Network Working Group S. Cantor

Internet-Draft Internet2
Intended status: Standards Track S. Josefsson
Expires: March 02, 2012 SJD AB

August 30, 2011
SAML Enhanced Client SASL and GSS-API Mechanisms
draft-ietf-kitten-sasl-saml-ec-00.txt

Abstract

Security Assertion Markup Language (SAML) 2.0 is a generalized
framework for the exchange of security-related information between
asserting and relying parties. Simple Authentication and Security Layer
(SASL) and the Generic Security Service Application Program Interface
(GSS-API) are application frameworks to facilitate an extensible
authentication model. This document specifies a SASL and GSS-API
mechanism for SAML 2.0 that leverages the capabilities of a SAML-aware
"enhanced client" to address significant barriers to federated
authentication in a manner that encourages reuse of existing SAML
bindings and profiles designed for non-browser scenarios.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet- Drafts is
at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress."

This Internet-Draft will expire on March 02, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

*1. Introduction

*2. Terminology

*3. Applicability for Non-HTTP Use Cases

*4, SAML SASL Mechanism Specification

*4.,1. Advertisement

*4,2, Initiation

*4,.3. Server Response

*4.4, User Authentication with Identity Provider

*4.,5, Client Response

*4.6. Outcome

*4.,7. Additional Notes

*5. SAML EC GSS-API Mechanism Specification

*5.1. GSS-API Principal Name Types for SAML EC

*6. Example

*7. Security Considerations

*7.1. Risks Left Unaddressed

*7.2. User Privacy

*7.3. Collusion between RPs

*8. IANA Considerations

*9, References

*9.1. Normative References

*9.2. Normative References for GSS-API Implementers

*9.3. Informative References

*Appendix A. Acknowledgments

*Appendix B. Changes

*Authors' Addresses

1. Introduction

Security Assertion Markup Language (SAML) 2.0 [OASIS.saml-core-2.0-0s]
is a modular specification that provides various means for a user to be
identified to a relying party (RP) through the exchange of (typically
signed) assertions issued by an identity provider (IdP). It includes a
number of protocols, protocol bindings [OASIS.saml-bindings-2.0-0s],
and interoperability profiles [OASIS.saml-profiles-2.0-o0s] designed for
different use cases. Additional profiles and extensions are also
routinely developed and published.

Simple Authentication and Security lLayer (SASL) [RFC4422] is a
generalized mechanism for identifying and authenticating a user and for
optionally negotiating a security layer for subsequent protocol
interactions. SASL is used by application protocols like IMAP, POP and
XMPP [RFC3920]. The effect is to make authentication modular, so that
newer authentication mechanisms can be added as needed.

The Generic Security Service Application Program Interface (GSS-API)
[RFC2743] provides a framework for applications to support multiple
authentication mechanisms through a unified programming interface. This
document defines a pure SASL mechanism for SAML, but it conforms to the
bridge between SASL and the GSS-API called GS2 [RFC5801]. This means
that this document defines both a SASL mechanism and a GSS-API
mechanism. The GSS-API interface is optional for SASL implementers, and
the GSS-API considerations can be avoided in environments that uses
SASL directly without GSS-API.

The mechanisms specified in this document allow a SASL- or GSS-API-
enabled server to act as a SAML relying party, or service provider
(SP), by advertising this mechanism as an option for SASL or GSS-API
clients that support the use of SAML to communicate identity and
attribute information. Clients supporting this mechanism are termed
"enhanced clients" in SAML terminology because they understand the
federated authentication model and have specific knowledge of the
IdP(s) associated with the user. This knowledge, and the ability to act
on it, addresses a significant problem with browser-based SAML profiles
known as the "discovery", or "where are you from?" (WAYF) problem.
Obviating the need for the RP to interact with the client to determine
the right IdP (and its network location) is both a user interface and
security improvement.

The SAML mechanism described in this document is an adaptation of an
existing SAML profile, the Enhanced Client or Proxy (ECP) Profile
(V2.0) [SAMLECP20], and therefore does not establish a separate
authentication, integrity and confidentiality mechanism. It is
anticipated that existing security layers, such as Transport Layer
Security (TLS), will continued to be used.

Figure 1 describes the interworking between SAML and SASL: this
document requires enhancements to the RP and to the client (as the two
SASL communication endpoints) but no changes to the SAML IdP are

assumed apart from its support for the applicable SAML profile. To
accomplish this, a SAML protocol exchange between the RP and the IdP,
brokered by the client, is tunneled within SASL. There is no assumed
communication between the RP and the IdP, but such communication may
occur in conjunction with additional SAML-related profiles not in scope
for this document.

o m e e o +
| SAML |
| Relying |
| Party |
I I
o m e e o - +

N
+--]--+
| S| |

S| Al |
Al Ml
S| Ll |
LI | |
I
+--]--+

S SRS + Y]

| | R +

| SAML | SAML SOAP | |

| Identity |<--------------- >| Client |
| Provider | Binding | |

S R + Fommmm oo - +

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

The reader is also assumed to be familiar with the terms used in the
SAML 2.0 specification, and an understanding of the Enhanced Client or
Proxy (ECP) Profile (V2.0) [SAMLECP20] is necessary, as part of this
mechanism explicitly reuses and references it.

This document can be implemented without knowledge of GSS-API since the
normative aspects of the GS2 protocol syntax have been duplicated in
this document. The document may also be implemented to provide a GSS-
API mechanism, and then knowledge of GSS-API is essential. To faciliate
these two variants, the references has been split into two parts, one
part that provides normative references for all readers, and one part

that adds additional normative references required for implementers
that wish to implement the GSS-API portion.

3. Applicability for Non-HTTP Use Cases

While SAML is designed to support a variety of application scenarios,
the profiles for authentication defined in the original standard are
designed around HTTP [RFC2616] applications. They are not, however,
limited to browsers, because it was recognized that browsers suffer
from a variety of functional and security deficiencies that would be
useful to avoid where possible. Specifically, the notion of an
"Enhanced Client" (or a proxy acting as one on behalf of a browser,
thus the term "ECP") was specified for a software component that acts
somewhat like a browser from an application perspective, but includes
limited, but sufficient, awareness of SAML to play a more conscious
role in the authentication exchange between the RP and the IdP. What
follows is an outline of the Enhanced Client or Proxy (ECP) Profile
(V2.0) [SAMLECP20], as applied to the web/HTTP service use case:

1.

The Enhanced Client requests a resource of a Relying Party (RP)
(via an HTTP request). In doing so, it advertises its
"enhanced" capability using HTTP headers.

The RP, desiring SAML authentication and noting the client's
capabilities, responds not with an HTTP redirect or form, but
with a SOAP [W3C.soapll] envelope containing a SAML
<AuthnRequest> along with some supporting headers. This request
identifies the RP (and may be signed), and may provide hints to
the client as to what IdPs the RP finds acceptable, but the
choice of IdP is generally left to the client.

The client is then responsible for delivering the body of the
SOAP message to the IdP it is instructed to use (often via
configuration ahead of time). The user authenticates to the IdP
ahead of, during, or after the delivery of this message, and
perhaps explicitly authorizes the response to the RP.

. Whether authentication succeeds or fails, the IdP responds with

its own SOAP envelope, generally containing a SAML <Response>
message for delivery to the RP. In a successful case, the
message will include a SAML <Assertion> containing
authentication, and possibly attribute, information about the
user. Either the response or assertion alone is signed, and the
assertion may be encrypted to a key negotiated with or known to
belong to the RP.

The client then delivers the SOAP envelope containing the
<Response> to the RP at a location the IdP directs (which acts

as an additional, though limited, defense against MITM
attacks). This completes the SAML exchange.

6. The RP now has sufficient identity information to approve the
original HTTP request or not, and acts accordingly. Everything
between the original request and this response can be thought
of as an "interruption" of the original HTTP exchange.

When considering this flow in the context of an arbitrary application
protocol and SASL, the RP and the client both must change their code to
implement this SASL mechanism, but the IdP can remain untouched. The
existing RP/client exchange that is tunneled through HTTP maps well to
the tunneling of that same exchange in SASL. In the parlance of SASL
[RFC4422], this mechanism is "client-first" for consistency with GS2.
The steps are shown below:

1. The server MAY advertise the SAML2OEC and/or SAML20OEC-PLUS
mechanisms.

2. The client initiates a SASL authentication with SAML20EC or
SAML20EC-PLUS.

3. The server sends the client a challenge consisting of a SOAP
envelope containing its SAML <AuthnRequest>.

4. The SASL client unpacks the SOAP message and communicates with
its chosen IdP to relay the SAML <AuthnRequest> to it. This
communication, and the authentication with the IdP, proceeds
separately from the SASL process.

5. Upon completion of the exchange with the IdP, the client
responds to the SASL server with a SOAP envelope containing the
SAML <Response> it obtained, or a SOAP fault, as warranted.

6. The SASL Server indicates success or failure.

Note: The details of the SAML processing, which are consistent with the
Enhanced Client or Proxy (ECP) Profile (V2.0) [SAMLECP20], are such
that the client MUST interact with the IdP in order to complete any
SASL exchange with the RP. The assertions issued by the IdP for the
purposes of the profile, and by extension this SASL mechanism, are
short lived, and therefore cannot be cached by the client for later
use.

Encompassed in step four is the client-driven selection of the IdP,
authentication to it, and the acquisition of a response to provide to
the SASL server. These processes are all external to SASL.

with all of this in mind, the typical flow appears as follows:

SASL Serv. Client IdP

|>----- (1)----- >| | Advertisement
| | I
|<--=-- (2)----- <| | Initiation
| | I
|>----- (3)----- >| | SASL Server Response
| | I
| |[<- - -(4)- - >| SOAP AuthnRequest + user authn
| | I
|<----- (5)----- <| | SASL Client Response
| | I
[>----- (6)----- >| | Server sends Outcome
I I I

----- = SASL

SOAP over HTTPS (external to SASL)

4. SAML SASL Mechanism Specification

Based on the previous figures, the following operations are defined by
the SAML SASL mechanism:

4.1. Advertisement

To advertise that a server supports this mechanism, during application
session initiation, it displays the name "SAML2OEC" and/or "SAML2OEC-
PLUS" in the list of supported SASL mechanisms (depending on its
support for channel binding).

4.2. Initiation

A client initiates "SAML2QEC" or "SAML2QEC-PLUS" authentication. If
supported by the application protocol, the client MAY include an
initial response, otherwise it waits until the server has issued an
empty challenge (because the mechanism is client-first).

The format of the initial client response is as follows:

holder-of-key = "urn:oasis:names:tc:SAML:2.0:cm:holder-of-key"
initial-response = gs2-cb-flag "," [gs2-authzid] "," [holder-of-key]
The gs2-cb-flag MUST be set as defined in [RFC5801] to indicate whether
the client supports channel binding. This takes the place of the PAOS

HTTP header extension used in [SAMLECP20] to indicate channel binding
support.

The optional "gs2-authzid" field holds the authorization identity, as
requested by the client.

The optional "holder-of-key" field is a constant that signals the
client's support for stronger security by means of a locally held key.
This takes the place of the PAOS HTTP header extension used in
[SAMLECP20] to indicate "holder of key" support.

4.3. Server Response

The SASL server responds with a SOAP envelope constructed in accordance
with section 2.3.2 of [SAMLECP20]. This includes adhering to the SOAP
header requirements of the SAML PAOS Binding [OASIS.saml-bindings-2.0-
os], for compatibility with the existing profile. Various SOAP headers
are also consumed by the client in exactly the same manner prescribed
by that section.

4.4. User Authentication with Identity Provider

Upon receipt of the Server Response [serverresponse], the steps
described in sections 2.3.3 through 2.3.6 of [SAMLECP20] are performed
between the client and the chosen IdP. The means by which the client
determines the IdP to use, and where it is located, are out of scope of
this mechanism.

The exact means of authentication to the IdP are also out of scope, but
clients supporting this mechanism MUST support HTTP Basic
Authentication as defined in [RFC2617] and TLS client authentication as

defined in [RFC5246].

4.5. Client Response

Assuming a response is obtained from the IdP, the client responds to
the SASL server with a SOAP envelope constructed in accordance with
section 2.3.7 of [SAMLECP20]. This includes adhering to the SOAP header
requirements of the SAML PAOS Binding [OASIS.saml-bindings-2.0-o0s], for
compatibility with the existing profile. If the client is unable to
obtain a response from the IdP, it responds to the SASL server with a
SOAP envelope containing a SOAP fault.

4.6. Outcome

The SAML protocol exchange having completed, the SASL server will
transmit the outcome to the client depending on local validation of the
client responses.

4.7. Additional Notes

Because this mechanism is an adaptation of an HTTP-based profile, there
are a few requirements outlined in [SAMLECP20] that make reference to a
response URL that is normally used to regulate where the client returns

information to the RP. There are also security-related checks built
into the profile that involve this location.

For compatibility with existing IdP and profile behavior, and to
provide for secure identification of the RP to the client, the SASL
server MUST populate the responseConsumerURL and
AssertionConsumerServiceURL attributes with its service name, expressed
as an absolute URI. The parties then perform the steps described in

[SAMLECP20] as usual.

5. SAML EC GSS-API Mechanism Specification

This section and its sub-sections and all normative references of it
not referenced elsewhere in this document are INFORMATIONAL for SASL
implementors, but they are NORMATIVE for GSS-API implementors.

The SAML SASL Enhanced Clients mechanism is also a GSS-API mechanism.
The messages are the same, but a) the GS2 header on the client's first
message is excluded when SAML EC is used as a GSS-API mechanism, and b)
the RFC2743 section 3.1 initial context token header is prefixed to the
client's first authentication message (context token).

The GSS-API mechanism OID for SAML EC is 1.3.6.1.4.1.11591.4.6.

SAML EC security contexts always have the mutual_state flag
(GSS_C_MUTUAL_FLAG) set to TRUE. SAML EC does not support credential
delegation, therefore SAML EC security contexts alway have the
deleg_state flag (GSS_C_DELEG_FLAG) set to FALSE.

The mutual authentication property of this mechanism relies on
successfully comparing the TLS server identity with the negotiated
target name. Since the TLS channel is managed by the application
outside of the GSS-API mechanism, the mechanism itself is unable to
confirm the name while the application is able to perform this
comparison for the mechanism. For this reason, applications MUST match
the TLS server identity with the target name, as discussed in
[RFC6125].

The SAML EC mechanism does not support per-message tokens or
GSS_Pseudo_random.

5.1. GSS-API Principal Name Types for SAML EC

SAML EC supports standard generic name syntaxes for acceptors such as
GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743], Section 4.1). These service
names MUST be associated with the SAML "entityID" claimed by the RP,
such as through the use of SAML metadata [OASIS.saml-metadata-2.0-0s].
SAML EC supports only a single name type for initiators:
GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name type for
SAML EC.

The query, display, and exported name syntaxes for SAML EC principal
names are all the same. There are no SAML EC-specific name syntaxes --
applications should use generic GSS-API name types such as
GSS_C_NT_USER_NAME and GSS_C_NT_HOSTBASED_SERVICE (see [RFC2743],
Section 4). The exported name token does, of course, conform to

[RFC2743], Section 3.2, but the "NAME" part of the token should be
treated as a potential input string to the SAML EC name normalization
rules.

GSS-API name attributes may be defined in the future to hold the
normalized SAML EC Identifier.

6. Example

Suppose the user has an identity at the SAML IdP saml.example.org and a
Jabber Identifier (jid) "somenode@example.com", and wishes to
authenticate his XMPP connection to xmpp.example.com (and example.com
and example.org have established a SAML-capable trust relationship).
The authentication on the wire would then look something like the
following:

Step 1: Client initiates stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
to='example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream
xmlns="'jabber:client' xmlns:stream='http://etherx.jabber.org/streams’'
id="'some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>

<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>SAML2QEC</mechanism>

</mechanisms>

</stream:features>

Step 4: Client selects an authentication mechanism and sends the
initial client response (it is base64 encoded as specified by the XMPP
SASL protocol profile):

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='SAML20OEC'>
biws
</auth>

The initial response is "n,," which signals that channel binding is not
used, there is no authorization identity, and the client does not
support key-based confirmation.

Step 5: Server sends a challenge to client in the form of a SOAP
envelope containing its SAML <AuthnRequest>:

<challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
PFM6RW52ZWxVvCGUNCiAgICB4bWxuczpzYW1sPSJ1cm46b2FzaXM6bmFtZXM6dGMBUOFNTDoOyY
LJABYXNzZXJ0aWOuIgOKICAgIHhtbG5z0OnNhbWxwPSJ1cm46b2FzaXM6bmFtZXM6dGMEUGFN
TDoyLjA6cHIvdG9]jbh2wiDQogICAgeGlsbnM6Uz0iaHROcDovVL3NjaGVtYXMueGlsc29hcC5v
cmcve29hcC91bnzZ1bG9wZS8iPgOKICA8UZpIZWFkZXI+DQogICAgPHBhb3M6UMVXdwWVzdCB4
bwxuczpwYW9zPSJ1cm46bG1lizZzXJ0eTpwYW9z0jIwMDMtMDgiDQogICAgICBtZXNzYWd1SUQ9
ImMzYTRmMOGI5YzJKkIiBTOM11c3RVbMR1cnNNOYWS5kPSIXIgOKICAgICAgUzphY3RvcjOiaHRO
cDovL3NjaGVtYXMueGlsc29hcC5vemevc29hcCOhY3Rveci9uZXhOIgOKICAgICAgemVzcG9u
c2VDb25zdW11clVSTDOiaHROCHM6LY94bXBwLmV4YW1wbGUUY29tIgOKICAgICAgc2Vydmlj
ZT0idXJu0m9hc21z0m5hbWVzOnRjOLINBTUW6Mi4wOnByb2ZpbGVZzO1INTTzplY3AiLz4NCiAg
ICA8ZWNwW0O1J1cXV1c3QNCiAgICAgIHhtbG5z0mVjcDOidXJuOm9hc21z0m5hbwWVz0OnRjO1NB
TUW6M14wOnByb2ZphbGVzOINTTzplY3AiDQogICAgICBTOMFjdG9yPSJodHRWOi8vc2NoZW1lh
cy54bWxzb2FwLm9yZy9zb2FwL2FjdG9yL251eHQiDQogICAgICBTOM11c3RVbmR1cnNOYW5Sk
PSIxIiBQcm92aWR1lck5hbWU9IkphYmJ1lciBhdCBleGFtcGXx1LmNvbSI+DQogICAgICA8C2Ft
bDpJc3N1ZXI+aHROCHMBLY94bXBwLmMVAYW1wbGUUY29tPC9zYW1s0k1lzc3V1cj4NCiAgICAS8
L2V]jcDpSZXF1ZXNOPgOKICA8LIM6SGVhZGVYyPgOKICA8UZzpCh2R5PgOKICAgIDXZzYW1scDpB
dXRob1J1cXV1c3QNCiAgICAgIEIEPSJIjM2EOZjhiOWMyZCIgVmVyc2lvbjOiMidwIiBJc3N1
ZUluc3RhbnQ9IjIwMDCtMTItMTBUMTE6Mzk6MZzRaIgOKICAgICAgQUHIVAGIjb2xCaws5kawsn
PSJ1cm46b2FzaXM6bmFtZXM6dGMEUOFNTDOYLjA6YM1uZGluZ3MEUEFPUYINCiAgICAQIEFZ
c2VydGlvbkNvbnN1bwVyUu2VydmljzVVSTDOiaHROCHM6LY94bXBWwLMV4YWiwbGUUY29tIj4N
CiAgICAQIDxzYW1s0klzc3V1lciB4bwWxuczpzYW1lsPSJ1icm46b2FzaXM6bmFtZXM6dGMEUBFN
TDOYLjABYXNzZXJ0awW9uIj4NCiAgICAgICBodHRwczovL3htcHAUZXhhbXBsZS5jb20NCiAg
ICAQIDwvC2FtbDpJc3N1ZXI+DQogICAgQICA8Cc2FtbHA6TMFtZULEUG9saWN5IEFSbG93Q3J1
YXR1PSJOcnV1IgOKICAQICAQICBGb3JtYXQ9InVybjpvYXNpczpuYWllczpOYzpTQUIMOjIu
MDpuYW1lawQtZm9ybWFOONBlcnNpc3R1bnQiLz4NCiAgICAQIDXxzYW1scDpSZXF1ZXNOZWRB
dXRobkNvbnR1eHQgQ29tcGFyaXNvbj0izXhhY3QiPgOKICAgQICAgIDXzYW1sOkF1dGhuQ29u
dGV4dENSYXNzUmVmMPgOKICAgICAgIHVYbjpVvYXNpczpuYWilczpOYzpTQUIMOjIuMDphYzpj
bGFzc2Vvz01Bhc3N3b3JkUHJIvAGVjdGVkVHIhbnNwbh3J0DQogICAgICAgPCO9zYW1sOkF1dGhu
Q29udGV4dENSYXNzUmVmMPgOKICAQICAgPCOzYW1scDpSZXF1ZXNOZWRBAXRobkNvbnR1eHQ+
TAOKICAgIDwvC2FtbHABQXVOaG5SZXF1ZXNOPgOKICA8LIM6QMIKkeTANCjwvUzpFbnZ1bGow
ZT4ANCg==

</challenge>

The Base64 [RFC4648] decoded envelope:

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<paos:Request xmlns:paos="urn:liberty:paos:2003-08"
messageID="c3a4f8b9c2d" S:mustUnderstand="1"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
responseConsumerURL="xmpp: xmpp.example.com"
service="urn:oasis:names:tc:SAML:2.0:profiles:SS0:ecp"/>
<ecp:Request
xmlns:ecp="urn:oasis:names:tc:SAML:2.0:profiles:SS0:ecp"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
S:mustUnderstand="1" ProviderName="Jabber at example.com">
<saml:Issuer>https://xmpp.example.com</saml:Issuer>
</ecp:Request>
</S:Header>
<S:Body>
<samlp:AuthnRequest
ID="c3a4f8b9c2d" Version="2.0" IssueInstant="2007-12-10T11:39:342z2"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:PAOS"
AssertionConsumerServiceURL="xmpp:xmpp.example.com">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy AllowCreate="true"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"/>
<samlp:RequestedAuthnContext Comparison="exact'">
<saml:AuthnContextClassRef>
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>
</S:Body>
</S:Envelope>

Step 5 (alt): Server returns error to client:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<incorrect-encoding/>

</failure>

</stream:stream>

Step 6: Client relays the request to IdP in a SOAP message transmitted
over HTTP (over TLS). HTTP portion not shown, use of Basic

Authentication is assumed. The body of the SOAP envelope is exactly the
same as received in the previous step.

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<samlp:AuthnRequest>
<!-- same as above -->
</samlp:AuthnRequest>
</S:Body>

</S:Envelope>

Step 7: IdP responds to client with a SOAP response containing a SAML
<Response> containing a short-lived SSO assertion (shown as an
encrypted variant in the example).

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<ecp:Response S:mustUnderstand="1"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
AssertionConsumerServiceURL="xmpp:xmpp.example.com"/>
</S:Header>
<S:Body>
<samlp:Response ID="d43h94r389309r" Version="2.0"
IssueInstant="2007-12-10T11:42:34Z" InResponseTo="c3a4f8b9c2d"
Destination="xmpp:xmpp.example.com">
<saml:Issuer>https://saml.example.org</saml:Issuer>
<samlp:Status>
<samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<saml:EncryptedAssertion>
<!-- contents elided -->
</saml:EncryptedAssertion>
</samlp:Response>
</S:Body>
</S:Envelope>

Step 8: Client sends SOAP envelope containing the SAML <Response> as a
response to the SASL server's challenge:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
PFM6RW52ZWXxVvCGUNCiAgICB4bWxuczpzYW1sPSJ1cm46b2FzaXM6bmFtZXM6AGMBUOFNTDOY
LJABYXNzZXJ0aWOuIgOKICAgIHhtbG5z0OnNhbWxwPSJ1cm46b2FzaXM6bmFtZXM6dGMEUBFN
TDoyLjA6cHJIvdG9jb2wiDQogICAgeGlsbnM6Uz0iaHROcDoVL3NjaGVtYXMueGlsc29hcC5v
cmcvc29hcC91bnzZ1bGOwZS8iPgOKICA8UZzpIZWFkZXI+DQogICAgPHBhb3M6UMVZzcG9uc2Ug
eG1lsbnM6cGFvczOidXJuOmxpYmVydHk6cGFvczoyMDAZLTA4IgOKICAgQICAgUzphY3RvcjO1
aHROcDovL3NjaGVtYXMueGlsc29hcC5vemecve29hcCOhY3Rvei9uzZXhOIgOKICAgICAgUzpt
dXNOVW5kZXJzdGFuZDOiMSIgcmVmVGINZXNzYWd1SUQ9IjZjM2EQZjhiOWMyZCIVPgOKICAS
L1IM6SGVhZGVYPgOKICA8UzpCh2R5PgOKICAQIDXZzYW1scDpSZXNwh252ZSBJRDO1ZDQzabDko
CcjM40TMWOXIiIFZ1cnNpb249IjIuMCINCiAgICAgICAgSXNZzdWVIbnNOYWS50PSIYMDA3LTEY
LTEWVDEX0]jQy0jMOWiIgSW5SZXNwb252ZVRVPSJIjM2EOZjhiOWMyZCINCiAgICAgICAgRGVZ
dGluYXRpb249ImhOdHBz0i8veGlwcC51eGFtcGx1LmNvbSI+DQogICAgICA8c2FthDpJc3N1
ZXI+aHROCHM6LY9ZYW1sLmV4YW1wbGUuUub3JInPC9zYW1s0k1lzc3V1cj4NCiAgICAQIDxzYW1s
cDpTdGFOAXM+DQogICAgICAgIDXxzYW1scDpTdGFOAXNDb2R1DQogICAgICAgICAgICBWYWX1
ZT0idXJuOm9hc21z0m5hbwWVzOnRjOINBTUWEMi4wOnNNOYXR1czpTdWNjZXNzIi8+DQogICAg
ICA8L3NhbWXwO1INOYXR1cz4NCiAgICAgIDXxzYW1s0kVuY3J5cHR1ZEFzc2VydGlvbj4NCiAg
ICAQICAgPCEtLSBjb250ZW50cyBlbG1lkZWQgLSO+DQogICAgICA8L3NhbWw6RW5jcnlwdGVk
QXNzZXJ0aw9uPgOKICAgIDwvCc2FtbHA6UMVZzcG9uc2U+DQogIDwvUzpChb2R5PgOKPCOTOKVU
dmVsb3B1PgOK

</response>

The Base64 [RFC4648] decoded envelope:

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<paos:Response xmlns:paos="urn:liberty:paos:2003-08"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
S:mustUnderstand="1" refToMessageID="6c3a4f8b9c2d"/>
</S:Header>
<S:Body>
<samlp:Response ID="d43h94r389309r" Version="2.0"
IssueInstant="2007-12-10T11:42:34Z" InResponseTo="c3a4f8b9c2d"
Destination="xmpp:xmpp.example.com">
<saml:Issuer>https://saml.example.org</saml:Issuer>
<samlp:Status>
<samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<saml:EncryptedAssertion>
<!-- contents elided -->
</saml:EncryptedAssertion>
</samlp:Response>
</S:Body>
</S:Envelope>

Step 9: Server informs client of successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 9 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>

</failure>

</stream:stream>

Step 10: Client initiates a new stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams’'
to="example.com' version='1.0'>

Step 11: Server responds by sending a stream header to client along
with any additional features (or an empty features element):

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
id='c2s_345' from='example.com' version='1.0'>
<stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
<session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>
</stream:features>

Step 12: Client binds a resource:

<iq type='set' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</bind>
</ig>

Step 13: Server informs client of successful resource binding:

<iq type='result' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>somenode@example.com/someresource</jid>
</bind>
</ig>

Please note: line breaks were added to the base64 for clarity.
7. Security Considerations

This section will address only security considerations associated with
the use of SAML with SASL applications. For considerations relating to
SAML in general, the reader is referred to the SAML specification and
to other literature. Similarly, for general SASL Security
Considerations, the reader is referred to that specification.

Version 2.0 of the Enhanced Client or Proxy Profile [SAMLECP20] adds
optional support for channel binding and use of "Holder of Key" subject
confirmation. The former is strongly recommended for use with this
mechanism to detect "Man in the Middle" attacks between the client and
the RP without relying on flawed commercial TLS infrastructure. The
latter may be impractical in many cases, but is a valuable way of
strengthening client authentication, protecting against phishing, and
improving the overall mechanism.

7.1. Risks Left Unaddressed

The adaptation of a web-based profile that is largely designed around
security-oblivious clients and a bearer model for security token
validation results in a number of basic security exposures that should
be weighed against the compatibility and client simplification benefits
of this mechanism.

When channel binding is not used, protection against "Man in the
Middle" attacks is left to lower layer protocols such as TLS, and the
development of user interfaces able to implement that has not been
effectively demonstrated. Failure to detect a MITM can result in
phishing of the user's credentials if the attacker is between the
client and IdP, or the theft and misuse of a short-lived credential
(the SAML assertion) if the attacker is able to impersonate a RP. SAML
allows for source address checking as a minor mitigation to the latter
threat, but this is often impractical. IdPs can mitigate to some extent
the exposure of personal information to RP attackers by encrypting
assertions with authenticated keys.

7.2. User Privacy

The IdP is aware of each RP that a user logs into. There is nothing in
the protocol to hide this information from the IdP. It is not a
requirement to track the activity, but there is nothing technically
that prohibits the collection of this information. SASL servers should
be aware that SAML IdPs will track - to some extent - user access to
their services.

It is also out of scope of the mechanism to determine under what
conditions an IdP will release particular information to a relying
party, and it is generally unclear in what fashion user consent could
be established in real time for the release of particular information.
The SOAP exchange with the IdP does not preclude such interaction, but
neither does it define that interoperably.

7.3. Collusion between RPs

Depending on the information supplied by the IdP, it may be possible
for RPs to correlate data that they have collected. By using the same
identifier to log into every RP, collusion between RPs is possible.
SAML supports the notion of pairwise, or targeted/directed, identity.
This allows the IdP to manage opaque, pairwise identifiers for each
user that are specific to each RP. However, correlation is often
possible based on other attributes supplied, and is generally a topic
that is beyond the scope of this mechanism. It is sufficient to say
that this mechanism does not introduce new correlation opportunities
over and above the use of SAML in web-based use cases.

8. IANA Considerations

The IANA is requested to register the following SASL profile:
SASL mechanism profiles: SAML2OEC and SAML20OEC-PLUS

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.
Owner/Change controller: the IETF

Note: None

9. References
9.1. Normative References

Bradner, S., "Key words for use in RFCs to
[RFC2119] Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997.
Franks, J., Hallam-Baker, P.M., Hostetler, J.L.,
Lawrence, S.D., Leach, P.J., Luotonen, A. and L.
Stewart, "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999.
Melnikov, A. and K. Zeilenga, "Simple
[RFC4422] Authentication and Security lLayer (SASL)", RFC
4422, June 2006.
Josefsson, S., "The Basel6, Base32, and Base64
Data Encodings", RFC 4648, October 2006.
Dierks, T. and E. Rescorla, "The Transport Layer
[RFC5246] Security (TLS) Protocol Version 1.2", RFC 5246,
August 2008.
Saint-Andre, P. and J. Hodges, "Representation
and Verification of Domain-Based Application
Service Identity within Internet Public Key

[RFC2617]

[RFC4648]

[RFC6125] : . .
Infrastructure Using X.509 (PKIX) Certificates in
the Context of Transport Layer Security (TLS)",
RFC 6125, March 2011.

Cantor, S., Kemp, J., Philpott, R. and E. Maler,

[OASIS.saml- "Assertions and Protocol for the OASIS Security

core-2.0-o0s] Assertion Markup Language (SAML) V2.0", O0ASIS

Standard saml-core-2.0-0s, March 2005.

Cantor, S., Hirsch, F., Kemp, J., Philpott, R.
and E. Maler, "Bindings for the OASIS Security
Assertion Markup Language (SAML) V2.0", O0ASIS

[OASIS.saml-
bindings-2.0-

os] Standard saml-bindings-2.0-0s, March 2005.

Hughes, J., Cantor, S., Hodges, J., Hirsch, F.,
[OASIS.saml- Mishra, P., Philpott, R. and E. Maler, "Profiles
profiles-2.0- for the OASIS Security Assertion Markup Language
os] (SAML) V2.0", OASIS Standard OASIS.saml-

profiles-2.0-0s, March 2005.
[W3C.soap11]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
http://tools.ietf.org/html/rfc6125
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,

Mendelsohn, N., Nielsen, H., Thatte, S. and D.

Winer, "Simple Object Access Protocol (SOAP)

1.1", W3C Note soapll, May 2000.

Cantor, S., "SAML V2.0 Enhanced Client or Proxy
[SAMLECP20] Profile Version 2.0", OASIS Working Draft

OASIS.sstc-saml-ecp-v2.0-wd04, August 2011.

9.2. Normative References for GSS-API Implementers

Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.
Josefsson, S. and N. Williams, "Using Generic Security
Service Application Program Interface (GSS-API)
Mechanisms in Simple Authentication and Security Layer
(SASL): The GS2 Mechanism Family", RFC 5801, July 2010.

[RFC2743]

[RFC5801]

9.3. Informative References

Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P. and T. Berners-Lee,
"Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999.
Saint-Andre, P., "Extensible Messaging and
[RFC3920] Presence Protocol (XMPP): Core", RFC 3920,
October 2004.
Cantor, S., Moreh, J., Philpott, R. and E.
[OASIS.saml- Maler, "Metadata for the Security Assertion
metadata-2.0-0s] Markup Language (SAML) V2.0", OASIS Standard
saml-metadata-2.0-0s, March 2005.

[RFC2616]

Appendix A. Acknowledgments

The authors would like to thank Klaas Wierenga, Sam Hartman, and Nico
wWilliams for their contributions.

Appendix B. Changes
This section to be removed prior to publication.

*draft-ietf-kitten-sasl-saml-ec-00, Initial Revision, first WG-
adopted draft. Removed support for unsolicited SAML responses.

Authors' Addresses

Scott Cantor Cantor Internet2 2740 Airport Drive Columbus, Ohio
43219 United States Phone: +1 614 247 6147 EMail: cantor.2@osu.edu

mailto:dbox@develop.com
mailto:davide@us.ibm.com
mailto:gopalk@microsoft.com
mailto:andrewl@microsoft.com
mailto:Noah_Mendelsohn@lotus.com
mailto:frystyk@microsoft.com
mailto:satisht@microsoft.com
mailto:dave@userland.com
mailto:dave@userland.com
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
http://tools.ietf.org/html/rfc5801
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
mailto:stpeter@jabber.org
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
mailto:cantor.2@osu.edu
mailto:jmoreh@sigaba.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eve.maler@sun.com
mailto:cantor.2@osu.edu

Simon Josefsson Josefsson SJD AB Hagagatan 24 Stockholm, 113 47 SE
EMail: simon@josefsson.org URI: http://josefsson.org/

mailto:simon@josefsson.org
http://josefsson.org/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Applicability for Non-HTTP Use Cases
	4. SAML SASL Mechanism Specification
	4.1. Advertisement
	4.2. Initiation
	4.3. Server Response
	4.4. User Authentication with Identity Provider
	4.5. Client Response
	4.6. Outcome
	4.7. Additional Notes
	5. SAML EC GSS-API Mechanism Specification
	5.1. GSS-API Principal Name Types for SAML EC
	6. Example
	7. Security Considerations
	7.1. Risks Left Unaddressed
	7.2. User Privacy
	7.3. Collusion between RPs
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Normative References for GSS-API Implementers
	9.3. Informative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Authors' Addresses

