
KITTEN W. Mills
Internet-Draft Yahoo! Inc.
Intended status: Standards Track T. Showalter
Expires: February 5, 2013
 H. Tschofenig
 Nokia Siemens Networks
 August 4, 2012

A SASL and GSS-API Mechanism for OAuth
draft-ietf-kitten-sasl-oauth-02

Abstract

 OAuth enables a third-party application to obtain limited access to a
 protected resource, either on behalf of a resource owner by
 orchestrating an approval interaction, or by allowing the third-party
 application to obtain access on its own behalf.

 This document defines how an application client uses OAuth over the
 Simple Authentication and Security Layer (SASL) or the Generic
 Security Service Application Program Interface (GSS-API) to access a
 protected resource at a resource serve. Thereby, it enables schemes
 defined within the OAuth framework for non-HTTP-based application
 protocols.

 Clients typically store the user's long term credential. This does,
 however, lead to significant security vulnerabilities, for example,
 when such a credential leaks. A significant benefit of OAuth for
 usage in those clients is that the password is replaced by a token.
 Tokens typically provided limited access rights and can be managed
 and revoked separately from the user's long-term credential
 (password).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Mills, et al. Expires February 5, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 This Internet-Draft will expire on February 5, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mills, et al. Expires February 5, 2013 [Page 2]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Table of Contents

1. Introduction . 4
2. Terminology . 7
3. OAuth SASL Mechanism Specification 8
3.1. Initial Client Response 8
3.1.1. Reserved Key/Values in OAUTH 9

3.2. Server's Response . 9
3.2.1. Mapping to SASL Identities 9

 3.2.2. Server response to failed authentication. 10
3.3. Use of Signature Type Authorization 10
3.4. Channel Binding . 11

4. GSS-API OAuth Mechanism Specification 13
5. Examples . 14
5.1. Successful Bearer Token Exchange 14
5.2. MAC Authentication with Channel Binding 14
5.3. Failed Exchange . 15
5.4. Failed Channel Binding 16

6. Security Considerations 17
7. IANA Considerations . 18
7.1. SASL Registration . 18
7.2. GSS-API Registration 18

8. References . 19
8.1. Normative References 19
8.2. Informative References 20

Appendix A. Document History 21
 Authors' Addresses . 22

Mills, et al. Expires February 5, 2013 [Page 3]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

1. Introduction

 OAuth [I-D.ietf-oauth-v2] enables a third-party application to obtain
 limited access to a protected resource, either on behalf of a
 resource owner by orchestrating an approval interaction, or by
 allowing the third-party application to obtain access on its own
 behalf. The core OAuth specification [I-D.ietf-oauth-v2] does not
 define the interaction between the client and the resource server
 with the access to a protected resource using an Access Token. This
 functionality is described in two separate specifications, namely
 [I-D.ietf-oauth-v2-bearer], and [I-D.ietf-oauth-v2-http-mac], whereby
 the focus is on an HTTP-based environment only.

 Figure 1 shows the abstract message flow as shown in Figure 1 of
 [I-D.ietf-oauth-v2].

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract OAuth 2.0 Protocol Flow

 This document takes advantage of the OAuth protocol and its
 deployment base to provide a way to use SASL [RFC4422] as well as the
 GSS-API [RFC2743] to gain access to resources when using non-HTTP-
 based protocols, such as the Internet Message Access Protocol (IMAP)
 [RFC3501], which is what this memo uses in the examples.

 The Simple Authentication and Security Layer (SASL) is a framework
 for providing authentication and data security services in
 connection-oriented protocols via replaceable mechanisms. It
 provides a structured interface between protocols and mechanisms.
 The resulting framework allows new protocols to reuse existing

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires February 5, 2013 [Page 4]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 mechanisms and allows old protocols to make use of new mechanisms.
 The framework also provides a protocol for securing subsequent
 protocol exchanges within a data security layer.

 The Generic Security Service Application Program Interface (GSS-API)
 [RFC2743] provides a framework for applications to support multiple
 authentication mechanisms through a unified interface.

 This document defines a SASL mechanism for OAuth, but it conforms to
 the new bridge between SASL and the GSS-API called GS2 [RFC5801].
 This means that this document defines both a SASL mechanism and a
 GSS-API mechanism. Implementers may be interested in either the
 SASL, the GSS-API, or even both mechanisms. To faciliate these two
 variants, the description has been split into two parts, one part
 that provides normative references for those interested in the SASL
 OAuth mechanism (see Section 3), and a second part for those
 implementers that wish to implement the GSS-API portion (see

Section 4).

 When OAuth is integrated into SASL and the GSS-API the high-level
 steps are as follows:

 (A) The client requests authorization from the resource owner.
 The authorization request can be made directly to the resource
 owner (as shown), or preferably indirectly via the authorization
 server as an intermediary.

 (B) The client receives an authorization grant which is a
 credential representing the resource owner's authorization,
 expressed using one of four grant types defined in this
 specification or using an extension grant type. The authorization
 grant type depends on the method used by the client to request
 authorization and the types supported by the authorization server.

 (C) The client requests an access token by authenticating with the
 authorization server and presenting the authorization grant.

 (D) The authorization server authenticates the client and
 validates the authorization grant, and if valid issues an access
 token.

 (E) The client requests the protected resource from the resource
 server and authenticates by presenting the access token.

 (F) The resource server validates the access token, and if valid,
 serves the request.

 Steps (E) and (F) are not defined in [I-D.ietf-oauth-v2] and are the

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5801

Mills, et al. Expires February 5, 2013 [Page 5]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 main functionality specified within this document. Consequently, the
 message exchange shown in Figure 2 is the result of this
 specification. The client will genrally need to determine the
 authentication endpoints (and perhaps the service endpoints) before
 the OAuth 2.0 protocol exchange messages in steps (A)-(D) are
 executed. The discovery of the resource owner and authorization
 server endpoints is outside the scope of this specification. The
 client must discover those endpoints using a discovery mechanisms
 such as Webfinger using host-meta [I-D.jones-appsawg-webfinger]. In
 band discovery is not tenable if clients support the OAuth 2.0
 password grant. Once credentials are obtained the client proceeds to
 steps (E) and (F) defined in this specification.

 ----+
 +--------+ +---------------+ |
 | |--(A)-- Authorization Request --->| Resource | |
 | | | Owner | |Plain
 | |<-(B)------ Access Grant ---------| | |OAuth
 | | +---------------+ |2.0
	Client Credentials & +---------------+		
	--(C)------ Access Grant -------->	Authorization	
Client		Server	
	<-(D)------ Access Token ---------		
	(w/ Optional Refresh Token) +---------------+		
	----+		
	----+		
	+---------------+		
	--(E)------ Access Token -------->	Resource	
		Server	
	<-(F)---- Protected Resource -----		
 +--------+ +---------------+ |
 ----+

 Figure 2: OAuth SASL Architecture

 It is worthwhile to note that this specification is also compatible
 with OAuth 1.0a [RFC5849].

https://datatracker.ietf.org/doc/html/rfc5849

Mills, et al. Expires February 5, 2013 [Page 6]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is assumed to be familiar with the terms used in the OAuth
 2.0 specification [I-D.ietf-oauth-v2].

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively. Line breaks have been inserted for readability.

 Note that the IMAP SASL specification requires base64 encoding
 message, not this memo.

https://datatracker.ietf.org/doc/html/rfc2119

Mills, et al. Expires February 5, 2013 [Page 7]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

3. OAuth SASL Mechanism Specification

 SASL is used as a generalized authentication method in a variety of
 application layer protocols. This document defines two SASL
 mechanisms for usage with OAuth: "OAUTH" and "OAUTH-PLUS". The
 "OAUTH" SASL mechanism enables OAuth authorizattion schemes for SASL,
 "OAUTH-PLUS" adds channel binding [RFC5056] capability for additional
 security guarantees.

3.1. Initial Client Response

 Client responses are a key/value pair sequence. These key/value
 pairs carry the equivalent values from an HTTP context in order to be
 able to complete an OAuth style HTTP authorization. The ABNF
 [RFC5234] syntax is

 kvsep = %x01
 key = 1*ALPHA
 value = *(VCHAR | SP | HTAB | CR | LF)
 kvpair = key "=" value kvsep
 client_resp = 1*kvpair kvsep

 The following key/value pairs are defined in the client response:

 auth (REQUIRED): The payload of the HTTP Authorization header for
 an equivalent HTTP OAuth authroization.

 user (REQUIRED): Contains the user name being authenticated. The
 server MAY use this as a routing or database lookup hint. The
 server MUST NOT use this as authoritative, the user name MUST
 be asserted by the OAuth credential.

 host: Contains the host name to which the client connected.

 port: Contains the port number represented as a decimal positive
 integer string without leading zeros to which the client
 connected.

 In authorization schemes that use signatures, the client MUST send
 host and port number key/values, and the server MUST fail an
 authorization request requiring signatures that does not have host
 and port values.

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234

Mills, et al. Expires February 5, 2013 [Page 8]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

3.1.1. Reserved Key/Values in OAUTH

 In the OAUTH mechanism values for path, query string and post body
 are assigned default values. OAuth authorization schemes MAY define
 usage of these in the SASL context and extend this specification.
 For OAuth schemes that use request signatures the default values MUST
 be used unless explict values are provided in the client response.
 The following key values are reserved for future use:

 path (RESERVED): HTTP path data, the default value is "/".

 qs (RESERVED): HTTP query string, the default value is "".

 post (RESERVED): HTTP post data, the default value is "".

3.2. Server's Response

 The server validates the response per the specification for the
 authorization scheme used. If the authorization scheme used includes
 signing of the request parameters the client must provide a client
 response that satisfies the data requirements for the scheme in use.

 In the OAUTH-PLUS mechanism the server examines the channel binding
 data, extracts the channel binding unique prefix, and extracts the
 raw channel biding data based on the channel binding type used. It
 then computes it's own copy of the channel binding payload and
 compares that to the payload sent by the client in the cbdata key/
 value. Those two must be equal for channel binding to succeed.

 The server responds to a successfully verified client message by
 completing the SASL negotiation. The authentication scheme MUST
 carry the user ID to be used as the authorization identity (identity
 to act as). The server MUST use the ID obtained from the credential
 as the user being authorized.

3.2.1. Mapping to SASL Identities

 Some OAuth mechanisms can provide both an authorization identity and
 an authentication identity. An example of this is OAuth 1.0a
 [RFC5849] where the consumer key (oauth_consumer_key) identifies the
 entity using the token which equates to the SASL authentication
 identity, and is authenticated using the shared secret. The
 authorization identity in the OAuth 1.0a case is carried in the token
 (per the requirement above), which SHOULD be validated independently.
 The server MAY use a consumer key, a value derived from it, or other
 comparable identity in the OAuth authorization scheme as the SASL

https://datatracker.ietf.org/doc/html/rfc5849

Mills, et al. Expires February 5, 2013 [Page 9]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 authentication identity. If an appropriate authentication identity
 is not available the server MUST use the authorization identity as
 the authentication identity.

3.2.2. Server response to failed authentication.

 For a failed authentication the server returns a JSON [RFC4627]
 formatted error result, and fails the authentication. The error
 result consists of the following values:

 status (REQUIRED): The authorization error code. Valid error
 codes are defined in the IANA [[need registry name]] registry
 specified in the OAuth 2 core specification.

 schemes (REQUIRED): A space separated list of the OAuth
 authroization schemes supported by the server, i.e. "bearer" or
 "bearer mac".

 scope (OPTIONAL): The OAuth scope required to access the service.

 If the resource server provides a scope the client SHOULD always
 request scoped tokens from the token endpoint. The client MAY use a
 scope other than the one provided by the resource server. Scopes
 other than those advertised by the resource server are be defined by
 the resource owner and provided in service documentation or discovery
 information (which is beyond the scope of this memo). If not present
 then the client SHOULD presume an empty scope (unscoped token) is
 needed.

 If channel binding is in use and the channel binding fails the server
 responds with a status code set to 412 to indicate that the channel
 binding precondition failed. If the authentication scheme in use
 does not include signing the server SHOULD revoke the presented
 credential and the client SHOULD discard that credential.

3.3. Use of Signature Type Authorization

 This mechanism supports authorization using signatures, which
 requires that both client and server construct the string to be
 signed. OAuth 2 is designed for authentication/authorization to
 access specific URIs. SASL is designed for user authentication, and
 has no facility for being more specific. In this mechanism we
 require or define default values for the data elements from an HTTP
 request which allow the signature base string to be constructed
 properly. The default HTTP path is "/" and the default post body is
 empty. These atoms are defined as extension points so that no

https://datatracker.ietf.org/doc/html/rfc4627

Mills, et al. Expires February 5, 2013 [Page 10]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 changes are needed if there is a revision of SASL which supports more
 specific resource authorization, e.g. IMAP access to a specific
 folder or FTP access limited to a specific directory.

 Using the example in the MAC specification
 [I-D.ietf-oauth-v2-http-mac] as a starting point, on an IMAP server
 running on port 143 and given the MAC style authorization request
 (with %x01 shown as ^A and long lines wrapped for readability) below:

 host=server.example.com^A
 port=143^A
 auth=MAC token="h480djs93hd8",timestamp="137131200",nonce="dj83hs9s",
 signature="YTVjyNSujYs1WsDurFnvFi4JK6o="^A^A

 The normalized request string would be constructed per the MAC
 specification [I-D.ietf-oauth-v2-http-mac]. In this example the
 normalized request string with the new line separator character is
 represented by "\n" for display purposes only would be:

 h480djs93hi8\n
 137131200\n
 dj83hs9s\n
 \n
 GET\n
 server.example.com\n
 143\n
 /\n
 \n

3.4. Channel Binding

 If the specification for the underlying authorization scheme requires
 a security layer, such as TLS [RFC5246], the server SHOULD only offer
 a mechanism where channel binding can be enabled.

 The channel binding data is computed by the client based on it's
 choice of preferred channel binding type. As specified in [RFC5056],
 the channel binding information MUST start with the channel binding
 unique prefix, followed by a colon (ASCII 0x3A), followed by a base64
 encoded channel binding payload. The channel binding payload is the
 raw data from the channel binding type if the raw channel binding
 data is less than 500 bytes. If the raw channel binding data is 500
 bytes or larger then a SHA-1 [RFC3174] hash of the raw channel
 binding data is computed.

 If the client is using tls-unique for a channel binding then the raw

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc3174

Mills, et al. Expires February 5, 2013 [Page 11]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 channel binding data equals the first TLS finished message. This is
 under the 500 byte limit, so the channel binding payload sent to the
 server would be the base64 encoded first TLS finished message.

 In the case where the client has chosen tls-endpoint, the raw channel
 binding data is the certificate of the server the client connected
 to, which will frequently be 500 bytes or more. If it is then the
 channel binding payload is the base64 encoded SHA-1 hash of the
 server certificate.

Mills, et al. Expires February 5, 2013 [Page 12]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

4. GSS-API OAuth Mechanism Specification

 Note: The normative references in this section are informational for
 SASL implementers, but they are normative for GSS-API implementers.

 The SASL OAuth mechanism is also a GSS-API mechanism and the messages
 described in Section 3 are the same, but

 1. the GS2 header on the client's first message is excluded when
 OAUTH is used as a GSS-API mechanism, and

 2. initial context token header is prefixed to the client's first
 authentication message (context token), as described in Section

3.1 of RFC 2743,

 The GSS-API mechanism OID for OAuth is [[TBD: IANA]].

 OAuth security contexts always have the mutual_state flag
 (GSS_C_MUTUAL_FLAG) set to TRUE. OAuth supports credential
 delegation, therefore security contexts may have the deleg_state flag
 (GSS_C_DELEG_FLAG) set to either TRUE or FALSE.

 The mutual authentication property of this mechanism relies on
 successfully comparing the TLS server identity with the negotiated
 target name. Since the TLS channel is managed by the application
 outside of the GSS-API mechanism, the mechanism itself is unable to
 confirm the name while the application is able to perform this
 comparison for the mechanism. For this reason, applications MUST
 match the TLS server identity with the target name, as discussed in
 [RFC6125].

 The OAuth mechanism does not support per-message tokens or
 GSS_Pseudo_random.

 OAuth supports a standard generic name syntax for acceptors, such as
 GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1). These
 service names MUST be associated with the "entityID" claimed by the
 RP. OAuth supports only a single name type for initiators:
 GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name type.
 The query, display, and exported name syntaxes for OAuth principal
 names are all the same. There is no OAuth-specific name syntax;
 applications SHOULD use generic GSS-API name types, such as
 GSS_C_NT_USER_NAME and GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743],
 Section 4). The exported name token does, of course, conform to

[RFC2743], Section 3.2, but the "NAME" part of the token should be
 treated as a potential input string to the OAuth name normalization
 rules.

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc2743#section-4.1
https://datatracker.ietf.org/doc/html/rfc2743#section-4
https://datatracker.ietf.org/doc/html/rfc2743#section-4
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2

Mills, et al. Expires February 5, 2013 [Page 13]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

5. Examples

 These example illustrate exchanges between an IMAP client and an IMAP
 server.

5.1. Successful Bearer Token Exchange

 This example shows a successful OAuth 2.0 bearer token exchange with
 an initial client response. Note that line breaks are inserted for
 readability.

 S: * IMAP4rev1 Server Ready
 C: t0 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=OAUTH
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH aG9zdD1zZXJ2ZXIuZXhhbXBsZS5jb20BcG9ydD0xNDMB
 YXV0aD1CRUFSRVIgdkY5ZGZ0NHFtVGMyTnZiM1JsY2tCaGJIUmhkbWx6ZEdFdVk
 yOXRDZz09AQE=
 S: +
 S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and long
 lines wrapped for readability) is:

 host=server.example.com^Aport=143^A
 auth=BEARER "vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg=="^A^A

 The line containing just a "+" and a space is an empty response from
 the server. This response contains error information, and in the
 success case the error response is empty. Like other messages, and
 in accordance with the IMAP SASL binding, the empty response is
 base64-encoded.

5.2. MAC Authentication with Channel Binding

 This example shows a channel binding failure. The example sends the
 same request as above, but in the context of an OAUTH-PLUS exchange
 the channel binding information is missing. Note that line breaks
 are inserted for readability.

https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires February 5, 2013 [Page 14]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready
S: t0 OK Completed
C: t1 AUTHENTICATE MAC aG9zdD1zZXJ2ZXIuZXhhbXBsZS5jb20BcG9ydD0xNDMBYXV0a
 D1NQUMgdG9rZW49Img0ODBkanM5M2hkOCIsdGltZXN0YW1wPSIxMzcxMzEyMDAiLG5vbm
 NlPSJkajgzaHM5cyIsc2lnbmF0dXJlPSJZVFZqeU5TdWpZczFXc0R1ckZudkZpNEpLNm8
 9IgFjYmRhdGE9U0c5M0lHSnBaeUJwY3lCaElGUk1VeUJtYVc1aGJDQnRaWE56WVdkbFB3
 bz0BAQ==
S: +
S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and long
 lines wrapped for readability) is:

 -
 host=server.example.com^A
 port=143^A
 auth=MAC token="h480djs93hd8",timestamp="137131200",nonce="dj83hs9s",
 signature="YTVjyNSujYs1WsDurFnvFi4JK6o="^A
 cbdata=SG93IGJpZyBpcyBhIFRMUyBmaW5hbCBtZXNzYWdlPwo=^A^A

 The line containing just a "+" and a space is an empty response from
 the server. This response contains discovery information, and in the
 success case no discovery information is necessary so the response is
 empty. Like other messages, and in accordance with the IMAP SASL
 binding, the empty response is base64-encoded.

5.3. Failed Exchange

 This example shows a failed exchange because of the empty
 Authorization header, which is how a client can query for the needed
 scope. Note that line breaks are inserted for readability.

 S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH aG9zdD1zZXJ2ZXIuZXhhbXBsZS5jb20BcG9ydD0xND
 MBYXV0aD0BAQ==
 S: + ewoic3RhdHVzIjoiNDAxIiwKInNjb3BlIjoiZXhhbXBsZV9zY29wZSIKfQo=
 S: t1 NO SASL authentication failed

 The decoded initial client response is:

 host=server.example.com^Aport=143^Aauth=^A^A

 The decoded server error response is:

https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires February 5, 2013 [Page 15]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 {
 "status":"401",
 "scope":"example_scope"
 }

5.4. Failed Channel Binding

 This example shows a channel binding failure in an empty request.
 The channel binding information is empty. Note that line breaks are
 inserted for readability.

 S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH aG9zdD1zZXJ2ZXIuZXhhbXBsZS5jb20BcG9ydD0xND
 MBYXV0aD0BY2JkYXRhPQEB
 S: + ewoic3RhdHVzIjoiNDEyIiwKInNjb3BlIjoiZXhhbXBsZV9zY29wZSIKfQ==
 S: t1 NO SASL authentication failed

 The decoded initial client response is:

 host=server.example.com^Aport=143^Aauth=^Acbdata=^A^A

 The decoded server response is:

 {
 "status":"412",
 "scope":"example_scope"
 }

Mills, et al. Expires February 5, 2013 [Page 16]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

6. Security Considerations

 This mechanism does not provide a security layer, but does provide a
 provision for channel binding. The OAuth 2 specification
 [I-D.ietf-oauth-v2] allows for a variety of usages, and the security
 properties of these profiles vary. The usage of bearer tokens, for
 example, provide security features similar to cookies. Applications
 using this mechanism SHOULD exercise the same level of care using
 this mechanism as they would in using the SASL PLAIN mechanism. In
 particular, TLS 1.2 or an equivalent secure channel MUST be
 implemented and its usage is RECOMMENDED.

 Channel binding in this mechanism has different properties based on
 the authentication scheme used. Channel binding to TLS with a bearer
 token provides only a binding to the TLS layer. Authentication
 schemes like MAC tokens can implement a signature over the channel
 binding information. These provide additional protection against a
 man in the middle attacks, and the MAC authorization header is bound
 to the channel and only valid in that context.

 It is possible that SASL will be authenticating a connection and the
 life of that connection may outlast the life of the token used to
 authenticate it. This is a common problem in application protocols
 where connections are long-lived, and not a problem with this
 mechanism per se. Servers MAY unilaterally disconnect clients in
 accordance with the application protocol.

 An OAuth credential is not equivalent to the password or primary
 account credential. There are protocols like XMPP that allow actions
 like change password. The server SHOULD ensure that actions taken in
 the authenticated channel are appropriate to the strength of the
 presented credential.

 Tokens have a lifetime associated with them. Reducing the lifetime
 of a token provides security benefits in case that tokens leak. In
 addition a previously obtained token MAY be revoked or rendered
 invalid at any time. The client MAY request a new access token for
 each connection to a resource server, but it SHOULD cache and re-use
 access credentials that appear to be valid.

Mills, et al. Expires February 5, 2013 [Page 17]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

7. IANA Considerations

7.1. SASL Registration

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH-PLUS

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

7.2. GSS-API Registration

 IANA is further requested to assign an OID for this GSS mechanism in
 the SMI numbers registry, with the prefix of
 iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5) and to
 reference this specification in the registry.

Mills, et al. Expires February 5, 2013 [Page 18]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

8. References

8.1. Normative References

 [I-D.ietf-oauth-v2]
 Hardt, D., "The OAuth 2.0 Authorization Framework",

draft-ietf-oauth-v2-31 (work in progress), August 2012.

 [I-D.ietf-oauth-v2-bearer]
 Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage",

draft-ietf-oauth-v2-bearer-23 (work in progress),
 August 2012.

 [I-D.ietf-oauth-v2-http-mac]
 Hammer-Lahav, E., "HTTP Authentication: MAC Access
 Authentication", draft-ietf-oauth-v2-http-mac-01 (work in
 progress), February 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-31
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-bearer-23
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234

Mills, et al. Expires February 5, 2013 [Page 19]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

8.2. Informative References

 [I-D.jones-appsawg-webfinger]
 Jones, P., Salgueiro, G., and J. Smarr, "WebFinger",

draft-jones-appsawg-webfinger-06 (work in progress),
 June 2012.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/draft-jones-appsawg-webfinger-06
https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires February 5, 2013 [Page 20]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Appendix A. Document History

 [[to be removed by RFC editor before publication as an RFC]]

 -02

 o Added the user data element back in.

 o Minor editorial changes.

 -01

 o Ripping out discovery. Changed to refer to I-D.jones-appsawg-
 webfinger instead of WF and SWD older drafts.

 o Replacing HTTP as the message format and adjusted all examples.

 -00

 o Renamed draft into proper IETF naming format now that it's
 adopted.

 o Minor fixes.

 -00

 o Initial revision

Mills, et al. Expires February 5, 2013 [Page 21]

Internet-Draft A SASL/GSS-API Mechanism for OAuth August 2012

Authors' Addresses

 William Mills
 Yahoo! Inc.

 Phone:
 Email: wmills@yahoo-inc.com

 Tim Showalter

 Phone:
 Email: tjs@psaux.com

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

http://www.tschofenig.priv.at

Mills, et al. Expires February 5, 2013 [Page 22]

