
Network Working Group E. Lear

Internet-Draft Cisco Systems GmbH

Intended status: Standards Track H. Tschofenig

Expires: December 16, 2011 Nokia Siemens Networks

H. Mauldin

Cisco Systems, Inc.

S. Josefsson

SJD AB

June 14, 2011

A SASL & GSS-API Mechanism for OpenID

draft-ietf-kitten-sasl-openid-03

Abstract

OpenID has found its usage on the Internet for Web Single Sign-On.

Simple Authentication and Security Layer (SASL) and the Generic

Security Service Application Program Interface (GSS-API) are

application frameworks to generalize authentication. This memo

specifies a SASL and GSS-API mechanism for OpenID that allows the

integration of existing OpenID Identity Providers with applications

using SASL and GSS-API.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on December 16, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Applicability

2. Applicability for non-HTTP Use Cases

2.1. Binding SASL to OpenID in the Relying Party

2.2. Discussion

3. OpenID SASL Mechanism Specification

3.1. Initiation

3.2. Authentication Request

3.3. Server Response

3.4. Error Handling

4. OpenID GSS-API Mechanism Specification

4.1. GSS-API Principal Name Types for OpenID

5. Example

6. Security Considerations

6.1. Binding OpenIDs to Authorization Identities

6.2. RP redirected by malicious URL to take an improper action

6.3. Session Swapping (Cross-Site Request Forgery)

6.4. User Privacy

6.5. Collusion between RPs

7. Room for Improvement

8. IANA Considerations

9. Acknowledgments

10. References

10.1. Normative References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

10.2. Informative References

Appendix A. Changes

Authors' Addresses

1. Introduction

OpenID [OpenID] is a web-based three-party protocol that provides a

means for a user to offer identity assertions and other attributes to a

web server (Relying Party) via the help of an identity provider. The

purpose of this system is to provide a way to verify that an end user

controls an identifier.

Simple Authentication and Security Layer (SASL) [RFC4422] (SASL) is

used by application protocols such IMAP [RFC3501], POP [RFC1939] and

XMPP [RFC3920], with the goal of modularizing authentication and

security layers, so that newer mechanisms can be added as needed. This

memo specifies just such a mechanism.

The Generic Security Service Application Program Interface (GSS-API)

[RFC2743] provides a framework for applications to support multiple

authentication mechanisms through a unified interface. This document

defines a pure SASL mechanism for OpenID, but it conforms to the new

bridge between SASL and the GSS-API called GS2 [RFC5801]. This means

that this document defines both a SASL mechanism and a GSS-API

mechanism. We want to point out that the GSS-API interface is optional

for SASL implementers, and the GSS-API considerations can be avoided in

environments that uses SASL directly without GSS-API.

As currently envisioned, this mechanism is to allow the interworking

between SASL and OpenID in order to assert identity and other

attributes to relying parties. As such, while servers (as relying

parties) will advertise SASL mechanisms, clients will select the OpenID

mechanism.

The OpenID mechanism described in this memo aims to re-use the OpenID

mechanism to the maximum extent and therefore does not establish a

separate authentication, integrity and confidentiality mechanism. It is

anticipated that existing security layers, such as Transport Layer

Security (TLS) [RFC5246], will continued to be used. This specification

is appropriate for use when a browser is available.

Figure 1 describes the interworking between OpenID and SASL. This

document requires enhancements to the Relying Party and to the Client

(as the two SASL communication end points) but no changes to the OpenID

Provider (OP) are necessary. To accomplish this goal indirect messaging

required by the OpenID specification is tunneled through the SASL/GSS-

API mechanism.

*

*

*

 +-----------+

 | |

 >| Relying |

 / | Party |

 // | |

 // +-----------+

 // ^

 OpenID // +--|--+

 // | O| | G

 / S | p| | S

 // A | e| | S

 // S | n| | A

 // L | I| | P

 // | D| | I

 </ +--|--+

 +------------+ v

 | | +----------+

 | OpenID | OpenID | |

 | Provider |<--------------->| Client |

 | | | |

 +------------+ +----------+

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

The reader is assumed to be familiar with the terms used in the OpenID

2.0 specification.

1.2. Applicability

Because this mechanism transports information that should not be

controlled by an attacker, the OpenID mechanism MUST only be used over

channels protected by TLS, and the client MUST successfully validate

the server certificate, or similar integrity protected and

authenticated channels. [RFC5280][RFC6125]

2. Applicability for non-HTTP Use Cases

OpenID was originally envisioned for HTTP [RFC2616] and HTML [W3C.REC-

html401-19991224] based communications, and with the associated

semantic, the idea being that the user would be redirected by the

Relying Party to an identity provider who authenticates the user, and

then sends identity information and other attributes (either directly

or indirectly) to the Relying Party. The identity provider in the

OpenID specifications is referred to as an OpenID Provider (OP). The

actual protocol flow, as copied from the OpenID 2.0 specification, is

as follows:

The end user initiates authentication by presenting a User-

Supplied Identifier to the Relying Party via their User-Agent

(e.g., http://user.example.com).

After normalizing the User-Supplied Identifier as described in

Section 7.2 of [OpenID], the Relying Party performs discovery

on it and establishes the OP Endpoint URL that the end user

uses for authentication. It should be noted that the User-

Supplied Identifier may be an OP Identifier, which allows

selection of a Claimed Identifier at the OP or for the protocol

to proceed without a Claimed Identifier if something else

useful is being done via an extension.

The Relying Party and the OP optionally establish an

association -- a shared secret established using Diffie-Hellman

Key Exchange. The OP uses an association to sign subsequent

messages and the Relying Party to verify those messages; this

removes the need for subsequent direct requests to verify the

signature after each authentication request/response. This

process is desccribed in Section 8 of [OpenID].

The Relying Party redirects the end user's User-Agent to the OP

with an OpenID Authentication request. This occurs as stated in

Section 10.3 of [RFC2616].

The OP authenticates the end user and establishes whether the

end user will authenticate to, and share specific attributes

with, the Relying Party. For instance, the OP often asks the

user what to do. The manner in which the end user authenticates

to their OP and any policies surrounding such authentication is

out of scope of OpenID.

The OP redirects the end user's User-Agent back to the Relying

Party with either an assertion that authentication is approved

or a message that authentication failed.

The Relying Party verifies the information received from the OP

including checking the Return URL, verifying the discovered

information, checking the nonce, and verifying the signature by

using either the shared key established during the association

or by sending a direct request to the OP.

When considering this flow in the context of SASL, we note that while

the RP and the client both must change their code to implement this

SASL mechanism, it is a design constraint that the OP behavior remain

untouched, in order for implementations to interoperate with existing

IdPs. Hence, an analog flow that interfaces the three parties needs to

be created. In the analog, we note that unlike a web server, the SASL

server already has some sort of session (probably a TCP connection)

1.

2.

3.

4.

5.

6.

7.

established with the client. However, it may be necessary to redirect a

SASL client to another application. This will be discussed below. By

doing so, we externalize much of the authentiction from SASL.

The steps are shown from below:

The Relying Party or SASL server advertises support for the

SASL OpenID mechanism to the client.

The client initiates a SASL authentication and transmits the

User-Supplied Identifier as its first response. The SASL

mechanism is client-first, and as explained in [RFC4422] the

server will send an empty challenge if needed.

After normalizing the User-Supplied Identifier as discussed in

[OpenID], the Relying Party performs discovery on it and

establishes the OP Endpoint URL that the end user uses for

authentication.

The Relying Party and the OP optionally establish an

association -- a shared secret established using Diffie-Hellman

Key Exchange. The OP uses an association to sign subsequent

messages and the Relying Party to verify those messages; this

removes the need for subsequent direct requests to verify the

signature after each authentication request/response.

The Relying Party transmits an authentication request to the OP

to obtain an assertion in the form of an indirect request.

These messages are passed through the client rather than

directly between the RP and the OP. OpenID defines two methods

for indirect communication, namely HTTP redirects and HTML form

submission. Both mechanisms are not directly applicable for

usage with SASL. To ensure that a standard OpenID 2.0 capable

OP can be used a new method is defined in this document that

requires the OpenID message content to be encoded using a

Universal Resource Idenitifier (URI). [RFC3986]

The SASL client now sends an response consisting of "=", to

indicate that authentication continues via the normal OpenID

flow.

At this point the client application MUST construct a URL

containing the content received in the previous message from

the RP. This URL is transmitted to the OP either by the SASL

client application or an appropriate handler, such as a

browser.

Next the client optionally authenticates to the OP and then

approves or disapproves authentication to the Relying Party.

The manner in which the end user is authenticated to their

respective OP and any policies surrounding such authentication

1.

2.

3.

4.

5.

6.

7.

8.

is out of scope of OpenID and and hence also out of scope for

this specification. This step happens out of band from SASL.

The OP will convey information about the success or failure of

the authentication phase back to the RP, again using an

indirect response via the client browser or handler. The client

transmits over HTTP the redirect of the OP result to the RP.

This step happens out of band from SASL.

The RP MAY send an OpenID check_authentication request directly

to the OP, if no association has been established, and the OP

should be expected to respond. Again this step happens out of

band from SASL.

The SASL server sends an appropriate SASL response to the

client, with optional Open Simple Registry (SREG) attributes.

 SASL Serv. Client OP

 |>-----(1)----->| | Advertisement

 | | |

 |<-----(2)-----<| | Initiation

 | | |

 |> - - (3) - - - - - - - - - ->| Discovery

 | |

 |>- - -(4)- - - - - - - - - - >| Association

 |<- - -(4)- - - - - - - - - - <|

 | | |

 |>-----(5)----->| | Indirect Auth Request

 | | |

 |<-----(6)-----<| | Client "=" Response

 | | |

 | |>- - (7)- - ->| Client GET to the OP (ext)

 | | |

 | |<- - (8)- - ->| Client / OP Auth. (ext.)

 | | |

 |<- - -(9)- - - + - - - - - - <| HTTP(s) Indirect id_res

 | | |

 |<- - -(10)- - - - - - - - - ->| Optional check_authenticate

 | | |

 |>-----(11)---->| | SASL completion with status

 ----- = SASL

 - - - = HTTP or HTTPS

Note the directionality in SASL is such that the client MUST send the

"=" response. Specifically, it processes the redirect and then awaits a

final SASL decision, while the rest of the OpenID authentication

process continues.

9.

10.

11.

2.1. Binding SASL to OpenID in the Relying Party

To ensure that a specific request is bound, and in particular to ease

interprocess communication, it may be necessary for the relying party

to encode some sort of nonce in the URIs it transmits through the

client for success or failure. This can be done in any number of ways.

Examples would include making changes to the base URI or otherwise

including an additional fragment.

2.2. Discussion

As mentioned above OpenID is primarily designed to interact with web-

based applications. Portions of the authentication stream are only

defined in the crudest sense. That is, when one is prompted to approve

or disapprove an authentication, anything that one might find on a

browser is allowed, including JavaScript, fancy style-sheets, etc.

Because of this lack of structure, implementations will need to invoke

a fairly rich browser in order to insure that the authentication can be

completed.

Once there is an outcome, the SASL server needs to know about it. The

astute will hopefully by now have noticed an "=" client SASL response.

This is not to say that nothing is happening, but rather that

authentication flow has shifted from SASL to OpenID, and will return

when the server has an outcome to hand to the client. The alternative

to this flow is some signal from the HTML browser to the SASL client of

the results that is in turn passed to the SASL server. The IPC issue

this raises is substantial. Better, we conclude, to externalize the

authentication to the browser, and have an "=" client response.

OpenID is also meant to be used in serial within the web. As such,

there are no transaction-ids within the protocol. A transaction id, can

be included by the RP by appending it to the return_to URL.

3. OpenID SASL Mechanism Specification

This section specifies the details of the OpenID SASL mechanism. Recall

section 5 of [RFC4422] for what needs to be described here.

The name of this mechanism "OPENID20". The mechanism is capable of

transferring an authorization identity (via "gs2-header"). The

mechanism does not offer a security layer.

The mechanism is client-first. The first mechanism message from the

client to the server is the "initial-response" described below. As

described in [RFC4422], if the application protocol does not support

sending a client-response together with the authentication request, the

server will send an empty server-challenge to let the client begin.

The second mechanism message is from the server to the client, the

"authentication_request" described below.

The third mechanism message is from client to the server, and is the

fixed message consisting of "=".

The fourth mechanism message is from the server to the client,

described below as "outcome_data" (with SREG attributes), sent as

additional data when indicating a successful outcome.

3.1. Initiation

A client initiates an OpenID authentication with SASL by sending the

GS2 header followed by the XRI or URI, as specified in the OpenID

specification. The GS2 header carries the optional authorization

identity.

 initial-response = gs2-header Auth-Identifier

 Auth-Identifier = Identifier ; authentication identifier

 Identifier = URI / XRI ; Identifier is specified in

 ; Sec. 7.2 of the OpenID 2.0 spec.

The "gs2-header" is specified in [RFC5801], and it is used as follows.

The "gs2-nonstd-flag" MUST NOT be present. The "gs2-cb-flag" MUST be

"n" because channel binding is not supported by this mechanism. The

"gs2-authzid" carries the optional authorization identity.

The XRI syntax is defined in [XRI2.0]. URI is specified in [RFC3986].

3.2. Authentication Request

The SASL Server sends the URL resulting from the OpenID authentication

request, containing an "openid.mode" of either "checkid_immediate" or

"checkid_setup", as specified in Section 9.1 of the OpenID 2.0

specification.

 authentication_request = URI

As part of this request, the SASL server MUST append a unique

transaction id to the "return_to" portion of the request. The form of

this transaction is left to the RP to decide, but SHOULD be large

enough to be resistant to being guessed or attacked.

The client now sends that request via an HTTP GET to the OP, as if

redirected to do so from an HTTP server.

The client MUST handle both user authentication to the OP and

confirmation or rejection of the authentiation of the RP.

After all authentication has been completed by the OP, and after the

response has been sent to the client, the client will relay the

response to the Relying Party via HTTP(S), as specified previously in

the transaction ("return_to").

3.3. Server Response

The Relying Party now validates the response it received from the

client via HTTP or HTTPS, as specified in the OpenID specification,

using the "return_to" URI given previsiously in the transaction.

The response by the Relying Party constitutes a SASL mechanism outcome,

and SHALL be used to set state in the server accordingly, and it shall

be used by the server to report that state to the SASL client as

described in [RFC4422] Section 3.6. In the additional data, the server

MAY include OpenID Simple Registry (SREG) attributes that are listed in

Section 4 of [SREG1.0]. They are encoded as follows:

Strip "openid.sreg." from each attribute name.

Treat the concatentation of results as URI parameters that are

separated by an ambersand (&) and encode as one would a URI,

absent the scheme, authority, and the question mark.

For example: email=lear@example.com&fullname=Eliot%20Lear

 outcome_data = [sreg_avp *("," sreg_avp)]

 sreg_avp = sreg_attr "=" sreg_val

 sreg_attr = sreg_word

 sreg_val = sreg_word

 sreg_word = 1* (unreserved / pct-encoded)

 ; pct-encoded from Section 2.1 of RFC 3986

 ; unreserved from Section 2.3 of RFC 3986

More formally:

 outcome_data = "openid.error" "=" sreg_val *("," sregp_avp)

In the case of failures, the response MUST follow this syntax:

3.4. Error Handling

[RFC4422] Section 3.6 explicitly prohibits additional information in an

unsuccessful authentication outcome. Therefore, the openid.error and

openid.error_code are to be sent as an additional challenge in the

event of an unsuccessful outcome. In this case, as the protocol is lock

step, the client will follow with an additional exchange containing

"=", after which the server will respond with an application-level

outcome.

4. OpenID GSS-API Mechanism Specification

This section and its sub-sections and all normative references of it

not referenced elsewhere in this document are INFORMATIONAL for SASL

implementors, but they are NORMATIVE for GSS-API implementors.

The OpenID SASL mechanism is actually also a GSS-API mechanism. The

OpenID user takes the role of the GSS-API Initiator and the OpenID

1.

2.

Relying Party takes the role of the GSS-API Acceptor. The OpenId

Provider does not have a role in GSS-API, and is considered an internal

matter for the OpenID mechanism. The messages are the same, but a) the

GS2 header on the client's first message and channel binding data is

excluded when OpenID is used as a GSS-API mechanism, and b) the RFC2743

section 3.1 initial context token header is prefixed to the client's

first authentication message (context token).

The GSS-API mechanism OID for OpenID is 1.3.6.1.4.1.11591.4.5.

OpenID security contexts always have the mutual_state flag

(GSS_C_MUTUAL_FLAG) set to TRUE. OpenID does not support credential

delegation, therefore OpenID security contexts alway have the

deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

The mutual authentication property of this mechanism relies on

successfully comparing the TLS server identity with the negotiated

target name. Since the TLS channel is managed by the application

outside of the GSS-API mechanism, the mechanism itself is unable to

confirm the name while the application is able to perform this

comparison for the mechanism. For this reason, applications MUST match

the TLS server identity with the target name, as discussed in

[RFC6125].

The OpenID mechanism does not support per-message tokens or

GSS_Pseudo_random.

The [RFC5587] mechanism attributes for this mechanism are

GSS_C_MA_MECH_CONCRETE, GSS_C_MA_ITOK_FRAMED, and GSS_C_MA_AUTH_INIT.

4.1. GSS-API Principal Name Types for OpenID

OpenID supports standard generic name syntaxes for acceptors such as

GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1).

OpenID supports only a single name type for initiators:

GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name type for

OpenID.

OpenID name normalization is covered by the OpenID specification, see

[OpenID] section 7.2.

The query, display, and exported name syntaxes for OpenID principal

names are all the same. There are no OpenID-specific name syntaxes --

applications should use generic GSS-API name types such as

GSS_C_NT_USER_NAME and GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743],

Section 4). The exported name token does, of course, conform to

[RFC2743], Section 3.2, but the "NAME" part of the token should be

treated as a potential input string to the OpenID name normalization

rules.

GSS-API name attributes may be defined in the future to hold the

normalized OpenID Identifier.

5. Example

Suppose one has an OpenID of http://openid.example, and wishes to

authenticate his IMAP connection to mail.example (where .example is the

top level domain specified in [RFC2606]). The user would input his

Openid into his mail user agent, when he configures the account. In

this case, no association is attempted between the OpenID Consumer and

the OP. The client will make use of the return_to attribute to capture

results of the authentication to be redirected to the server. Note the

use of [RFC4959] for initial response. The authentication on the wire

would then look something like the following:

 (S = IMAP server; C = IMAP client)

 C: < connects to IMAP port>

 S: * OK

 C: C1 CAPABILITY

 S: * CAPABILITY IMAP4rev1 SASL-IR SORT [...] AUTH=OPENID20

 S: C1 OK Capability Completed

 C: C2 AUTHENTICATE OPENID biwsaHR0cDovL29wZW5pZC5leGFtcGxlLw==

 [This is the base64 encoding of "n,,http://openid.example/".

 Server performs discovery on http://openid.example/]

 S: + aHR0cDovL29wZW5pZC5leGFtcGxlL29wZW5pZC8/b3BlbmlkLm5z

 PWh0dHA6Ly9zcGVjcy5vcGVuaWQubmV0L2F1dGgvMi4wJm9wZW5p

 ZC5yZXR1cm5fdG89aHR0cHM6Ly9tYWlsLmV4YW1wbGUvY29uc3Vt

 ZXIvMWVmODg4YyZvcGVuaWQuY2xhaW1lZF9pZD1odHRwczovL29w

 ZW5pZC5leGFtcGxlLyZvcGVuaWQuaWRlbnRpdHk9aHR0cHM6Ly9v

 cGVuaWQuZXhhbXBsZS8mb3BlbmlkLnJlYWxtPWltYXA6Ly9tYWls

 LmV4YW1wbGUmb3BlbmlkLm1vZGU9Y2hlY2tpZF9zZXR1cA==

 [This is the base64 encoding of "http://openid.example/openid/

 ?openid.ns=http://specs.openid.net/auth/2.0

 &openid.return_to=https://mail.example/consumer/1ef888c

 &openid.claimed_id=https://openid.example/

 &openid.identity=https://openid.example/

 &openid.realm=imap://mail.example

 &openid.mode=checkid_setup"

 with line breaks and spaces added here for readibility.

]

 C: PQ==

 [The client now sends the URL it received to a browser for

 processing. The user logs into http://openid.example, and

 agrees to authenticate imap://mail.example. A redirect is

 passed back to the client browser who then connects to

 https://imap.example/consumer via SSL with the results.

 From an IMAP perspective, however, the client sends the "="

 response, and awaits mail.example.

 Server mail.example would now contact openid.example with an

 openid.check_authenticate message. After that...

]

 S: + ZW1haWw9bGVhckBtYWlsLmV4YW1wbGUsZnVsbG5hbWU9RWxp

 b3QlMjBMZWFy

 [Here the IMAP server has returned an SREG attribute of

 email=lear@mail.example,fullname=Eliot%20Lear.

 Line break added in this example for clarity.]

 C:

 [In IMAP client must send a blank response to receive data

 that is included in a success response.]

 S: C2 OK

In this example, the SASL server / RP has made use of a transaction id

1ef888c.

6. Security Considerations

This section will address only security considerations associated with

the use of OpenID with SASL and GSS-API. For considerations relating to

OpenID in general, the reader is referred to the OpenID specification

and to other literature. Similarly, for general SASL and GSS-API

Security Considerations, the reader is referred to those

specifications.

6.1. Binding OpenIDs to Authorization Identities

As specified in [RFC4422], the server is responsible for binding

credentials to a specific authorization identity. It is therefore

necessary that either some sort of registration process takes place to

register specific OpenIDs, or that only specific trusted OpenID

Providers be allowed. Some out of band knowledge may help this process

along. For instance, users of a particular domain may utilize a

particular OP that enforces a mapping.

6.2. RP redirected by malicious URL to take an improper action

In the initial SASL client response a user or host can transmit a

malicious response to the RP for purposes of taking advantage of

weaknesses in the RP's OpenID implementation. It is possible to add

port numbers to the URL so that the outcome is the RP does a port scan

of the site. The URL could send the connection to an internal host or

even the local host, which the attacker would not normally have access

to. The URL could contain a protocol other than http or https, such as

file or ftp.

To mitigate this attack, implementations should carefully analyze URLs

received, eliminating any that would in some way be privileged. A log

of those sites that fail SHOULD be kept, and limitations on queries

from clients should be imposed, just as with any other authentication

attempt. It is RECOMMENDED that only http or https schemas be accepted.

6.3. Session Swapping (Cross-Site Request Forgery)

There is no defined mechanism in the OpenID protocol to bind the OpenID

session to the user's browser. An attacker may forge a cross-site

request in the log-in form, which has the user logging into a proper RP

as the attacker. The user would not recognize they are logged into the

site as the attacker, and so may reveal information at the RP. Cross-

site request forgery is a widely exploited vulnerability at web sites.

This is only concern in the context SASL in as much as the client is

not configured with the Relying Party (e.g., SASL server) in a safe

manner.

6.4. User Privacy

The OP is aware of each RP that a user logs into. There is nothing in

the protocol to hide this information from the OP. It is not a

requirement to track the visits, but there is nothing that prohibits

the collection of information. SASL servers should be aware that OpenID

Providers will be track - to some extent - user access to their

services and any additional information that OP provides.

6.5. Collusion between RPs

It is possible for RPs to link data that they have collected on you. By

using the same identifier to log into every RP, collusion between RPs

is possible. In OpenID 2.0, directed identity was introduced. Directed

identity allows the OP to transform the identifier the user typed in to

another identifier. This way the RP would never see the actual user

identifier, but a randomly generated identifier. This is an option the

user has to understand and decide to use if the OP is supporting it.

7. Room for Improvement

We note one area where there is possible room for improvement over

existing OpenID implementations. Because SASL is often implemented atop

protocols that have required some amount of provisioning, it may be

possible for the SASL client to signal the browser that the given URL

is the beginning of a sensitive transaction, and that increased

scrutiny should be given. A signal of some form would need to come from

an appropriately authorized agent that the sensitive transaction is

complete. An example behavior during this sensitive period might be

increased scrutiny of broken trust chains in certificates, or perhaps

disallowing such trust chains altogether.

8. IANA Considerations

The IANA is requested to update the SASL Mechanism Registry using the

following template, as described in [RFC4422].

SASL mechanism name: OPENID20

Security Considerations: See this document

Published specification: See this document

Person & email address to contact for further information: Authors of

this document

Intended usage: COMMON

Owner/Change controller: IETF

Note: None

9. Acknowledgments

The authors would like to thank Alexey Melnikov, Joe Hildebrand, Mark

Crispin, Chris Newman, Leif Johansson, Sam Hartman, Nico Williams, and

Klaas Wierenga for their review and contributions.

10. References

10.1. Normative References

[OpenID]
OpenID Foundation, "OpenID Authentication 2.0 - Final",

December 2007.

[SREG1.0]
OpenID Foundation, "OpenID Simple Registration

Extension version 1.0", June 2006.

[XRI2.0]

Reed, D. and D. McAlpin, "Extensible Resource

Identifier (XRI) Syntax V2.0", OASIS Standard xri-

syntax-V2.0-cs, September 2005.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2743]
Linn, J., "Generic Security Service Application Program

Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC4422]
Melnikov, A. and K. Zeilenga, "Simple Authentication

and Security Layer (SASL)", RFC 4422, June 2006.

[RFC2606]
Eastlake, D.E. and A. Panitz, "Reserved Top Level DNS

Names", BCP 32, RFC 2606, June 1999.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246, August

2008.

[RFC5280]

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R. and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, May 2008.

[RFC5587]
Williams, N., "Extended Generic Security Service

Mechanism Inquiry APIs", RFC 5587, July 2009.

[RFC5801]

Josefsson, S. and N. Williams, "Using Generic Security

Service Application Program Interface (GSS-API)

Mechanisms in Simple Authentication and Security Layer

(SASL): The GS2 Mechanism Family", RFC 5801, July 2010.

[RFC6125]

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service

Identity within Internet Public Key Infrastructure

Using X.509 (PKIX) Certificates in the Context of

Transport Layer Security (TLS)", RFC 6125, March 2011.

10.2. Informative References

[W3C.REC-

html401-19991224]

Raggett, D., Hors, A. and I. Jacobs, "HTML

4.01 Specification", World Wide Web

mailto:drummond.reed@cordance.net
mailto:dave.mcalpin@epokinc.com
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
mailto:dee3@us.ibm.com
mailto:buglady@fuschia.net
http://tools.ietf.org/html/rfc2606
http://tools.ietf.org/html/rfc2606
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5587
http://tools.ietf.org/html/rfc5587
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125

Consortium Recommendation REC-

html401-19991224, December 1999.

[RFC1939]

Myers, J.G. and M.T. Rose, "Post Office

Protocol - Version 3", STD 53, RFC 1939, May

1996.

[RFC3501]

Crispin, M., "INTERNET MESSAGE ACCESS

PROTOCOL - VERSION 4rev1", RFC 3501, March

2003.

[RFC3920]

Saint-Andre, P., "Extensible Messaging and

Presence Protocol (XMPP): Core", RFC 3920,

October 2004.

[RFC4959]

Siemborski, R. and A. Gulbrandsen, "IMAP

Extension for Simple Authentication and

Security Layer (SASL) Initial Client

Response", RFC 4959, September 2007.

Appendix A. Changes

This section to be removed prior to publication.

03 Clarifies messages and ordering, and replace the empty message

with a "=" message.

02 Address all WGLC comments.

01 Specific text around possible improvements for OOB browser

control in security considerations. Also talk about transaction

id.

00 WG -00 draft. Slight wording modifications abou design

constraints per Alexey.

02 Correct single (significant) error on mechanism name.

01 Add nonce discussion, add authorized identity, explain a

definition. Add gs2 support.

00 Initial Revision.

Authors' Addresses

Eliot Lear Lear Cisco Systems GmbH Richtistrasse 7 Wallisellen, ZH

CH-8304 Switzerland Phone: +41 44 878 9200 EMail: lear@cisco.com

Hannes Tschofenig Tschofenig Nokia Siemens Networks Linnoitustie 6

Espoo, 02600 Finland Phone: +358 (50) 4871445 EMail:

Hannes.Tschofenig@gmx.net URI: http://www.tschofenig.priv.at

*

*

*

*

*

*

*

mailto:jgm+@cmu.edu
mailto:mrose@dbc.mtview.ca.us
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc3501
mailto:stpeter@jabber.org
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc4959
http://tools.ietf.org/html/rfc4959
http://tools.ietf.org/html/rfc4959
http://tools.ietf.org/html/rfc4959
mailto:lear@cisco.com
mailto:Hannes.Tschofenig@gmx.net
http://www.tschofenig.priv.at

Henry Mauldin Mauldin Cisco Systems, Inc. 170 West Tasman Drive San

Jose, CA 95134 USA Phone: +1 (800) 553-6387 EMail:

hmauldin@cisco.com

Simon Josefsson Josefsson SJD AB Hagagatan 24 Stockholm, 113 47 SE

EMail: simon@josefsson.org URI: http://josefsson.org/

mailto:hmauldin@cisco.com
mailto:simon@josefsson.org
http://josefsson.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability
	2. Applicability for non-HTTP Use Cases
	2.1. Binding SASL to OpenID in the Relying Party
	2.2. Discussion
	3. OpenID SASL Mechanism Specification
	3.1. Initiation
	3.2. Authentication Request
	3.3. Server Response
	3.4. Error Handling
	4. OpenID GSS-API Mechanism Specification
	4.1. GSS-API Principal Name Types for OpenID
	5. Example
	6. Security Considerations
	6.1. Binding OpenIDs to Authorization Identities
	6.2. RP redirected by malicious URL to take an improper action
	6.3. Session Swapping (Cross-Site Request Forgery)
	6.4. User Privacy
	6.5. Collusion between RPs
	7. Room for Improvement
	8. IANA Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. Changes
	Authors' Addresses

