
Kitten Working Group L. Hornquist Astrand
Internet-Draft Apple, Inc
Updates: 4556 (if approved) L. Zhu
Intended status: Standards Track Microsoft Corporation
Expires: August 30, 2019 M. Wasserman
 Painless Security
 G. Hudson, Ed.
 MIT
 February 26, 2019

PKINIT Algorithm Agility
draft-ietf-kitten-pkinit-alg-agility-05

Abstract

 This document updates PKINIT, as defined in RFC 4556, to remove
 protocol structures tied to specific cryptographic algorithms. The
 PKINIT key derivation function is made negotiable, and the digest
 algorithms for signing the pre-authentication data and the client's
 X.509 certificates are made discoverable.

 These changes provide preemptive protection against vulnerabilities
 discovered in the future against any specific cryptographic
 algorithm, and allow incremental deployment of newer algorithms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 30, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Hornquist Astrand, et al.Expires August 30, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft PKINIT Algorithm Agility February 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Requirements Notation . 4
3. paChecksum Agility . 4
4. CMS Digest Algorithm Agility 4
5. X.509 Certificate Signer Algorithm Agility 5
6. KDF agility . 6
7. Interoperability . 11
8. Test vectors . 11
8.1. Common Inputs . 11
8.2. Test Vector for SHA-1, enctype 18 12
8.2.1. Specific Inputs 12
8.2.2. Outputs . 12

8.3. Test Vector for SHA-256, enctype 13
8.3.1. Specific Inputs 13
8.3.2. Outputs . 13

8.4. Test Vector for SHA-512, enctype 13
8.4.1. Specific Inputs 13
8.4.2. Outputs . 13

9. Security Considerations 13
10. Acknowledgements . 14
11. IANA Considerations . 14
12. References . 14
12.1. Normative References 14
12.2. Informative References 15

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Hornquist Astrand, et al.Expires August 30, 2019 [Page 2]

Internet-Draft PKINIT Algorithm Agility February 2019

Appendix A. PKINIT ASN.1 Module 16
 Authors' Addresses . 19

1. Introduction

 This document updates PKINIT [RFC4556] to remove protocol structures
 tied to specific cryptographic algorithms. The PKINIT key derivation
 function is made negotiable, the digest algorithms for signing the
 pre-authentication data and the client's X.509 certificates are made
 discoverable.

 These changes provide preemptive protection against vulnerabilities
 discovered in the future against any specific cryptographic
 algorithm, and allow incremental deployment of newer algorithms.

 In August 2004, Xiaoyun Wang's research group reported MD4 [RFC6150]
 collisions generated using hand calculation [WANG04], alongside
 attacks on later hash function designs in the MD4, MD5 [RFC1321] and
 SHA [RFC6234] family. These attacks and their consequences are
 discussed in [RFC6194]. These discoveries challenged the security of
 protocols relying on the collision resistance properties of these
 hashes.

 The Internet Engineering Task Force (IETF) called for actions to
 update existing protocols to provide crypto algorithm agility so that
 protocols support multiple cryptographic algorithms (including hash
 functions) and provide clean, tested transition strategies between
 algorithms, as recommended by BCP 201 [RFC7696].

 This document updates PKINIT to provide crypto algorithm agility.
 Several protocol structures used in the [RFC4556] protocol are either
 tied to SHA-1, or do not support negotiation or discovery, but are
 instead based on local policy. The following concerns have been
 addressed in this update:

 o The checksum algorithm in the authentication request is hardwired
 to use SHA-1 [RFC6234].

 o The acceptable digest algorithms for signing the authentication
 data are not discoverable.

 o The key derivation function in Section 3.2.3.1 of [RFC4556] is
 hardwired to use SHA-1.

 o The acceptable digest algorithms for signing the client X.509
 certificates are not discoverable.

https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc6150
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6194
https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.3.1

Hornquist Astrand, et al.Expires August 30, 2019 [Page 3]

Internet-Draft PKINIT Algorithm Agility February 2019

 To address these concerns, new key derivation functions (KDFs),
 identified by object identifiers, are defined. The PKINIT client
 provides a list of KDFs in the request and the Key Distribution
 Center (KDC) picks one in the response, thus a mutually-supported KDF
 is negotiated.

 Furthermore, structures are defined to allow the client to discover
 the Cryptographic Message Syntax (CMS) [RFC5652] digest algorithms
 supported by the KDC for signing the pre-authentication data and
 signing the client X.509 certificate.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. paChecksum Agility

 The paChecksum defined in Section 3.2.1 of [RFC4556] provides a
 cryptographic binding between the client's pre-authentication data
 and the corresponding Kerberos request body. This also prevents the
 KDC-REQ body from being tampered with. SHA-1 is the only allowed
 checksum algorithm defined in [RFC4556]. This facility relies on the
 collision resistance properties of the SHA-1 checksum [RFC6234].

 When the reply key delivery mechanism is based on public key
 encryption as described in Section 3.2.3.2 of [RFC4556], the
 asChecksum in the KDC reply provides the binding between the pre-
 authentication and the ticket request and response messages, and
 integrity protection for the unauthenticated clear text in these
 messages. However, if the reply key delivery mechanism is based on
 the Diffie-Hellman key agreement as described in Section 3.2.3.1 of
 [RFC4556], the security provided by using SHA-1 in the paChecksum is
 weak, and nothing else cryptographically binds the AS request to the
 ticket response. In this case, the new KDF selected by the KDC as
 described in Section 6 provides the cryptographic binding and
 integrity protection.

4. CMS Digest Algorithm Agility

 When the KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error is returned
 as described in Section 3.2.2 of [RFC4556], implementations
 conforming to this specification can OPTIONALLY send back a list of
 supported CMS types signifying the digest algorithms supported by the
 KDC, in the decreasing preference order. This is accomplished by

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.3.2
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.3.1
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.3.1
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.2

Hornquist Astrand, et al.Expires August 30, 2019 [Page 4]

Internet-Draft PKINIT Algorithm Agility February 2019

 including a TD_CMS_DATA_DIGEST_ALGORITHMS typed data element in the
 error data.

 td-cms-digest-algorithms INTEGER ::= 111

 The corresponding data for the TD_CMS_DATA_DIGEST_ALGORITHMS contains
 the ASN.1 Distinguished Encoding Rules (DER) [X680] [X690] encoded
 TD-CMS-DIGEST-ALGORITHMS-DATA structure defined as follows:

 TD-CMS-DIGEST-ALGORITHMS-DATA ::= SEQUENCE OF
 AlgorithmIdentifier
 -- Contains the list of CMS algorithm [RFC5652]
 -- identifiers indicating the digest algorithms
 -- acceptable to the KDC for signing CMS data in
 -- the order of decreasing preference.

 The algorithm identifiers in the TD-CMS-DIGEST-ALGORITHMS identifiy
 digest algorithms supported by the KDC.

 This information sent by the KDC via TD_CMS_DATA_DIGEST_ALGORITHMS
 can facilitate trouble-shooting when none of the digest algorithms
 supported by the client is supported by the KDC.

5. X.509 Certificate Signer Algorithm Agility

 When the client's X.509 certificate is rejected and the
 KDC_ERR_DIGEST_IN_SIGNED_DATA_NOT_ACCEPTED error is returned as
 described in Section 3.2.2 of [RFC4556], implementations conforming
 to this specification can OPTIONALLY send a list of digest algorithms
 acceptable to the KDC for use by the Certificate Authority (CA) in
 signing the client's X.509 certificate, in the decreasing preference
 order. This is accomplished by including a TD_CERT_DIGEST_ALGORITHMS
 typed data element in the error data. The corresponding data
 contains the ASN.1 DER encoding of the structure TD-CERT-DIGEST-
 ALGORITHMS-DATA defined as follows:

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.2

Hornquist Astrand, et al.Expires August 30, 2019 [Page 5]

Internet-Draft PKINIT Algorithm Agility February 2019

 td-cert-digest-algorithms INTEGER ::= 112

 TD-CERT-DIGEST-ALGORITHMS-DATA ::= SEQUENCE {
 allowedAlgorithms [0] SEQUENCE OF AlgorithmIdentifier,
 -- Contains the list of CMS algorithm [RFC5652]
 -- identifiers indicating the digest algorithms
 -- that are used by the CA to sign the client's
 -- X.509 certificate and are acceptable to the KDC
 -- in the process of validating the client's X.509
 -- certificate, in the order of decreasing
 -- preference.
 rejectedAlgorithm [1] AlgorithmIdentifier OPTIONAL,
 -- This identifies the digest algorithm that was
 -- used to sign the client's X.509 certificate and
 -- has been rejected by the KDC in the process of
 -- validating the client's X.509 certificate
 -- [RFC5280].
 ...
 }

 The KDC fills in the allowedAlgorithm field with the list of
 algorithm [RFC5652] identifiers indicating digest algorithms that are
 used by the CA to sign the client's X.509 certificate and are
 acceptable to the KDC in the process of validating the client's X.509
 certificate, in the order of decreasing preference. The
 rejectedAlgorithm field identifies the signing algorithm for use in
 signing the client's X.509 certificate that has been rejected by the
 KDC in the process of validating the client's certificate [RFC5280].

6. KDF agility

 Based on [RFC3766] and [X9.42], Section 3.2.3.1 of [RFC4556] defines
 a Key Derivation Function (KDF) that derives a Kerberos protocol key
 based on the secret value generated by the Diffie-Hellman key
 exchange. This KDF requires the use of SHA-1 [RFC6234].

 The KDF algorithm described in this document (based on [SP80056A])
 can be implemented using any cryptographic hash function.

 A new KDF for PKINIT usage is identified by an object identifier.
 The following KDF object identifiers are defined:

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc3766
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.3.1
https://datatracker.ietf.org/doc/html/rfc6234

Hornquist Astrand, et al.Expires August 30, 2019 [Page 6]

Internet-Draft PKINIT Algorithm Agility February 2019

 id-pkinit OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosv5(2) pkinit (3) }
 -- Defined in RFC 4556 and quoted here for the reader.

 id-pkinit-kdf OBJECT IDENTIFIER ::= { id-pkinit kdf(6) }
 -- PKINIT KDFs

 id-pkinit-kdf-ah-sha1 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha1(1) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-1

 id-pkinit-kdf-ah-sha256 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha256(2) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-256

 id-pkinit-kdf-ah-sha512 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha512(3) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-512

 id-pkinit-kdf-ah-sha384 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha384(4) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-384

 Where id-pkinit is defined in [RFC4556]. All key derivation
 functions specified above use the one-step key derivation method
 described in Section 5.8.2.1 of [SP80056A], using the ASN.1 format
 for FixedInfo, and Section 4.1 of [SP80056C], using option 1 for the
 auxiliary function H. id-pkinit-kdf-ah-sha1 uses SHA-1 [RFC6234] as
 the hash function. id-pkinit-kdf-ah-sha256, id-pkinit-kdf-ah-sha356,
 and id-pkinit-kdf-ah-sha512 use SHA-256 [RFC6234], SHA-384 ([RFC6234]
 and SHA-512 [RFC6234] respectively.

 To name the input parameters, an abbreviated version of the key
 derivation method is described below.

 1. reps = ceiling(L/H_outputBits)

 2. Initialize a 32-bit, big-endian bit string counter as 1.

 3. For i = 1 to reps by 1, do the following:

 1. Compute Hashi = H(counter || Z || OtherInfo).

 2. Increment counter (not to exceed 2^32-1)

https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234

Hornquist Astrand, et al.Expires August 30, 2019 [Page 7]

Internet-Draft PKINIT Algorithm Agility February 2019

 4. Set key_material = Hash1 || Hash2 || ... so that the length of
 key_material is L bits, truncating the last block as necessary.

 5. The above KDF produces a bit string of length L in bits as the
 keying material. The AS reply key is the output of random-to-
 key() [RFC3961] using that keying material as the input.

 The input parameters for these KDFs are provided as follows:

 o H_outputBits is 160 bits for id-pkinit-kdf-ah-sha1, 256 bits for
 id-pkinit-kdf-ah-sha256, 384 bits for id-pkinit-kdf-ah-sha384, and
 512 bits for id-pkinit-kdf-ah-sha512.

 o max_H_inputBits is 2^64.

 o The secret value (Z) is the shared secret value generated by the
 Diffie-Hellman exchange. The Diffie-Hellman shared value is first
 padded with leading zeros such that the size of the secret value
 in octets is the same as that of the modulus, then represented as
 a string of octets in big-endian order.

 o The key data length (L) is the key-generation seed length in bits
 [RFC3961] for the Authentication Service (AS) reply key. The
 enctype of the AS reply key is selected according to [RFC4120].

 o The algorithm identifier (algorithmID) input parameter is the
 identifier of the respective KDF. For example, this is id-pkinit-
 kdf-ah-sha1 if the KDF uses SHA-1 as the hash.

 o The initiator identifier (partyUInfo) contains the ASN.1 DER
 encoding of the KRB5PrincipalName [RFC4556] that identifies the
 client as specified in the AS-REQ [RFC4120] in the request.

 o The recipient identifier (partyVInfo) contains the ASN.1 DER
 encoding of the KRB5PrincipalName [RFC4556] that identifies the
 TGS as specified in the AS-REQ [RFC4120] in the request.

 o The supplemental public information (suppPubInfo) is the ASN.1 DER
 encoding of the structure PkinitSuppPubInfo as defined later in
 this section.

 o The supplemental private information (suppPrivInfo) is absent.

 OtherInfo is the ASN.1 DER encoding of the following sequence:

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4120

Hornquist Astrand, et al.Expires August 30, 2019 [Page 8]

Internet-Draft PKINIT Algorithm Agility February 2019

 OtherInfo ::= SEQUENCE {
 algorithmID AlgorithmIdentifier,
 partyUInfo [0] OCTET STRING,
 partyVInfo [1] OCTET STRING,
 suppPubInfo [2] OCTET STRING OPTIONAL,
 suppPrivInfo [3] OCTET STRING OPTIONAL
 }

 The structure PkinitSuppPubInfo is defined as follows:

 PkinitSuppPubInfo ::= SEQUENCE {
 enctype [0] Int32,
 -- The enctype of the AS reply key.
 as-REQ [1] OCTET STRING,
 -- The DER encoding of the AS-REQ [RFC4120] from the
 -- client.
 pk-as-rep [2] OCTET STRING,
 -- The DER encoding of the PA-PK-AS-REP [RFC4556] in the
 -- KDC reply.
 ...
 }

 The PkinitSuppPubInfo structure contains mutually-known public
 information specific to the authentication exchange. The enctype
 field is the enctype of the AS reply key as selected according to
 [RFC4120]. The as-REQ field contains the DER encoding of the type
 AS-REQ [RFC4120] in the request sent from the client to the KDC.
 Note that the as-REQ field does not include the wrapping 4 octet
 length field when TCP is used. The pk-as-rep field contains the DER
 encoding of the type PA-PK-AS-REP [RFC4556] in the KDC reply. The
 PkinitSuppPubInfo provides a cryptographic bindings between the pre-
 authentication data and the corresponding ticket request and
 response, thus addressing the concerns described in Section 3.

 The KDF is negotiated between the client and the KDC. The client
 sends an unordered set of supported KDFs in the request, and the KDC
 picks one from the set in the reply.

 To accomplish this, the AuthPack structure in [RFC4556] is extended
 as follows:

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4556

Hornquist Astrand, et al.Expires August 30, 2019 [Page 9]

Internet-Draft PKINIT Algorithm Agility February 2019

 AuthPack ::= SEQUENCE {
 pkAuthenticator [0] PKAuthenticator,
 clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL,
 supportedCMSTypes [2] SEQUENCE OF AlgorithmIdentifier
 OPTIONAL,
 clientDHNonce [3] DHNonce OPTIONAL,
 ...,
 supportedKDFs [4] SEQUENCE OF KDFAlgorithmId OPTIONAL,
 -- Contains an unordered set of KDFs supported by the
 -- client.
 ...
 }

 KDFAlgorithmId ::= SEQUENCE {
 kdf-id [0] OBJECT IDENTIFIER,
 -- The object identifier of the KDF
 ...
 }

 The new field supportedKDFs contains an unordered set of KDFs
 supported by the client.

 The KDFAlgorithmId structure contains an object identifier that
 identifies a KDF. The algorithm of the KDF and its parameters are
 defined by the corresponding specification of that KDF.

 The DHRepInfo structure in [RFC4556] is extended as follows:

 DHRepInfo ::= SEQUENCE {
 dhSignedData [0] IMPLICIT OCTET STRING,
 serverDHNonce [1] DHNonce OPTIONAL,
 ...,
 kdf [2] KDFAlgorithmId OPTIONAL,
 -- The KDF picked by the KDC.
 ...
 }

 The new field kdf in the extended DHRepInfo structure identifies the
 KDF picked by the KDC. If the supportedKDFs field is present in the
 request, a KDC conforming to this specification MUST choose one of
 the KDFs supported by the client and indicate its selection in the
 kdf field in the reply. If the supportedKDFs field is absent in the
 request, the KDC MUST omit the kdf field in the reply and use the key
 derivation function from Section 3.2.3.1 of [RFC4556]. If none of
 the KDFs supported by the client is acceptable to the KDC, the KDC
 MUST reply with the new error code KDC_ERR_NO_ACCEPTABLE_KDF:

https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.3.1

Hornquist Astrand, et al.Expires August 30, 2019 [Page 10]

Internet-Draft PKINIT Algorithm Agility February 2019

 o KDC_ERR_NO_ACCEPTABLE_KDF 100

 If the client fills the supportedKDFs field in the request, but the
 kdf field in the reply is not present, the client can deduce that the
 KDC is not updated to conform with this specification, or that the
 exchange was subjected to a downgrade attack. It is a matter of
 local policy on the client whether to reject the reply when the kdf
 field is absent in the reply; if compatibility with non-updated KDCs
 is not a concern, the reply should be rejected.

 Implementations conforming to this specification MUST support id-
 pkinit-kdf-ah-sha256.

7. Interoperability

 An old client interoperating with a new KDC will not include the
 supportedKDFs field in the request. The KDC MUST omit the kdf field
 in the reply and use the [RFC4556] KDF as expected by the client, or
 reject the request if local policy forbids use of the old KDF.

 A new client interoperating with an old KDC will include the
 supportedKDFs field in the request; this field will be ignored as an
 unknown extension by the KDC. The KDC will omit the kdf field in the
 reply and will use the [RFC4556] KDF. The client can deduce from the
 omitted kdf field that the KDC is not updated to conform to this
 specification, or that the exchange was subjected to a downgrade
 attack. The client MUST use the [RFC4556] KDF, or reject the reply
 if local policy forbids the use of the old KDF.

8. Test vectors

 This section contains test vectors for the KDF defined above.

8.1. Common Inputs

https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4556

Hornquist Astrand, et al.Expires August 30, 2019 [Page 11]

Internet-Draft PKINIT Algorithm Agility February 2019

Z: Length = 256 bytes, Hex Representation = (All Zeros)
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000

client: Length = 9 bytes, ASCII Representation = lha@SU.SE

server: Length = 18 bytes, ASCII Representation = krbtgt/SU.SE@SU.SE

as-req: Length = 10 bytes, Hex Representation =
AAAAAAAA AAAAAAAA AAAA

pk-as-rep: Length = 9 bytes, Hex Representation =
BBBBBBBB BBBBBBBB BB

ticket: Length = 55 bytes, Hex Representation =
61353033 A0030201 05A1071B 0553552E 5345A210 300EA003 020101A1 0730051B
036C6861 A311300F A0030201 12A20804 0668656A 68656A

8.2. Test Vector for SHA-1, enctype 18

8.2.1. Specific Inputs

 algorithm-id: (id-pkinit-kdf-ah-sha1) Length = 8 bytes, Hex
 Representation = 2B060105 02030601

 enctype: (aes256-cts-hmac-sha1-96) Length = 1 byte, Decimal
 Representation = 18

8.2.2. Outputs

 key-material: Length = 32 bytes, Hex Representation =
 E6AB38C9 413E035B B079201E D0B6B73D 8D49A814 A737C04E E6649614 206F73AD

 key: Length = 32 bytes, Hex Representation =
 E6AB38C9 413E035B B079201E D0B6B73D 8D49A814 A737C04E E6649614 206F73AD

Hornquist Astrand, et al.Expires August 30, 2019 [Page 12]

Internet-Draft PKINIT Algorithm Agility February 2019

8.3. Test Vector for SHA-256, enctype

8.3.1. Specific Inputs

 algorithm-id: (id-pkinit-kdf-ah-sha256) Length = 8 bytes, Hex
 Representation = 2B060105 02030602

 enctype: (aes256-cts-hmac-sha1-96) Length = 1 byte, Decimal
 Representation = 18

8.3.2. Outputs

 key-material: Length = 32 bytes, Hex Representation =
 77EF4E48 C420AE3F EC75109D 7981697E ED5D295C 90C62564 F7BFD101 FA9bC1D5

 key: Length = 32 bytes, Hex Representation =
 77EF4E48 C420AE3F EC75109D 7981697E ED5D295C 90C62564 F7BFD101 FA9bC1D5

8.4. Test Vector for SHA-512, enctype

8.4.1. Specific Inputs

algorithm-id: (id-pkinit-kdf-ah-sha512) Length = 8 bytes, Hex
Representation = 2B060105 02030603

enctype: (des3-cbc-sha1-kd) Length = 1 byte, Decimal Representation = 16

8.4.2. Outputs

 key-material: Length = 24 bytes, Hex Representation =
 D3C78A79 D65213EF E9A826F7 5DFB01F7 2362FB16 FB01DAD6

 key: Length = 32 bytes, Hex Representation =
 D3C78A79 D65213EF E9A826F7 5DFB01F7 2362FB16 FB01DAD6

9. Security Considerations

 This document describes negotiation of checksum types, key derivation
 functions and other cryptographic functions. If a given negotiation
 is unauthenticated, care must be taken to accept only secure values;
 to do otherwise allows an active attacker to perform a downgrade
 attack.

Hornquist Astrand, et al.Expires August 30, 2019 [Page 13]

Internet-Draft PKINIT Algorithm Agility February 2019

10. Acknowledgements

 Jeffery Hutzelman, Shawn Emery, Tim Polk, Kelley Burgin, Ben Kaduk,
 and Scott Bradner reviewed the document and provided suggestions for
 improvements.

11. IANA Considerations

 IANA is requested to update the following registrations in the
 Kerberos Pre-authentication and Typed Data Registry created by

section 7.1 of RFC 6113 to refer to this specification. These values
 were reserved for this specification in the initial registrations.

 TD-CMS-DIGEST-ALGORITHMS 111 [ALG-AGILITY]
 TD-CERT-DIGEST-ALGORITHMS 112 [ALG-AGILITY]

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February
 2005, <https://www.rfc-editor.org/info/rfc3961>.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 DOI 10.17487/RFC4120, July 2005,
 <https://www.rfc-editor.org/info/rfc4120>.

 [RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial
 Authentication in Kerberos (PKINIT)", RFC 4556,
 DOI 10.17487/RFC4556, June 2006,
 <https://www.rfc-editor.org/info/rfc4556>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

https://datatracker.ietf.org/doc/html/rfc6113#section-7.1
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3961
https://www.rfc-editor.org/info/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120
https://www.rfc-editor.org/info/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556
https://www.rfc-editor.org/info/rfc4556
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280

Hornquist Astrand, et al.Expires August 30, 2019 [Page 14]

Internet-Draft PKINIT Algorithm Agility February 2019

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SP80056A]
 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
 Davis, "Recommendation for Pair-Wise Key Establishment
 Schemes Using Discrete Logarithm Cryptography", April
 2018.

 [SP80056C]
 Barker, E., Chen, L., and R. Davis, "Recommendation for
 Key-Derivation Methods in Key-Establishment Schemes",
 April 2018.

 [X680] ITU, "ITU-T Recommendation X.680 (2002) | ISO/IEC
 8824-1:2002, Information technology - Abstract Syntax
 Notation One (ASN.1): Specification of basic notation",
 November 2008.

 [X690] ITU, "ITU-T Recommendation X.690 (2002) | ISO/IEC
 8825-1:2002, Information technology - ASN.1 encoding
 Rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished Encoding
 Rules (DER)", November 2008.

12.2. Informative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,

RFC 3766, DOI 10.17487/RFC3766, April 2004,
 <https://www.rfc-editor.org/info/rfc3766>.

https://datatracker.ietf.org/doc/html/rfc5652
https://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc1321
https://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/bcp86
https://datatracker.ietf.org/doc/html/rfc3766
https://www.rfc-editor.org/info/rfc3766

Hornquist Astrand, et al.Expires August 30, 2019 [Page 15]

Internet-Draft PKINIT Algorithm Agility February 2019

 [RFC6150] Turner, S. and L. Chen, "MD4 to Historic Status",
RFC 6150, DOI 10.17487/RFC6150, March 2011,

 <https://www.rfc-editor.org/info/rfc6150>.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <https://www.rfc-editor.org/info/rfc6194>.

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/info/rfc7696>.

 [WANG04] Wang, X., Lai, X., Fheg, D., Chen, H., and X. Yu,
 "Cryptanalysis of Hash functions MD4 and RIPEMD", August
 2004.

 [X9.42] ANSI, "Public Key Cryptography for the Financial Services
 Industry: Agreement of Symmetric Keys Using Discrete
 Logarithm Cryptography", 2003.

Appendix A. PKINIT ASN.1 Module

 KerberosV5-PK-INIT-Agility-SPEC {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2) modules(4) pkinit(5) agility (1)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 IMPORTS
 AlgorithmIdentifier, SubjectPublicKeyInfo
 FROM PKIX1Explicit88 { iso (1)
 identified-organization (3) dod (6) internet (1)
 security (5) mechanisms (5) pkix (7) id-mod (0)
 id-pkix1-explicit (18) }
 -- As defined in RFC 5280.

 Ticket, Int32, Realm, EncryptionKey, Checksum
 FROM KerberosV5Spec2 { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) kerberosV5(2)
 modules(4) krb5spec2(2) }
 -- as defined in RFC 4120.

 PKAuthenticator, DHNonce, id-pkinit
 FROM KerberosV5-PK-INIT-SPEC {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2) modules(4) pkinit(5) };

https://datatracker.ietf.org/doc/html/rfc6150
https://www.rfc-editor.org/info/rfc6150
https://datatracker.ietf.org/doc/html/rfc6194
https://www.rfc-editor.org/info/rfc6194
https://datatracker.ietf.org/doc/html/bcp201
https://datatracker.ietf.org/doc/html/rfc7696
https://www.rfc-editor.org/info/rfc7696
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4120

Hornquist Astrand, et al.Expires August 30, 2019 [Page 16]

Internet-Draft PKINIT Algorithm Agility February 2019

 -- as defined in RFC 4556.

 id-pkinit-kdf OBJECT IDENTIFIER ::= { id-pkinit kdf(6) }
 -- PKINIT KDFs

 id-pkinit-kdf-ah-sha1 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha1(1) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-1

 id-pkinit-kdf-ah-sha256 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha256(2) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-256

 id-pkinit-kdf-ah-sha512 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha512(3) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-512

 id-pkinit-kdf-ah-sha384 OBJECT IDENTIFIER
 ::= { id-pkinit-kdf sha384(4) }
 -- SP800-56A ASN.1 structured hash-based KDF using SHA-384

 TD-CMS-DIGEST-ALGORITHMS-DATA ::= SEQUENCE OF
 AlgorithmIdentifier
 -- Contains the list of CMS algorithm [RFC5652]
 -- identifiers indicating the digest algorithms
 -- acceptable to the KDC for signing CMS data in
 -- the order of decreasing preference.

 TD-CERT-DIGEST-ALGORITHMS-DATA ::= SEQUENCE {
 allowedAlgorithms [0] SEQUENCE OF AlgorithmIdentifier,
 -- Contains the list of CMS algorithm [RFC5652]
 -- identifiers indicating the digest algorithms
 -- that are used by the CA to sign the client's
 -- X.509 certificate and are acceptable to the KDC
 -- in the process of validating the client's X.509
 -- certificate, in the order of decreasing
 -- preference.
 rejectedAlgorithm [1] AlgorithmIdentifier OPTIONAL,
 -- This identifies the digest algorithm that was
 -- used to sign the client's X.509 certificate and
 -- has been rejected by the KDC in the process of
 -- validating the client's X.509 certificate
 -- [RFC5280].
 ...
 }

 OtherInfo ::= SEQUENCE {
 algorithmID AlgorithmIdentifier,

https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5280

Hornquist Astrand, et al.Expires August 30, 2019 [Page 17]

Internet-Draft PKINIT Algorithm Agility February 2019

 partyUInfo [0] OCTET STRING,
 partyVInfo [1] OCTET STRING,
 suppPubInfo [2] OCTET STRING OPTIONAL,
 suppPrivInfo [3] OCTET STRING OPTIONAL
 }

 PkinitSuppPubInfo ::= SEQUENCE {
 enctype [0] Int32,
 -- The enctype of the AS reply key.
 as-REQ [1] OCTET STRING,
 -- The DER encoding of the AS-REQ [RFC4120] from the
 -- client.
 pk-as-rep [2] OCTET STRING,
 -- The DER encoding of the PA-PK-AS-REP [RFC4556] in the
 -- KDC reply.
 ...
 }

 AuthPack ::= SEQUENCE {
 pkAuthenticator [0] PKAuthenticator,
 clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL,
 supportedCMSTypes [2] SEQUENCE OF AlgorithmIdentifier
 OPTIONAL,
 clientDHNonce [3] DHNonce OPTIONAL,
 ...,
 supportedKDFs [4] SEQUENCE OF KDFAlgorithmId OPTIONAL,
 -- Contains an unordered set of KDFs supported by the
 -- client.
 ...
 }

 KDFAlgorithmId ::= SEQUENCE {
 kdf-id [0] OBJECT IDENTIFIER,
 -- The object identifier of the KDF
 ...
 }

 DHRepInfo ::= SEQUENCE {
 dhSignedData [0] IMPLICIT OCTET STRING,
 serverDHNonce [1] DHNonce OPTIONAL,
 ...,
 kdf [2] KDFAlgorithmId OPTIONAL,
 -- The KDF picked by the KDC.
 ...
 }
 END

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556

Hornquist Astrand, et al.Expires August 30, 2019 [Page 18]

Internet-Draft PKINIT Algorithm Agility February 2019

Authors' Addresses

 Love Hornquist Astrand
 Apple, Inc
 Cupertino, CA
 USA

 Email: lha@apple.com

 Larry Zhu
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Email: lzhu@microsoft.com

 Margaret Wasserman
 Painless Security
 356 Abbott Street
 North Andover, MA 01845
 USA

 Phone: +1 781 405-7464
 Email: mrw@painless-security.com
 URI: http://www.painless-security.com

 Greg Hudson (editor)
 MIT

 Email: ghudson@mit.edu

http://www.painless-security.com

Hornquist Astrand, et al.Expires August 30, 2019 [Page 19]

