Network Working Group K. Wierenga

Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track E. Lear
Expires: December 17, 2011 Cisco Systems GmbH
S. Josefsson
SJD AB

June 15, 2011
A SASL and GSS-API Mechanism for SAML
draft-ietf-kitten-sasl-saml-03.txt

Abstract

Security Assertion Markup Language (SAML) has found its usage on the
Internet for Web Single Sign-0On. Simple Authentication and Security
Layer (SASL) and the Generic Security Service Application Program
Interface (GSS-API) are application frameworks to generalize
authentication. This memo specifies a SASL mechanism and a GSS-API
mechanism for SAML 2.0 that allows the integration of existing SAML
Identity Providers with applications using SASL and GSS-API.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet- Drafts is
at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

This Internet-Draft will expire on December 17, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

*1. Introduction

*1.1. Terminology

*1.2. Applicability

*2. Applicability for non-HTTP Use Cases

*3. SAML SASL Mechanism Specification

*3.1. Initial Response

*3.2. Authentication Request

*3.3. Outcome and parameters

*4, SAML GSS-API Mechanism Specification

*4.,1. GSS-API Principal Name Types for SAML

*5, Channel Binding

*6. Examples

*6.1. XMPP

*6.2. IMAP

*7. Security Considerations

*7.1. Man_in the middle and Tunneling Attacks

*7.2. Binding SAML subject identifiers to Authorization Identities

*7.3. User Privacy

*7.4. Collusion between RPs

*8. IANA Considerations

*9., References

*9.1. Normative References

*9.2. Informative References

*Appendix A. Acknowledgments

*Appendix B. Changes

*Authors' Addresses

1. Introduction

Security Assertion Markup Language (SAML) 2.0 [OASIS.saml-core-2.0-0s]
is a modular specification that provides various means for a user to be
identified to a relying party (RP) through the exchange of (typically
signed) assertions issued by an identity provider (IdP). It includes a
number of protocols, protocol bindings [O0ASIS.saml-bindings-2.0-0s],
and interoperability profiles [0ASIS.saml-profiles-2.0-o0s] designed for
different use cases.

Simple Authentication and Security Layer (SASL) [RFEC4422] is a
generalized mechanism for identifying and authenticating a user and for
optionally negotiating a security layer for subsequent protocol
interactions. SASL is used by application protocols like IMAP
[RFC3501], POP [RFC1939] and XMPP [RFC3920]. The effect is to make
modular authentication, so that newer authentication mechanisms can be
added as needed. This memo specifies just such a mechanism.

The Generic Security Service Application Program Interface (GSS-API)
[RFC2743] provides a framework for applications to support multiple
authentication mechanisms through a unified programming interface. This
document defines a pure SASL mechanism for SAML, but it conforms to the
new bridge between SASL and the GSS-API called GS2 [RFC5801]. This
means that this document defines both a SASL mechanism and a GSS-API
mechanism. We want to point out that the GSS-API interface is optional
for SASL implementers, and the GSS-API considerations can be avoided in
environments that uses SASL directly without GSS-API.

As currently envisioned, this mechanism is to allow the interworking
between SASL and SAML in order to assert identity and other attributes
to relying parties. As such, while servers (as relying parties) will
advertise SASL mechanisms (including SAML), clients will select the
SAML SASL mechanism as their SASL mechanism of choice.

The SAML mechanism described in this memo aims to re-use the Web
Browser SSO profile defined in section 3.1 of [0OASIS.saml-profiles-2.0-

os] to a maximum extent and therefore does not establish a separate
authentication, integrity and confidentiality mechanism. The mechanisms
assumes a security layer, such as Transport Layer Security (TLS
[RFC5246]), will continued to be used. This specification is
appropriate for use when a browser is available.

Figure 1 describes the interworking between SAML and SASL: this
document requires enhancements to the Relying Party and to the Client
(as the two SASL communication end points) but no changes to the SAML
Identity Provider are necessary. To accomplish this goal some indirect
messaging is tunneled within SASL, and some use of external methods is
made.

I
>| Relying |
/ | Party |
/7| I
// R +
SAML/ // A

HTTPs // +o-]--+

/7 | s |

/ S| Al |

// Al Ml

// S | L] |

/7 L

/7 I

</ +--]--+

Foemmem e + Vv

| | oo +
SAML	HTTPs	
Identity	<--------------- >	Client
Provider		
B + S +

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
The reader is assumed to be familiar with the terms used in the SAML
2.0 specification.

1.2. Applicability

Applicability Because this mechanism transports information that should
not be controlled by an attacker, the SAML mechanism MUST only be used
over channels protected by TLS, and the client MUST successfully
validate the server certificate, or similar integrity protected and
authenticated channels. [RFC5280][RFC6125]

2. Applicability for non-HTTP Use Cases

While SAML itself is merely a markup language, its common use case
these days is with HTTP [RFC2616] and HTML [W3C.REC-html401-19991224].
What follows is a typical flow:

1. The browser requests a resource of a Relying Party (RP) (via an
HTTP request).

2. The RP sends an HTTP redirect as described in Section 10.3 of
[RFC2616] to the browser to the Identity Provider (IdP) or an
IdP discovery service with an authentication request that
contains the name of resource being requested, some sort of a
cookie and a return URL [RFC1738],

3. The user authenticates to the IdP and perhaps authorizes the
authentication to the service provider.

4, In its authentication response, the IdP redirects (via an HTTP
redirect) the browser back to the RP with an authentication
assertion (stating that the IdP vouches that the subject has
successfully authenticated), optionally along with some
additional attributes.

5. RP now has sufficient identity information to approve access to
the resource or not, and acts accordingly. The authentication
is concluded.

When considering this flow in the context of SASL, we note that while
the RP and the client both must change their code to implement this
SASL mechanism, the IdP must remain untouched. The RP already has some
sort of session (probably a TCP connection) established with the
client. However, it may be necessary to redirect a SASL client to
another application or handler. This will be discussed below. The steps
are shown from below:

1. The Relying Party or SASL server advertises support for the
SASL SAML20 mechanism to the client

2. The client initiates a SASL authentication with SAML20 and
sends a domain

3. The Relying Party transmits an authentication request encoded
using a Universal Resource Identifier (URI) as described in RFC
3986 [RFC3986] and an HTTP redirect to the IdP corresponding to
the domain

4. The SASL client now sends an empty response, as authentication
continues via the normal SAML flow.

5. At this point the SASL client MUST construct a URL containing
the content received in the previous message from the RP. This
URL is transmitted to the IdP either by the SASL client
application or an appropriate handler, such as a browser.

6. Next the client authenticates to the IdP. The manner in which
the end user is authenticated to the IdP and any policies
surrounding such authentication is out of scope for SAML and
hence for this draft. This step happens out of band from SASL.

7. The IdP will convey information about the success or failure of
the authentication back to the the RP in the form of an
Authentication Statement or failure, using a indirect response
via the client browser or the handler. This step happens out of
band from SASL.

8. The SASL Server sends an appropriate SASL response to the
client, along with an optional list of attributes

Please note: What is described here is the case in which the client has
not previously authenticated. It is possible that the client already
holds a valid SAML authentication token so that the user does not need
to be involved in the process anymore, but that would still be external
to SASL. This is classic Web Single Sign-On, in which the Web Browser
client presents the authentication token (cookie) to the RP without
renewed user authentication at the IdP.

wWith all of this in mind, the flow appears as follows:

SASL Serv. Client IdP

[|>----- (1)----- >| | Advertisement
I I I
|<----- (2)----- <| | Initiation
I I I
|>----- (3)----- > | | Authentication Request
I I I
[<----- (4)----- <| | Empty Response
I I I
| |[< - - - - - ->| Client<>IDP
| [| Authentication
I I I
|<- - - - - - - - - - - - - - -| Authentication Statement
I I I
[>----- (6)----- >| | SASL completion with
| [| status
I I I

----- = SASL

HTTP or HTTPs (external to SASL)

3. SAML SASL Mechanism Specification

This section specifies the details of the SAML SASL mechanism. Recall
section 5 of [RFC4422] for what needs to be described here.

The name of this mechanism "SAML20". The mechanism is capable of
transferring an authorization identity (via "gs2-header"). The
mechanism does not offer a security layer.

The mechanism is client-first. The first mechanism message from the
client to the server is the "initial-response" described below. As
described in [RFC4422], if the application protocol does not support
sending a client-response together with the authentication request, the
server will send an empty server-challenge to let the client begin.
The second mechanism message is from the server to the client, the
"authentication-request" described below.

The third mechanism message is from client to the server, and is the
fixed message consisting of "=",

The fourth mechanism message is from the server to the client,
indicating the SASL mechanism outcome described below.

3.1. Initial Response

A client initiates a "SAML20" authentication with SASL by sending the
GS2 header followed by the authentication identifier. The GS2 header
carries the optional authorization identity.

initial-response = gs2-header Idp-Identifier
IdP-Identifier = domain ; domain name with corresponding IdP

The "gs2-header" is specified in [RFC5801], and it is used as follows.
The "gs2-nonstd-flag" MUST NOT be present. Regarding the channel
binding "gs2-cb-flag" field, see Section 5. The "gs2- authzid" carries
the optional authorization identity. Domain name is specified in

[RFC1035].

3.2. Authentication Request

The SASL Server transmits a redirect URI to the IdP that corresponds to
the domain the user provided, with a SAML authentication request as one
of the parameters. Note: The SASL server may have a static mapping of
domain to corresponding IdP or alternatively a DNS-lookup mechanism
could be envisioned, but that is out-of-scope for this document

authentication-request = URI

URI is specified in [RFC3986] and is encoded according to Section 3.4
(HTTP Redirect) of the SAML bindings 2.0 specification [OASIS.saml-
bindings-2.0-0s]. The SAML authentication request is encoded according

to Section 3.4 (Authentication Request) of the SAML core 2.0
specification [OASIS.saml-core-2.0-0s].

The client now sends the authentication request via an HTTP GET to the
IdP, as if redirected to do so from an HTTP server and in accordance
with the Web Browser SSO profile, described in section 3.1 of
[OASIS.saml-profiles-2.0-0s]

The client MUST handle both user authentication to the IdP and
confirmation or rejection of the authentiation of the RP.

After all authentication has been completed by the IdP, and after the
response has been sent to the client, the client will relay the
response to the Relying Party via HTTP(S), as specified in the
authentication request ("AssertionConsumerServiceURL").

Please note: this means that the SASL server needs to implement a SAML
Relying Party. Also, the RP needs to correlate the TCP session from the
SASL client with the SAML authentication.

3.3. Outcome and parameters

The Relying Party now validates the response it received from the
client via HTTP or HTTPS, as specified in the SAML specification

The response by the Relying Party constitutes a SASL mechanism outcome,
and SHALL be used to set state in the server accordingly, and it shall
be used by the server to report that state to the SASL client as
described in [RFC4422] Section 3.6.

4. SAML GSS-API Mechanism Specification

This section and its sub-sections and all normative references of it
not referenced elsewhere in this document are INFORMATIONAL for SASL
implementors, but they are NORMATIVE for GSS-API implementors.

The SAML SASL mechanism is actually also a GSS-API mechanism. The
messages are the same, but

a) the GS2 header on the client's first message and channel binding
data is excluded when SAML is used as a GSS-API mechanism, and

b) the RFC2743 section 3.1 initial context token header is prefixed to
the client's first authentication message (context token).

The GSS-API mechanism O0ID for SAML is 1.3.6.1.4.1.11591.4.8.

SAML20 security contexts always have the mutual_state flag
(GSS_C_MUTUAL_FLAG) set to TRUE. SAML does not support credential
delegation, therefore SAML security contexts alway have the deleg_state
flag (GSS_C_DELEG_FLAG) set to FALSE.

The mutual authentication property of this mechanism relies on
successfully comparing the TLS server identity with the negotiated
target name. Since the TLS channel is managed by the application
outside of the GSS-API mechanism, the mechanism itself is unable to
confirm the name while the application is able to perform this
comparison for the mechanism. For this reason, applications MUST match
the TLS server identity with the target name, as discussed in

[REC6125].

The SAML mechanism does not support per-message tokens or
GSS_Pseudo_random.

4.1. GSS-API Principal Name Types for SAML

SAML supports standard generic name syntaxes for acceptors such as
GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1). SAML supports
only a single name type for initiators: GSS_C_NT_USER_NAME.
GSS_C_NT_USER_NAME is the default name type for SAML. The query,
display, and exported name syntaxes for SAML principal names are all
the same. There are no SAML-specific name syntaxes -- applications
should use generic GSS-API name types such as GSS_C_NT_USER_NAME and
GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4). The exported
name token does, of course, conform to [RFC2743], Section 3.2.

5. Channel Binding

The "gs2-cb-flag" MUST use "n" because channel binding data cannot be
integrity protected by the SAML negotiation.

Note: In theory channel binding data could be inserted in the SAML flow
by the client and verified by the server, but that is currently not
supported in SAML.

6. Examples
6.1. XMPP

Suppose the user has an identity at the SAML IdP saml.example.org and a
Jabber Identifier (JID) "somenode@example.com", and wishes to
authenticate his XMPP connection to xmpp.example.com. The
authentication on the wire would then look something like the
following:

Step 1: Client initiates stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
to='example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream
xmlns="'jabber:client' xmlns:stream='http://etherx.jabber.org/streams’'
id="'some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>

<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>SAML20</mechanism>

</mechanisms>

</stream:features>

Step 4: Client selects an authentication mechanism and provides the
initial client response containing the BASE64 [RFC4648] encoded gs2-
header and domain:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='SAML20'>
biwsZXhhbXBszZS5vcme</auth>

The decoded string is: n,,example.org

Step 5: Server sends a BASE64 encoded challenge to client in the form
of an HTTP Redirect to the SAML IdP corresponding to example.org
(https://saml.example.org) with the SAML Authentication Request as
specified in the redirection url:

aHROCHM6LY9zYW1sLmV4YWiwbGUub3JInLINBTUwvVQNJIvd3N1lcjoTQUIMUMVX
dwVzdD1QSE50Y1d4d09rRjFKR2h1VW1WeGRXVnpkQOIOY1ld4dwWN6cHpZVzFz
YOQwawWRYSnVPbT1oYzJsek9tNWhiV1z6T25Sak9sTkJUVXc2TWkOdoO9uQnli
M1J2WTI5cO1nMEtJQOFNSUVSRVBTSMZZbVZQTKRIMFptRTFNVEF6TKRINEQU
QTVZVE13Wm1ZeFpUTXhNVFKOTXpJIM1pqYzVORGMWT1RNMElpQldawWEp6YVCS
dVBTSX1MakFpRFFvZO1DQWATWES6ZFdWSmJuTjBZVZUWUFNJeU1EQTNMVEVS
TFRFA1ZERXhPak@1T2pNMFdpSWASbT15WTJIWQmRYUm9iajBpwWm1lGc2MyVW1E
UWIONSUNBZINYT1FZWES56YVhabFBTSm1ZV3h6W1INJTkNpQWdJIQOJIRY205MGIyY
TnZiRUpwYm1ScGJtYz1Jb1Z5YmpwdllYTnBjenB1WVcxbGN6cDBZenBUUVUX
TU9QSXVNRHBpYVcl1la2FXNW5jenBJIVkZSUUXWQ1BVMVFpRFFvZO1DQWARWES6
W1hKMGFXOXVRMj1l1YzNWdFpYS1RaWEoyYVdObFZWSk1QUTBLSUNBZO1DQWdJ
QOFPYUhSMGNITTZMeTkOY1hCdOXxtVjRZVzF3YkdVdVkyOXRMMUS5CVFV3d1FY
TnpaWEowYVc5dVEYOXVjM1ZOW1hKVFpYS]JhVe5sSWoOTkNpQThjMkZOYkRw
SmMzTjFaWELnZUcxc2JuTTZjMkZOYkQwaWRYSnVPbT1loYzJsek9tNwhiv1z6e
T25Sak9sTkJUVXc2TWkOdO9tRnpjM1Z5ZEdsdmIpSStEUWINSUNBZO1HaDBk
SEJ6T2k4dmVHMXdjQzVsZUdGdGNHeGXMbU52Y1EWSO1Ed3ZjMkZOYKRWSmMMZ
TjFaWEkrRFFvZ1BITmhiV3h3T2s1aGJXVKkpSRkJ2YkdsamVTQjRiV3h1Y3pw
e11XMXNJjRDBpZFhKdU9tOWhjMmx6T201aGJIXVnpPblJqT2x0Q1RVdzZNaTR3
T25CeWIzUnZZMj1lzSWcwS01DQWdJIQOJIHYJNKAF1YUT1JIb1Z5Ympwdl1lYTnBj
enB1WVcxbGN6cDBZenBUUVUXTU9qSXVNRHBIWVCXbGFXUXRabT15Y1dGME9uU
Qmx jbk5wYzNSbGJUUW1EUWONSUNBZO1GT1FUbUZOW1ZGMV1XeHBabWxsY2ow
aWVHMXdjQzVsZUdGdGNHeGxMbU52Y1NJZ1FXeHNiM2REY21WaGRHVT1Jb1J5
ZFdVaulDOCtEUW9NUEhOaGJXeHdPbEpsY1hWbGMzUmxaRUYxZEdodVEYyOXVk
R1YOZEEwSO1DQWdJQOIOY1ld4dWN6CHpPZVZzFzYOQwaWRYSnVPbTloYzJsek9t
NWhiV1z6T25Sak9sTkJUVXc2TWkOdO9uQnliM1J2WTI5c01lpQU5DaUFNSUNB
Z01DQWdRMj1leYOdGeWFYTnZiajBpWlhoaFkzUW1QZzBLSUNBOGMYRNR1RHBC
ZFhSb2JrTnziblJsZUhSRGJHRnpjMUpsWmcwSO1DQWdJIQOFNZUcXxc2JuTTZ]
MkZOYkQwaWRYSNnVPbT1oYzJsek9tNwhiVv1z6T25Sak9sTkJUVXc2TwkOdO9t
RNpjM1Z5ZEdsdmIpSStEUWINbONBZO1DQjFjbTQ2Y]jIGemFYTTZibUZOW1hN
NmMRHTTZVMEZOVERVveUXxqQTZZVO02WTJ4aGMzTmxjenBRWVhOemQy0X1laRkJ5
YjNSbFkzUmxaR1J5WVc1emNHOX1kQTBLSUNBOEWzTmhiV3c2UVhWMGFHNURL
MjuUwWlhoMFEyeGhjMO5TW1dZKORRb2dQQz16WVcxc2NECFNaWEYXW1hOMFpX
UKJkWFJIvYmtOodmJuUmx1SFEr SUEwWS1BDOXpZVzFzYORwWQmMRYUm9ibEpsY1hw
bGMzUSs=

The decoded challenge is:

https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOk
F1dGhuUmVxdwVzdCB4bWxuczpzYW1scDO@idXJuOm9hc21z0Om5hbwVzOnRj01l
NBTUw6Mi4wOnByb3RvY29sIgOKICAgIEIEPSIfYmMVjNDIOZMELIMTAZNDI40T
ASYTMWZMYXZTMXMTY4MzI3Zjc5NDcOOTgOIiBWZXJzaW9uPSIyLjAiDQogIC
AgSXNzdWVJIbnNOYW50PSIyMDA3LTEYLTEWVDEXOjM50jMOWiIgRmMOyY2VBdX
Robj0iZmFsc2UiDQogICAgSXNQYXNzaXZ1PSJImYWxzZSINCiAgICBQcm90h2
NVbEJpbmRpbmc9InVybjpvYXNpczpuYW1llczp@YzpTQUIMOjIuMDpiawskaw
5nczpIVFRQLVBPU1QiDQogICAgQXNzZXJ0aw9uQ29uc3VtZXJITZXJ2aWN1VvV
JMPQOKICAQICAQICAi1iaHROCHM6LY94bXBwLmV4YW1wbGUUY29tLINBTUwWVQX
NzZXJ0aw9uQ29uc3VtZXJITZXJ2aWN1Ij4NCiA8c2FtbDpJc3N1ZXIgeGlsbn
M6c2FtbDOidXJuOm9hc21z0Om5hbWVzOnRjO1INBTUWEMi4wOmFzc2VydGlvbi
I+DQogICAgIGhOdHBz0i8veGlwcC51eGFtcGX1LmMNVbQOKIDwvc2FtbDpJc3
N1ZXI+DQogPHNhbWxwOk5hbWVJIRFBvbG1ljeSB4bwWxuczpzYW1lscDOidXJuOm
9hc21z0m5hbWVzOnRjOINBTUW6Mi4wOnByb3RVY29sIgOKICAgICBGb3JtYX
Q9InVybjpVvYXNpczpuYW1lczp@YzpTQUIMOjIuMDpuYW1llawQtZm9ybwFOOn
BlcnNpc3R1bnQiDQogICAgIFNQTMFtZVF1YWxpZmllcjOieGlwcC51eGFtcG
X1LmNvbSIgQWxsb3dDcmVhdGU9INRydWUiIC8+DQogPHNhbWxw01J1lcXV1c3
R1ZEF1dGhuQ29udGV4dAOKICAgICB4bwWxuczpzYWlscDOidXJuOm9hc21z0m
5hbWVzOnRjO1NBTUW6Mi4wOnByb3RVY29sIiANCiAgICAgICAgQ29tcGFyaX
Nvbj0izXhhY3QiPgOKICA8c2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1ZgOKIC
AgICAgeGlsbnM6c2FtbDOidXJuOm9hc21z0m5hbwWVzOnRjOLINBTUW6EMi4wOm
Fzc2VydGlvbiI+DQogICAgICAQICAgIHVYbjpvYXNpczpuYWllczpOYzpTQU
1MOj IuMDphYzpjbGFzc2Vz01Bhc3N3b3JkUHJIvAGYVjdGVKkVHIhbnNwb3J0ODQ
0gIDwvc2FtbDpBdXRobkNvbnR1eHRDbGFzc1J1Zj4NCiA8L3NhbWxw01lJ1lcX
V1c3R1ZEF1dGhuQ29udGvV4dD4gDQo8L3NhbWxwOkF1dGhuUmvxdwVzdD4=

Where the decoded SAMLRequest looks like:

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"
IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"
IsPassive="false"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL=
"https://xmpp.example.com/SAML/AssertionConsumerService">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"”
SPNameQualifier="xmpp.example.com" AllowCreate="true" />
<samlp:RequestedAuthnContext
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
Comparison="exact">
<saml:AuthnContextClassRef
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>

Note: the server can use the request ID
(_bec424tfa5103428909a30ff1e31168327f79474984) to correlate the SASL
session with the SAML authentication.

Step 5 (alt): Server returns error to client:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<incorrect-encoding/>

</failure>

</stream:stream>

Step 6: Client sends a BASE64 encoded empty response to the challenge:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

</response>

[The client now sends the URL to a browser for processing. The browser
engages in a normal SAML authentication flow (external to SASL), like
redirection to the Identity Provider (https://saml.example.org), the
user logs into https://saml.example.org, and agrees to authenticate to
xmpp.example.com. A redirect is passed back to the client browser who

sends the AuthN response to the server, containing the subject-
identifier as an attribute. If the AuthN response doesn't contain the
JID, the server maps the subject-identifier received from the IdP to a
JID]

Step 7: Server informs client of successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 7 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>

</failure>

</stream:stream>

Step 8: Client initiates a new stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
to='example.com' version='1.0'>

Step 9: Server responds by sending a stream header to client along with
any additional features (or an empty features element):

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
id='c2s_345' from='example.com' version='1.0'>
<stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
<session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>
</stream:features>

Step 10: Client binds a resource:

<iq type='set' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</bind>
</ig>

Step 11: Server informs client of successful resource binding:

<iq type='result' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>somenode@example.com/someresource</jid>
</bind>
</ig>

Please note: line breaks were added to the base64 for clarity.
6.2. IMAP
The following describes an IMAP exchange. Lines beginning with 'S:'

indicate data sent by the server, and lines starting with 'C:' indicate
data sent by the client. Long lines are wrapped for readability.

S: * OK IMAP4revil

C: . CAPABILITY

S: * CAPABILITY IMAP4revl STARTTLS

S OK CAPABILITY Completed

C STARTTLS

S: . OK Begin TLS negotiation now

C: . CAPABILITY

S: * CAPABILITY IMAP4revl AUTH=SAML20

S: . OK CAPABILITY Completed

C: . AUTHENTICATE SAML20

S: +

C: biwszZXhhbXBszZS5vcmc

S: + aHROCHM6LY9zYW1sLmV4YW1wbGUub3JInLINBTUwvQNJvd3N1cjoTQUIMUMVX
dwWVzdD1QSE50Y1d4d09rRjFKR2h1VW1WeGRXVnpkQOIOY1ld4dWN6CHpZVZzFz
YOQwaWRYSnVPbT1loYzJsek9tNwhiV1Z6T25Sak9sTkJIUVXc2TwWkOdO9uQnli
M1J2WTI5cO1nMEtJQOFNSUVSRVBTSMZZbVZqTKRIMFptRTFNVEF6TKRINEQU
QTVZVE13Wm1ZeFpUTXhNVFKOTXpJIM1pqYzVORGMWT1RNMElpQldawWEp6YVCS
dVBTSX1MakFpRFFvZO1DQWATWES6ZFdWSmJuT jBZVZUWUFNJeU1EQTNMVEVS
TFRFA1ZERXhPak@1T2pNMFdpSWASbT15WTJIWQmRYUm9iajBpwWm1lGc2MyVWI1E
UWIONSUNBZAINYT1FZWES56YVhabFBTSm1ZV3h6WI1INJTKkNpQWdJIQOJIRY205MGIyY
TnZiRUpwYm1ScGJtYz1Jb1Z5YmpwdllYTnBjenB1WVcxbGN6cDBZenBUUVUX
TU9QSXVNRHBpYVcl1la2FXNW5jenBJVkZSUUXWQ1BVMVFpRFFvZO1DQWARWES6
W1hKMGFXOXVRMj1l1YzNWdFpYS1RaWEoyYVdObFZWSk1QUTBLSUNBZO1DQWdJ
QOFPYUhSMGNITTZMeTkOY1hCdOXxtVjRZVzF3YkdVdVkyOXRMMUS5CVFV3d1FY
TnpaWEowYVc5dVEYOXVjM1ZOW1hKVFpYSjIhVO5sSWoOTKNpQThjMKZOYKRw
SmMzTjFaWELnZUcxc2JuTTZjMkZOYkQwaWRYSnVPbT1loYzJsek9tNwhiv1z6e
T25Sak9sTkJUVXc2TWkOdO9tRnpjM1Z5ZEdsdmIpSStEUWINSUNBZO1HaDBk
SEJ6T2k4dmVHMXdjQzVsZUdGdGNHeGxMbU52Y1EWSO1Ed3ZjMkZOYKRWSmMMZ
TjFaWEKkrRFFvZ1BITmhiV3h3T2s1aGJXVkpSRkJI2YkdsamVTQjRiV3h1Y3pw
el11XMXNJjRDBpZFhKdU9tOWhjMmx6T201aGIXVnpPblJqT2x0Q1RVdzZNaTR3
T25CeWIzUnZZMjlzSWcwS01DQWdJIQOJHYjNKAF1YUT1JIb1Z25Ympwdl11lYTnBj
enB1WVcxbGN6cDBZenBUUVUXTU9qSXVNRHBIWVCXbGFXUXRabT15Y1dGME9uU
Qmxjbk5wYzNSbGJUUWIEUWONSUNBZO1GT1FUbUZOW1ZGMV1XeHBabwWxsY2ow
aWVHMXdjQzVsZUdGdGNHeGxMbU52Y1NJZ1FXeHNiM2REY21WaGRHVT1Jb1J5
ZFdVaulDOCtEUW9NUEhOaGJXeHdPbEpsY1hwWhGMzUmxaRUYxZEdodVEYyOXVk
R1YOZEEwWSO1DQWdJQOIOY1ld4dWN6CHPZVZFzYOQwaWRYSnVPbTloYzJsek9t
NWhiV1z6T25Sak9sTkJUVXc2TWkOdO9uQnliM1J2WTI5c01lpQU5DaUFNSUNB
Z01DQWARMj1lOYOdGeWFYTnZiajBpWlhoaFkzUW1QZzBLSUNBOGMYRNRi1RHBC
ZFhSb2JrTnzZiblJsZUhSRGJHRnpjMUpsWmcwSO1DQWdJIQOFNZUcxc2JuTTZ]j
MkZOYkQwaWRYSNVPbT1loYzJsek9tNwhiV1Z6T25Sak9sTkJUVXc2TWkOdo9t
RnpjM1Z5ZEdsdmJIpSStEUWINbONBZO1DQjFjbTQ2YjIGemFYTTZibUZOW1hN
NMRHTTZVMEZOVERveUXqQTZZVO02WTJ4aGMzTmxjenBRWVhOemQy0X1laRkJ5
YjNSbFkzUmxaR1J5WVc1emNHOX1kQTBLSUNBOEwWzTmhiV3c2UVhWMGFHNURL
MjUwWlhoMFEyeGhjMO5TW1dZKORRb2dQQz16WVcxc2NECFNaWEYXW1hOMFpX
UKJKWFJIvYmtOodmJuUmx1SFErSUEwS1BDOXpZVzFzYORWQMRYUm9ibEpsY1hwW
bGMzUSs=

C:

S: . OK Success (tls protection)

7. Security Considerations

This section will address only security considerations associated with
the use of SAML with SASL applications. For considerations relating to
SAML in general, the reader is referred to the SAML specification and
to other literature. Similarly, for general SASL Security
Considerations, the reader is referred to that specification.

7.1. Man in the middle and Tunneling Attacks

This mechanism is vulnerable to man in the middle and tunneling attacks
unless a client always verify the server identity before proceeding
with authentication (see [RFC6125]). Typically TLS is used to provide a
secure channel with server authentication.

7.2. Binding SAML subject identifiers to Authorization Identities

As specified in [RFC4422], the server is responsible for binding
credentials to a specific authorization identity. It is therefore
necessary that only specific trusted IdPs be allowed. This is typical
part of SAML trust establishment between RP's and IdP.

7.3. User Privacy

The IdP is aware of each RP that a user logs into. There is nothing in
the protocol to hide this information from the IdP. It is not a
requirement to track the visits, but there is nothing that prohibits
the collection of information. SASL servers should be aware that SAML
IdPs will track - to some extent - user access to their services.

7.4. Collusion between RPs

It is possible for RPs to link data that they have collected on you. By
using the same identifier to log into every RP, collusion between RPs
is possible. In SAML, targeted identity was introduced. Targeted
identity allows the IdP to transform the identifier the user typed in
to an opaque identifier. This way the RP would never see the actual
user identifier, but a randomly generated identifier. This is an option
the user has to understand and decide to use if the IdP is supporting
it.

8. IANA Considerations

The IANA is requested to register the following SASL profile:
SASL mechanism profile: SAML20

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.
Owner/Change controller: the IETF

Note: None

9. References

9.1. Normative References

[RFC1035]

[RFC1738]

[RFC2119]

[RFC2616]

[RFC2743]

[RFC2818]

[RFC3986]

[RFC4422]

[RFC4648]

[RFC5246]

[RFC5280]

[RFC6125]

[RFC5801]

Mockapetris, P., "Domain names -
implementation and specification", STD 13, RFC
1035, November 1987.

Berners-lLee, T., Masinter, L. and M. McCahill,
"Uniform Resource Locators (URL)", RFC 1738,
December 1994.

Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", BCP 14, RFC
2119, March 1997.

Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P. and T. Berners-
Lee, "Hypertext Transfer Protocol -- HTTP/
1.1", RFC 2616, June 1999.

Linn, J., "Generic Security Service
Application Program Interface Version 2,
Update 1", RFC 2743, January 2000.

Rescorla, E., "HTTP Over TLS", RFC 2818, May
2000.

Berners-lLee, T., Fielding, R. and L. Masinter,
"Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005.
Melnikov, A. and K. Zeilenga, "Simple
Authentication and Security Layer (SASL)", RFC
4422, June 2006.

Josefsson, S., "The Basel6, Base32, and Base64
Data Encodings", RFC 4648, October 2006.
Dierks, T. and E. Rescorla, "The Transport
Layer Security (TLS) Protocol Version 1.2",
RFC 5246, August 2008.

Cooper, D., Santesson, S., Farrell, S.,
Boeyen, S., Housley, R. and W. Polk, "Internet
X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL)
Profile", RFC 5280, May 2008.

Saint-Andre, P. and J. Hodges, "Representation
and Verification of Domain-Based Application
Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates
in the Context of Transport Layer Security
(TLS)", RFC 6125, March 2011.

Josefsson, S. and N. Williams, "Using Generic
Security Service Application Program Interface
(GSS-API) Mechanisms in Simple Authentication

http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1035
mailto:timbl@info.cern.ch
mailto:masinter@parc.xerox.com
mailto:mpm@boombox.micro.umn.edu
http://tools.ietf.org/html/rfc1738
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2818
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801

and Security Layer (SASL): The GS2 Mechanism
Family", RFC 5801, July 2010.

Cantor, S., Kemp, J., Philpott, R. and E.
Maler, "Assertions and Protocol for the 0ASIS
Security Assertion Markup Language (SAML)
V2.0", OASIS Standard saml-core-2.0-0s, March

[OASIS.saml-
core-2.0-o0s]

2005.

Cantor, S., Hirsch, F., Kemp, J., Philpott, R.
[OASIS.saml- and E. Maler, "Bindings for the OASIS Security
bindings-2.0-0s] Assertion Markup Language (SAML) V2.0", O0ASIS

Standard saml-bindings-2.0-0s, March 2005.
Hughes, J., Cantor, S., Hodges, J., Hirsch,
F., Mishra, P., Philpott, R. and E. Maler,
"Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0", OASIS Standard
OASIS.saml-profiles-2.0-0s, March 2005.
Raggett, D., Hors, A. and I. Jacobs, "HTML

[OASIS.saml-
profiles-2.0-0s]

[W3C.REC- 4.01 Specification", World Wide Web Consortium
html401-19991224] Recommendation REC-html401-19991224, December
1999.

9.2. Informative References

Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -

[RFC3501]

VERSION 4revi1", RFC 3501, March 2003.

Myers, J.G. and M.T. Rose, "Post Office Protocol -
[RFC1939] . "

Version 3", STD 53, RFC 1939, May 1996.

Saint-Andre, P., "Extensible Messaging and Presence
[RFC3920]

Protocol (XMPP): Core", RFC 3920, October 2004.

Appendix A. Acknowledgments

The authors would like to thank Scott Cantor, Joe Hildebrand, Josh
Howlett, Leif Johansson, Diego Lopez, Hank Mauldin, RL 'Bob' Morgan,
Stefan Plug and Hannes Tschofenig for their review and contributions.

Appendix B. Changes

This section to be removed prior to publication.
*03 Number of cosmetic changes, fixes per comments Alexey Melnikov
*@2 Changed IdP URI to domain per Joe Hildebrand, fixed some typos

*00 WG -00 draft. Updates GSS-API section, some fixes per Scott
Cantor

*01 Added authorization identity, added GSS-API specifics, added
client supplied IdP

http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc3501
mailto:jgm+@cmu.edu
mailto:mrose@dbc.mtview.ca.us
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc1939
mailto:stpeter@jabber.org
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920

*00 Initial Revision.

Authors' Addresses

Klaas Wierenga Wierenga Cisco Systems, Inc. Haarlerbergweg 13-19
Amsterdam, Noord-Holland 1101 CH Netherlands Phone: +31 20 357 1752
EMail: klaas@cisco.com

Eliot Lear Lear Cisco Systems GmbH Richtistrasse 7 Wallisellen, ZH
CH-8304 Switzerland Phone: +41 44 878 9200 EMail: lear@cisco.com

Simon Josefsson Josefsson SJD AB Hagagatan 24 Stockholm, 113 47 SE
EMail: simon@josefsson.org URI: http://josefsson.org/

mailto:klaas@cisco.com
mailto:lear@cisco.com
mailto:simon@josefsson.org
http://josefsson.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability
	2. Applicability for non-HTTP Use Cases
	3. SAML SASL Mechanism Specification
	3.1. Initial Response
	3.2. Authentication Request
	3.3. Outcome and parameters
	4. SAML GSS-API Mechanism Specification
	4.1. GSS-API Principal Name Types for SAML
	5. Channel Binding
	6. Examples
	6.1. XMPP
	6.2. IMAP
	7. Security Considerations
	7.1. Man in the middle and Tunneling Attacks
	7.2. Binding SAML subject identifiers to Authorization Identities
	7.3. User Privacy
	7.4. Collusion between RPs
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Authors' Addresses

