[3]

$['a']

[4]

$['a']

[5]

Comparison of

queries with no

values

$.a[?(@ == @)]

3

5

1

2

4

6

{"b": "j"}

{"b": "k"}

{"b": {}}

{"b": "kilo"}

$['a']

[0]

$['a']

[1]

$['a']

[2]

$['a']

[3]

$['a']

[4]

$['a']

[5]

$['a']

[6]

$['a']

[7]

$['a']

[8]

$['a']

[9]

Comparisons of

primitive and of

structured values

Table 12: Filter selector examples

The example above with the query $.o[?@<3, ?@<3] shows that a filter

selector may produce nodelists in distinct orders each time it

appears in the child segment.¶

2.4. Function Extensions

Beyond the filter expression functionality defined in the preceding

subsections, JSONPath defines an extension point that can be used to

add filter expression functionality: "Function Extensions".

This section defines the extension point as well as some function

extensions that use this extension point. While these mechanisms are

designed to use the extension point, they are an integral part of

the JSONPath specification and are expected to be implemented like

any other integral part of this specification.

A function extension defines a registered name (see Section 3.2)

that can be applied to a sequence of zero or more arguments,

producing a result. Each registered function name is unique.

A function extension MUST be defined such that its evaluation is

side-effect free, i.e., all possible orders of evaluation and

choices of short-circuiting or full evaluation of an expression

containing it must lead to the same result. (Note: memoization or

logging are not side effects in this sense as they are visible at

the implementation level only — they do not influence the result of

the evaluation.)

Any function expressions in a query must be well formed (by

conforming to the above ABNF) and well typed, otherwise the JSONPath

implementation MUST raise an error (see Section 2.1). To define

which function expressions are well typed, a type system is first

introduced.

2.4.1. Type System for Function Expressions

Each parameter as well as the result of a function extension must

have a declared type.

Declared types enable checking a JSONPath query for well-typedness

independent of any query argument the JSONPath query is applied to.

¶

¶

¶

¶

function-name = function-name-first *function-name-char

function-name-first = LCALPHA

function-name-char = function-name-first / "_" / DIGIT

LCALPHA = %x61-7A ; "a".."z"

function-expr = function-name "(" S [function-argument

 *(S "," S function-argument)] S ")"

function-argument = literal /

 filter-query / ; (includes singular-query)

 logical-expr /

 function-expr

¶

¶

¶

¶

Table 13 defines the available types in terms of the instances they

contain.

Type Instances

ValueType JSON values or Nothing

LogicalType LogicalTrue or LogicalFalse

NodesType Nodelists

Table 13: Function extension type system

Notes:

The only instances that can be directly represented in JSONPath

syntax are certain JSON values in ValueType expressed as literals

(which, in JSONPath, are limited to primitive values).

Nothing represents the absence of a JSON value and is distinct

from any JSON value, including null.

LogicalTrue and LogicalFalse are unrelated to the JSON values

expressed by the literals true and false.

2.4.2. Type Conversion

Just as queries can be used in logical expressions by testing for

the existence of at least one node (Section 2.3.5.2.1), a function

expression of declared type NodesType can be used as a function

argument for a parameter of declared type LogicalType, with the

equivalent conversion rule:

If the nodelist contains one or more nodes, the conversion result

is LogicalTrue.

If the nodelist is empty, the conversion result is LogicalFalse.

Notes:

Extraction of a value from a nodelist can be performed in several

ways, so an implicit conversion from NodesType to ValueType may

be surprising and has therefore not been defined.

A function expression with a declared type of NodesType can

indirectly be used as an argument for a parameter of declared

type ValueType by wrapping the expression in a call to a function

extension, such as value() (see Section 2.4.8), that takes a

parameter of type NodesType and returns a result of type

ValueType.

The well-typedness of function expressions can now be defined in

terms of this type system.

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

¶

*

¶

*

¶

¶

As a test-expr in a logical expression:

As a comparable in a comparison:

As a function-argument in another function expression:

2.4.3. Well-Typedness of Function Expressions

For a function expression to be well typed:

its declared type must be well typed in the context in which it

occurs, and

its arguments must be well typed for the declared type of the

corresponding parameters.

(1) As per the grammar, a function expression can occur in three

different immediate contexts, which lead to the following conditions

for well-typedness:

The function's declared result type is LogicalType, or (giving

rise to conversion as per Section 2.4.2) NodesType.

The function's declared result type is ValueType.

The function's declared result type fulfills the following rules

for the corresponding parameter of the enclosing function.

(2) The arguments of the function expression are well typed when

each argument of the function can be used for the declared type of

the corresponding parameter, according to one of the following

conditions:

When the argument is a function expression with declared result

type the same as the declared type of the parameter.

When the declared type of the parameter is LogicalType and the

argument is one of the following:

A function expression with declared result type NodesType. In

this case the argument is converted to LogicalType as per

Section 2.4.2.

A logical-expr that is not a function expression.

When the declared type of the parameter is NodesType and the

argument is a query (which includes singular query).

When the declared type of the parameter is ValueType and the

argument is one of the following:

A value expressed as a literal.

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

-

¶

- ¶

*

¶

*

¶

- ¶

Parameters:

Result:

Parameters:

Result:

A singular query. In this case:

If the query results in a nodelist consisting of a single

node, the argument is the value of the node.

If the query results in an empty nodelist, the argument is

Nothing.

2.4.4. length() Function Extension

ValueType

ValueType (unsigned integer or Nothing)

The length() function extension provides a way to compute the length

of a value and make that available for further processing in the

filter expression:

Its only argument is an instance of ValueType (possibly taken from a

singular query, as in the example above). The result also is an

instance of ValueType: an unsigned integer or Nothing.

If the argument value is a string, the result is the number of

Unicode scalar values in the string.

If the argument value is an array, the result is the number of

elements in the array.

If the argument value is an object, the result is the number of

members in the object.

For any other argument value, the result is Nothing.

2.4.5. count() Function Extension

NodesType

ValueType (unsigned integer)

The count() function extension provides a way to obtain the number

of nodes in a nodelist and make that available for further

processing in the filter expression:

Its only argument is a nodelist. The result is a value, an unsigned

integer, that gives the number of nodes in the nodelist. Note: there

is no deduplication of the nodelist.

- ¶

o

¶

o

¶

1. ¶

¶

¶

$[?length(@.authors) >= 5]¶

¶

*

¶

*

¶

*

¶

* ¶

1. ¶

¶

¶

$[?count(@.*.author) >= 5]¶

¶

Parameters:

Result:

Parameters:

Result:

2.4.6. match() Function Extension

ValueType (string)

ValueType (string conforming to

[I-D.draft-ietf-jsonpath-iregexp])

LogicalType

The match() function extension provides a way to check whether (the

entirety of, see Section 2.4.7 below) a given string matches a given

regular expression, which is in [I-D.draft-ietf-jsonpath-iregexp]

form.

Its arguments are instances of ValueType (possibly taken from a

singular query, as for the first argument in the example above). If

the first argument is not a string or the second argument is not a

string conforming to [I-D.draft-ietf-jsonpath-iregexp], the result

is LogicalFalse. Otherwise, the string that is the first argument is

matched against the iregexp contained in the string that is the

second argument; the result is LogicalTrue if the string matches the

iregexp and LogicalFalse otherwise.

2.4.7. search() Function Extension

ValueType (string)

ValueType (string conforming to

[I-D.draft-ietf-jsonpath-iregexp])

LogicalType

The search() function extension provides a way to check whether a

given string contains a substring that matches a given regular

expression, which is in [I-D.draft-ietf-jsonpath-iregexp] form.

Its arguments are instances of ValueType (possibly taken from a

singular query, as for the first argument in the example above). If

the first argument is not a string or the second argument is not a

string conforming to [I-D.draft-ietf-jsonpath-iregexp], the result

is LogicalFalse. Otherwise, the string that is the first argument is

searched for at least one substring that matches the iregexp

contained in the string that is the second argument; the result is

LogicalTrue if such a substring exists and LogicalFalse otherwise.

2.4.8. value() Function Extension

1. ¶

2.

¶

¶

¶

$[?match(@.date, "1974-05-..")]¶

¶

1. ¶

2.

¶

¶

¶

$[?search(@.author, "[BR]ob")]¶

¶

Parameters:

Result:

NodesType

ValueType

The value() function extension provides a way to convert an instance

of NodesType to a value and make that available for further

processing in the filter expression:

Its only argument is an instance of NodesType (possibly taken from a

filter-query, as in the example above). The result is an instance

of ValueType.

If the argument contains a single node, the result is the value

of the node.

If the argument is Nothing or contains multiple nodes, the result

is Nothing.

Note: a singular query may be used anywhere where a ValueType is

expected, so there is no need to use the value() function extension

with a singular query.

2.4.9. Examples

Query Comment

$[?length(@) < 3] well typed

$[?length(@.*) < 3]
not well typed since @.* is a non-singular

query

$[?count(@.*) == 1] well typed

$[?count(1) == 1]
not well typed since 1 is not a query or

function expression

$[?count(foo(@.*)) ==

1]

well typed, where foo() is a function

extension with a parameter of type

NodesType and result type NodesType

$[?match(@.timezone,

'Europe/.*')]
well typed

$[?match(@.timezone,

'Europe/.*') == true]

not well typed as LogicalType may not be

used in comparisons

$[?value(@..color) ==

"red"]
well typed

$[?value(@..color)]
not well typed as ValueType may not be used

in a test expression

$[?bar(@.a)]

well typed for any function bar() with a

parameter of any declared type and result

type LogicalType

1. ¶

¶

¶

$[?value(@..color) == "red"]¶

¶

*

¶

*

¶

¶

Query Comment

$[?bnl(@.*)]

well typed for any function bnl() with a

parameter of declared type NodesType or

LogicalType and result type LogicalType

$[?blt(1==1)]

well typed, where blt() is a function with

a parameter of declared type LogicalType

and result type LogicalType

$[?blt(1)]

not well typed for the same function blt(),

as 1 is not a query, logical-expr, or

function expression

$[?bal(1)]

well typed, where bal() is a function with

a parameter of declared type ValueType and

result type LogicalType

Table 14: Function expression examples

2.5. Segments

For each node in an input nodelist, segments apply one or more

selectors to the node and concatenate the results of each selector

into per-input-node nodelists, which are then concatenated in the

order of the input nodelist to form a single segment result

nodelist.

It turns out that the more segments there are in a query, the

greater the depth in the input value of the nodes of the resultant

nodelist:

A query with N segments, where N >= 0, produces a nodelist

consisting of nodes at depth in the input value of N or greater.

A query with N segments, where N >= 0, all of which are child

segments (Section 2.5.1), produces a nodelist consisting of nodes

precisely at depth N in the input value.

There are two kinds of segment: child segments and descendant

segments.

The syntax and semantics of each kind of segment are defined below.

2.5.1. Child Segment

Syntax

The child segment consists of a non-empty, comma-separated sequence

of selectors enclosed in square brackets.

Shorthand notations are also provided for when there is a single

wildcard or name selector.

¶

¶

*

¶

*

¶

¶

segment = child-segment / descendant-segment¶

¶

¶

¶

.*, a child-segment directly built from a wildcard-selector, is

shorthand for [*].

.<member-name>, a child-segment built from a member-name-shorthand,

is shorthand for ['<member-name>']. Note: this can only be used with

member names that are composed of certain characters, as specified

in the ABNF rule member-name-shorthand. Thus, for example, $.foo.bar

is shorthand for $['foo']['bar'] (but not for $['foo.bar']).

Semantics

A child segment contains a sequence of selectors, each of which

selects zero or more children of the input value.

Selectors of different kinds may be combined within a single child

segment.

For each node in the input nodelist, the resulting nodelist of a

child segment is the concatenation of the nodelists from each of its

selectors in the order that the selectors appear in the list. Note:

any node matched by more than one selector is kept as many times in

the nodelist.

Where a selector can produce a nodelist in more than one possible

order, each occurrence of the selector in the child segment may

evaluate to produce a nodelist in a distinct order.

So a child segment drills down one more level into the structure of

the input value.

Examples

JSON:

child-segment = bracketed-selection /

 ("."

 (wildcard-selector /

 member-name-shorthand))

bracketed-selection = "[" S selector *(S "," S selector) S "]"

member-name-shorthand = name-first *name-char

name-first = ALPHA /

 "_" /

 %x80-10FFFF ; any non-ASCII Unicode character

name-char = DIGIT / name-first

DIGIT = %x30-39 ; 0-9

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

¶

¶

¶

¶

¶

¶

¶

¶

¶

Queries:

Query Result Result Paths Comment

$[0, 3]
"a"

"d"

$[0]

$[3]
Indices

$[0:2, 5]

"a"

"b"

"f"

$[0]

$[1]

$[5]

Slice and index

$[0, 0]
"a"

"a"

$[0]

$[0]
Duplicated entries

Table 15: Child segment examples

2.5.2. Descendant Segment

Syntax

The descendant segment consists of a double dot .. followed by a

child segment (using bracket notation).

Shortand notations are also provided that correspond to the

shorthand forms of the child segment.

..*, the descendant-segment directly built from a wildcard-selector,

is shorthand for ..[*].

..<member-name>, a descendant-segment built from a member-name-

shorthand, is shorthand for ..['<member-name>']. Note: as with the

similar shorthand of a child-segment, this can only be used with

member names that are composed of certain characters, as specified

in the ABNF rule member-name-shorthand.

Note: .. on its own is not a valid segment.

Semantics

A descendant segment produces zero or more descendants of an input

value.

For each node in the input nodelist, a descendant selector visits

the input node and each of its descendants such that:

nodes of any array are visited in array order, and

["a", "b", "c", "d", "e", "f", "g"]¶

¶

¶

¶

descendant-segment = ".." (bracketed-selection /

 wildcard-selector /

 member-name-shorthand)

¶

¶

¶

¶

¶

¶

* ¶

nodes are visited before their descendants.

The order in which the children of an object are visited is not

stipulated, since JSON objects are unordered.

Suppose the descendant segment is of the form ..[<selectors>] (after

converting any shorthand form to bracket notation) and the nodes, in

the order visited, are D1, ..., Dn (where n >= 1). Note: D1 is the

input value.

For each i such that 1 <= i <= n, the nodelist Ri is defined to be a

result of applying the child segment [<selectors>] to the node Di.

For each node in the input nodelist, the result of the descendant

segment is the concatenation of R1, ..., Rn (in that order). These

results are then concatenated in input nodelist order to form the

result of the segment.

So a descendant segment drills down one or more levels into the

structure of each input value.

Examples

JSON:

Queries:

Query Result Result Paths Comment

$..j
1

4

$['o']['j']

$['a'][2][0]

['j']

Object values

$..j
4

1

$['a'][2][0]

['j']

$['o']['j']

Alternative result

$..[0]
5

{"j": 4}

$['a'][0]

$['a'][2][0]
Array values

$..[*]

$..*

{"j": 1, "k" : 2}

[5, 3, [{"j": 4},

{"k": 6}]]

1

2

5

3

[{"j": 4}, {"k":

$['o']

$['a']

$['o']['j']

$['o']['k']

$['a'][0]

$['a'][1]

$['a'][2]

$['a'][2][0]

All values

* ¶

¶

¶

¶

¶

¶

¶

{

 "o": {"j": 1, "k": 2},

 "a": [5, 3, [{"j": 4}, {"k": 6}]]

}

¶

¶

Query Result Result Paths Comment

6}]

{"j": 4}

{"k": 6}

4

6

$['a'][2][1]

$['a'][2][0]

['j']

$['a'][2][1]

['k']

$..o {"j": 1, "k": 2} $['o']
Input value is

visited

$.o..[*,

*]

1

2

2

1

$['o']['j']

$['o']['k']

$['o']['k']

$['o']['j']

Non-deterministic

ordering

$.a..[0,

1]

5

3

{"j": 4}

{"k": 6}

$['a'][0]

$['a'][1]

$['a'][2][0]

$['a'][2][1]

Multiple segments

Table 16: Descendant segment examples

Note: the ordering of the results for the $..[*] and $..* examples

above is not guaranteed, except that:

{"j": 1, "k": 2} must appear before 1 and 2,

[5, 3, [{"j": 4}, {"k": 6}]] must appear before 5, 3, and [{"j":

4}, {"k": 6}],

5 must appear before 3 which must appear before [{"j": 4}, {"k":

6}],

5 and 3 must appear before {"j": 4}, 4, , {"k": 6}, and 6,

[{"j": 4}, {"k": 6}] must appear before {"j": 4} and {"k": 6},

{"j": 4} must appear before {"k": 6},

{"k": 6} must appear before 4, and

4 must appear before 6.

The example above with the query $.o..[*, *] shows that a selector

may produce nodelists in distinct orders each time it appears in the

descendant segment.

The example above with the query $.a..[0, 1] shows that the child

segment [0, 1] is applied to each node in turn (rather than the

nodes being visited once per selector, which is the case for some

JSONPath implementations that do not conform to this specification).

¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

2.6. Semantics of null

Note: JSON null is treated the same as any other JSON value: it is

not taken to mean "undefined" or "missing".

Examples

JSON:

Queries:

Query Result
Result

Paths
Comment

$.a null $['a'] Object value

$.a[0] null used as array

$.a.d null used as object

$.b[0] null $['b'][0] Array value

$.b[*] null $['b'][0] Array value

$.b[?@] null $['b'][0] Existence

$.b[?@==null] null $['b'][0] Comparison

$.c[?

(@.d==null)]
Comparison with "missing" value

$.null 1 $['null']
Not JSON null at all, just a

member name string

Table 17: Examples involving (or not involving) null

2.7. Normalized Paths

A Normalized Path is a unique representation of the location of a

node in a value which uniquely identifies the node in the value.

Specifically, a Normalized Path is a JSONPath query with restricted

syntax (defined below), e.g., $['book'][3], which when applied to

the value results in a nodelist consisting of just the node

identified by the Normalized Path. Note: a Normalized Path

represents the identity of a node in a specific value. There is

precisely one Normalized Path identifying any particular node in a

value.

A nodelist may be represented compactly in JSON as an array of

strings, where the strings are Normalized Paths.

Normalized Paths provide a predictable format that simplifies

testing and post-processing of nodelists, e.g., to remove duplicate

nodes. Normalized Paths are used in this document as result paths in

examples.

¶

¶

{"a": null, "b": [null], "c": [{}], "null": 1}¶

¶

¶

¶

¶

Normalized Paths use the canonical bracket notation, rather than dot

notation.

Single quotes are used in Normalized Paths to delimit string member

names. This reduces the number of characters that need escaping when

Normalized Paths appear in double quote-delimited strings, e.g., in

JSON texts.

Certain characters are escaped in Normalized Paths, in one and only

one way; all other characters are unescaped.

Note: Normalized Paths are singular queries, but not all singular

queries are Normalized Paths. For example, $[-3] is a singular

query, but is not a Normalized Path. The Normalized Path equivalent

to $[-3] would have an index equal to the array length minus 3. (The

array length must be at least 3 if $[-3] is to identify a node.)

¶

¶

¶

¶

Since there can only be one Normalized Path identifying a given

node, the syntax stipulates which characters are escaped and which

are not. So the definition of normal-hexchar is designed for hex

escaping of characters which are not straightforwardly-printable,

for example U+000B LINE TABULATION, but for which no standard JSON

escape, such as \n, is available.

Examples

Path
Normalized

Path
Comment

$.a $['a'] Object value

$[1] $[1] Array index

$[-3] $[2]

normalized-path = root-identifier *(normal-index-segment)

normal-index-segment = "[" normal-selector "]"

normal-selector = normal-name-selector / normal-index-selector

normal-name-selector = %x27 *normal-single-quoted %x27 ; 'string'

normal-single-quoted = normal-unescaped /

 ESC normal-escapable

normal-unescaped = ; omit %x0-1F control codes

 %x20-26 /

 ; omit 0x27 '

 %x28-5B /

 ; omit 0x5C \

 %x5D-10FFFF

normal-escapable = %x62 / ; b BS backspace U+0008

 %x66 / ; f FF form feed U+000C

 %x6E / ; n LF line feed U+000A

 %x72 / ; r CR carriage return U+000D

 %x74 / ; t HT horizontal tab U+0009

 "'" / ; ' apostrophe U+0027

 "\" / ; \ backslash (reverse solidus) U+005C

 (%x75 normal-hexchar)

 ; certain values u00xx U+00XX

normal-hexchar = "0" "0"

 (

 ("0" %x30-37) / ; "00"-"07"

 ; omit U+0008-U+000A BS HT LF

 ("0" %x62) / ; "0b"

 ; omit U+000C-U+000D FF CR

 ("0" %x65-66) / ; "0e"-"0f"

 ("1" normal-HEXDIG)

)

normal-HEXDIG = DIGIT / %x61-66 ; "0"-"9", "a"-"f"

normal-index-selector = "0" / (DIGIT1 *DIGIT)

 ; non-negative decimal integer

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Path
Normalized

Path
Comment

Negative array index for an array of

length 5

$.a.b[1:2] $['a']['b'][1] Nested structure

$

["\u000B"]
$['\u000b'] Unicode escape

$

["\u0061"]
$['a'] Unicode character

Table 18: Normalized Path examples

3. IANA Considerations

3.1. Registration of Media Type application/jsonpath

IANA is requested to register the following media type [RFC6838]:

application

jsonpath

N/A

N/A

binary (UTF-8)

See the Security Considerations section of

RFCXXXX.

N/A

RFCXXXX

Applications that need to

convey queries in JSON data

N/A

N/A

N/A

N/A

N/A

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Intended usage:

Restrictions on usage:

Author:

Change controller:

Provisional registration? (standards tree only):

Function Name:

Person & email address to contact for further information:

iesg@ietf.org

COMMON

N/A

JSONPath WG

IESG

no

3.2. Function Extensions

This specification defines a new "Function Extensions sub-registry"

in a new "JSONPath Parameters registry", with the policy "expert

review" (Section 4.5 of [BCP26]).

The experts are instructed to be frugal in the allocation of

function extension names that are suggestive of generally applicable

semantics, keeping them in reserve for functions that are likely to

enjoy wide use and can make good use of their conciseness. The

expert is also instructed to direct the registrant to provide a

specification (Section 4.6 of [BCP26]), but can make exceptions, for

instance when a specification is not available at the time of

registration but is likely forthcoming. If the expert becomes aware

of function extensions that are deployed and in use, they may also

initiate a registration on their own if they deem such a

registration can avert potential future collisions.

Each entry in the sub-registry must include:

a lower case ASCII [STD80] string that starts with a letter and

can contain letters, digits and underscore characters afterwards

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.6

Brief description:

Parameters:

Result:

Change Controller:

Reference:

([a-z][_a-z0-9]*). No other entry in the sub-registry can have

the same function name.

a brief description

A comma-separated list of zero or more declared types, one for

each of the arguments expected for this function extension

The declared type of the result for this function extension

(see Section 2.3 of [BCP26])

a reference document that provides a description of the function

extension

Initial entries in this sub-registry are as listed in Table 19; the

Column "Change Controller" always has the value "IESG" and the

column "Reference" always has the value "Section 2.4 of RFCthis":

Function

Name
Brief description Parameters Result

length
length of string,

array, object
ValueType ValueType

count size of nodelist NodesType ValueType

match
regular expression

full match

ValueType,

ValueType
LogicalType

search
regular expression

substring match

ValueType,

ValueType
LogicalType

value
value of single node

in nodelist
NodesType ValueType

Table 19: Initial Entries in the Function Extensions Subregistry

4. Security Considerations

Security considerations for JSONPath can stem from

attack vectors on JSONPath implementations,

attack vectors on how JSONPath queries are formed, and

the way JSONPath is used in security-relevant mechanisms.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc8126#section-2.3

4.1. Attack Vectors on JSONPath Implementations

Historically, JSONPath has often been implemented by feeding parts

of the query to an underlying programming language engine, e.g.,

JavaScript's eval() function. This approach is well known to lead to

injection attacks and would require perfect input validation to

prevent these attacks (see Section 12 of [RFC8259] for similar

considerations for JSON itself). Instead, JSONPath implementations

need to implement the entire syntax of the query without relying on

the parsers of programming language engines.

Attacks on availability may attempt to trigger unusually expensive

runtime performance exhibited by certain implementations in certain

cases. (See Section 10 of [RFC8949] for issues in hash-table

implementations, and Section 8 of [I-D.draft-ietf-jsonpath-iregexp]

for performance issues in regular expression implementations.)

Implementers need to be aware that good average performance is not

sufficient as long as an attacker can choose to submit specially

crafted JSONPath queries or query arguments that trigger

surprisingly high, possibly exponential, CPU usage or, for example

via a naive recursive implementation of the descendant segment,

stack overflow. Implementations need to have appropriate resource

management to mitigate these attacks.

4.2. Attack Vectors on How JSONPath Queries are Formed

JSONPath queries are often not static, but formed from variables

that provide index values, member names, or values to compare with

in a filter expression. These variables need to be translated into

the form they take in a JSONPath query, e.g., by escaping string

delimiters, or by only allowing specific constructs such as .name to

be formed when the given values allow that. Failure to perform these

translations correctly can lead to unexpected failures, which can

lead to Availability, Confidentiality, and Integrity breaches, in

particular if an adversary has control over the values (e.g., by

entering them into a Web form). The resulting class of attacks,

injections (e.g., SQL injections), is consistently found among the

top causes of application security vulnerabilities and requires

particular attention.

4.3. Attacks on Security Mechanisms that Employ JSONPath

Where JSONPath is used as a part of a security mechanism, attackers

can attempt to provoke unexpected or unpredictable behavior, or take

advantage of differences in behavior between JSONPath

implementations.

Unexpected or unpredictable behavior can arise from a query argument

with certain constructs described as unpredictable by [RFC8259].

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#section-12
https://rfc-editor.org/rfc/rfc8949#section-10
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-iregexp-04#section-8

[BCP26]

[I-D.draft-ietf-jsonpath-iregexp]

[RFC2119]

[RFC3629]

[RFC5234]

[RFC6838]

[RFC7493]

[RFC8174]

Predictable behavior can be expected, except in relation to the

ordering of objects, for any query argument conforming with

[RFC7493].

Other attacks can target the behavior of underlying technologies

such as UTF-8 (see Section 10 of [RFC3629]) and the Unicode

character set.

5. References

5.1. Normative References

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Bormann, C. and T. Bray, "I-

Regexp: An Interoperable Regexp Format", Work in

Progress, Internet-Draft, draft-ietf-jsonpath-iregexp-04,

31 March 2023, <https://datatracker.ietf.org/doc/html/

draft-ietf-jsonpath-iregexp-04>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/rfc/rfc3629>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/rfc/rfc6838>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/rfc/rfc7493>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

https://rfc-editor.org/rfc/rfc3629#section-10
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-iregexp-04
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-iregexp-04
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc6838
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc8174

[RFC8259]

[STD80]

[UNICODE]

[BOOLEAN-LAWS]

[E4X]

[ECMA-262]

[JSONPath-orig]

[RFC6901]

[RFC8949]

[SLICE]

[XPath]

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/rfc/rfc20>.

The Unicode Consortium, "The Unicode® Standard: Version

14.0 - Core Specification", September 2021, <https://

www.unicode.org/versions/Unicode14.0.0/

UnicodeStandard-14.0.pdf>.

5.2. Informative References

"Boolean algebra laws", n.d., <https://

en.wikipedia.org/wiki/Boolean_algebra#Laws>.

ISO, "Information technology — ECMAScript for XML (E4X)

specification", ISO/IEC 22537:2006 , 2006.

Ecma International, "ECMAScript Language Specification,

Standard ECMA-262, Third Edition", December 1999,

<http://www.ecma-international.org/publications/files/

ECMA-ST-ARCH/ECMA-262,%203rd%20edition,

%20December%201999.pdf>.

Gössner, S., "JSONPath — XPath for JSON", 21

February 2007, <https://goessner.net/articles/JsonPath/>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/rfc/rfc6901>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/rfc/

rfc8949>.

"Slice notation", n.d., <https://github.com/tc39/

proposal-slice-notation>.

Berglund, A., Ed., Chamberlin, D., Ed., Simeon, J., Ed.,

Robie, J., Ed., Fernandez, M., Ed., Kay, M., Ed., and S.

Boag, Ed., "XML Path Language (XPath) 2.0 (Second

Edition)", W3C REC REC-xpath20-20101214, W3C REC-

https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc20
https://www.rfc-editor.org/rfc/rfc20
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://en.wikipedia.org/wiki/Boolean_algebra#Laws
https://en.wikipedia.org/wiki/Boolean_algebra#Laws
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
https://goessner.net/articles/JsonPath/
https://www.rfc-editor.org/rfc/rfc6901
https://www.rfc-editor.org/rfc/rfc6901
https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc8949
https://github.com/tc39/proposal-slice-notation
https://github.com/tc39/proposal-slice-notation

xpath20-20101214, 14 December 2010, <https://www.w3.org/

TR/2010/REC-xpath20-20101214/>.

Appendix A. Inspired by XPath

This appendix is informative.

At the time JSONPath was invented, XML was noted for the

availability of powerful tools to analyze, transform and selectively

extract data from XML documents. [XPath] is one of these tools.

In 2007, the need for something solving the same class of problems

for the emerging JSON community became apparent, specifically for:

Finding data interactively and extracting them out of [RFC8259]

JSON values without special scripting.

Specifying the relevant parts of the JSON data in a request by a

client, so the server can reduce the amount of data in its

response, minimizing bandwidth usage.

(Note: XPath has evolved since 2007, and recent versions even

nominally support operating inside JSON values. This appendix only

discusses the more widely used version of XPath that was available

in 2007.)

JSONPath picks up the overall feeling of XPath, but maps the

concepts to syntax (and partially semantics) that would be familiar

to someone using JSON in a dynamic language.

E.g., in popular dynamic programming languages such as JavaScript,

Python and PHP, the semantics of the XPath expression

can be realized in the expression

or, in bracket notation,

with the variable x holding the query argument.

The JSONPath language was designed to:

be naturally based on those language characteristics;

cover only the most essential parts of XPath 1.0;

¶

¶

¶

*

¶

*

¶

¶

¶

¶

/store/book[1]/title¶

¶

x.store.book[0].title¶

¶

x['store']['book'][0]['title']¶

¶

¶

* ¶

* ¶

https://www.w3.org/TR/2010/REC-xpath20-20101214/
https://www.w3.org/TR/2010/REC-xpath20-20101214/

be lightweight in code size and memory consumption;

be runtime efficient.

A.1. JSONPath and XPath

JSONPath expressions apply to JSON values in the same way as XPath

expressions are used in combination with an XML document. JSONPath

uses $ to refer to the root node of the query argument, similar to

XPath's / at the front.

JSONPath expressions move further down the hierarchy using dot

notation ($.store.book[0].title) or the bracket notation ($['store']

['book'][0]['title']), a lightweight/limited, and a more heavyweight

syntax replacing XPath's / within query expressions.

Both JSONPath and XPath use * for a wildcard. The descendant

operators, starting with .., borrowed from [E4X], are similar to

XPath's //. The array slicing construct [start:end:step] is unique

to JSONPath, inspired by [SLICE] from ECMASCRIPT 4.

Filter expressions are supported via the syntax ?<logical-expr> as

in

Table 20 extends Table 1 by providing a comparison with similar

XPath concepts.

XPath JSONPath Description

/ $ the root XML element

. @ the current XML element

/ . or [] child operator

.. n/a parent operator

//

..name, ..

[index], ..*, or ..

[*]

descendants (JSONPath borrows this

syntax from E4X)

* *
wildcard: All XML elements regardless

of their names

@ n/a
attribute access: JSON values do not

have attributes

[] []

subscript operator used to iterate

over XML element collections and for

predicates

| [,]

Union operator (results in a

combination of node sets); called list

operator in JSONPath, allows combining

* ¶

* ¶

¶

¶

¶

¶

$.store.book[?@.price < 10].title¶

¶

XPath JSONPath Description

member names, array indices, and

slices

n/a [start:end:step] array slice operator borrowed from ES4

[] ? applies a filter (script) expression

seamless n/a expression engine

() n/a grouping

Table 20: XPath syntax compared to JSONPath

For further illustration, Table 21 shows some XPath expressions and

their JSONPath equivalents.

XPath JSONPath Result

/store/book/author $.store.book[*].author
the authors of all books

in the store

//author $..author all authors

/store/* $.store.*

all things in store,

which are some books and

a red bicycle

/store//price $.store..price
the prices of everything

in the store

//book[3] $..book[2] the third book

//book[last()] $..book[-1] the last book in order

//

book[position()<3]

$..book[0,1]

$..book[:2]
the first two books

//book[isbn] $..book[?@.isbn]
filter all books with

isbn number

//book[price<10] $..book[?@.price<10]
filter all books cheaper

than 10

//* $..*

all elements in XML

document; all member

values and array elements

contained in input value

Table 21: Example XPath expressions and their JSONPath equivalents

XPath has a lot more functionality (location paths in unabbreviated

syntax, operators and functions) than listed in this comparison.

Moreover, there are significant differences in how the subscript

operator works in XPath and JSONPath:

Square brackets in XPath expressions always operate on the node

set resulting from the previous path fragment. Indices always

start at 1.

With JSONPath, square brackets operate on each of the nodes in

the nodelist resulting from the previous query segment. Array

indices always start at 0.

¶

¶

*

¶

*

¶

Appendix B. JSON Pointer

This appendix is informative.

JSONPath is not intended as a replacement for, but as a more

powerful companion to, JSON Pointer [RFC6901]. The purposes of the

two standards are different.

JSON Pointer is for identifying a single value within a JSON value

whose structure is known.

JSONPath can identify a single value within a JSON value, for

example by using a Normalized Path. But JSONPath is also a query

syntax that can be used to search for and extract multiple values

from JSON values whose structure is known only in a general way.

A Normalized JSONPath can be converted into a JSON Pointer by

converting the syntax, without knowledge of any JSON value. The

inverse is not generally true: a numeric reference token (path

component) in a JSON Pointer may identify a member value of an

object or an element of an array. For conversion to a JSONPath

query, knowledge of the structure of the JSON value is needed to

distinguish these cases.

Acknowledgements

This document is based on Stefan Gössner's original online article

defining JSONPath [JSONPath-orig].

The books example was taken from http://coli.lili.uni-bielefeld.de/

~andreas/Seminare/sommer02/books.xml — a dead link now.

Contributors

Marko Mikulicic

InfluxData, Inc.

Pisa

Italy

Email: mmikulicic@gmail.com

Edward Surov

TheSoul Publishing Ltd.

Limassol

Cyprus

Email: esurov.tsp@gmail.com

Greg Dennis

Auckland

¶

¶

¶

¶

¶

¶

¶

mailto:mmikulicic@gmail.com
mailto:esurov.tsp@gmail.com

New Zealand

Email: gregsdennis@yahoo.com

URI: https://github.com/gregsdennis

Authors' Addresses

Stefan Gössner (editor)

Fachhochschule Dortmund

Sonnenstraße 96

D-44139 Dortmund

Germany

Email: stefan.goessner@fh-dortmund.de

Glyn Normington (editor)

Winchester

United Kingdom

Email: glyn.normington@gmail.com

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

mailto:gregsdennis@yahoo.com
https://github.com/gregsdennis
mailto:stefan.goessner@fh-dortmund.de
mailto:glyn.normington@gmail.com
tel:+49-421-218-63921
mailto:cabo@tzi.org

	JSONPath: Query expressions for JSON
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.1.1. JSON Values as Trees of Nodes

	1.2. History
	1.3. JSON Values
	1.4. Overview of JSONPath Expressions
	1.4.1. Identifiers
	1.4.2. Segments
	1.4.3. Selectors
	1.4.4. Summary

	1.5. JSONPath Examples

	2. JSONPath Syntax and Semantics
	2.1. Overview
	2.1.1. Syntax
	2.1.2. Semantics
	2.1.3. Example

	2.2. Root Identifier
	Syntax
	Semantics
	Examples

	2.3. Selectors
	2.3.1. Name Selector
	Syntax
	Semantics
	Examples

	2.3.2. Wildcard Selector
	Syntax
	Semantics
	Examples

	2.3.3. Index Selector
	2.3.3.1. Syntax
	2.3.3.2. Semantics
	2.3.3.3. Examples

	2.3.4. Array Slice selector
	2.3.4.1. Syntax
	2.3.4.2. Semantics
	Informal Introduction
	Normative Semantics

	2.3.4.3. Examples

	2.3.5. Filter selector
	2.3.5.1. Syntax
	2.3.5.2. Semantics
	2.3.5.2.1. Existence Tests
	2.3.5.2.2. Comparisons

	2.3.5.3. Examples

	2.4. Function Extensions
	2.4.1. Type System for Function Expressions
	2.4.2. Type Conversion
	2.4.3. Well-Typedness of Function Expressions
	2.4.4. length() Function Extension
	2.4.5. count() Function Extension
	2.4.6. match() Function Extension
	2.4.7. search() Function Extension
	2.4.8. value() Function Extension
	2.4.9. Examples

	2.5. Segments
	2.5.1. Child Segment
	Syntax
	Semantics
	Examples

	2.5.2. Descendant Segment
	Syntax
	Semantics
	Examples

	2.6. Semantics of null
	Examples

	2.7. Normalized Paths
	Examples

	3. IANA Considerations
	3.1. Registration of Media Type application/jsonpath
	3.2. Function Extensions

	4. Security Considerations
	4.1. Attack Vectors on JSONPath Implementations
	4.2. Attack Vectors on How JSONPath Queries are Formed
	4.3. Attacks on Security Mechanisms that Employ JSONPath

	5. References
	5.1. Normative References
	5.2. Informative References

	Appendix A. Inspired by XPath
	A.1. JSONPath and XPath

	Appendix B. JSON Pointer
	Acknowledgements
	Contributors
	Authors' Addresses

