
KITTEN W. Mills
Internet-Draft Yahoo! Inc.
Intended status: Standards Track T. Showalter
Expires: August 28, 2013
 H. Tschofenig
 Nokia Siemens Networks
 February 24, 2013

A set of SASL and GSS-API Mechanisms for OAuth
draft-ietf-kitten-sasl-oauth-10.txt

Abstract

 OAuth enables a third-party application to obtain limited access to a
 protected resource, either on behalf of a resource owner by
 orchestrating an approval interaction, or by allowing the third-party
 application to obtain access on its own behalf.

 This document defines how an application client uses credentials
 obtained via OAuth over the Simple Authentication and Security Layer
 (SASL) or the Generic Security Service Application Program Interface
 (GSS-API) to access a protected resource at a resource serve.
 Thereby, it enables schemes defined within the OAuth framework for
 non-HTTP-based application protocols.

 Clients typically store the user's long-term credential. This does,
 however, lead to significant security vulnerabilities, for example,
 when such a credential leaks. A significant benefit of OAuth for
 usage in those clients is that the password is replaced by a token.
 Tokens typically provided limited access rights and can be managed
 and revoked separately from the user's long-term credential
 (password).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Mills, et al. Expires August 28, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 This Internet-Draft will expire on August 28, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mills, et al. Expires August 28, 2013 [Page 2]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

Table of Contents

1. Introduction . 4
2. Terminology . 7
3. OAuth SASL Mechanism Specifications 8
3.1. Initial Client Response 9
3.1.1. Reserved Key/Values 10
3.1.2. Use of the gs2-header 10

3.2. Server's Response . 10
3.2.1. OAuth Identifiers in the SASL Context 11
3.2.2. Server Response to Failed Authentication 11
3.2.3. Completing an Error Message Sequence 12

3.3. OAuth Access Token Types using Keyed Message Digests . . . 12
3.4. Channel Binding . 13

4. GSS-API OAuth Mechanism Specification 14
5. Examples . 16
5.1. Successful Bearer Token Exchange 16
5.2. OAuth 1.0a Authorization with Channel Binding 17
5.3. Failed Exchange . 18
5.4. Failed Channel Binding 19
5.5. SMTP Example of a Failed Negotiation 19

6. Security Considerations 21
7. Internationalization Considerations 22
8. IANA Considerations . 23
8.1. SASL Registration . 23
8.2. GSS-API Registration 24

9. References . 25
9.1. Normative References 25
9.2. Informative References 26

Appendix A. Acknowlegements 28
Appendix B. Document History 29

 Authors' Addresses . 32

Mills, et al. Expires August 28, 2013 [Page 3]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

1. Introduction

 OAuth 1.0a [RFC5849] and OAuth 2.0 [RFC6749] are protocol frameworks
 that enable a third-party application to obtain limited access to a
 protected resource, either on behalf of a resource owner by
 orchestrating an approval interaction, or by allowing the third-party
 application to obtain access on its own behalf.

 The core OAuth 2.0 specification [RFC6749] does not define the
 interaction between the OAuth client and the resource server for the
 access to a protected resource using an Access Token. Instead, this
 functionality is described in separate specifications, such as the
 bearer token specification [RFC6750]. OAuth 1.0a included the
 communication between the OAuth client and the resource server in
 [RFC5849].

 The main use cases for OAuth 2.0 and OAuth 1.0a have so far focused
 on an HTTP-based environment only. This document integrates OAuth
 1.0a and OAuth 2.0 into non-HTTP-based applications using the
 integration into SASL and the GSS-API. Hence, this document takes
 advantage of the OAuth protocol and its deployment base to provide a
 way to use SASL [RFC4422] and the GSS-API [RFC2743] to gain access to
 resources when using non-HTTP-based protocols, such as the Internet
 Message Access Protocol (IMAP) [RFC3501] and SMTP [RFC5321], which is
 what this memo uses in the examples.

 To illustrate the impact of integrating this specification into an
 OAuth-enabled application environment Figure 1 shows the abstract
 message flow of OAuth 2.0 [RFC6749]. As indicated in the figure,
 this document impacts the exchange of messages (E) and (F) since SASL
 or the GSS-API is used for interaction between the client and the
 resource server instead of HTTP.

https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc6749

Mills, et al. Expires August 28, 2013 [Page 4]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 ----+
 +--------+ +---------------+ |
 | |--(A)-- Authorization Request --->| Resource | |
 | | | Owner | |Plain
 | |<-(B)------ Access Grant ---------| | |OAuth
 | | +---------------+ |2.0
	Client Credentials & +---------------+		
	--(C)------ Access Grant -------->	Authorization	
Client		Server	
	<-(D)------ Access Token ---------		
	(w/ Optional Refresh Token) +---------------+		
	----+		
	----+		
	+---------------+		
	--(E)------ Access Token -------->	Resource	
		Server	
	<-(F)---- Protected Resource -----		
 +--------+ +---------------+ |
 ----+

 Figure 1: OAuth 2.0 Protocol Flow

 The Simple Authentication and Security Layer (SASL) is a framework
 for providing authentication and data security services in
 connection-oriented protocols via replaceable mechanisms. It
 provides a structured interface between protocols and mechanisms.
 The resulting framework allows new protocols to reuse existing
 mechanisms and allows old protocols to make use of new mechanisms.
 The framework also provides a protocol for securing subsequent
 protocol exchanges within a data security layer.

 The Generic Security Service Application Program Interface (GSS-API)
 [RFC2743] provides a framework for applications to support multiple
 authentication mechanisms through a unified interface.

 This document defines SASL mechanisms for OAuth, and it conforms to
 the new bridge between SASL and the GSS-API called GS2 [RFC5801].
 This means that this document defines both SASL and GSS-API
 mechanisms. Implementers may be interested in either the SASL, the
 GSS-API, or even both mechanisms. To facilitate these two variants,
 the description has been split into two parts, one part that provides
 normative references for those interested in the SASL OAuth mechanism
 (see Section 3), and a second part for those implementers that wish
 to implement the GSS-API portion (see Section 4).

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5801

Mills, et al. Expires August 28, 2013 [Page 5]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 When OAuth is integrated into SASL and the GSS-API the high-level
 steps are as follows:

 (A) The client requests authorization from the resource owner.
 The authorization request can be made directly to the resource
 owner (as shown), or preferably indirectly via the authorization
 server as an intermediary.

 (B) The client receives an authorization grant which is a
 credential representing the resource owner's authorization,
 expressed using one of four grant types defined in this
 specification or using an extension grant type. The authorization
 grant type depends on the method used by the client to request
 authorization and the types supported by the authorization server.

 (C) The client requests an access token by authenticating with the
 authorization server and presenting the authorization grant.

 (D) The authorization server authenticates the client and
 validates the authorization grant, and if valid issues an access
 token.

 (E) The client requests the protected resource from the resource
 server and authenticates by presenting the access token.

 (F) The resource server validates the access token, and if valid,
 indicates a successful authentication.

 Again, steps (E) and (F) are not defined in [RFC6749] (but are
 described in [RFC6750] instead) and are the main functionality
 specified within this document. Consequently, the message exchange
 shown in Figure 1 is the result of this specification. The client
 will generally need to determine the authentication endpoints (and
 perhaps the service endpoints) before the OAuth 2.0 protocol exchange
 messages in steps (A)-(D) are executed. The discovery of the
 resource owner and authorization server endpoints is outside the
 scope of this specification. The client must discover those
 endpoints using a discovery mechanisms, such as Webfinger using host-
 meta [I-D.ietf-appsawg-webfinger]. In band discovery is not tenable
 if clients support the OAuth 2.0 password grant. Once credentials
 are obtained the client proceeds to steps (E) and (F) defined in this
 specification.

 OAuth 1.0 follows a similar model but uses a different terminology
 and does not separate the resource server from the authorization
 server.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Mills, et al. Expires August 28, 2013 [Page 6]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is assumed to be familiar with the terms used in the OAuth
 2.0 specification [RFC6749].

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively. Line breaks have been inserted for readability.

 Note that the IMAP SASL specification requires base64 encoding, see
Section 4 of [RFC4648], not this memo.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc4648#section-4

Mills, et al. Expires August 28, 2013 [Page 7]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

3. OAuth SASL Mechanism Specifications

 SASL is used as an authentication framework in a variety of
 application layer protocols. This document defines the following
 SASL mechanisms for usage with OAuth:

 OAUTHBEARER: OAuth 2.0 bearer tokens, as described in [RFC6750].
RFC 6750 uses Transport Layer Security (TLS) to secure the

 protocol interaction between the client and the resource
 server.

 OAUTH10A: OAuth 1.0a MAC tokens (using the HMAC-SHA1 keyed
 message digest), as described in Section 3.4.2 of [RFC5849].

 OAUTH10A-PLUS: Adds channel binding [RFC5056] capability to
 OAUTH10A for protection against man-in-the-middle attacks.
 OAUTH10A-PLUS mandates the usage of Transport Layer Security
 (TLS).

 New extensions may be defined to add additional OAuth Access Token
 Types. Such a new SASL OAuth mechanism can be added by simply
 registering the new name(s) and citing this specification for the
 further definition. New channel binding enabled "-PLUS" mechanisms
 defined in this way MUST include message integrity protection. A
 newly defined mechanism would also need to register a new GS2 OID.

 These mechanisms are client initiated and lock-step, the server
 always replying to a client message. In the case where the client
 has and correctly uses a valid token the flow is:

 o Client sends a valid and correct initial client response.

 o Server responds with a successful authentication.

 In the case where authorization fails the server sends an error
 result, then client MUST then send an additional message to the
 server in order to allow the server to finish the exchange. Some
 protocols and common SASL implementations do not support both sending
 a SASL message and finalizing a SASL negotiation, the additional
 client message in the error case deals with this problem. This
 exchange is:

 o Client sends an invalid initial client response.

 o Server responds with an error message.

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5849#section-3.4.2
https://datatracker.ietf.org/doc/html/rfc5056

Mills, et al. Expires August 28, 2013 [Page 8]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 o Client sends a dummy client response.

 o Server fails the authentication.

3.1. Initial Client Response

 Client responses are a key/value pair sequence. The initial client
 response includes a gs2-header as defined in GS2 [RFC5801], which
 carries the authorization ID. These key/value pairs carry the
 equivalent values from an HTTP context in order to be able to
 complete an OAuth style HTTP authorization. Unknown key/value pairs
 MUST be ignored by the server. The ABNF [RFC5234] syntax is:

 kvsep = %x01
 key = 1*ALPHA
 value = *(VCHAR / SP / HTAB / CR / LF)
 kvpair = key "=" value kvsep
 client_resp = 0*kvpair kvsep
 ;; gs2-header = As defined in GSS-API
 initial_client_resp = gs2-header kvsep client_resp

 The following key/value pairs are defined in the client response:

 auth (REQUIRED): The payload of the HTTP Authorization header for
 an equivalent HTTP OAuth authorization.

 host: Contains the host name to which the client connected.

 port: Contains the port number represented as a decimal positive
 integer string without leading zeros to which the client
 connected.

 qs: The HTTP query string. In non-channel binding mechanisms
 this is reserved, the client SHOUD NOT send it, and has the
 default value of "". In "-PLUS" variants this carries a single
 key value pair "cbdata" for the channel binding data payload
 formatted as an HTTP query string.

 For OAuth token types that use keyed message digests the client MUST
 send host and port number key/values, and the server MUST fail an
 authorization request requiring keyed message digests that do not
 have host and port values. In OAuth 1.0a for example, the so-called
 "signature base string calculation" includes the reconstructed HTTP
 URL.

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5234

Mills, et al. Expires August 28, 2013 [Page 9]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

3.1.1. Reserved Key/Values

 In these mechanisms values for path, query string and post body are
 assigned default values. OAuth authorization schemes MAY define
 usage of these in the SASL context and extend this specification.
 For OAuth Access Token Types that use request keyed message digest
 the default values MUST be used unless explicit values are provided
 in the client response. The following key values are reserved for
 future use:

 mthd (RESERVED): HTTP method, the default value is "POST".

 path (RESERVED): HTTP path data, the default value is "/".

 post (RESERVED): HTTP post data, the default value is "".

3.1.2. Use of the gs2-header

 The OAuth scheme related mechanisms are also GSS-API mechanisms, see
Section 4 for further detail. The gs2-header is used as follows:

 o The "gs2-nonstd-flag" MUST NOT be present.

 o The "gs2-authzid" carries the authorization identity as specified
 in [RFC5801]. If present the application MUST determine whether
 access is granted for the identity asserted in the OAuth
 credential, if it does not the server MUST fail the negotiation.

 In the non "-PLUS" mechanisms the "gs2-cb-flag" MUST be set to "n"
 because channel-binding [RFC5056] data is not expected. In the
 OAUTH10A-PLUS mechanism (or other -PLUS variants based on this
 specification) the "gs2-cb-flag" MUST be set appropriately by the
 client.

3.2. Server's Response

 The server validates the response per the specification for the OAuth
 Access Token Types used. If the OAuth Access Token Type utilizes a
 keyed message digest of the request parameters then the client must
 provide a client response that satisfies the data requirements for
 the scheme in use.

 In a "-PLUS" mechanism the server examines the channel binding data,
 extracts the channel binding unique prefix, and extracts the raw
 channel biding data based on the channel binding type used. It then
 computes it's own copy of the channel binding payload and compares

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5056

Mills, et al. Expires August 28, 2013 [Page 10]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 that to the payload sent by the client in the cbdata key/value.
 Those two must be equal for channel binding to succeed.

 The server responds to a successfully verified client message by
 completing the SASL negotiation. The authenticated identity reported
 by the SASL mechanism is the identity securely established for the
 client with the OAuth credential. The application, not the SASL
 mechanism, based on local access policy determines whether the
 identity reported by the mechanism is allowed access to the requested
 resource. Note that the semantics of the authz-id is specified by
 the SASL framework [RFC4422].

3.2.1. OAuth Identifiers in the SASL Context

 In the OAuth framework the client may be authenticated by the
 authorization server and the resource owner is authenticated to the
 authorization server. OAuth access tokens may contain information
 about the authentication of the resource owner and about the client
 and may therefore make this information accessible to the resource
 server.

 If both identifiers are needed by an application the developer will
 need to provide a way to communicate that from the SASL mechanism
 back to the application, such as a GSS-API [RFC2743] named type like
 GSS_C_NT_USER_NAME or a comparable newly defined GSS-API name type or
 name attribute [RFC6680].

3.2.2. Server Response to Failed Authentication

 For a failed authentication the server returns a JSON [RFC4627]
 formatted error result, and fails the authentication. The error
 result consists of the following values:

 status (REQUIRED): The authorization error code. Valid error
 codes are defined in the IANA [[need registry name]] registry
 specified in the OAuth 2 core specification.

 scope (OPTIONAL): An OAuth scope which is valid to access the
 service. This may be empty which implies that unscoped tokens
 are required, or a space separated list. Use of a space
 separated list is NOT RECOMMENDED.

 If the resource server provides a scope then the client MUST always
 request scoped tokens from the token endpoint. If the resource
 server provides no scope to the client then the client SHOULD presume
 an empty scope (unscoped token) is needed.

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc6680
https://datatracker.ietf.org/doc/html/rfc4627

Mills, et al. Expires August 28, 2013 [Page 11]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 If channel binding is in use and the channel binding fails the server
 responds with a status code set to 412 to indicate that the channel
 binding precondition failed. If the authentication scheme in use
 does not include signing the server SHOULD revoke the presented
 credential and the client SHOULD discard that credential.

3.2.3. Completing an Error Message Sequence

Section 3.6 of [RFC4422] explicitly prohibits additional information
 in an unsuccessful authentication outcome. Therefore, the error
 message is sent in a normal message. The client MUST then send an
 additional client response consisting of a single %x01 (control A)
 character to the server in order to allow the server to finish the
 exchange.

3.3. OAuth Access Token Types using Keyed Message Digests

 OAuth Access Token Types may use keyed message digests and the client
 and the resource server may need to perform a cryptographic
 computation for integrity protection and data origin authentication.

 OAuth is designed for access to resources identified by URIs. SASL
 is designed for user authentication, and has no facility for more
 fine-grained access control. In this specification we require or
 define default values for the data elements from an HTTP request
 which allow the signature base string to be constructed properly.
 The default HTTP path is "/" and the default post body is empty.
 These atoms are defined as extension points so that no changes are
 needed if there is a revision of SASL which supports more specific
 resource authorization, e.g., IMAP access to a specific folder or FTP
 access limited to a specific directory.

 Using the example in the OAuth 1.0a specification as a starting
 point, on an IMAP server running on port 143 and given the OAuth 1.0a
 style authorization request (with %x01 shown as ^A and line breaks
 added for readability) below:

 n,a=user@example.com^A
 host=example.com^A
 user=user@example.com^A
 port=143^A
 auth=OAuth realm="Example",
 oauth_consumer_key="9djdj82h48djs9d2",
 oauth_token="kkk9d7dh3k39sjv7",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131201",
 oauth_nonce="7d8f3e4a",

https://datatracker.ietf.org/doc/html/rfc4422#section-3.6

Mills, et al. Expires August 28, 2013 [Page 12]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 oauth_signature="Tm90IGEgcmVhbCBzaWduYXR1cmU%3D"^A^A

 The signature base string would be constructed per the OAuth 1.0
 specification [RFC5849] with the following things noted:

 o The method value is defaulted to POST.

 o The scheme defaults to be "http", and any port number other than
 80 is included.

 o The path defaults to "/".

 o The query string defaults to "".

 In this example the signature base string with line breaks added for
 readability would be:

 POST&http%3A%2F%2Fexample.com:143%2F&oauth_consumer_key%3D9djdj82h4
 8djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHMAC-SH
 A1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39sjv7

3.4. Channel Binding

 The channel binding data is carried in the "qs" (query string) key
 value pair formatted as a standard HTTP query parameter with the name
 "cbdata". Channel binding requires that the channel binding data be
 integrity protected end-to-end in order to protect against man-in-
 the-middle attacks. All SASL OAuth mechanisms with a "-PLUS" postfix
 MUST provide integrity protection. It should be noted that while the
 OAuth 2.0 Bearer Token mandates TLS it does not create keying
 material at the application layer and is not suitable for use with
 channel bindings.

 The channel binding data is computed by the client based on it's
 choice of preferred channel binding type. As specified in [RFC5056],
 the channel binding information MUST start with the channel binding
 unique prefix, followed by a colon (ASCII 0x3A), followed by a base64
 encoded channel binding payload. The channel binding payload is the
 raw data from the channel binding type. For example, if the client
 is using tls-unique for channel binding then the raw channel binding
 data is the TLS finished message as specified in Section 3.1 of
 [RFC5929].

https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5929#section-3.1
https://datatracker.ietf.org/doc/html/rfc5929#section-3.1

Mills, et al. Expires August 28, 2013 [Page 13]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

4. GSS-API OAuth Mechanism Specification

 Note: The normative references in this section are informational for
 SASL implementers, but they are normative for GSS-API implementers.

 A SASL OAuth mechanism is also a GSS-API mechanism and the messages
 described in Section 3 are the same with the following changes to the
 GS2 related elements:

 1. the GS2 header on the client's first message is excluded when
 used as a GSS-API mechanism.

 2. the initial context token header is prefixed to the client's
 first authentication message (context token), as described in

Section 3.1 of RFC 2743 [RFC2743],

 The GSS-API mechanism OIDs are:

 o OAUTHBEARER: [[TBD: IANA -- probably in the 1.3.6.1.5.5 tree]]

 o OAUTH10A: [[TBD: IANA -- probably in the 1.3.6.1.5.5 tree]]

 o OAUTH10A-PLUS: [[TBD: IANA -- probably in the 1.3.6.1.5.5 tree]]

 The setting of the security context flags depends on the selected
 mechanism:

 o OAUTHBEARER: The mutual_state flag (GSS_C_MUTUAL_FLAG) MUST be set
 to FALSE since the TLS protocol execution happens outside the
 SASL/GSS-API method. Server-side authentication is accomplished
 via the mandatory use of TLS at the application layer utilizing
 SASL. Without TLS usage at the application layer protecting the
 by OAuth Bearer Token this SASL method is insecure.

 o OAUTH10A: The mutual_state flag (GSS_C_MUTUAL_FLAG) MUST be set to
 FALSE since server authentication is not provided by this SASL/
 GSS-API method. Since the TLS channel is managed by the
 application outside of the GSS-API mechanism, the OAUTH10A
 mechanism itself is unable to confirm the name while the
 application is able to perform this comparison for the mechanism.
 For this reason, applications MUST match the TLS server identity
 with the target name using the appropriate application profile, as
 discussed in [RFC6125]. For example, when SASL OAuth is run over
 IMAP then the IMAP profile of RFC 6125 is used.

 o OAUTH10A-PLUS: The mutual_state flag (GSS_C_MUTUAL_FLAG) MUST be
 set to FALSE since only the client demonstrates possession of the
 session key by applying a keyed message digest function over

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125

Mills, et al. Expires August 28, 2013 [Page 14]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 various fields of the request. TLS-based server-side
 authentication MUST be provided by the application using SASL.

 Credential delegation is not supported by any of the SASL/GSS-API
 mechanisms with this specification. Therefore, security contexts
 MUST have the deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

 OAuth mechanisms do not support per-message tokens or
 GSS_Pseudo_random.

 OAuth supports a standard generic name syntax for acceptors, such as
 GSS_C_NT_HOSTBASED_SERVICE (see Section 4.1 of [RFC2743]). These
 service names MUST be associated with the "entityID" claimed by the
 RP.

 OAuth mechanisms support only a single name type for initiators:
 GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name type.

 The query, display, and exported name syntaxes for OAuth principal
 names are all the same. There is no OAuth-specific name syntax;
 applications SHOULD use generic GSS-API name types, such as
 GSS_C_NT_USER_NAME and GSS_C_NT_HOSTBASED_SERVICE (see Section 4 of
 [RFC2743]). The exported name token does, of course, conform to

Section 3.2 of [RFC2743], but the "NAME" part of the token should be
 treated as a potential input string to the OAuth name normalization
 rules.

https://datatracker.ietf.org/doc/html/rfc2743#section-4.1
https://datatracker.ietf.org/doc/html/rfc2743#section-4
https://datatracker.ietf.org/doc/html/rfc2743#section-4
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2

Mills, et al. Expires August 28, 2013 [Page 15]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

5. Examples

 These examples illustrate exchanges between an IMAP and SMTP clients
 and servers.

 Note to implementers: The SASL OAuth method names are case
 insensitive. One example uses "Bearer" but that could as easily be
 "bearer", "BEARER", or "BeArEr".

5.1. Successful Bearer Token Exchange

 This example shows a successful OAuth 2.0 bearer token exchange.
 Note that line breaks are inserted for readability and the underlying
 TLS establishment is not shown either.

 S: * OK IMAP4rev1 Server Ready
 C: t0 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20BaG9zdD1zZX
 J2ZXIuZXhhbXBsZS5jb20BcG9ydD0xNDMBYXV0aD1CZWFyZXIgdkY5ZGZ0NHFtV
 GMyTnZiM1JsY2tCaGJIUmhkbWx6ZEdFdVkyOXRDZz09AQE=
 S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and long
 lines wrapped for readability) is:

 n,a=user@example.com^Ahost=server.example.com^Aport=143^A
 auth=Bearer vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg==^A^A

 The same credential used in an SMTP exchange is shown below. Note
 that line breaks are inserted for readability, and that the SMTP
 protocol terminates lines with CR and LF characters (ASCII values
 0x0D and 0x0A), these are not displayed explicitly in the example.

https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires August 28, 2013 [Page 16]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 [connection begins]
 S: 220 mx.example.com ESMTP 12sm2095603fks.9
 C: EHLO sender.example.com
 S: 250-mx.example.com at your service,[172.31.135.47]
 S: 250-SIZE 35651584
 S: 250-8BITMIME
 S: 250-AUTH LOGIN PLAIN OAUTHBEARER
 S: 250-ENHANCEDSTATUSCODES
 S: 250 PIPELINING
 C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20BaG9zdD1zZX
 J2ZXIuZXhhbXBsZS5jb20BcG9ydD0xNDMBYXV0aD1CZWFyZXIgdkY5ZGZ0NHFtV
 GMyTnZiM1JsY2tCaGJIUmhkbWx6ZEdFdVkyOXRDZz09AQE=
 S: 235 Authentication successful.
 [connection continues...]

5.2. OAuth 1.0a Authorization with Channel Binding

 This example shows channel binding in the context of an OAuth 1.0a
 request using a keyed message digest. Note that line breaks are
 inserted for readability.

 S: * OK [CAPABILITY IMAP4rev1 AUTH=OAUTH10A-PLUS SASL-IR]
 IMAP4rev1 Server Ready
 C: t1 AUTHENTICATE OAUTH10A-PLUS cD10bHMtdW5pcXVlLGE9dXNlckBleGFtcGxlL
 mNvbQFob3N0PXNlcnZlci5leGFtcGxlLmNvbQFwb3J0PTE0MwFhdXRoPU9BdXRoI
 HJlYWxtPSJFeGFtcGxlIixvYXV0aF9jb25zdW1lcl9rZXk9IjlkamRqODJoNDhka
 nM5ZDIiLG9hdXRoX3Rva2VuPSJra2s5ZDdkaDNrMzlzanY3IixvYXV0aF9zaWduY
 XR1cmVfbWV0aG9kPSJITUFDLVNIQTEiLG9hdXRoX3RpbWVzdGFtcD0iMTM3MTMxM
 jAxIixvYXV0aF9ub25jZT0iN2Q4ZjNlNGEiLG9hdXRoX3NpZ25hdHVyZT0iU1Nkd
 ElHRWdiR2wwZEd4bElIUmxZU0J3YjNRdSIBcXM9Y2JkYXRhPXRscy11bmlxdWU6U
 0c5M0lHSnBaeUJwY3lCaElGUk1VeUJtYVc1aGJDQnRaWE56WVdkbFB3bz0BAQ==
 S: t1 OK SASL authentication succeeded

 As required by IMAP [RFC3501], the payloads are base64-encoded. The
 decoded initial client response (with %x01 represented as ^A and
 lines wrapped for readability) is:

https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires August 28, 2013 [Page 17]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 p=tls-unique,a=user@example.com^A
 host=server.example.com^A
 port=143^A
 auth=OAuth realm="Example",
 oauth_consumer_key="9djdj82h48djs9d2",
 oauth_token="kkk9d7dh3k39sjv7",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="137131201",
 oauth_nonce="7d8f3e4a",
 oauth_signature="SSdtIGEgbGl0dGxlIHRlYSBwb3Qu"^A
 qs=cbdata=tls-unique:SG93IGJpZyBpcyBhIFRMUyBmaW5hbCBtZXNzYWdlPwo=^A^A

 In this example the signature base string with line breaks added for
 readability would be:

 POST&http%3A%2F%2Fserver.example.com:143%2F&cbdata=tls-unique:SG93I
 GJpZyBpcyBhIFRMUyBmaW5hbCBtZXNzYWdlPwo=%26oauth_consumer_key%3D9djd
 j82h48djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHM
 AC-SHA1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39s
 jv7

5.3. Failed Exchange

 This example shows a failed exchange because of the empty
 Authorization header, which is how a client can query for the needed
 scope. Note that line breaks are inserted for readability.

 S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR IMAP4rev1 Server
 Ready
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTHBEARER cD10bHMtdW5pcXVlLGE9dXNlckBleGFtcG
 xlLmNvbQFob3N0PXNlcnZlci5leGFtcGxlLmNvbQFwb3J0PTE0MwFhdXRoP
 QFjYmRhdGE9AQE=
 S: + ewoic3RhdHVzIjoiNDAxIgoic2NvcGUiOiJleGFtcGxlX3Njb3BlIgp9
 C: + AQ==
 S: t1 NO SASL authentication failed

 The decoded initial client response is:

 n,a=user@example.com,^Ahost=server.example.com^A
 port=143^Aauth=^A^A

 The decoded server error response is:

Mills, et al. Expires August 28, 2013 [Page 18]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 {
 "status":"401",
 "scope":"example_scope"
 }

 The client responds with the required dummy response.

5.4. Failed Channel Binding

 This example shows a channel binding failure in an empty request.
 The channel binding information is empty. Note that line breaks are
 inserted for readability.

 S: * CAPABILITY IMAP4rev1 AUTH=OAUTH10A-PLUS SASL-IR IMAP4rev1 Server
 Ready
 S: t0 OK Completed
 C: t1 AUTHENTICATE OAUTH10A-PLUS cCxhPXVzZXJAZXhhbXBsZS5jb20BaG9z
 dD1zZXJ2ZXIuZXhhbXBsZS5jb20BcG9ydD0xNDMBYXV0aD0BY2JkYXRhPQEB
 S: + ewoic3RhdHVzIjoiNDEyIiwKInNjb3BlIjoiZXhhbXBsZV9zY29wZSIKfQ==
 C: + AQ==
 S: t1 NO SASL authentication failed

 The decoded initial client response is:

 p=tls-unique,a=user@example.com,^Ahost=server.example.com^A
 port=143^Aauth=^Acbdata=^A^A

 The decoded server response is:

 {
 "status":"412",
 "scope":"example_scope"
 }

 The client responds with the required dummy response.

5.5. SMTP Example of a Failed Negotiation

 This example shows an authorization failure in an SMTP exchange.
 Note that line breaks are inserted for readability, and that the SMTP
 protocol terminates lines with CR and LF characters (ASCII values
 0x0D and 0x0A), these are not displayed explicitly in the example.

Mills, et al. Expires August 28, 2013 [Page 19]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

[connection begins]
S: 220 mx.example.com ESMTP 12sm2095603fks.9
C: EHLO sender.example.com
S: 250-mx.example.com at your service,[172.31.135.47]
S: 250-SIZE 35651584
S: 250-8BITMIME
S: 250-AUTH LOGIN PLAIN OAUTHBEARER
S: 250-ENHANCEDSTATUSCODES
S: 250 PIPELINING
C: AUTH OAUTHBEARER bixhPT1zb21ldXNlckBleGFtcGxlLmNvbQFhdXRoPUJlYXJlciB2
 RjlkZnQ0cW1UYzJOdmIzUmxja0JoZEhSaGRtbHpkR0V1WTI5dENnPT0BAQ==
S: 334 eyJzdGF0dXMiOiI0MDEiLCJzY2hlbWVzIjoiYmVhcmVyIG1hYyIsInNjb3BlIjoia
 HR0cHM6Ly9tYWlsLmdvb2dsZS5jb20vIn0K
C: AQ==
S: 535-5.7.1 Username and Password not accepted. Learn more at
S: 535 5.7.1 http://support.example.com/mail/oauth
[connection continues...]

 The server returned an error message in the 334 SASL message, the
 client responds with the required dummy response, and the server
 finalizes the negotiation.

Mills, et al. Expires August 28, 2013 [Page 20]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

6. Security Considerations

 OAuth 1.0a and OAuth 2 allows for a variety of deployment scenarios,
 and the security properties of these profiles vary. As shown in
 Figure 1 this specification is aimed to be integrated into a larger
 OAuth deployment. Application developers therefore need to
 understand the needs of their security requirements based on a threat
 assessment before selecting a specific SASL OAuth mechanism. For
 OAuth 2.0 a detailed security document [RFC6819] provides guidance to
 select those OAuth 2.0 components that help to mitigate threats for a
 given deployment. For OAuth 1.0a Section 4 of RFC 5849 [RFC5849]
 provides guidance specific to OAuth 1.0.

 This document specifies three SASL and GSS-API Mechanisms for OAuth
 and each comes with different security properties.

 OAUTHBEARER: This mechanism borrows from OAuth 2.0 bearer tokens
 [RFC6750]. It relies on the application using TLS to protect the
 OAuth 2.0 Bearer Token exchange; without TLS usage at the
 application layer this method is completely insecure.

 OAUTH10A: This mechanism re-uses OAuth 1.0a MAC tokens (using the
 HMAC-SHA1 keyed message digest), as described in Section 3.4.2 of
 [RFC5849]. To compute the keyed message digest in the same way
 was in RFC 5839 this specification conveys additional parameters
 between the client and the server. This SASL/GSS-API mechanism
 only supports client authentication. If server-side
 authentication is desireable then it must be provided by the
 application underneath the SASL/GSS-API layer.

 OAUTH10A-PLUS: This mechanism adds the channel binding [RFC5056]
 capability to OAUTH10A for protection against man-in-the-middle
 attacks. OAUTH10A-PLUS mandates the usage of Transport Layer
 Security (TLS) at the application layer.

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc5849#section-4
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5849#section-3.4.2
https://datatracker.ietf.org/doc/html/rfc5849#section-3.4.2
https://datatracker.ietf.org/doc/html/rfc5839
https://datatracker.ietf.org/doc/html/rfc5056

Mills, et al. Expires August 28, 2013 [Page 21]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

7. Internationalization Considerations

 The identifer asserted by the OAuth authorization server about the
 resource owner inside the access token may be displayed to a human.
 For example, when SASL is used in the context of IMAP the resource
 server may assert the resource owner's email address to the IMAP
 server for usage in an email-based application. The identifier may
 therefore contain internationalized characters and an application
 needs to ensure that the mapping between the identifier provided by
 OAuth is suitable for use with the application layer protocol SASL is
 incorporated into.

 At the time of writing the standardization of the assertion format
 (in JSON format) is still ongoing, see
 [I-D.ietf-oauth-json-web-token].

Mills, et al. Expires August 28, 2013 [Page 22]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

8. IANA Considerations

8.1. SASL Registration

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTHBEARER

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH10A

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

 The IANA is requested to register the following SASL profile:

 SASL mechanism profile: OAUTH10A-PLUS

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

Mills, et al. Expires August 28, 2013 [Page 23]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

8.2. GSS-API Registration

 IANA is further requested to assign an OID for these GSS mechanisms
 in the SMI numbers registry, with the prefix of
 iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5) and to
 reference this specification in the registry.

Mills, et al. Expires August 28, 2013 [Page 24]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5321

Mills, et al. Expires August 28, 2013 [Page 25]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6680] Williams, N., Johansson, L., Hartman, S., and S.
 Josefsson, "Generic Security Service Application
 Programming Interface (GSS-API) Naming Extensions",

RFC 6680, August 2012.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

9.2. Informative References

 [I-D.ietf-appsawg-webfinger]
 Jones, P., Salgueiro, G., and J. Smarr, "WebFinger",

draft-ietf-appsawg-webfinger-10 (work in progress),
 February 2013.

 [I-D.ietf-oauth-json-web-token]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token-06 (work in
 progress), December 2012.

 [I-D.ietf-oauth-v2-http-mac]
 Richer, J., Mills, W., and H. Tschofenig, "OAuth 2.0
 Message Authentication Code (MAC) Tokens",

draft-ietf-oauth-v2-http-mac-02 (work in progress),
 November 2012.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6680
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-webfinger-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-http-mac-02
https://datatracker.ietf.org/doc/html/rfc3501

Mills, et al. Expires August 28, 2013 [Page 26]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 [RFC6819] Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 January 2013.

Mills, et al. Expires August 28, 2013 [Page 27]

https://datatracker.ietf.org/doc/html/rfc6819

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

Appendix A. Acknowlegements

 The authors would like to thank the members of the Kitten working
 group, and in addition and specifically: Simon Josefson, Torsten
 Lodderstadt, Ryan Troll, Alexey Melnikov, Jeffrey Hutzelman, and Nico
 Williams.

 This document was produced under the chairmanship of Alexey Melnikov,
 Tom Yu, Shawn Emery, Josh Howlett, Sam Hartman. The supervising area
 directors was Stephen Farrell.

Mills, et al. Expires August 28, 2013 [Page 28]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

Appendix B. Document History

 [[to be removed by RFC editor before publication as an RFC]]

 -10

 o Clarifications throughout the document in response to the feedback
 from Jeffrey Hutzelman.

 -09

 o Incorporated review by Alexey and Hannes.

 o Clarified the three OAuth SASL mechanisms.

 o Updated references

 o Extended acknowledgements

 -08

 o Fixed the channel binding examples for p=$cbtype

 o More tuning of the authcid language and edited and renamed 3.2.1.

 -07

 o Struck the MUST langiage from authzid.

 o

 -06

 o Removed the user field. Fixed the examples again.

 o Added canonicalization language.

 o

 -05

 o Fixed the GS2 header language again.

 o Separated out different OAuth schemes into different SASL
 mechanisms. Took out the scheme in the error return. Tuned up
 the IANA registrations.

Mills, et al. Expires August 28, 2013 [Page 29]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 o Added the user field back into the SASL message.

 o Fixed the examples (again).

 o

 -04

 o Changed user field to be carried in the gs2-header, and made gs2
 header explicit in all cases.

 o Converted MAC examples to OAuth 1.0a. Moved MAC to an informative
 reference.

 o Changed to sending an empty client response (single control-A) as
 the second message of a failed sequence.

 o Fixed channel binding prose to refer to the normative specs and
 removed the hashing of large channel binding data, which brought
 mroe problems than it solved.

 o Added a SMTP examples for Bearer use case.

 -03

 o Added user field into examples and fixed egregious errors there as
 well.

 o Added text reminding developers that Authorization scheme names
 are case insensitive.

 -02

 o Added the user data element back in.

 o Minor editorial changes.

 -01

 o Ripping out discovery. Changed to refer to I-D.jones-appsawg-
 webfinger instead of WF and SWD older drafts.

 o Replacing HTTP as the message format and adjusted all examples.

 -00

Mills, et al. Expires August 28, 2013 [Page 30]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

 o Renamed draft into proper IETF naming format now that it's
 adopted.

 o Minor fixes.

Mills, et al. Expires August 28, 2013 [Page 31]

Internet-Draft SASL/GSS-API Mechanisms for OAuth February 2013

Authors' Addresses

 William Mills
 Yahoo! Inc.

 Phone:
 Email: wmills@yahoo-inc.com

 Tim Showalter

 Phone:
 Email: tjs@psaux.com

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

http://www.tschofenig.priv.at

Mills, et al. Expires August 28, 2013 [Page 32]

