
NETWORK WORKING GROUP N. Williams
Internet-Draft Sun
Expires: December 28, 2006 June 26, 2006

Stackable Generic Security Service Pseudo-Mechanisms
draft-ietf-kitten-stackable-pseudo-mechs-02.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 28, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document defines and formalizes the concept of stackable pseudo-
 mechanisms, and associated concept of composite mechanisms, for the
 Generic Security Service Application Programming Interface (GSS-API),
 as well as several utility functions.

 Stackable GSS-API pseudo-mechanisms allow for the composition of new
 mechanisms that combine features from multiple mechanisms. Stackable
 mechanisms that add support for Perfect Forward Security (PFS), data
 compression, additional authentication factors, etc... are

Williams Expires December 28, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Stackable GSS Mechs June 2006

 facilitated by this document.

Table of Contents

1. Conventions used in this document 3
2. Introduction . 3
2.1. Glossary . 3
3. Mechanism Composition Issues 4
4. Mechanism Composition 5
4.1. Construction of Composed Mechanism OIDs 5
4.2. Mechanism Composition Rules 6
4.3. Interfacing with Composite Mechanisms 7
4.4. Compatibility with the Basic GSS-APIv2u1 Interfaces . . . 7
4.5. Processing of Tokens for Composite Mechanisms 8
5. New GSS-API Interfaces 8
5.1. New GSS-API Function Interfaces 9
5.1.1. GSS_Compose_oid() . 9
5.1.2. GSS_Decompose_oid() 10
5.1.3. GSS_Release_oid() . 10
5.1.4. GSS_Indicate_negotiable_mechs() 11
5.1.5. GSS_Negotiate_mechs() 12
5.1.6. C-Bindings . 12
6. Negotiation of Composite Mechanisms 13
6.1. Negotiation of Composite Mechanisms Through SPNEGO 14
7. Requirements for Mechanism Designers 14
8. IANA Considerations 14
9. Security considerations 14
10. Normative . 15

 Author's Address . 16
 Intellectual Property and Copyright Statements 17

Williams Expires December 28, 2006 [Page 2]

Internet-Draft Stackable GSS Mechs June 2006

1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 Recent discussions within the IETF have shown the need for a
 refactoring of the features that GSS-API mechanisms may provide and a
 way to compose new mechanisms from smaller components.

 One way to do this is to "stack" multiple mechanisms on top of each
 other such that the features of all of them are summed into a new,
 composite mechanism.

 One existing GSS-API mechanism, LIPKEY [LIPKEY], is essentially
 stacked over another, SPKM-3 [LIPKEY] (although LIPKEY does not
 conform to the stackable pseduo-mechanism framework described
 herein).

 The first truly stackable pseudo-mechanism proposed, CCM [CCM], is
 intended for signalling, during negotiation of mechanisms, the
 willingness of an initiator and/or acceptor to utilize channel
 bindings

 Since then other similar mechanism compositing needs and ideas have
 come up, along with problems such as "what combinations are possible,
 useful, reasonable and secure?" This document addresses those
 problems. It introduces the concepts of stackable pseudo-mechanisms,
 composite mechanisms and mechanism features or attributes, as well as
 new inquiry and related interfaces to help in the mechanism
 compositing.

 (Mechanism features are more formally referred to as "mechanism
 attributes" below. The terms "feature" and mechanism attribute" are
 sometimes used interchangeably.)

2.1. Glossary

 Concrete GSS-API mechanism
 A mechanism which can be used standalone. Examples include: the
 Kerberos V mechanism [CFX], SPKM-1/2 [SPKM] and SPKM-3 [LIPKEY].

 GSS-API Pseudo-mechanism
 A mechanism which uses other mechanisms in the construction of its
 context and/or per-message tokens and security contexts. SPNEGO

https://datatracker.ietf.org/doc/html/rfc2119

Williams Expires December 28, 2006 [Page 3]

Internet-Draft Stackable GSS Mechs June 2006

 is an example of this.

 Stackable GSS-API pseudo-mechanism
 A mechanism which uses a single other mechanism in the
 construction of its tokens such that the OID of the composite
 result can be constructed by prepending the OID of the stackable
 pseudo-mechanism to the OID of the mechanism to be used by it.

 Mechanism-negotiation GSS-API pseudo-mechanism
 A GSS-API mechanism that negotiates the use of GSS-API mechanisms.
 SPNEGO [SPNEGO] is an example of this.

3. Mechanism Composition Issues

 Interfacing with composite mechanisms through the existing GSS-API
 interfaces and the handling of composite mechanism tokens is
 straightforward enough and described in Section 4.

 However, the concepts of stackable and composite mechanisms do give
 rise to several minor problems:

 o How to determine allowable combinations of mechanisms;
 o How to encode composite mechanism OIDs;
 o How to decompose the OID of a composite mechanism and process its
 tokens properly;
 o Application interfacing issues such as:

 * Whether and/or which composite mechanisms should be listed by
 GSS_Indicate_mechs();
 * Whether and/or which composite mechanisms not listed by
 GSS_Indicate_mechs() may nonetheless be available for use by
 applications and how applications can detect their
 availability;
 * What additional, if any, interfaces should be provided to help
 applications select appropriate mechanisms;
 o

 Mechanism negotiation issues (related to the application interface
 issues listed above), such as: vspace blankLines='1'/>
 * Should applications advertise composite mechanisms in SPNEGO or
 other application-specific mechanism negotiation contexts?
 * Or should applications implicitly advertise composite
 mechanisms by advertising concrete and stackable pseudo-
 mechanisms in SPNEGO or other application-specific mechanism
 negotiation contexts?

Section 4 addresses the OID composition, decomposition and encoding

Williams Expires December 28, 2006 [Page 4]

Internet-Draft Stackable GSS Mechs June 2006

 issues, as well as basic interfacing and token handling issues.

Section 5 addresses interfacing issues more generally through the
 specification of additional, optional APIs.

Section 6 addresses mechanism negotiation issues.

4. Mechanism Composition

 Mechanism composition by stacking pseudo-mechanisms on a concrete
 mechanism is conceptually simple: join the OIDs of the several
 mechanisms in question and process GSS-API tokens and routine calls
 through the top-most pseudo-mechanism in a stack, which can then, if
 necessary, recursively call the GSS-API to process any tokens for the
 remainder of the stack.

 Some stackable pseudo-mechanisms may do nothing more than perform
 transformations on application data (e.g., compression); such pseudo-
 mechanisms will generally chain the processing of tokens and routine
 calls to the mechanisms below them in the stack.

 Other stackable pseudo-mechanisms may utilize the mechanisms below
 them only during security context setup. For example, a stackable
 pseudo-mechanism could perform a Diffie-Hellman key exchange and
 authenticate it by binding a security context established with the
 mechanism stacked below it; such a mechanism would provide its own
 per-message tokens.

4.1. Construction of Composed Mechanism OIDs

 Composition of mechanism OIDs is simple: prepend the OID of one
 pseudo-mechanism to the OID of another mechanism (composite or
 otherwise), but there MUST always be at least one final mechanism OID
 and it MUST be useful standalone (i.e., it MUST NOT be a pseudo-
 mechanism). A composite mechanism OID forms, essentially, a stack.

 The encoding of composed mechanism OIDs is not quite the
 concatenation of the component OIDs' encodings, however. This is
 because the first two arcs of ASN.1 OIDs are encoded differently from
 subsequent arcs (the first two arcs have a limited namespace and are
 encoded as a single octet), so were composite mechanism OIDs to be
 encoded as the concatenation of the component OIDs the result would
 not decode as the concatenation of the component OIDs. To avoid this
 problem the first two arcs of each component of a composite mechanism
 OID, other than the leading component, will be encoded as other arcs
 would.

Williams Expires December 28, 2006 [Page 5]

Internet-Draft Stackable GSS Mechs June 2006

 Decomposition of composite mechanism OIDs is similar, with each
 pseudo-mechanism in the stack being able to determine the OID suffix
 from knowledge of its own OID(s).

 New pseudo-mechanisms MAY be allocated OIDs from the prefix given
 below as follows by assignment of a sub-string of OID arcs to be
 appended to this prefix. This prefix OID is:

 <TBD> [1.3.6.1.5.5.11 appears to be available, registration w/ IANA
 TBD]

 All OID allocations below this OID MUST be for stackable pseudo-
 mechanisms and MUST consist of a single arc. This will make it
 possible to decompose the OIDs of composite mechanisms without
 necessarily knowing a priori the OIDs of the component stackable
 pseudo-mechanisms.

4.2. Mechanism Composition Rules

 All new stackable pseudo-mechanisms MUST specify the rules for
 determining whether they can stack above a given mechanism, composite
 or otherwise. Such rules may be based on specific mechanism
 attribute OID sets [EXTENDED-INQUIRY] and/or specific mechanism OIDs
 (composite and otherwise).

 All stackable pseudo-mechanisms MUST have the following mechanism
 composition rule relating to unknown mechanism attributes:

 o composition with mechanisms supporting unknown mechanism
 attributes MUST NOT be permitted.

 This rule protects against compositions which cannot be considered
 today but which might nonetheless arise due to the introduction of
 new mechanisms and which might turn out to be insecure or otherwise
 undesirable.

 Mechanism composition rules for stackable pseudo-mechanisms MAY and
 SHOULD be updated as new GSS-API mechanism attributes and mechanisms
 sporting them are introduced. The specifications of mechanisms that
 introduce new mechanism attributes or which otherwise should not be
 combined with others in ways which would be permitted under existing
 rules SHOULD also update the mechanism composition rules of affected
 pseudo-mechanisms.

 A RECOMMENDED way to describe the stacking rules for stackable
 mechanisms is as an ordered sequence of "MAY stack above X
 mechanism," "REQUIRES Y mechanism feature(s)," "MUST NOT stack above
 Z mechanism," and/or "MUST NOT stack above a mechanism with Z

Williams Expires December 28, 2006 [Page 6]

Internet-Draft Stackable GSS Mechs June 2006

 mechanism feature(s)."

 For example a stackable mechanism that provides its own per-msg
 tokens and does not use the underlying mechnism's per-msg token
 facilities might require a rule such as "MUST NOT stack above a
 mechanism with the GSS_C_MA_COMPRESS mechanism feature."

4.3. Interfacing with Composite Mechanisms

 The basic GSS-API [RFC2743] interfaces MUST NOT accept as input or
 provide as output the OID of any stackable pseudo-mechanism.
 Composite mechanisms MUST be treated as concrete mechanisms by the
 basic GSS-API interfaces [RFC2743].

 Thus the way in which a composite mechanism is used by applications
 with the basic GSS-API (version 2, update 1) is straightforward:
 exactly as if composite mechanisms were normal GSS-API mechanisms.

 This is facilitated by the fact that in all cases where the GSS-API
 implementation might need to know how to process or create a token it
 has the necessary contextual information, that is, the mechanism OID,
 available and can decompose composite mechanism OIDs as necessary.

 For example, for initial GSS_Init_sec_context() calls the
 implementation knows the desired mechanism OID, and if it should be
 left unspecified, it can pick a default mechanism given the initiator
 credentials provided by the application (and if none are provided
 other default mechanism and credential selections can still be made).
 For subsequent calls to GSS_Init_sec_context() the implementation
 knows which mechanism to use from the given [partially established]
 security context. Similarly for GSS_Accept_sec_context, where on
 initial calls the mechanism OID can be determined from the given
 initial context token's framing.

 The manner in which GSS-API implementations and the various
 mechanisms and pseudo-mechanisms interface with one another is left
 as an excercise to implementors.

4.4. Compatibility with the Basic GSS-APIv2u1 Interfaces

 In order to preserve backwards compatibility with applications that
 use only the basic GSS-API interfaces (version 2, update 1), several
 restrictions are imposed on the use of composite and stackable
 pseduo-mechanisms with the basic GSS-API interfaces:

 o GSS_Indicate_mechs() MUST NOT indicate support for any stackable
 pseduo-mechanisms under any circumstance.
 o GSS_Indicate_mechs() MAY indicate support for some, all or none of

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743

Williams Expires December 28, 2006 [Page 7]

Internet-Draft Stackable GSS Mechs June 2006

 the available composite mechanisms.
 o Which composite mechanisms, if any, are indicated through
 GSS_Indicate_mechs() SHOULD be configurable.
 o Composite mechanisms which are not indicated by
 GSS_Indicate_mechs() MUST NOT be considered as the default
 mechanism (GSS_C_NULL_OID) or as part of the default mechanism set
 (GSS_C_NULL_OID_SET).
 o The OIDs of *stackable* (not composite) pseudo-mechanisms MUST NOT
 be accepted as inputs or produced in the output of any of the
 basic GSS-APIv2, update 1 API functions, except for any OID set
 construction/iteration functions. And, if present in any OID SET
 input parameters of GSS-APIv2, update 1 functions, they MUST be
 ignored.
 o The OIDs of *stackable* (not composite) pseudo-mechanisms MAY only
 be used as inputs or produced as outputs of functions whose
 specification explicitly allows for them or which are concerned
 with the creation/iteration of OID containters, such as OID SETs.

4.5. Processing of Tokens for Composite Mechanisms

 The initial context token for any standard mechanism, including
 mechanisms composited from standard pseudo- and concrete mechanisms,
 MUST be encapsulated as described in section 3.1 of rfc2743
 [RFC2743], and the OID used in that framing MUST be that of the
 mechanism, but in the case of composite mechanisms this OID MUST be
 the OID of the leading component of the composite mechanism.

 Note that this has implications for pluggable multi-mechanism
 implementations of the GSS-API, namely that acceptors must route
 initial context tokens to the appropriate mechanism and they must
 allow that mechanism to determine the composite mechanism OID (such
 as by allowing that mechanism's GSS_Accept_sec_context() to output
 the actual mechanism to the application.

 In all other cases the mechanism that produced or is to produce a
 given token can be determined internally through the given security
 context.

5. New GSS-API Interfaces

 ...

 Utility functions for mechanism OID composition and decomposition are
 given in sections 5.1.1, 5.1.2 and 5.1.3.

 Two utility functions, GSS_Indicate_negotiable_mechs() and
 GSS_Negotiate_mechs(), to aid applications in mechanism negotiation

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743

Williams Expires December 28, 2006 [Page 8]

Internet-Draft Stackable GSS Mechs June 2006

 are described in sections 5.1.4 and 5.1.5. These two interfaces may
 be implemented entirely in terms of the other interfaces described
 herein.

5.1. New GSS-API Function Interfaces

 Several new interfaces are given by which, for example, GSS-API
 applications may determine what features are provided by a given
 mechanism, what mechanisms provide what features and what
 compositions are legal.

 These new interfaces are all OPTIONAL.

 In order to preserve backwards compatibility with applications that
 do not use the new interfaces GSS_Indicate_mechs() MUST NOT indicate
 support for any stackable pseduo-mechanisms. GSS_Indicate_mechs()
 MAY indicate support for some, all or none of the available composite
 mechanisms; which composite mechanisms, if any, are indicated through
 GSS_Indicate_mechs() SHOULD be configurable. GSS_Acquire_cred() and
 GSS_Add_cred() MUST NOT create credentials for composite mechanisms
 not explicitly requested or, if no desired mechanism or mechanisms
 are given, for composite mechanisms not indicated by
 GSS_Indicate_mechs().

 Applications SHOULD use GSS_Indicate_mechs_by_mech_attrs() instead of
 GSS_Indicate_mechs() wherever possible.

 Applications can use GSS_Indicate_mechs_by_mech_attrs() to determine
 what, if any, mechanisms provide a given set of features.

 GSS_Indicate_mechs_by_mech_attrs() can also be used to indicate (as
 in GSS_Indicate_mechs()) the set of available mechanisms of each type
 (concrete, mechanism negotiation pseudo-mechanism, stackable pseudo-
 mechanism and composite mechanisms).

 Applications may use GSS_Inquire_mech_attrs_for_mech() to test
 whether a given composite mechanism is available and the set of
 features that it offers.

 GSS_Negotiate_mechs() may be used to negotiate the use of mechanisms
 such that composite mechanisms need not be advertised but instead be
 implied by offering stackable pseudo-mechanisms.

5.1.1. GSS_Compose_oid()

 Inputs:
 o mech1 OBJECT IDENTIFIER, -- mechanism OID
 o mech2 OBJECT IDENTIFIER -- mechanism OID

Williams Expires December 28, 2006 [Page 9]

Internet-Draft Stackable GSS Mechs June 2006

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o composite OBJECT IDENTIFIER -- OID composition of mech1 with mech2
 ({mech1 mech2})

 Return major_status codes:
 o GSS_S_COMPLETE indicates success.
 o GSS_S_BAD_MECH indicates that mech1 is not supported.
 o GSS_S_FAILURE indicates that the request failed for some other
 reason. The minor status will be specific to mech1 and may
 provide further information.

5.1.2. GSS_Decompose_oid()

 Inputs:
 o input_mech OBJECT IDENTIFIER, -- mechanism OID.
 o mechs SET OF OBJECT IDENTIFIER -- mechanism OIDs (if
 GSS_C_NULL_OID_SET defaults to the set of stackable pseudo-
 mechanism OIDs indicated by GSS_Indicate_mechs_by_mech_attrs()).

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o lead_mech OBJECT IDENTIFIER, -- leading stackable pseudo-
 mechanism OID.
 o trail_mech OBJECT IDENTIFIER -- input_mech with lead_mech removed
 from the front.

 Return major_status codes:
 o GSS_S_COMPLETE indicates success.
 o GSS_S_BAD_MECH indicates that the input_mech could not be
 decomposed as no stackable pseudo-mechanism is available whose OID
 is a prefix of the input_mech.
 o GSS_S_FAILURE indicates that the request failed for some other
 reason.

5.1.3. GSS_Release_oid()

 The following text is adapted from the obsoleted rfc2078 [RFC2078].

 Inputs:
 o oid OBJECT IDENTIFIER

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078

Williams Expires December 28, 2006 [Page 10]

Internet-Draft Stackable GSS Mechs June 2006

 Return major_status codes:
 o GSS_S_COMPLETE indicates successful completion
 o GSS_S_FAILURE indicates that the operation failed

 Allows the caller to release the storage associated with an OBJECT
 IDENTIFIER buffer allocated by another GSS-API call, specifically
 GSS_Compose_oid() and GSS_Decompose_oid(). This call's specific
 behavior depends on the language and programming environment within
 which a GSS-API implementation operates, and is therefore detailed
 within applicable bindings specifications; in particular, this call
 may be superfluous within bindings where memory management is
 automatic.

5.1.4. GSS_Indicate_negotiable_mechs()

 Inputs:
 o input_cred_handle CREDENTIAL HANDLE, -- credential handle to be
 used with GSS_Init_sec_context(); may be GSS_C_NO_CREDENTIAL.
 o peer_type_known BOOLEAN, -- indicates whether the peer is known to
 support or not supprot the stackable pseudo-mechanism framework.
 o peer_has_mech_stacking BOOLEAN -- indicates whether the peer
 supports the stackable pseudo-mechanism framework; ignore if
 peer_type_known is FALSE.

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o offer_mechs SET OF OBJECT IDENTIFIER, -- mechanisms to offer.

 Return major_status codes:
 o GSS_S_COMPLETE indicates success.
 o GSS_S_NO_CREDENTIAL indicates that the caller's credentials are
 expired or, if input_cred_handle is GSS_C_NO_CREDENTIAL, that no
 credentials could be acquired for GSS_C_NO_NAME.
 o GSS_S_FAILURE indicates that the request failed for some other
 reason.

 This function produces a set of mechanism OIDs, optimized for space,
 that its caller should advertise to peers during mechanism
 negotiation.

 The output offer_mechs parameter will include all of the mechanisms
 for which the input_cred_handle has elements (as indicated by
 GSS_Inquire_cred()), but composite mechanisms will be included either
 implicitly or implicitly as per the following rules:
 o if peer_type_known is TRUE and peer_has_mech_stacking is FALSE
 then no composite mechanisms not indicated by GSS_Indicate_mechs()
 will be advertised, explictly or implicitly;

Williams Expires December 28, 2006 [Page 11]

Internet-Draft Stackable GSS Mechs June 2006

 o if peer_type_known is FALSE then all composite mechanisms
 indicated by GSS_Indicate_mechs() for which input_cred_handle has
 elements will be indicated in offer_mechs explicitly and all
 others may be indicated in offer_mechs implicitly, by including
 their component stackable pseduo-mechanism OIDs (see below);
 o if peer_type_known is TRUE and peer_has_mech_stacking is TRUE
 composite mechanisms will generally not be advertised explicitly,
 but will be advertised implicitly, by including their component
 stackable pseduo-mechanism OIDs (see below); no composite
 mechanisms will be advertised explicitly
 o if the input_cred_handle does not have elements for all of the
 possible composite mechanisms that could be constructed from the
 its elements' decomposed mechanisms, then all composite mechanisms
 for which the input_cred_handle does have elements will be
 advertised explicitly in offer_mechs.

5.1.5. GSS_Negotiate_mechs()

 Inputs:
 o input_credential_handle CREDENTIAL HANDLE, -- mechanisms offered
 by the caller.
 o peer_mechs SET OF OBJECT IDENTIFIER -- mechanisms offered by the
 caller's peer.

 Outputs:
 o major_status INTEGER,
 o minor_status INTEGER,
 o mechs SET OF OBJECT IDENTIFIER -- mechanisms common to the
 caller's credentials and the caller's peer.

 Return major_status codes:
 o GSS_S_COMPLETE indicates success; the output mechs parameter MAY
 be the empty set (GSS_C_NO_OID_SET).
 o GSS_S_NO_CREDENTIAL indicates that the caller's credentials are
 expired or, if input_cred_handle is GSS_C_NO_CREDENTIAL, that no
 credentials could be acquired for GSS_C_NO_NAME.
 o GSS_S_FAILURE indicates that the request failed for some other
 reason.

 This function matches the mechanisms for which the caller has
 credentials with the mechanisms offered by the caller's peer and
 returns the set of mechanisms in common to both, accounting for any
 composite mechanisms offered by the peer implicitly.

5.1.6. C-Bindings

 OM_uint32 gss_compose_oid(

Williams Expires December 28, 2006 [Page 12]

Internet-Draft Stackable GSS Mechs June 2006

 OM_uint32 *minor_status,
 const gss_OID mech1,
 const gss_OID mech2,
 gss_OID *composite);

 OM_uint32 gss_decompose_oid(
 OM_uint32 *minor_status,
 const gss_OID input_mech,
 const gss_OID_set mechs,
 gss_OID *lead_mech,
 gss_OID *trail_mech);

 OM_uint32 gss_release_oid(
 OM_uint32 *minor_status,
 gss_OID *oid);

 OM_uint32 gss_indicate_negotiable_mechs(
 OM_uint32 *minor_status,
 const gss_cred_id_t input_cred_handle,
 OM_uint32 peer_type_known,
 OM_uint32 peer_has_mech_stacking,
 gss_OID_set *offer_mechs);

 OM_uint32 gss_negotiate_mechs(
 OM_uint32 *minor_status,
 const gss_cred_id_t input_cred_handle,
 const gss_OID_set peer_mechs,
 const gss_OID_set *mechs);

 Figure 1

6. Negotiation of Composite Mechanisms

 Where GSS-API implementations do not support the stackable mechanism
 framework interfaces applications may only negotiate explicitly from
 a set of concrete and composite mechanism OIDs as indicated by
 GSS_Indicate_mechs() and for which suitable credentials are
 available. GSS_Indicate_mechs(), as described in Section 4.4, MUST
 NOT indicate support for individual stackable pseudo-mechanisms, so
 there will not be any composite mechanisms implied but not explicitly
 offered in the mechanism negotiation.

 Applications that support the stackable mechanism framework SHOULD
 use GSS_Indicate_negotiable_mechs() to construct the set of mechanism
 OIDs to offer to their peers. GSS_Indicate_negotiable_mechs()
 optimizes for bandwidth consumption by using decomposed OIDs instead

Williams Expires December 28, 2006 [Page 13]

Internet-Draft Stackable GSS Mechs June 2006

 of composed OIDs, where possible. See Section 5.1.4.

 Peers that support the stackable mechanism framework interfaces
 SHOULD use GSS_Negotiate_mechs() to select a mechanism as that
 routine accounts for composite mechanisms implicit in the mechanism
 offers.

6.1. Negotiation of Composite Mechanisms Through SPNEGO

 SPNEGO applications MUST advertise either the set of mechanism OIDs
 for which they have suitable credentials or the set of mechanism OIDs
 produced by calling GSS_Indicate_negotiable_mechs() with the
 available credentials and the peer_type_known parameter as FALSE.

7. Requirements for Mechanism Designers

 Stackable pseudo-mechanisms specifications MUST:
 o list the set of GSS-API mechanism attributes associated with them
 o list their initial mechanism composition rules
 o specify a mechanism for updating their mechanism composition rules

 All other mechanism specifications MUST:
 o list the set of GSS-API mechanism attributes associated with them

8. IANA Considerations

 Allocation of arcs in the namespace of OIDs relative to the base
 stackable pseduo-mechanism OID specified in Section 4.1 is reserved
 to the IANA.

9. Security considerations

 Some composite mechanisms may well not be secure. The mechanism
 composition rules of pseudo-mechanisms (including the default
 composition rule given in Section 4 for unknown mechanism attributes)
 should be used to prevent the use of unsafe composite mechanisms.

 Designers of pseudo-mechanisms should study the possible combinations
 of their mechanisms with others and design mechanism composition
 rules accordingly.

 Similarly, pseudo-mechanism designers MUST specify, and implementors
 MUST implement, composite mechanism attribute set determination rules
 appropriate to the subject pseduo-mechanism, as described in section

4.2. Failure to do so may lead to inappropriate composite mechanisms

Williams Expires December 28, 2006 [Page 14]

Internet-Draft Stackable GSS Mechs June 2006

 being deemed permissible by programmatic application of flawed
 mechanism composition rules or to by their application with incorrect
 mechanism attribute sets.

10. Normative

 [EXTENDED-INQUIRY]
 Williams, N., "Extended Generic Security Service Mechanism
 Inquiry APIs",

draft-ietf-kitten-extended-mech-inquiry-00.txt (work in
 progress).

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-kitten-extended-mech-inquiry-00.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744

Williams Expires December 28, 2006 [Page 15]

Internet-Draft Stackable GSS Mechs June 2006

Author's Address

 Nicolas Williams
 Sun Microsystems
 5300 Riata Trace Ct
 Austin, TX 78727
 US

 Email: Nicolas.Williams@sun.com

Williams Expires December 28, 2006 [Page 16]

Internet-Draft Stackable GSS Mechs June 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Williams Expires December 28, 2006 [Page 17]

