
Network Working Group K. Wierenga

Internet-Draft Cisco Systems, Inc.

Intended status: Standards Track E. Lear

Expires: December 17, 2011 Cisco Systems GmbH

S. Josefsson

SJD AB

June 15, 2011

A SASL and GSS-API Mechanism for SAML

draft-ietf-kitten-sasl-saml-03.txt

Abstract

Security Assertion Markup Language (SAML) has found its usage on the

Internet for Web Single Sign-On. Simple Authentication and Security

Layer (SASL) and the Generic Security Service Application Program

Interface (GSS-API) are application frameworks to generalize

authentication. This memo specifies a SASL mechanism and a GSS-API

mechanism for SAML 2.0 that allows the integration of existing SAML

Identity Providers with applications using SASL and GSS-API.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on December 17, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Applicability

2. Applicability for non-HTTP Use Cases

3. SAML SASL Mechanism Specification

3.1. Initial Response

3.2. Authentication Request

3.3. Outcome and parameters

4. SAML GSS-API Mechanism Specification

4.1. GSS-API Principal Name Types for SAML

5. Channel Binding

6. Examples

6.1. XMPP

6.2. IMAP

7. Security Considerations

7.1. Man in the middle and Tunneling Attacks

7.2. Binding SAML subject identifiers to Authorization Identities

7.3. User Privacy

7.4. Collusion between RPs

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Acknowledgments

Appendix B. Changes

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Authors' Addresses

1. Introduction

Security Assertion Markup Language (SAML) 2.0 [OASIS.saml-core-2.0-os]

is a modular specification that provides various means for a user to be

identified to a relying party (RP) through the exchange of (typically

signed) assertions issued by an identity provider (IdP). It includes a

number of protocols, protocol bindings [OASIS.saml-bindings-2.0-os],

and interoperability profiles [OASIS.saml-profiles-2.0-os] designed for

different use cases.

Simple Authentication and Security Layer (SASL) [RFC4422] is a

generalized mechanism for identifying and authenticating a user and for

optionally negotiating a security layer for subsequent protocol

interactions. SASL is used by application protocols like IMAP

[RFC3501], POP [RFC1939] and XMPP [RFC3920]. The effect is to make

modular authentication, so that newer authentication mechanisms can be

added as needed. This memo specifies just such a mechanism.

The Generic Security Service Application Program Interface (GSS-API)

[RFC2743] provides a framework for applications to support multiple

authentication mechanisms through a unified programming interface. This

document defines a pure SASL mechanism for SAML, but it conforms to the

new bridge between SASL and the GSS-API called GS2 [RFC5801]. This

means that this document defines both a SASL mechanism and a GSS-API

mechanism. We want to point out that the GSS-API interface is optional

for SASL implementers, and the GSS-API considerations can be avoided in

environments that uses SASL directly without GSS-API.

As currently envisioned, this mechanism is to allow the interworking

between SASL and SAML in order to assert identity and other attributes

to relying parties. As such, while servers (as relying parties) will

advertise SASL mechanisms (including SAML), clients will select the

SAML SASL mechanism as their SASL mechanism of choice.

The SAML mechanism described in this memo aims to re-use the Web

Browser SSO profile defined in section 3.1 of [OASIS.saml-profiles-2.0-

os] to a maximum extent and therefore does not establish a separate

authentication, integrity and confidentiality mechanism. The mechanisms

assumes a security layer, such as Transport Layer Security (TLS

[RFC5246]), will continued to be used. This specification is

appropriate for use when a browser is available.

Figure 1 describes the interworking between SAML and SASL: this

document requires enhancements to the Relying Party and to the Client

(as the two SASL communication end points) but no changes to the SAML

Identity Provider are necessary. To accomplish this goal some indirect

messaging is tunneled within SASL, and some use of external methods is

made.

*

 +-----------+

 | |

 >| Relying |

 / | Party |

 // | |

 // +-----------+

 SAML/ // ^

 HTTPs // +--|--+

 // | S| |

 / S | A| |

 // A | M| |

 // S | L| |

 // L | | |

 // | | |

 </ +--|--+

 +------------+ v

 | | +----------+

 | SAML | HTTPs | |

 | Identity |<--------------->| Client |

 | Provider | | |

 +------------+ +----------+

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

The reader is assumed to be familiar with the terms used in the SAML

2.0 specification.

1.2. Applicability

Applicability Because this mechanism transports information that should

not be controlled by an attacker, the SAML mechanism MUST only be used

over channels protected by TLS, and the client MUST successfully

validate the server certificate, or similar integrity protected and

authenticated channels. [RFC5280][RFC6125]

2. Applicability for non-HTTP Use Cases

While SAML itself is merely a markup language, its common use case

these days is with HTTP [RFC2616] and HTML [W3C.REC-html401-19991224].

What follows is a typical flow:

The browser requests a resource of a Relying Party (RP) (via an

HTTP request).

1.

The RP sends an HTTP redirect as described in Section 10.3 of

[RFC2616] to the browser to the Identity Provider (IdP) or an

IdP discovery service with an authentication request that

contains the name of resource being requested, some sort of a

cookie and a return URL [RFC1738],

The user authenticates to the IdP and perhaps authorizes the

authentication to the service provider.

In its authentication response, the IdP redirects (via an HTTP

redirect) the browser back to the RP with an authentication

assertion (stating that the IdP vouches that the subject has

successfully authenticated), optionally along with some

additional attributes.

RP now has sufficient identity information to approve access to

the resource or not, and acts accordingly. The authentication

is concluded.

When considering this flow in the context of SASL, we note that while

the RP and the client both must change their code to implement this

SASL mechanism, the IdP must remain untouched. The RP already has some

sort of session (probably a TCP connection) established with the

client. However, it may be necessary to redirect a SASL client to

another application or handler. This will be discussed below. The steps

are shown from below:

The Relying Party or SASL server advertises support for the

SASL SAML20 mechanism to the client

The client initiates a SASL authentication with SAML20 and

sends a domain

The Relying Party transmits an authentication request encoded

using a Universal Resource Identifier (URI) as described in RFC

3986 [RFC3986] and an HTTP redirect to the IdP corresponding to

the domain

The SASL client now sends an empty response, as authentication

continues via the normal SAML flow.

At this point the SASL client MUST construct a URL containing

the content received in the previous message from the RP. This

URL is transmitted to the IdP either by the SASL client

application or an appropriate handler, such as a browser.

Next the client authenticates to the IdP. The manner in which

the end user is authenticated to the IdP and any policies

surrounding such authentication is out of scope for SAML and

hence for this draft. This step happens out of band from SASL.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

The IdP will convey information about the success or failure of

the authentication back to the the RP in the form of an

Authentication Statement or failure, using a indirect response

via the client browser or the handler. This step happens out of

band from SASL.

The SASL Server sends an appropriate SASL response to the

client, along with an optional list of attributes

Please note: What is described here is the case in which the client has

not previously authenticated. It is possible that the client already

holds a valid SAML authentication token so that the user does not need

to be involved in the process anymore, but that would still be external

to SASL. This is classic Web Single Sign-On, in which the Web Browser

client presents the authentication token (cookie) to the RP without

renewed user authentication at the IdP.

With all of this in mind, the flow appears as follows:

 SASL Serv. Client IdP

 |>-----(1)----->| | Advertisement

 | | |

 |<-----(2)-----<| | Initiation

 | | |

 |>-----(3)----->| | Authentication Request

 | | |

 |<-----(4)-----<| | Empty Response

 | | |

 | |< - - - - - ->| Client<>IDP

 | | | Authentication

 | | |

 |<- - - - - - - - - - - - - - -| Authentication Statement

 | | |

 |>-----(6)----->| | SASL completion with

 | | | status

 | | |

 ----- = SASL

 - - - = HTTP or HTTPs (external to SASL)

3. SAML SASL Mechanism Specification

This section specifies the details of the SAML SASL mechanism. Recall

section 5 of [RFC4422] for what needs to be described here.

7.

8.

The name of this mechanism "SAML20". The mechanism is capable of

transferring an authorization identity (via "gs2-header"). The

mechanism does not offer a security layer.

The mechanism is client-first. The first mechanism message from the

client to the server is the "initial-response" described below. As

described in [RFC4422], if the application protocol does not support

sending a client-response together with the authentication request, the

server will send an empty server-challenge to let the client begin.

The second mechanism message is from the server to the client, the

"authentication-request" described below.

The third mechanism message is from client to the server, and is the

fixed message consisting of "=".

The fourth mechanism message is from the server to the client,

indicating the SASL mechanism outcome described below.

3.1. Initial Response

A client initiates a "SAML20" authentication with SASL by sending the

GS2 header followed by the authentication identifier. The GS2 header

carries the optional authorization identity.

 initial-response = gs2-header Idp-Identifier

 IdP-Identifier = domain ; domain name with corresponding IdP

The "gs2-header" is specified in [RFC5801], and it is used as follows.

The "gs2-nonstd-flag" MUST NOT be present. Regarding the channel

binding "gs2-cb-flag" field, see Section 5. The "gs2- authzid" carries

the optional authorization identity. Domain name is specified in

[RFC1035].

3.2. Authentication Request

The SASL Server transmits a redirect URI to the IdP that corresponds to

the domain the user provided, with a SAML authentication request as one

of the parameters. Note: The SASL server may have a static mapping of

domain to corresponding IdP or alternatively a DNS-lookup mechanism

could be envisioned, but that is out-of-scope for this document

 authentication-request = URI

URI is specified in [RFC3986] and is encoded according to Section 3.4

(HTTP Redirect) of the SAML bindings 2.0 specification [OASIS.saml-

bindings-2.0-os]. The SAML authentication request is encoded according

to Section 3.4 (Authentication Request) of the SAML core 2.0

specification [OASIS.saml-core-2.0-os].

The client now sends the authentication request via an HTTP GET to the

IdP, as if redirected to do so from an HTTP server and in accordance

with the Web Browser SSO profile, described in section 3.1 of

[OASIS.saml-profiles-2.0-os]

The client MUST handle both user authentication to the IdP and

confirmation or rejection of the authentiation of the RP.

After all authentication has been completed by the IdP, and after the

response has been sent to the client, the client will relay the

response to the Relying Party via HTTP(S), as specified in the

authentication request ("AssertionConsumerServiceURL").

Please note: this means that the SASL server needs to implement a SAML

Relying Party. Also, the RP needs to correlate the TCP session from the

SASL client with the SAML authentication.

3.3. Outcome and parameters

The Relying Party now validates the response it received from the

client via HTTP or HTTPS, as specified in the SAML specification

The response by the Relying Party constitutes a SASL mechanism outcome,

and SHALL be used to set state in the server accordingly, and it shall

be used by the server to report that state to the SASL client as

described in [RFC4422] Section 3.6.

4. SAML GSS-API Mechanism Specification

This section and its sub-sections and all normative references of it

not referenced elsewhere in this document are INFORMATIONAL for SASL

implementors, but they are NORMATIVE for GSS-API implementors.

The SAML SASL mechanism is actually also a GSS-API mechanism. The

messages are the same, but

a) the GS2 header on the client's first message and channel binding

data is excluded when SAML is used as a GSS-API mechanism, and

b) the RFC2743 section 3.1 initial context token header is prefixed to

the client's first authentication message (context token).

The GSS-API mechanism OID for SAML is 1.3.6.1.4.1.11591.4.8.

SAML20 security contexts always have the mutual_state flag

(GSS_C_MUTUAL_FLAG) set to TRUE. SAML does not support credential

delegation, therefore SAML security contexts alway have the deleg_state

flag (GSS_C_DELEG_FLAG) set to FALSE.

The mutual authentication property of this mechanism relies on

successfully comparing the TLS server identity with the negotiated

target name. Since the TLS channel is managed by the application

outside of the GSS-API mechanism, the mechanism itself is unable to

confirm the name while the application is able to perform this

comparison for the mechanism. For this reason, applications MUST match

the TLS server identity with the target name, as discussed in

[RFC6125].

The SAML mechanism does not support per-message tokens or

GSS_Pseudo_random.

4.1. GSS-API Principal Name Types for SAML

SAML supports standard generic name syntaxes for acceptors such as

GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1). SAML supports

only a single name type for initiators: GSS_C_NT_USER_NAME.

GSS_C_NT_USER_NAME is the default name type for SAML. The query,

display, and exported name syntaxes for SAML principal names are all

the same. There are no SAML-specific name syntaxes -- applications

should use generic GSS-API name types such as GSS_C_NT_USER_NAME and

GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4). The exported

name token does, of course, conform to [RFC2743], Section 3.2.

5. Channel Binding

The "gs2-cb-flag" MUST use "n" because channel binding data cannot be

integrity protected by the SAML negotiation.

Note: In theory channel binding data could be inserted in the SAML flow

by the client and verified by the server, but that is currently not

supported in SAML.

6. Examples

6.1. XMPP

Suppose the user has an identity at the SAML IdP saml.example.org and a

Jabber Identifier (JID) "somenode@example.com", and wishes to

authenticate his XMPP connection to xmpp.example.com. The

authentication on the wire would then look something like the

following:

Step 1: Client initiates stream to server:

<stream:stream xmlns='jabber:client'

xmlns:stream='http://etherx.jabber.org/streams'

to='example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream

xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'

id='some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>

 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 <mechanism>DIGEST-MD5</mechanism>

 <mechanism>PLAIN</mechanism>

 <mechanism>SAML20</mechanism>

 </mechanisms>

</stream:features>

Step 4: Client selects an authentication mechanism and provides the

initial client response containing the BASE64 [RFC4648] encoded gs2-

header and domain:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='SAML20'>

biwsZXhhbXBsZS5vcmc</auth>

The decoded string is: n,,example.org

Step 5: Server sends a BASE64 encoded challenge to client in the form

of an HTTP Redirect to the SAML IdP corresponding to example.org

(https://saml.example.org) with the SAML Authentication Request as

specified in the redirection url:

aHR0cHM6Ly9zYW1sLmV4YW1wbGUub3JnL1NBTUwvQnJvd3Nlcj9TQU1MUmVx

dWVzdD1QSE5oYld4d09rRjFkR2h1VW1WeGRXVnpkQ0I0Yld4dWN6cHpZVzFz

Y0QwaWRYSnVPbTloYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWk0d09uQnli

M1J2WTI5c0lnMEtJQ0FnSUVsRVBTSmZZbVZqTkRJMFptRTFNVEF6TkRJNE9U

QTVZVE13Wm1ZeFpUTXhNVFk0TXpJM1pqYzVORGMwT1RnMElpQldaWEp6YVc5

dVBTSXlMakFpRFFvZ0lDQWdTWE56ZFdWSmJuTjBZVzUwUFNJeU1EQTNMVEV5

TFRFd1ZERXhPak01T2pNMFdpSWdSbTl5WTJWQmRYUm9iajBpWm1Gc2MyVWlE

UW9nSUNBZ1NYTlFZWE56YVhabFBTSm1ZV3h6WlNJTkNpQWdJQ0JRY205MGIy

TnZiRUpwYm1ScGJtYzlJblZ5YmpwdllYTnBjenB1WVcxbGN6cDBZenBUUVUx

TU9qSXVNRHBpYVc1a2FXNW5jenBJVkZSUUxWQlBVMVFpRFFvZ0lDQWdRWE56

WlhKMGFXOXVRMjl1YzNWdFpYSlRaWEoyYVdObFZWSk1QUTBLSUNBZ0lDQWdJ

Q0FpYUhSMGNITTZMeTk0YlhCd0xtVjRZVzF3YkdVdVkyOXRMMU5CVFV3dlFY

TnpaWEowYVc5dVEyOXVjM1Z0WlhKVFpYSjJhV05sSWo0TkNpQThjMkZ0YkRw

SmMzTjFaWElnZUcxc2JuTTZjMkZ0YkQwaWRYSnVPbTloYzJsek9tNWhiV1Z6

T25Sak9sTkJUVXc2TWk0d09tRnpjMlZ5ZEdsdmJpSStEUW9nSUNBZ0lHaDBk

SEJ6T2k4dmVHMXdjQzVsZUdGdGNHeGxMbU52YlEwS0lEd3ZjMkZ0YkRwSmMz

TjFaWEkrRFFvZ1BITmhiV3h3T2s1aGJXVkpSRkJ2YkdsamVTQjRiV3h1Y3pw

ellXMXNjRDBpZFhKdU9tOWhjMmx6T201aGJXVnpPblJqT2xOQlRVdzZNaTR3

T25CeWIzUnZZMjlzSWcwS0lDQWdJQ0JHYjNKdFlYUTlJblZ5YmpwdllYTnBj

enB1WVcxbGN6cDBZenBUUVUxTU9qSXVNRHB1WVcxbGFXUXRabTl5YldGME9u

Qmxjbk5wYzNSbGJuUWlEUW9nSUNBZ0lGTlFUbUZ0WlZGMVlXeHBabWxsY2ow

aWVHMXdjQzVsZUdGdGNHeGxMbU52YlNJZ1FXeHNiM2REY21WaGRHVTlJblJ5

ZFdVaUlDOCtEUW9nUEhOaGJXeHdPbEpsY1hWbGMzUmxaRUYxZEdodVEyOXVk

R1Y0ZEEwS0lDQWdJQ0I0Yld4dWN6cHpZVzFzY0QwaWRYSnVPbTloYzJsek9t

NWhiV1Z6T25Sak9sTkJUVXc2TWk0d09uQnliM1J2WTI5c0lpQU5DaUFnSUNB

Z0lDQWdRMjl0Y0dGeWFYTnZiajBpWlhoaFkzUWlQZzBLSUNBOGMyRnRiRHBC

ZFhSb2JrTnZiblJsZUhSRGJHRnpjMUpsWmcwS0lDQWdJQ0FnZUcxc2JuTTZj

MkZ0YkQwaWRYSnVPbTloYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWk0d09t

RnpjMlZ5ZEdsdmJpSStEUW9nb0NBZ0lDQjFjbTQ2YjJGemFYTTZibUZ0WlhN

NmRHTTZVMEZOVERveUxqQTZZV002WTJ4aGMzTmxjenBRWVhOemQyOXlaRkJ5

YjNSbFkzUmxaRlJ5WVc1emNHOXlkQTBLSUNBOEwzTmhiV3c2UVhWMGFHNURi

MjUwWlhoMFEyeGhjM05TWldZK0RRb2dQQzl6WVcxc2NEcFNaWEYxWlhOMFpX

UkJkWFJvYmtOdmJuUmxlSFErSUEwS1BDOXpZVzFzY0RwQmRYUm9ibEpsY1hW

bGMzUSs=

The decoded challenge is:

https://saml.example.org/SAML/Browser?SAMLRequest=PHNhbWxwOk

F1dGhuUmVxdWVzdCB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5hbWVzOnRjOl

NBTUw6Mi4wOnByb3RvY29sIg0KICAgIElEPSJfYmVjNDI0ZmE1MTAzNDI4OT

A5YTMwZmYxZTMxMTY4MzI3Zjc5NDc0OTg0IiBWZXJzaW9uPSIyLjAiDQogIC

AgSXNzdWVJbnN0YW50PSIyMDA3LTEyLTEwVDExOjM5OjM0WiIgRm9yY2VBdX

Robj0iZmFsc2UiDQogICAgSXNQYXNzaXZlPSJmYWxzZSINCiAgICBQcm90b2

NvbEJpbmRpbmc9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDpiaW5kaW

5nczpIVFRQLVBPU1QiDQogICAgQXNzZXJ0aW9uQ29uc3VtZXJTZXJ2aWNlVV

JMPQ0KICAgICAgICAiaHR0cHM6Ly94bXBwLmV4YW1wbGUuY29tL1NBTUwvQX

NzZXJ0aW9uQ29uc3VtZXJTZXJ2aWNlIj4NCiA8c2FtbDpJc3N1ZXIgeG1sbn

M6c2FtbD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmFzc2VydGlvbi

I+DQogICAgIGh0dHBzOi8veG1wcC5leGFtcGxlLmNvbQ0KIDwvc2FtbDpJc3

N1ZXI+DQogPHNhbWxwOk5hbWVJRFBvbGljeSB4bWxuczpzYW1scD0idXJuOm

9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOnByb3RvY29sIg0KICAgICBGb3JtYX

Q9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDpuYW1laWQtZm9ybWF0On

BlcnNpc3RlbnQiDQogICAgIFNQTmFtZVF1YWxpZmllcj0ieG1wcC5leGFtcG

xlLmNvbSIgQWxsb3dDcmVhdGU9InRydWUiIC8+DQogPHNhbWxwOlJlcXVlc3

RlZEF1dGhuQ29udGV4dA0KICAgICB4bWxuczpzYW1scD0idXJuOm9hc2lzOm

5hbWVzOnRjOlNBTUw6Mi4wOnByb3RvY29sIiANCiAgICAgICAgQ29tcGFyaX

Nvbj0iZXhhY3QiPg0KICA8c2FtbDpBdXRobkNvbnRleHRDbGFzc1JlZg0KIC

AgICAgeG1sbnM6c2FtbD0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOm

Fzc2VydGlvbiI+DQogICAgICAgICAgIHVybjpvYXNpczpuYW1lczp0YzpTQU

1MOjIuMDphYzpjbGFzc2VzOlBhc3N3b3JkUHJvdGVjdGVkVHJhbnNwb3J0DQ

ogIDwvc2FtbDpBdXRobkNvbnRleHRDbGFzc1JlZj4NCiA8L3NhbWxwOlJlcX

Vlc3RlZEF1dGhuQ29udGV4dD4gDQo8L3NhbWxwOkF1dGhuUmVxdWVzdD4=

Where the decoded SAMLRequest looks like:

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 ID="_bec424fa5103428909a30ff1e31168327f79474984" Version="2.0"

 IssueInstant="2007-12-10T11:39:34Z" ForceAuthn="false"

 IsPassive="false"

 ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

 AssertionConsumerServiceURL=

 "https://xmpp.example.com/SAML/AssertionConsumerService">

 <saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

 https://xmpp.example.com

 </saml:Issuer>

 <samlp:NameIDPolicy xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"

 SPNameQualifier="xmpp.example.com" AllowCreate="true" />

 <samlp:RequestedAuthnContext

 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

 Comparison="exact">

 <saml:AuthnContextClassRef

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

 </saml:AuthnContextClassRef>

 </samlp:RequestedAuthnContext>

</samlp:AuthnRequest>

Note: the server can use the request ID

(_bec424fa5103428909a30ff1e31168327f79474984) to correlate the SASL

session with the SAML authentication.

Step 5 (alt): Server returns error to client:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 <incorrect-encoding/>

</failure>

</stream:stream>

Step 6: Client sends a BASE64 encoded empty response to the challenge:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 =

</response>

[The client now sends the URL to a browser for processing. The browser

engages in a normal SAML authentication flow (external to SASL), like

redirection to the Identity Provider (https://saml.example.org), the

user logs into https://saml.example.org, and agrees to authenticate to

xmpp.example.com. A redirect is passed back to the client browser who

sends the AuthN response to the server, containing the subject-

identifier as an attribute. If the AuthN response doesn't contain the

JID, the server maps the subject-identifier received from the IdP to a

JID]

Step 7: Server informs client of successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 7 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>

 <temporary-auth-failure/>

</failure>

</stream:stream>

Step 8: Client initiates a new stream to server:

<stream:stream xmlns='jabber:client'

xmlns:stream='http://etherx.jabber.org/streams'

to='example.com' version='1.0'>

Step 9: Server responds by sending a stream header to client along with

any additional features (or an empty features element):

<stream:stream xmlns='jabber:client'

xmlns:stream='http://etherx.jabber.org/streams'

id='c2s_345' from='example.com' version='1.0'>

<stream:features>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>

 <session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>

</stream:features>

Step 10: Client binds a resource:

 <iq type='set' id='bind_1'>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

 <resource>someresource</resource>

 </bind>

 </iq>

Step 11: Server informs client of successful resource binding:

 <iq type='result' id='bind_1'>

 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

 <jid>somenode@example.com/someresource</jid>

 </bind>

 </iq>

Please note: line breaks were added to the base64 for clarity.

6.2. IMAP

The following describes an IMAP exchange. Lines beginning with 'S:'

indicate data sent by the server, and lines starting with 'C:' indicate

data sent by the client. Long lines are wrapped for readability.

S: * OK IMAP4rev1

C: . CAPABILITY

S: * CAPABILITY IMAP4rev1 STARTTLS

S: . OK CAPABILITY Completed

C: . STARTTLS

S: . OK Begin TLS negotiation now

C: . CAPABILITY

S: * CAPABILITY IMAP4rev1 AUTH=SAML20

S: . OK CAPABILITY Completed

C: . AUTHENTICATE SAML20

S: +

C: biwsZXhhbXBsZS5vcmc

S: + aHR0cHM6Ly9zYW1sLmV4YW1wbGUub3JnL1NBTUwvQnJvd3Nlcj9TQU1MUmVx

dWVzdD1QSE5oYld4d09rRjFkR2h1VW1WeGRXVnpkQ0I0Yld4dWN6cHpZVzFz

Y0QwaWRYSnVPbTloYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWk0d09uQnli

M1J2WTI5c0lnMEtJQ0FnSUVsRVBTSmZZbVZqTkRJMFptRTFNVEF6TkRJNE9U

QTVZVE13Wm1ZeFpUTXhNVFk0TXpJM1pqYzVORGMwT1RnMElpQldaWEp6YVc5

dVBTSXlMakFpRFFvZ0lDQWdTWE56ZFdWSmJuTjBZVzUwUFNJeU1EQTNMVEV5

TFRFd1ZERXhPak01T2pNMFdpSWdSbTl5WTJWQmRYUm9iajBpWm1Gc2MyVWlE

UW9nSUNBZ1NYTlFZWE56YVhabFBTSm1ZV3h6WlNJTkNpQWdJQ0JRY205MGIy

TnZiRUpwYm1ScGJtYzlJblZ5YmpwdllYTnBjenB1WVcxbGN6cDBZenBUUVUx

TU9qSXVNRHBpYVc1a2FXNW5jenBJVkZSUUxWQlBVMVFpRFFvZ0lDQWdRWE56

WlhKMGFXOXVRMjl1YzNWdFpYSlRaWEoyYVdObFZWSk1QUTBLSUNBZ0lDQWdJ

Q0FpYUhSMGNITTZMeTk0YlhCd0xtVjRZVzF3YkdVdVkyOXRMMU5CVFV3dlFY

TnpaWEowYVc5dVEyOXVjM1Z0WlhKVFpYSjJhV05sSWo0TkNpQThjMkZ0YkRw

SmMzTjFaWElnZUcxc2JuTTZjMkZ0YkQwaWRYSnVPbTloYzJsek9tNWhiV1Z6

T25Sak9sTkJUVXc2TWk0d09tRnpjMlZ5ZEdsdmJpSStEUW9nSUNBZ0lHaDBk

SEJ6T2k4dmVHMXdjQzVsZUdGdGNHeGxMbU52YlEwS0lEd3ZjMkZ0YkRwSmMz

TjFaWEkrRFFvZ1BITmhiV3h3T2s1aGJXVkpSRkJ2YkdsamVTQjRiV3h1Y3pw

ellXMXNjRDBpZFhKdU9tOWhjMmx6T201aGJXVnpPblJqT2xOQlRVdzZNaTR3

T25CeWIzUnZZMjlzSWcwS0lDQWdJQ0JHYjNKdFlYUTlJblZ5YmpwdllYTnBj

enB1WVcxbGN6cDBZenBUUVUxTU9qSXVNRHB1WVcxbGFXUXRabTl5YldGME9u

Qmxjbk5wYzNSbGJuUWlEUW9nSUNBZ0lGTlFUbUZ0WlZGMVlXeHBabWxsY2ow

aWVHMXdjQzVsZUdGdGNHeGxMbU52YlNJZ1FXeHNiM2REY21WaGRHVTlJblJ5

ZFdVaUlDOCtEUW9nUEhOaGJXeHdPbEpsY1hWbGMzUmxaRUYxZEdodVEyOXVk

R1Y0ZEEwS0lDQWdJQ0I0Yld4dWN6cHpZVzFzY0QwaWRYSnVPbTloYzJsek9t

NWhiV1Z6T25Sak9sTkJUVXc2TWk0d09uQnliM1J2WTI5c0lpQU5DaUFnSUNB

Z0lDQWdRMjl0Y0dGeWFYTnZiajBpWlhoaFkzUWlQZzBLSUNBOGMyRnRiRHBC

ZFhSb2JrTnZiblJsZUhSRGJHRnpjMUpsWmcwS0lDQWdJQ0FnZUcxc2JuTTZj

MkZ0YkQwaWRYSnVPbTloYzJsek9tNWhiV1Z6T25Sak9sTkJUVXc2TWk0d09t

RnpjMlZ5ZEdsdmJpSStEUW9nb0NBZ0lDQjFjbTQ2YjJGemFYTTZibUZ0WlhN

NmRHTTZVMEZOVERveUxqQTZZV002WTJ4aGMzTmxjenBRWVhOemQyOXlaRkJ5

YjNSbFkzUmxaRlJ5WVc1emNHOXlkQTBLSUNBOEwzTmhiV3c2UVhWMGFHNURi

MjUwWlhoMFEyeGhjM05TWldZK0RRb2dQQzl6WVcxc2NEcFNaWEYxWlhOMFpX

UkJkWFJvYmtOdmJuUmxlSFErSUEwS1BDOXpZVzFzY0RwQmRYUm9ibEpsY1hW

bGMzUSs=

C:

S: . OK Success (tls protection)

7. Security Considerations

This section will address only security considerations associated with

the use of SAML with SASL applications. For considerations relating to

SAML in general, the reader is referred to the SAML specification and

to other literature. Similarly, for general SASL Security

Considerations, the reader is referred to that specification.

7.1. Man in the middle and Tunneling Attacks

This mechanism is vulnerable to man in the middle and tunneling attacks

unless a client always verify the server identity before proceeding

with authentication (see [RFC6125]). Typically TLS is used to provide a

secure channel with server authentication.

7.2. Binding SAML subject identifiers to Authorization Identities

As specified in [RFC4422], the server is responsible for binding

credentials to a specific authorization identity. It is therefore

necessary that only specific trusted IdPs be allowed. This is typical

part of SAML trust establishment between RP's and IdP.

7.3. User Privacy

The IdP is aware of each RP that a user logs into. There is nothing in

the protocol to hide this information from the IdP. It is not a

requirement to track the visits, but there is nothing that prohibits

the collection of information. SASL servers should be aware that SAML

IdPs will track - to some extent - user access to their services.

7.4. Collusion between RPs

It is possible for RPs to link data that they have collected on you. By

using the same identifier to log into every RP, collusion between RPs

is possible. In SAML, targeted identity was introduced. Targeted

identity allows the IdP to transform the identifier the user typed in

to an opaque identifier. This way the RP would never see the actual

user identifier, but a randomly generated identifier. This is an option

the user has to understand and decide to use if the IdP is supporting

it.

8. IANA Considerations

The IANA is requested to register the following SASL profile:

SASL mechanism profile: SAML20

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.

Owner/Change controller: the IETF

Note: None

9. References

9.1. Normative References

[RFC1035]

Mockapetris, P., "Domain names -

implementation and specification", STD 13, RFC

1035, November 1987.

[RFC1738]

Berners-Lee, T., Masinter, L. and M. McCahill,

"Uniform Resource Locators (URL)", RFC 1738,

December 1994.

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk,

H., Masinter, L., Leach, P. and T. Berners-

Lee, "Hypertext Transfer Protocol -- HTTP/

1.1", RFC 2616, June 1999.

[RFC2743]

Linn, J., "Generic Security Service

Application Program Interface Version 2,

Update 1", RFC 2743, January 2000.

[RFC2818]
Rescorla, E., "HTTP Over TLS", RFC 2818, May

2000.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005.

[RFC4422]

Melnikov, A. and K. Zeilenga, "Simple

Authentication and Security Layer (SASL)", RFC

4422, June 2006.

[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64

Data Encodings", RFC 4648, October 2006.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport

Layer Security (TLS) Protocol Version 1.2",

RFC 5246, August 2008.

[RFC5280]

Cooper, D., Santesson, S., Farrell, S.,

Boeyen, S., Housley, R. and W. Polk, "Internet

X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL)

Profile", RFC 5280, May 2008.

[RFC6125]

Saint-Andre, P. and J. Hodges, "Representation

and Verification of Domain-Based Application

Service Identity within Internet Public Key

Infrastructure Using X.509 (PKIX) Certificates

in the Context of Transport Layer Security

(TLS)", RFC 6125, March 2011.

[RFC5801]

Josefsson, S. and N. Williams, "Using Generic

Security Service Application Program Interface

(GSS-API) Mechanisms in Simple Authentication

http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1035
mailto:timbl@info.cern.ch
mailto:masinter@parc.xerox.com
mailto:mpm@boombox.micro.umn.edu
http://tools.ietf.org/html/rfc1738
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2818
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801

and Security Layer (SASL): The GS2 Mechanism

Family", RFC 5801, July 2010.

[OASIS.saml-

core-2.0-os]

Cantor, S., Kemp, J., Philpott, R. and E.

Maler, "Assertions and Protocol for the OASIS

Security Assertion Markup Language (SAML)

V2.0", OASIS Standard saml-core-2.0-os, March

2005.

[OASIS.saml-

bindings-2.0-os]

Cantor, S., Hirsch, F., Kemp, J., Philpott, R.

and E. Maler, "Bindings for the OASIS Security

Assertion Markup Language (SAML) V2.0", OASIS

Standard saml-bindings-2.0-os, March 2005.

[OASIS.saml-

profiles-2.0-os]

Hughes, J., Cantor, S., Hodges, J., Hirsch,

F., Mishra, P., Philpott, R. and E. Maler,

"Profiles for the OASIS Security Assertion

Markup Language (SAML) V2.0", OASIS Standard

OASIS.saml-profiles-2.0-os, March 2005.

[W3C.REC-

html401-19991224]

Raggett, D., Hors, A. and I. Jacobs, "HTML

4.01 Specification", World Wide Web Consortium

Recommendation REC-html401-19991224, December

1999.

9.2. Informative References

[RFC3501]
Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -

VERSION 4rev1", RFC 3501, March 2003.

[RFC1939]
Myers, J.G. and M.T. Rose, "Post Office Protocol -

Version 3", STD 53, RFC 1939, May 1996.

[RFC3920]
Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 3920, October 2004.

Appendix A. Acknowledgments

The authors would like to thank Scott Cantor, Joe Hildebrand, Josh

Howlett, Leif Johansson, Diego Lopez, Hank Mauldin, RL 'Bob' Morgan,

Stefan Plug and Hannes Tschofenig for their review and contributions.

Appendix B. Changes

This section to be removed prior to publication.

03 Number of cosmetic changes, fixes per comments Alexey Melnikov

02 Changed IdP URI to domain per Joe Hildebrand, fixed some typos

00 WG -00 draft. Updates GSS-API section, some fixes per Scott

Cantor

01 Added authorization identity, added GSS-API specifics, added

client supplied IdP

*

*

*

*

http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc3501
mailto:jgm+@cmu.edu
mailto:mrose@dbc.mtview.ca.us
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc1939
mailto:stpeter@jabber.org
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920

00 Initial Revision.

Authors' Addresses

Klaas Wierenga Wierenga Cisco Systems, Inc. Haarlerbergweg 13-19

Amsterdam, Noord-Holland 1101 CH Netherlands Phone: +31 20 357 1752

EMail: klaas@cisco.com

Eliot Lear Lear Cisco Systems GmbH Richtistrasse 7 Wallisellen, ZH

CH-8304 Switzerland Phone: +41 44 878 9200 EMail: lear@cisco.com

Simon Josefsson Josefsson SJD AB Hagagatan 24 Stockholm, 113 47 SE

EMail: simon@josefsson.org URI: http://josefsson.org/

*

mailto:klaas@cisco.com
mailto:lear@cisco.com
mailto:simon@josefsson.org
http://josefsson.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability
	2. Applicability for non-HTTP Use Cases
	3. SAML SASL Mechanism Specification
	3.1. Initial Response
	3.2. Authentication Request
	3.3. Outcome and parameters
	4. SAML GSS-API Mechanism Specification
	4.1. GSS-API Principal Name Types for SAML
	5. Channel Binding
	6. Examples
	6.1. XMPP
	6.2. IMAP
	7. Security Considerations
	7.1. Man in the middle and Tunneling Attacks
	7.2. Binding SAML subject identifiers to Authorization Identities
	7.3. User Privacy
	7.4. Collusion between RPs
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Authors' Addresses

