Network Working Group K. Wierenga ToC

Cisco Systems,
Inc.

Internet-Draft

Intended status: Standards

E. Lear
Track

Cisco Systems

Expires: March 31, 2011
GmbH

S. Josefsson
SJD AB

September 27,
2010

A SASL and GSS-API Mechanism for SAML
draft-ietf-kitten-sasl-saml-00.txt

Abstract

Security Assertion Markup Language (SAML) has found its usage on the
Internet for Web Single Sign-On. Simple Authentication and Security
Layer (SASL) and the Generic Security Service Application Program
Interface (GSS-API) are application frameworks to generalize
authentication. This memo specifies a SASL mechanism and a GSS-API
mechanism for SAML 2.0 that allows the integration of existing SAML
Identity Providers with applications using SASL and GSS-API.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on March 31, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction

Terminology

Applicability for non-HTTP Use Cases

SAML SASL Mechanism Specification

4.1. Advertisement

4.2. Initiation

4.3. Server Redirect

4.4. Client Empty Response and other

4.5. Outcome and parameters

SAML GSS-API Mechanism Specification

5.1. GSS-API Principal Name Types for SAML
Channel Binding

Example

Security Considerations

8.1. Binding SAML subject identifiers to Authorization Identities
8.2. User Privacy

8.3. Collusion between RPs

IANA Considerations

10. Normative References

Appendix A. Acknowledgments

Appendix B. Changes
8 Authors' Addresses

&

[

|«©

1. Introduction TOC

Security Assertion Markup Language (SAML) 2.0 [0OASIS.saml-core-2.0-0s]
(Cantor, S., Kemp, J., Philpott, R., and E. Maler, “Assertions and
Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0,”

March 2005.) is a modular specification that provides various means for
a user to be identified to a relying party (RP) through the exchange of
(typically signed) assertions issued by an identity provider (IdP). It
includes a number of protocols, protocol bindings
[OASIS.saml-bindings-2.0-0s] (Cantor, S., Hirsch, F., Kemp, J.,
Philpott, R., and E. Maler, “Bindings for the OASIS Security Assertion
Markup Language (SAML) V2.0,” March 2005.), and interoperability

profiles [OASIS.saml-profiles-2.0-0s] (Hughes, J., Cantor, S., Hodges,
J., Hirsch, F., Mishra, P., Philpott, R., and E. Maler, “Profiles for
the OASIS Security Assertion Markup Language (SAML) V2.0,” March 2005.)
designed for different use cases.

Simple Authentication and Security Layer (SASL) [RFC4422] (Melnikov, A.
and K. Zeilenga, “Simple Authentication and Security Layer (SASL),”
June 2006.) is a generalized mechanism for identifying and
authenticating a user and for optionally negotiating a security layer
for subsequent protocol interactions. SASL is used by application
protocols like IMAP, POP and XMPP. The effect is to make modular
authentication, so that newer authentication mechanisms can be added as
needed. This memo specifies just such a mechanism.

The Generic Security Service Application Program Interface (GSS-API)
(Linn, J., “Generic Security Service Application Program Interface
Version 2, Update 1,” January 2000.) [RFC2743] provides a framework for
applications to support multiple authentication mechanisms through a
unified programming interface. This document defines a pure SASL
mechanism for SAML, but it conforms to the new bridge between SASL and
the GSS-API called GS2 (Josefsson, S. and N. Williams, “Using Generic
Security Service Application Program Interface (GSS-API) Mechanisms in
Simple Authentication and Security lLayer (SASL): The GS2 Mechanism
Family,” July 2010.) [RFC5801]. This means that this document defines
both a SASL mechanism and a GSS-API mechanism. We want to point out
that the GSS-API interface is optional for SASL implementers, and the
GSS-API considerations can be avoided in environments that uses SASL
directly without GSS-API.

As currently envisioned, this mechanism is to allow the interworking
between SASL and SAML in order to assert identity and other attributes
to relying parties. As such, while servers (as relying parties) will
advertise SASL mechanisms (including SAML), clients will select the
SAML SASL mechanism as their SASL mechanism of choice.

The SAML mechanism described in this memo aims to re-use the available
SAML deployment to a maximum extent and therefore does not establish a
separate authentication, integrity and confidentiality mechanism. It is
anticipated that existing security layers, such as Transport Layer
Security (TLS), will continued to be used.

Figure 1 (Interworking Architecture) describes the interworking between
SAML and SASL: this document requires enhancements to the Relying Party
and to the Client (as the two SASL communication end points) but no
changes to the SAML Identity Provider are necessary. To accomplish this
goal some indirect messaging is tunneled within SASL, and some use of
external methods is made.

|
>| Relying |
/ | Party |
/7 I
// Fomm e - +
SAML/ // A

HTTPs // +o-]--+

/7 | sl |

/ S| Al |

// Al Ml

// S | L] |

/7 L

/7 I

</ +--]--+

Foemmemaea o + \Y;

| | oo +
SAML	HTTPs	
Identity	<--------------- >	Client
Provider		
S, + B U +

Figure 1: Interworking Architecture

2. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” March 1997.).

The reader is assumed to be familiar with the terms used in the SAML
2.0 specification.

T0C

3. Applicability for non-HTTP Use Cases

While SAML itself is merely a markup language, its common use case
these days is with HTTP. What follows is a typical flow:

1.

The browser requests a resource of a Relying Party (RP) (via an
HTTP request).

The RP sends an HTTP redirect as described in Section 10.3 of
[RFC2616] (Fielding, R., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” June 1999.) to the browser to
the Identity Provider (IdP) or an IdP discovery service with an
authentication request that contains the name of resource being
requested, some sort of a cookie and a return URL,

The user authenticates to the IdP and perhaps authorizes the
authentication to the service provider.

In its authentication response, the IdP redirects the browser
back to the RP with an authentication assertion (stating that
the IdP vouches that the subject has successfully
authenticated), optionally along with some additional
attributes.

RP now has sufficient identity information to approve access to
the resource or not, and acts accordingly. The authentication
is concluded.

When considering this flow in the context of SASL, we note that while
the RP and the client both must change their code to implement this
SASL mechanism, the IdP must remain untouched. The RP already has some
sort of session (probably a TCP connection) established with the

client.

However, it may be necessary to redirect a SASL client to

another application or handler. This will be discussed below. The steps
are shown from below:

The Relying Party or SASL server advertises support for the
SASL SAML20 mechanism to the client

The client initiates a SASL authentication with SAML20 and
sends an IdP identity

The Relying Party transmits an authentication request encoded
using a Universal Resource Identifier (URI) as described in RFC
3986 [RFC3986] (Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”

January 2005.) and a redirect to the IdP

4. The SASL client now sends an empty response, as authentication
continues via the normal SAML flow.

5. At this point the SASL client MUST construct a URL containing
the content received in the previous message from the RP. This
URL is transmitted to the IdP either by the SASL client
application or an appropriate handler, such as a browser.

6. Next the client authenticates to the IdP. The manner in which
the end user is authenticated to the IdP and any policies
surrounding such authentication is out of scope for SAML and
hence for this draft. This step happens out of band from SASL.

7. The IdP will convey information about the success or failure of
the authentication back to the the RP in the form of an
Authentication Statement or failure, using a indirect response
via the client browser or the handler. This step happens out of
band from SASL.

8. The SASL Server sends an appropriate SASL response to the
client, along with an optional list of attributes

Please note: What is described here is the case in which the client has
not previously authenticated. If the client can handle SAML internally
it is possible that the client already holds a valid SAML
authentication token so that the user does not need to be involved in
the process anymore, but that would still be external to SASL.

wWith all of this in mind, the flow appears as follows:

SASL Serv. Client IdP

|>----- (1)----- > | Advertisement
I I I
|<--=-- (2)----- <| | Initiation
I I I
|>----- (3)----- >| | Authentication Request
I I I
|<----- (4)----- <| | Empty Response
I I I
| |< - - - - - ->| Client<>IDP
| | | Authentication
I I I
|<- - - - - - - - - - - - - - -| Authentication Statement
I I I
|>----- (6)----- > | | SASL completion with
| | | status
I I I
----- = SASL

= HTTP or HTTPs (external to SASL)

Figure 2: Authentication flow

4. SAML SASL Mechanism Specification TOC

Based on the previous figure, the following operations are performed
with the SAML SASL mechanism:

4.1. Advertisement TOC

To advertise that a server supports SAML 2.0, during application
session initiation, it displays the name "SAML20" in the list of
supported SASL mechanisms.

4.2. Initiation TOC

A client initiates a "SAML20" authentication with SASL by sending the
GS2 header followed by the authentication identifier. The GS2 header
carries the optional authorization identity.

initial-response = gs2-header Idp-Identifier
IdP-Identifier = Identifier ; IdP identifier
Identifier = URI ; IdP URI

The "gs2-header" is specified in [RFC5801] (Josefsson, S. and N.
Williams, “Using Generic Security Service Application Program Interface
(GSS-API) Mechanisms in Simple Authentication and Security Layer
(SASL): The GS2 Mechanism Family,” July 2010.), and it is used as
follows. The "gs2-nonstd-flag" MUST NOT be present. Regarding the
channel binding "gs2-cb-flag" field, see Section 5. The "gs2- authzid"
carries the optional authorization identity. URI is specified in
[REC3986] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” January 2005.).

4.3. Server Redirect TOC

The SASL Server transmits a redirect to the IdP that the user provided,
with a SAML authentication request in the form of a SAML assertion as
one of the parameters.

4.4. Client Empty Response and other TOC

The SASL client hands the URI it received from the server in the
previous step to either a browser or other appropriate handler to
continue authentication externally while sending an empty response to
the SASL server. The URI is encoded according to Section 3.4 of the
SAML bindings 2.0 specification (Cantor, S., Hirsch, F., Kemp, J.,
Philpott, R., and E. Maler, “Bindings for the OASIS Security Assertion
Markup Language (SAML) V2.0,” March 2005.)
[OASIS.saml-bindings-2.0-0s].

T0C

4.5. Outcome and parameters

The SAML authentication having completed externally, the SASL server
will transmit the outcome.

5. SAML GSS-API Mechanism Specification TOC

This section and its sub-sections and all normative references of it
not referenced elsewhere in this document are INFORMATIONAL for SASL
implementors, but they are NORMATIVE for GSS-API implementors.

The SAML SASL mechanism is actually also a GSS-API mechanism. The
messages are the same, but

a) the GS2 header on the client's first message and channel binding
data is excluded when SAML is used as a GSS-API mechanism, and

b) the RFC2743 section 3.1 initial context token header is prefixed to
the client's first authentication message (context token).

The GSS-API mechanism OID for SAML is 1.3.6.1.4.1.11591.4.8.

SAML security contexts always have the mutual_state flag
(GSS_C_MUTUAL_FLAG) set to TRUE. SAML does not support credential
delegation (FIXME), therefore SCRAM security contexts alway have the
deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

The SAML mechanism does not support (FIXME) per-message tokens or
GSS_Pseudo_random.

5.1. GSS-API Principal Name Types for SAML _ToC

SAML supports standard generic name syntaxes for acceptors such as
GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743] (Linn, J., “Generic Security
Service Application Program Interface Version 2, Update 1,”

January 2000.), Section 4.1). SAML supports only a single name type for
initiators: GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name
type for SAML. The query, display, and exported name syntaxes for SAML
principal names are all the same. There are no SAML-specific name
syntaxes -- applications should use generic GSS-API name types such as
GSS_C_NT_USER_NAME and GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743] (Linn,

J., “Generic Security Service Application Program Interface Version 2,
Update 1,” January 2000.), Section 4). The exported name token does, of
course, conform to [RFC2743] (Linn, J., “Generic Security Service
Application Program Interface Version 2, Update 1,” January 2000.),
Section 3.2. GSS-API name attributes may be defined in the future to
hold the SAML Subject Identifier.

6. Channel Binding TOC

The "gs2-cb-flag" MUST use "n" because channel binding data cannot be
integrity protected by the SAML negotiation.

7. Example TOC

Suppose the user has an identity at the SAML IdP saml.example.org and a
Jabber Identifier (JID) "somenode@example.com", and wishes to
authenticate his XMPP connection to xmpp.example.com. The
authentication on the wire would then look something like the
following:

Step 1: Client initiates stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams’'
to="'example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream
xmlns="'jabber:client' xmlns:stream="http://etherx.jabber.org/streams'
id='some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>

<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>SAML20</mechanism>

</mechanisms>

</stream:features>

Step 4: Client selects an authentication mechanism:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='SAML20'>
https://saml.example.org</auth>

Step 5: Server sends a BASE64 (Josefsson, S., “The Basel6, Base32, and
Base64 Data Encodings,” October 2006.) [RFC4648] encoded challenge to
client in the form of an HTTP Redirect to the SAML IdP with the SAML
Authentication Request as specified in the redirection url:

SFRUUC8XLjEgMzAyIE9iamVjdCBNb3Z1ZCBEYXR10iAyMiBPY3QgMjAwWOSAWNZowMDoOOS
BHTVQQTG9jYXRph246DQpodHRwczovL3NhbWwuzZXhhbXBsZS5vemcvUOFNTCOCcm93c2Vy
P1INBTUXSZXF1ZXNOPQOKUEhOaGJIXeHdPa0YXZEdodVVtVnhkV1Z6ZENCNGJIXeHVjenB6WV
CXC2NEMG1KWEp1T205aGMybHpPbTVoYldWek9uUmpPbE5CVFV3INgOKTWKkOdOOUQN1iM1J2
WTI5CcOLnMEtJQOFNSUVSRVBTSMZZbVZqTKkRIMFptRTFNVEF6TKRINEQUQTVZVE13WmlZeF
PUTXhNVFKOTXpJIMwOKWMP jNUSEYZzBPVGCcwSW1CV1pYSnphVz11UFNJeUxqQW1EUWONSUNB
ZAINYTnpkV1ZKYm50MF1IXNTBQUOL15TURBMOXURXIMVEV3VKRFeAOKT2pNNU9QTTBXaulnUm
05eVkyVkIkWFJIvYmowaVptRNNjM1VpRFFvZO1DQWATWESRWVYhOemFYWmxQUOptwvd4elpT
SU5DaUFNSUNCUQOKY205MGIyTnZiRUpwYm1ScGJItYz1Jb1Z5Ympwdl1lYTnBjenB1WVcxbG
N6cDBZenBUUVUXTU9QSXVNRHBpYVc1la2FXNW5jenBJIVKZSUQOKTFZCUFUXUW1EUW9NSUNB
Z1FYTnpaWEowYVc5dVEYOXVjM1ZOW1hKVFpYS]jJhVO5sV1ZKTVBRMEt JQOFNSUNBZO1DQW
1hSFIwYOhNNgOKTHK5NGJIYQndMbVYOWVCcxd2JHVXVZMj10TDFOQ1RVA3ZRWES6W1hKMGFX
OXVRMjl1YzNWdFpYS1RaWEoyYVdObE1gNESDaUE4YzJGdAOKYKRwSMMzTjFaWElnZUcxc2
JUTTZjMkZOYkQwaWRYSNVPbT1oYzJsek9tNWhiV1Zz6T25Sak9sTkJUVXc2TWKkOdO9tRNp]j
M1Z5ZEdsdgOKYm1JIKORRb2dJQOFNSUdOMGRIQnpPaTh2ZUcxd2NDNWX1ROZOYOA4bEXtTN
ZiUTBLSUR3dmMMyRNRiRHBKYZzNOMVpYSStEUWONUEhOaAOKY1d4d09rNwWhiV1ZKUkZCdmJH
bGplUOIEY1ld4dWN6CHpZVZzFzYOQwaWRYSNVPbT10oYzJsek9tNWhiV1Z6T25Sak9sTkJIJUVX
c2TWKkOdwOKT25CeWIzUnZZMj1lzSWcwSO1DQWdJIQOJIHY JNKAF1YUT1Ib1Z5Ympwd1l1lYTnB]j
enB1WVcxbGN6cDBZenBUUVUXTU9QSXVNRHBIWVCXbAOKYVARAFptOX1iVOYWT25ChGNUTN
BjM1JsYm5RaURRb2dJQOFNSUZOUVRtRNRaVKYxwWVd4cFptbGxjajBpZUcxd2NDNWx1R0OZ0O
YOd4bAOKTG10dmITSWARV3hzY jNKRGNtVmMhkR1IUS5SW5SeWRXVW1JQzgrRFFVZ1BITmhiV3
h3T2xKbGNYVmxjM1JsWkVGMWRHaHVRM]j11ZEAWNAOKZEEWSO1DQWdJQOIOY1d4dWN6CHpPZ
VzFzYOQwaWRYSnVPbT1oYzJsek9tNwWhiV1z6T25Sak9sTkJUVXc2TWkOdO9uQn1iM1J2WT
I5cwOKSW1BTkNpQWdJIQOFNSUNBZ1EYOXRjROZ5YVhOdmIgMGlawWGhoWTNRaVBNMEt JQOE4
YzJGAGJIECEJKWFJIvYmtOdmJuUmx1SFJEYkdGegOKYzFKbFpnMEtJQOFNSUNBZ2VHMXNibk
02YzJGAGJEMG1KWEpP1T205aGMybHpPbTVoY1ldwWekQuUmpPbESCVFV3NKk1pNHAPbUZ6EYZzJIW
eQOKZEdsdmJIpSStEUWONbONBZO1DQjFjbTQ2YjJGemFYTTZibUZOWLhNNMRHTTZVMEZOVE
RveUxqQTZZVee2WTJ4aGMzTmxjenBRWVh0egOKZDI5eVpGQn1iM1JIsWTNSbFpGUNn1zVzV6
YOc5eWRBMEt JQOE4TDNOaGJIXdzZRWFYwYUC1RGIYNTBaWGgwUTJ4aGMzT1NaVikrRFFvZw
OKUEM5e11XMXNjRHBTWL1hGMVpYTjBaV1JCZFhSb2JrTnZiblJsZUhRKO1BMEtQQzl6WVCcX
C2NECEJKWFJIVYmXKbGNYVmxjM1Er

The decoded challenge is:

HTTP/1.1 302 Object Moved Date: 22 Oct 2009 07:00:49 GMT Location:
https://saml.example.org/SAML/Browser?SAMLRequest=
PHNhbWxwOkF1dGhuUmVxdwVzdCB4bWxuczpzYW1lscDOidXJuOm9hc21zOm5hbwWVzOnRjol
NBTUw6Mi4wOnByb3RvY29SIgOKICAgIEIEPSIfYmMVjNDIOZMEIMTAZNDI40TASYTMwWZmYX
ZTMXMTY4MzI3Zjc5NDcOOTgOIiBWZXJZzaWQuPSIyLjAiDQogICAgSXNzdWVJIbnNOYW50PS
IyMDA3LTEYLTEWVDEXOjM50jMOWiIgRmOyY2VBdXR0objOiZmFsc2UiDQogICAgSXNQYXNz
axZ1PSJImYWxzZSINCiAgICBQcm9Ob2NVvbEJIpbmRpbmcOINVybjpvYXNpczpuYwWllczpOYz
pTQUIMOj IuMDpiaw5kaw5nczpIVFRQLVBPU1QiDQogICAgQXNzZXJ0awouQ29uc3VtZXJIT
ZXJ2aWN1VVIMPQOKICAQICAgQICAiaHROCHM6LY94bXBwLmV4YWiwbGUUY29tLINBTUWVQX
NzZXJ0aw9uQ29uc3VtZXJITZXJ2aWN1Ij4NCiA8c2FthDpJc3N1ZXIgeGlsbnM6c2FtbDO1
dXJuOm9hc21z0Om5hbwWVzONnRjO1INBTUW6Mi4wOmFzc2VydGlvbiI+DQogICAgIGhOdHBZzO1
8veGlwcC51eGFtcGx1LmNvbQOKIDwvc2FtbDpJc3N1ZXI+DQogPHNhbWxwOk5hbwVJIRFBv
bGljeSB4bwWxuczpzYWlscDOidXJuOm9hc21z0m5hbWVzOnNRjO1INBTUw6Mi4wOnByb3RVY2
9sIgOKICAQICBGh3JtYXQ9InVybjpvYXNpczpuYWllczp@YzpTQUIMOjIuMDpuYwWllawQt
Zm9ybWFOONBlcnNpc3R1bnQiDQogICAgIFNQTMFtZVF1YWXxpZmllcjOieGlwcC51eGFtcG
x1LmNvbSIgQWxsb3dDcmVhdGU9INRydWUiIC8+DQogPHNhbWxw01J1cXV1c3R1ZEF1dGhu
Q29udGV4dAOGKICAgICB4bwWxuczpzYWlscDOidXJuOm9hc21z0m5hbwWVzOnNRjO1INBTUWEM1
4wOnByb3RvY29sIiANCiAgICAgICAgQ29tcGFyaXNvbj®izZXhhY3QiPgOKICA8c2FtbDpB
dXRobkNvbnR1eHRDbGFzc1J1ZgOKICAgICAgeGlsbnM6c2FtbDOidXJuOm9hc21z0Om5hbw
VzONnRjOINBTUwW6EMi4wOmFzc2VydGlvbiI+DQogoCAgICBlcm46b2FzaXM6bmFtZXM6dGM6E
UOFNTDoOYLjABYWMEY2Xxhc3N1czpQYXNzd29yZFByb3R1Y3R1ZFRYyYW5zcGO9ydAOKICASBL3
NhbWw6QXV0aG5Dh250ZXh0Q2xhc3NSZWY+DQogPC9zYW1scDpSZXF1ZXNOZWRBAXRObKNv
bnR1eHQ+IAOKPC9zYW1lscDpBdXRob1lJ1cXV1c3Q+

Where the decoded SAMLRequest looks like:

Step

Step

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
IssueInstant="2007-12-10T11:39:34Z2" ForceAuthn="false"
IsPassive="false"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL=
"https://xmpp.example.com/SAML/AssertionConsumerService">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"”
SPNameQualifier="xmpp.example.com" AllowCreate="true" />
<samlp:RequestedAuthnContext
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Comparison="exact">
<saml:AuthnContextClassRef
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>

5 (alt): Server returns error to client:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<incorrect-encoding/>

</failure>

</stream:stream>

6: Client sends a BASE64 encoded empty response to the challenge:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

</response>

[The client now sends the URL to a browser for processing. The browser
engages in a normal SAML authentication flow (external to SASL), like
redirection to the Identity Provider (https://saml.example.org), the

user

logs into https://saml.example.org, and agrees to authenticate to

xmpp.example.com. A redirect is passed back to the client browser who
sends the AuthN response to the server, containing the subject-
identifier as an attribute. If the AuthN response doesn't contain the

JID, the server maps the subject-identifier received from the IdP to a
JID]
Step 7: Server informs client of successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 7 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>

</failure>

</stream:stream>

Step 8: Client initiates a new stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
to="example.com' version='1.0'>

Step 9: Server responds by sending a stream header to client along with
any additional features (or an empty features element):

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx. jabber.org/streams'
id='c2s_345' from='example.com' version='1.0'>
<stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
<session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>
</stream:features>

Step 10: Client binds a resource:

<iq type='set' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</bind>
</iqgq>

Step 11: Server informs client of successful resource binding:

<ig type='result' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>somenode@example.com/someresource</jid>
</bind>
</iqgq>

Please note: line breaks were added to the base64 for clarity.

8. Security Considerations TOC

This section will address only security considerations associated with
the use of SAML with SASL applications. For considerations relating to
SAML in general, the reader is referred to the SAML specification and
to other literature. Similarly, for general SASL Security
Considerations, the reader is referred to that specification.

8.1. Binding SAML subject identifiers to Authorization TOC
Identities

As specified in [RFC4422] (Melnikov, A. and K. Zeilenga, “Simple
Authentication and Security Layer (SASL),” June 2006.), the server is
responsible for binding credentials to a specific authorization
identity. It is therefore necessary that only specific trusted IdPs be
allowed. This is typical part of SAML trust establishment between RP's
and IdP.

8.2. User Privacy TOC

The IdP is aware of each RP that a user logs into. There is nothing in
the protocol to hide this information from the IdP. It is not a
requirement to track the visits, but there is nothing that prohibits
the collection of information. SASL servers should be aware that SAML
IdPs will track - to some extent - user access to their services.

T0C

8.3. Collusion between RPs

It is possible for RPs to link data that they have collected on you. By
using the same identifier to log into every RP, collusion between RPs
is possible. In SAML, targeted identity was introduced. Targeted
identity allows the IdP to transform the identifier the user typed in
to an opaque identifier. This way the RP would never see the actual
user identifier, but a randomly generated identifier. This is an option
the user has to understand and decide to use if the IdP is supporting
it.

9. IANA Considerations TOC

The IANA is requested to register the following SASL profile:
SASL mechanism profile: SAML20

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.
Owner/Change controller: the IETF

Note: None

10. Normative References

TOC

[OASIS.saml- Cantor, S., Hirsch, F., Kemp, J., Philpott, R.,
bindings-2.0- and E. Maler, “Bindings for the OASIS Security
os] Assertion Markup Language (SAML) V2.0,"” OASIS

Standard saml-bindings-2.0-0s, March 2005.
[OASIS.saml- Cantor, S., Kemp, J., Philpott, R., and E. Maler,
core-2.0-0s] “Assertions and Protocol for the OASIS Security

Assertion Markup Language (SAML) V2.0,"” O0ASIS

Standard saml-core-2.0-o0s, March 2005.
[OASIS.saml- Hughes, J., Cantor, S., Hodges, J., Hirsch, F.,
profiles-2.0- Mishra, P., Philpott, R., and E. Maler, “Profiles
0s] for the O0ASIS Security Assertion Markup Language

(SAML) V2.0,"” OASIS Standard OASIS.saml-
profiles-2.0-0s, March 2005.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Reguirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC2743]

mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
mailto:
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml

Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” RFC 2743,
January 2000 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML,
XML) .

[RFC4422] Melnikov, A. and K. Zeilenga, “Simple
Authentication and Security Layer (SASL),”
RFC 4422, June 2006 (TXT).

[RFC4648] Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” RFC 4648, October 2006 (TXT).
[RFC5801] Josefsson, S. and N. Williams, “Using Generic

Security Service Application Program Interface
(GSS-API) Mechanisms in Simple Authentication and
Security Layer (SASL): The GS2 Mechanism Family,”
RFC 5801, July 2010 (TXT).

Appendix A. Acknowledgments TOC

The authors would like to thank Scott Cantor, Joe Hildebrand, Josh
Howlett, Leif Johansson, Diego Lopez, Hank Mauldin, RL 'Bob' Morgan,
Stefan Plug and Hannes Tschofenig for their review and contributions.

Appendix B. Changes TOC
This section to be removed prior to publication.

*00 WG -00 draft. Updates GSS-API section, some fixes per Scott
Cantor

*01 Added authorization identity, added GSS-API specifics, added
client supplied IdP

*00 Initial Revision.

Authors' Addresses
TOC

Klaas Wierenga
Cisco Systems, Inc.
Haarlerbergweg 13-19

mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://www.rfc-editor.org/rfc/rfc2743.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://www.rfc-editor.org/rfc/rfc5801.txt

Amsterdam, Noord-Holland 1101 CH
Netherlands

Phone: +31 20 357 1752

Email: klaas@cisco.com

Eliot Lear
Cisco Systems GmbH
Richtistrasse 7
Wallisellen, ZH CH-8304
Switzerland

Phone: +41 44 878 9200

Email: lear@cisco.com

Simon Josefsson
SJD AB
Hagagatan 24
Stockholm 113 47
SE
Email: simon@josefsson.org
URI: http://josefsson.org/

mailto:klaas@cisco.com
mailto:lear@cisco.com
mailto:simon@josefsson.org
http://josefsson.org/

	A SASL and GSS-API Mechanism for SAMLdraft-ietf-kitten-sasl-saml-00.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Applicability for non-HTTP Use Cases
	4. SAML SASL Mechanism Specification
	4.1. Advertisement
	4.2. Initiation
	4.3. Server Redirect
	4.4. Client Empty Response and other
	4.5. Outcome and parameters
	5. SAML GSS-API Mechanism Specification
	5.1. GSS-API Principal Name Types for SAML
	6. Channel Binding
	7. Example
	8. Security Considerations
	8.1. Binding SAML subject identifiers to Authorization Identities
	8.2. User Privacy
	8.3. Collusion between RPs
	9. IANA Considerations
	10. Normative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Authors' Addresses

