
INTERNET DRAFT K. Raeburn
Kerberos Working Group MIT
Document: draft-ietf-krb-wg-crypto-07.txt February 10, 2004
 expires August 10, 2004

Encryption and Checksum Specifications
for Kerberos 5

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [RFC2026]. Internet-Drafts
 are working documents of the Internet Engineering Task Force (IETF),
 its areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts. Internet-Drafts are
 draft documents valid for a maximum of six months and may be updated,
 replaced, or obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference material or to cite
 them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.html.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes a framework for defining encryption and
 checksum mechanisms for use with the Kerberos protocol, defining an
 abstraction layer between the Kerberos protocol and related
 protocols, and the actual mechanisms themselves. Several mechanisms
 are also defined in this document. Some are taken from RFC 1510,
 modified in form to fit this new framework, and occasionally modified
 in content when the old specification was incorrect. New mechanisms
 are presented here as well. This document does NOT indicate which
 mechanisms may be considered "required to implement".

 Comments should be sent to the editor, or to the IETF Kerberos
 working group (ietf-krb-wg@anl.gov).

Raeburn [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-crypto-07.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026
http://www.ietf.org/ietf/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1510

INTERNET DRAFT February 2004

 1mTable of Contents0m

Status of this Memo . 1
Abstract . 1
Table of Contents . 2
1. Introduction . 3
2. Concepts . 3
3. Encryption algorithm profile 4
4. Checksum algorithm profile 9
5. Simplified profile for CBC ciphers with key derivation 10
5.1. A key derivation function 11
5.2. Simplified profile parameters 13
5.3. Cryptosystem profile based on simplified profile 14
5.4. Checksum profiles based on simplified profile 16
6. Profiles for Kerberos encryption and checksum algorithms 16
6.1. Unkeyed checksums . 17
6.2. DES-based encryption and checksum types 18
6.3. Triple-DES based encryption and checksum types 28
7. Use of Kerberos encryption outside this specification 30
8. Assigned Numbers . 31
9. Implementation Notes . 33
10. Security Considerations . 33
11. IANA Considerations . 35
12. Acknowledgments . 36
A. Test vectors . 37
A.1. n-fold . 37
A.2. mit_des_string_to_key . 39
A.3. DES3 DR and DK . 43
A.4. DES3string_to_key . 44
A.5. Modified CRC-32 . 45
B. Significant Changes from RFC 1510 45
Notes . 46
Intellectual Property Statement 47
Normative References . 48
Informative References . 49
Editor's address . 50
Full Copyright Statement . 50

https://datatracker.ietf.org/doc/html/rfc1510

Raeburn [Page 2]

INTERNET DRAFT February 2004

1. Introduction

 The Kerberos protocols [Kerb] are designed to encrypt messages of
 arbitrary sizes, using block encryption ciphers, or less commonly,
 stream encryption ciphers. Encryption is used to prove the
 identities of the network entities participating in message
 exchanges. However, nothing in the Kerberos protocol requires any
 specific encryption algorithm be used, as long as certain operations
 are available in the algorithm that is used.

 The following sections specify the encryption and checksum mechanisms
 currently defined for Kerberos, as well as a framework for defining
 future mechanisms. The encoding, chaining, padding and other
 requirements for each are described. Test vectors for several
 functions are given in appendix A.

2. Concepts

 Both encryption and checksum mechanisms are defined in terms of
 profiles, detailed in later sections. Each specifies a collection of
 operations and attributes that must be defined for a mechanism. A
 Kerberos encryption or checksum mechanism specification is not
 complete if it does not define all of these operations and
 attributes.

 An encryption mechanism must provide for confidentiality and
 integrity of the original plaintext. (Integrity checking may be
 achieved by incorporating a checksum, if the encryption mode does not
 provide an integrity check itself.) It must also provide non-
 malleability [Bellare98, Dolev91]. Use of a random confounder
 prepended to the plaintext is recommended. It should not be possible
 to determine if two ciphertexts correspond to the same plaintext,
 without knowledge of the key.

 A checksum mechanism [1] must provide proof of the integrity of the
 associated message, and must preserve the confidentiality of the
 message in case it is not sent in the clear. It should be infeasible
 to find two plaintexts which have the same checksum. It is NOT
 required that an eavesdropper be unable to determine if two checksums
 are for the same message; it is assumed that the messages themselves
 will be visible to any such eavesdropper.

 Due to advances in cryptography, it is considered unwise by some
 cryptographers to use the same key for multiple purposes. Since keys
 are used in performing a number of different functions in Kerberos,
 it is desirable to use different keys for each of these purposes,
 even though we start with a single long-term or session key.

Raeburn [Page 3]

INTERNET DRAFT February 2004

 We do this by enumerating the different uses of keys within Kerberos,
 and making the "usage number" an input to the encryption or checksum
 mechanisms; this enumeration is outside the scope of this document.
 Later sections of this document define simplified profile templates
 for encryption and checksum mechanisms that use a key derivation
 function applied to a CBC mode (or similar) cipher and a checksum or
 hash algorithm.

 We distinguish the "base key" specified by other documents from the
 "specific key" to be used for a particular instance of encryption or
 checksum operations. It is expected but not required that the
 specific key will be one or more separate keys derived from the
 original protocol key and the key usage number. The specific key
 should not be explicitly referenced outside of this document. The
 typical language used in other documents should be something like,
 "encrypt this octet string using this key and this usage number";
 generation of the specific key and cipher state (described in the
 next section) are implicit. The creation of a new cipher-state
 object, or the re-use of one from a previous encryption operation,
 may also be explicit.

 New protocols defined in terms of the Kerberos encryption and
 checksum types should use their own key usage values. Key usages are
 unsigned 32 bit integers; zero is not permitted.

 All data is assumed to be in the form of strings of octets or 8-bit
 bytes. Environments with other byte sizes will have to emulate this
 behavior in order to get correct results.

 Each algorithm is assigned an encryption type (or "etype") or
 checksum type number, for algorithm identification within the
 Kerberos protocol. The full list of current type number assignments
 is given in section 8.

3. Encryption algorithm profile

 An encryption mechanism profile must define the following attributes
 and operations. The operations must be defined as functions in the
 mathematical sense: no additional or implicit inputs (such as
 Kerberos principal names or message sequence numbers) are permitted.

 protocol key format
 This describes what octet string values represent valid keys. For
 encryption mechanisms that don't have perfectly dense key spaces,
 this will describe the representation used for encoding keys. It
 need not describe specific values that are not valid or desirable
 for use; such values should be avoid by all key generation
 routines.

Raeburn [Page 4]

INTERNET DRAFT February 2004

 specific key structure
 This is not a protocol format at all, but a description of the
 keying material derived from the chosen key and used to encrypt or
 decrypt data or compute or verify a checksum. It may, for
 example, be a single key, a set of keys, or a combination of the
 original key with additional data. The authors recommend using
 one or more keys derived from the original key via one-way key
 derivation functions.

 required checksum mechanism
 This indicates a checksum mechanism that must be available when
 this encryption mechanism is used. Since Kerberos has no built in
 mechanism for negotiating checksum mechanisms, once an encryption
 mechanism has been decided upon, the corresponding checksum
 mechanism can simply be used.

 key-generation seed length, K
 This is the length of the random bitstring needed to generate a
 key with the encryption scheme's random-to-key function (described
 below). This must be a fixed value so that various techniques for
 producing a random bitstring of a given length may be used with
 key generation functions.

 key generation functions
 Keys must be generated in a number of cases, from different types
 of inputs. All function specifications must indicate how to
 generate keys in the proper wire format, and must avoid generation
 of keys that significantly compromise the confidentiality of
 encrypted data, if the cryptosystem has such. Entropy from each
 source should be preserved as much as possible. Many of the
 inputs, while unknown, may be at least partly predictable (e.g., a
 password string is likely to be entirely in the ASCII subset and
 of fairly short length in many environments; a semi-random string
 may include timestamps); the benefit of such predictability to an
 attacker must be minimized.

 string-to-key (UTF-8 string, UTF-8 string, opaque)->(protocol-key)
 This function generates a key from two UTF-8 strings and an
 opaque octet string. One of the strings is normally the
 principal's pass phrase, but is in general merely a secret
 string. The other string is a "salt" string intended to
 produce different keys from the same password for different
 users or realms. While the strings provided will use UTF-8
 encoding, no specific version of Unicode should be assumed; all
 valid UTF-8 strings should be allowed. Strings provided in
 other encodings MUST first be converted to UTF-8 before
 applying this function.

Raeburn [Page 5]

INTERNET DRAFT February 2004

 The third argument, the octet string, may be used to pass
 mechanism-specific parameters in to this function. Since doing
 so implies knowledge of the specific encryption system, it is
 intended that generating non-default parameter values be an
 uncommon operation, and that normal Kerberos applications be
 able to treat this parameter block as an opaque object supplied
 by the Key Distribution Center or defaulted to some mechanism-
 specific constant value.

 The string-to-key function should be a one-way function, so
 that compromising a user's key in one realm does not compromise
 the user's key in another realm, even if the same password (but
 a different salt) is used.

 random-to-key (bitstring[K])->(protocol-key)
 This function generates a key from a random bitstring of a
 specific size. It may be assumed that all the bits of the
 input string are equally random, even though the entropy
 present in the random source may be limited.

 key-derivation (protocol-key, integer)->(specific-key)
 In this function, the integer input is the key usage value as
 described above; the usage values must be assumed to be known
 to an attacker. The specific-key output value was described in

section 2.

 string-to-key parameter format
 This describes the format of the block of data that can be passed
 to the string-to-key function above to configure additional
 parameters for that function. Along with the mechanism of
 encoding parameter values, bounds on the allowed parameters should
 also be described to avoid allowing a spoofed KDC to compromise
 the user's password. It may be desirable to construct the
 encoding such that values weakening the resulting key unacceptably
 cannot be encoded, if practical.

 Tighter bounds might be permitted by local security policy, or to
 avoid excess resource consumption; if so, recommended defaults for
 those bounds should be given in the specification. The
 description should also outline possible weaknesses that may be
 caused by not applying bounds checks or other validation to a
 parameter string received from the network.

 As mentioned above, this should be considered opaque to most
 normal applications.

Raeburn [Page 6]

INTERNET DRAFT February 2004

 default string-to-key parameters (octet string)
 This default value for the "params" argument to the string-to-key
 function is to be used when the application protocol (Kerberos or
 otherwise) does not explicitly set the parameter value. As
 indicated above, this parameter block should be treated as an
 opaque object in most cases.

 cipher state
 This describes any information that can be carried over from one
 encryption or decryption operation to the next, for use in
 conjunction with a given specific key. For example, a block
 cipher used in CBC mode may put an initial vector of one block in
 the cipher state. Other encryption modes may track nonces or
 other data.

 This state must be non-empty, and must influence encryption so as
 to require that messages be decrypted in the same order they were
 encrypted, if the cipher state is carried over from one encryption
 to the next. Distinguishing out-of-order or missing messages from
 corrupted messages is not required; if desired, this can be done
 at a higher level by including sequence numbers and not "chaining"
 the cipher state between encryption operations.

 The cipher state may not be reused in multiple encryption or
 decryption operations; these operations all generate a new cipher
 state that may be used for following operations using the same key
 and operation.

 The contents of the cipher state must be treated as opaque outside
 of encryption system specifications.

 initial cipher state (specific-key, direction)->(state)
 This describes the generation of the initial value for the cipher
 state if it is not being carried over from a previous encryption
 or decryption operation.

 This describes any initial state setup needed before encrypting
 arbitrary amounts of data with a given specific key; the specific
 key and the direction of operations to be performed (encrypt
 versus decrypt) must be the only input needed for this
 initialization.

 This state should be treated as opaque in any uses outside of an
 encryption algorithm definition.

 IMPLEMENTATION NOTE: [Kerb1510] was vague on whether and to what
 degree an application protocol could exercise control over the
 initial vector used in DES CBC operations. Some existing

Raeburn [Page 7]

INTERNET DRAFT February 2004

 implementations permit the setting of the initial vector. This
 framework does not provide for application control of the cipher
 state (beyond "initialize" and "carry over from previous
 encryption"), since the form and content of the initial cipher
 state can vary between encryption systems, and may not always be a
 single block of random data.

 New Kerberos application protocols should not assume that they can
 control the initial vector, or that one even exists. However, a
 general-purpose implementation may wish to provide the capability,
 in case applications explicitly setting it are encountered.

 encrypt (specific-key, state, octet string)->(state, octet string)
 This function takes the specific key, cipher state, and a non-
 empty plaintext string as input, and generates ciphertext and a
 new cipher state as outputs. If the basic encryption algorithm
 itself does not provide for integrity protection (as DES in CBC
 mode does not do), then some form of MAC or checksum must be
 included that can be verified by the receiver. Some random factor
 such as a confounder should be included so that an observer cannot
 know if two messages contain the same plaintext, even if the
 cipher state and specific keys are the same. The exact length of
 the plaintext need not be encoded, but if it is not and if padding
 is required, the padding must be added at the end of the string so
 that the decrypted version may be parsed from the beginning.

 The specification of the encryption function must not only
 indicate the precise contents of the output octet string, but also
 the output cipher state. The application protocol may carry
 forward the output cipher state from one encryption with a given
 specific key to another; the effect of this "chaining" must be
 defined. [2]

 Assuming correctly-produced values for the specific key and cipher
 state, no input octet string may result in an error indication.

 decrypt (specific-key, state, octet string)->(state, octet string)
 This function takes the specific key, cipher state, and ciphertext
 as inputs, and verifies the integrity of the supplied ciphertext.
 If the ciphertext's integrity is intact, this function produces
 the plaintext and a new cipher state as outputs; otherwise, an
 error indication must be returned, and the data discarded.

 The result of the decryption may be longer than the original
 plaintext, for example if the encryption mode adds padding to
 reach a multiple of a block size. If this is the case, any extra
 octets must be after the decoded plaintext. An application
 protocol which needs to know the exact length of the message must

Raeburn [Page 8]

INTERNET DRAFT February 2004

 encode a length or recognizable "end of message" marker within the
 plaintext. [3]

 As with the encryption function, a correct specification for this
 function must indicate not only the contents of the output octet
 string, but also the resulting cipher state.

 pseudo-random (protocol-key, octet-string)->(octet-string)
 This pseudo-random function should generate an octet string of
 some size that independent of the octet string input. The PRF
 output string should be suitable for use in key generation, even
 if the octet string input is public. It should not reveal the
 input key, even if the output is made public.

 These operations and attributes are all that is required to support
 Kerberos and various proposed preauthentication schemes.

 For convenience of certain application protocols that may wish to use
 the encryption profile, we add the constraint that, for any given
 plaintext input size, there must be a message size between that given
 size and that size plus 65535 such that the length of such that the
 decrypted version of the ciphertext for any message of that size will
 never have extra octets added at the end.

 Expressed mathematically, for every message length L1, there exists a
 message size L2 such that:

 L2 >= L1
 L2 < L1 + 65536
 for every message M with |M| = L2, decrypt(encrypt(M)) = M

 A document defining a new encryption type should also describe known
 weaknesses or attacks, so that its security may be fairly assessed,
 and should include test vectors or other validation procedures for
 the operations defined. Specific references to information readily
 available elsewhere are sufficient.

4. Checksum algorithm profile

 A checksum mechanism profile must define the following attributes and
 operations:

 associated encryption algorithm(s)
 This indicates the types of encryption keys this checksum
 mechanism can be used with.

 A keyed checksum mechanism may have more than one associated
 encryption algorithm if they share the same wire key format,

Raeburn [Page 9]

INTERNET DRAFT February 2004

 string-to-key function, and key derivation function. (This
 combination means that, for example, a checksum type, key usage
 value and password are adequate to get the specific key used to
 compute a checksum.)

 An unkeyed checksum mechanism can be used in conjunction with any
 encryption type, since the key is ignored, but its use must be
 limited to cases where the checksum itself is protected, to avoid
 trivial attacks.

 get_mic function
 This function generates a MIC token for a given specific key (see

section 3), and message (represented as an octet string), that may
 be used to verify the integrity of the associated message. This
 function is not required to return the same deterministic result
 on every use; it need only generate a token that the verify_mic
 routine can check.

 The output of this function will also dictate the size of the
 checksum. It must be no larger than 65535 octets.

 verify_mic function
 Given a specific key, message, and MIC token, this function
 ascertains whether the message integrity has been compromised.
 For a deterministic get_mic routine, the corresponding verify_mic
 may simply generate another checksum and compare them.

 The get_mic and verify_mic operations must be able to handle inputs
 of arbitrary length; if any padding is needed, the padding scheme
 must be specified as part of these functions.

 These operations and attributes are all that should be required to
 support Kerberos and various proposed preauthentication schemes.

 As with encryption mechanism definition documents, documents defining
 new checksum mechanisms should indicate validation processes and
 known weaknesses.

5. Simplified profile for CBC ciphers with key derivation

 The profile outlines in sections 3 and 4 describes a large number of
 operations that must be defined for encryption and checksum
 algorithms to be used with Kerberos. We describe here a simpler
 profile from which both encryption and checksum mechanism definitions
 can be generated, filling in uses of key derivation in appropriate
 places, providing integrity protection, and defining multiple
 operations for the cryptosystem profile based on a smaller set of
 operations given in the simplified profile. Not all of the existing

Raeburn [Page 10]

INTERNET DRAFT February 2004

 cryptosystems for Kerberos fit into this simplified profile, but we
 recommend that future cryptosystems use it or something based on it.
 [4]

 Not all of the operations in the complete profiles are defined
 through this mechanism; several must still be defined for each new
 algorithm pair.

5.1. A key derivation function

 Rather than define some scheme by which a "protocol key" is composed
 of a large number of encryption keys, we use keys derived from a base
 key to perform cryptographic operations. The base key must be used
 only for generating the derived keys, and this derivation must be
 non-invertible and entropy-preserving. Given these restrictions,
 compromise of one derived key does not compromise the other subkeys.
 Attack of the base key is limited, since it is only used for
 derivation, and is not exposed to any user data.

 Since the derived key has as much entropy as the base keys (if the
 cryptosystem is good), password-derived keys have the full benefit of
 all the entropy in the password.

 To generate a derived key from a base key, we generate a pseudorandom
 octet string, using an algorithm DR described below, and generate a
 key from that octet string using a function dependent on the
 encryption algorithm; the input length needed for that function,
 which is also dependent on the encryption algorithm, dictates the
 length of the string to be generated by the DR algorithm (the value
 "k" below). These procedures are based on the key derivation in
 [Blumenthal96].

 Derived Key = DK(Base Key, Well-Known Constant)

 DK(Key, Constant) = random-to-key(DR(Key, Constant))

 DR(Key, Constant) = k-truncate(E(Key, Constant,
 initial-cipher-state))

 Here DR is the random-octet generation function described below, and
 DK is the key-derivation function produced from it. In this
 construction, E(Key, Plaintext, CipherState) is a cipher, Constant is
 a well-known constant determined by the specific usage of this
 function, and k-truncate truncates its argument by taking the first k
 bits. Here, k is the key generation seed length needed for the
 encryption system.

 The output of the DR function is a string of bits; the actual key is

Raeburn [Page 11]

INTERNET DRAFT February 2004

 produced by applying the cryptosystem's random-to-key operation on
 this bitstring.

 If the Constant is smaller than the cipher block size of E, then it
 must be expanded with n-fold() so it can be encrypted. If the output
 of E is shorter than k bits it is fed back into the encryption as
 many times as necessary. The construct is as follows (where |
 indicates concatentation):

 K1 = E(Key, n-fold(Constant), initial-cipher-state)
 K2 = E(Key, K1, initial-cipher-state)
 K3 = E(Key, K2, initial-cipher-state)
 K4 = ...

 DR(Key, Constant) = k-truncate(K1 | K2 | K3 | K4 ...)

 n-fold is an algorithm which takes m input bits and ``stretches''
 them to form n output bits with equal contribution from each input
 bit to the output, as described in [Blumenthal96]:

 We first define a primitive called n-folding, which takes a
 variable-length input block and produces a fixed-length output
 sequence. The intent is to give each input bit approximately
 equal weight in determining the value of each output bit. Note
 that whenever we need to treat a string of octets as a number, the
 assumed representation is Big-Endian -- Most Significant Byte
 first.

 To n-fold a number X, replicate the input value to a length that
 is the least common multiple of n and the length of X. Before
 each repetition, the input is rotated to the right by 13 bit
 positions. The successive n-bit chunks are added together using
 1's-complement addition (that is, with end-around carry) to yield
 a n-bit result....

 Test vectors for n-fold are supplied in Appendix A. [5]

 In this section, n-fold is always used to produce c bits of output,
 where c is the cipher block size of E.

 The size of the Constant must not be larger than c, because reducing
 the length of the Constant by n-folding can cause collisions.

 If the size of the Constant is smaller than c, then the Constant must
 be n-folded to length c. This string is used as input to E. If the
 block size of E is less than the random-to-key input size, then the
 output from E is taken as input to a second invocation of E. This

Raeburn [Page 12]

INTERNET DRAFT February 2004

 process is repeated until the number of bits accumulated is greater
 than or equal to the random-to-key input size. When enough bits have
 been computed, the first k are taken as the random data used to
 create the key with the algorithm-dependent random-to-key function.

 Since the derived key is the result of one or more encryptions in the
 base key, deriving the base key from the derived key is equivalent to
 determining the key from a very small number of plaintext/ciphertext
 pairs. Thus, this construction is as strong as the cryptosystem
 itself.

5.2. Simplified profile parameters

 These are the operations and attributes that must be defined:

 protocol key format
 string-to-key function
 default string-to-key parameters
 key-generation seed length, k
 random-to-key function
 As above for the normal encryption mechanism profile.

 unkeyed hash algorithm, H
 This should be a collision-resistant hash algorithm with fixed-
 size output, suitable for use in an HMAC [HMAC]. It must support
 inputs of arbitrary length. Its output must be at least the
 message block size (below).

 HMAC output size, h
 This indicates the size of the leading substring output by the
 HMAC function that should be used in transmitted messages. It
 should be at least half the output size of the hash function H,
 and at least 80 bits; it need not match the output size.

 message block size, m
 This is the size of the smallest units the cipher can handle in
 the mode in which it is being used. Messages will be padded to a
 multiple of this size. If a block cipher is used in a mode that
 can handle messages that are not multiples of the cipher block
 size, such as CBC mode with cipher text stealing (CTS, see [RC5]),
 this value would be one octet. For traditional CBC mode with
 padding, it will be the underlying cipher's block size.

 This value must be a multiple of 8 bits (one octet).

Raeburn [Page 13]

INTERNET DRAFT February 2004

 encryption/decryption functions, E and D
 These are basic encryption and decryption functions for messages
 of sizes that are multiples of the message block size. No
 integrity checking or confounder should be included here. These
 functions take as input the IV or similar data, a protocol-format
 key, and a octet string, returning a new IV and octet string.

 The encryption function is not required to use CBC mode, but is
 assumed to be using something with similar properties. In
 particular, prepending a cipher-block-size confounder to the
 plaintext should alter the entire ciphertext (comparable to
 choosing and including a random initial vector for CBC mode).

 The result of encrypting one cipher block (of size c, above) must
 be deterministic, for the random octet generation function DR in
 the previous section to work. For best security, it should also
 be no larger than c.

 cipher block size, c
 This is the block size of the block cipher underlying the
 encryption and decryption functions indicated above, used for key
 derivation and for the size of the message confounder and initial
 vector. (If a block cipher is not in use, some comparable
 parameter should be determined.) It must be at least 5 octets.

 This is not actually an independent parameter; rather, it is a
 property of the functions E and D. It is listed here to clarify
 the distinction between it and the message block size, m.

 While there are still a number of properties to specify, they are
 fewer and simpler than in the full profile.

5.3. Cryptosystem profile based on simplified profile

 The above key derivation function is used to produce three
 intermediate keys. One is used for computing checksums of
 unencrypted data. The other two are used for encrypting and
 checksumming plaintext to be sent encrypted.

 The ciphertext output is the concatenation of the output of the basic
 encryption function E and a (possibly truncated) HMAC using the
 specified hash function H, both applied to the plaintext with a
 random confounder prefix and sufficient padding to bring it to a
 multiple of the message block size. When the HMAC is computed, the
 key is used in the protocol key form.

 Decryption is performed by removing the (partial) HMAC, decrypting
 the remainder, and verifying the HMAC. The cipher state is an

Raeburn [Page 14]

INTERNET DRAFT February 2004

 initial vector, initialized to zero.

 The substring notation "[1..h]" in the following table should be read
 as using 1-based indexing; leading substrings are used.

 cryptosystem from simplified profile
--
protocol key format As given.

specific key structure Three protocol-format keys: { Kc, Ke, Ki }.

key-generation seed As given.
length

required checksum As defined below in section 5.4.
mechanism

cipher state initial vector (usually of length c)

initial cipher state all bits zero

encryption function conf = random string of length c
 pad = shortest string to bring confounder
 and plaintext to a length that's a
 multiple of m
 (C1, newIV) = E(Ke, conf | plaintext | pad,
 oldstate.ivec)
 H1 = HMAC(Ki, conf | plaintext | pad)
 ciphertext = C1 | H1[1..h]
 newstate.ivec = newIV

decryption function (C1,H1) = ciphertext
 (P1, newIV) = D(Ke, C1, oldstate.ivec)
 if (H1 != HMAC(Ki, P1)[1..h])
 report error
 newstate.ivec = newIV

default string-to-key As given.
params

pseudo-random function tmp1 = H(octet-string)
 tmp2 = truncate tmp1 to multiple of m
 PRF = E(protocol-key, tmp2, initial-cipher-state)

key generation functions:

Raeburn [Page 15]

INTERNET DRAFT February 2004

 cryptosystem from simplified profile
--
string-to-key function As given.

random-to-key function As given.

key-derivation function The "well-known constant" used for the DK
 function is the key usage number, expressed as
 four octets in big-endian order, followed by one
 octet indicated below.

 Kc = DK(base-key, usage | 0x99);
 Ke = DK(base-key, usage | 0xAA);
 Ki = DK(base-key, usage | 0x55);

5.4. Checksum profiles based on simplified profile

 When an encryption system is defined using the simplified profile
 given in section 5.2, a checksum algorithm may be defined for it as
 follows:

 checksum mechanism from simplified profile
 --
 associated cryptosystem as defined above

 get_mic HMAC(Kc, message)[1..h]

 verify_mic get_mic and compare

 The HMAC function and key Kc are as described in section 5.3.

6. Profiles for Kerberos encryption and checksum algorithms

 These profiles describe the encryption and checksum systems defined
 for Kerberos. The astute reader will notice that some of them do not
 fulfull all of the requirements outlined in previous sections. These
 systems are defined for backward compatibility; newer implementations
 should (whenever possible) attempt to make use of encryption systems
 which satisfy all of the profile requirements.

 The full list of current encryption and checksum type number
 assignments, including values currently reserved but not defined in
 this document, is given in section 8.

Raeburn [Page 16]

INTERNET DRAFT February 2004

6.1. Unkeyed checksums

 These checksum types use no encryption keys, and thus can be used in
 combination with any encryption type, but may only be used with
 caution, in limited circumstances where the lack of a key does not
 provide a window for an attack, preferably as part of an encrypted
 message. [6] Keyed checksum algorithms are recommended.

6.1.1. The RSA MD5 Checksum

 The RSA-MD5 checksum calculates a checksum using the RSA MD5
 algorithm [MD5-92]. The algorithm takes as input an input message of
 arbitrary length and produces as output a 128-bit (16 octet)
 checksum. RSA-MD5 is believed to be collision-proof.

 rsa-md5
 --
 associated cryptosystem any

 get_mic rsa-md5(msg)

 verify_mic get_mic and compare

 The rsa-md5 checksum algorithm is assigned a checksum type number of
 seven (7).

6.1.2. The RSA MD4 Checksum

 The RSA-MD4 checksum calculates a checksum using the RSA MD4
 algorithm [MD4-92]. The algorithm takes as input an input message of
 arbitrary length and produces as output a 128-bit (16 octet)
 checksum. RSA-MD4 is believed to be collision-proof.

 rsa-md4
 --
 associated cryptosystem any

 get_mic md4(msg)

 verify_mic get_mic and compare

 The rsa-md4 checksum algorithm is assigned a checksum type number of
 two (2).

Raeburn [Page 17]

INTERNET DRAFT February 2004

6.1.3. CRC-32 Checksum

 This CRC-32 checksum calculates a checksum based on a cyclic
 redundancy check as described in ISO 3309 [CRC], modified as
 described below. The resulting checksum is four (4) octets in
 length. The CRC-32 is neither keyed nor collision-proof; thus, the
 use of this checksum is not recommended. An attacker using a
 probabilistic chosen-plaintext attack as described in [SG92] might be
 able to generate an alternative message that satisfies the checksum.

 The CRC-32 checksum used in the des-cbc-crc encryption mode is
 identical to the 32-bit FCS described in ISO 3309 with two
 exceptions: the sum with the all-ones polynomial times x**k is
 omitted, and the final remainder is not ones-complemented. ISO 3309
 describes the FCS in terms of bits, while this document describes the
 Kerberos protocol in terms of octets. To disambiguate the ISO 3309
 definition for the purpose of computing the CRC-32 in the des-cbc-crc
 encryption mode, the ordering of bits in each octet shall be assumed
 to be LSB-first. Given this assumed ordering of bits within an
 octet, the mapping of bits to polynomial coefficients shall be
 identical to that specified in ISO 3309.

 Test values for this modified CRC function are included in appendix
A.5.

 crc32
 --
 associated cryptosystem any

 get_mic crc32(msg)

 verify_mic get_mic and compare

 The crc32 checksum algorithm is assigned a checksum type number of
 one (1).

6.2. DES-based encryption and checksum types

 These encryption systems encrypt information under the Data
 Encryption Standard [DES77] using the cipher block chaining mode
 [DESM80]. A checksum is computed as described below and placed in
 the cksum field. DES blocks are 8 bytes. As a result, the data to
 be encrypted (the concatenation of confounder, checksum, and message)
 must be padded to an 8 byte boundary before encryption. The values
 of the padding bytes are unspecified.

Raeburn [Page 18]

INTERNET DRAFT February 2004

 Plaintext and DES ciphertext are encoded as blocks of 8 octets which
 are concatenated to make the 64-bit inputs for the DES algorithms.
 The first octet supplies the 8 most significant bits (with the
 octet's MSB used as the DES input block's MSB, etc.), the second
 octet the next 8 bits, ..., and the eighth octet supplies the 8 least
 significant bits.

 Encryption under DES using cipher block chaining requires an
 additional input in the form of an initialization vector; this vector
 is specified for each encryption system, below.

 The DES specifications [DESI81] identify four 'weak' and twelve
 'semi-weak' keys; those keys SHALL NOT be used for encrypting
 messages for use in Kerberos. The "variant keys" generated for the
 RSA-MD5-DES, RSA-MD4-DES and DES-MAC checksum types by an exclusive-
 or of a DES key with a constant are not checked for this property.

 A DES key is 8 octets of data. This consists of 56 bits of actual
 key data, and 8 parity bits, one per octet. The key is encoded as a
 series of 8 octets written in MSB-first order. The bits within the
 key are also encoded in MSB order. For example, if the encryption
 key is (B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8)
 where B1,B2,...,B56 are the key bits in MSB order, and P1,P2,...,P8
 are the parity bits, the first octet of the key would be
 B1,B2,...,B7,P1 (with B1 as the most significant bit). See the
 [DESM80] introduction for reference.

 Encryption data format

 The format for the data to be encrypted includes a one-block
 confounder, a checksum, the encoded plaintext, and any necessary
 padding, as described in the following diagram. The msg-seq field
 contains the part of the protocol message which is to be encrypted.

 +-----------+----------+---------+-----+
 |confounder | checksum | msg-seq | pad |
 +-----------+----------+---------+-----+

 One generates a random confounder of one block, placing it in
 'confounder'; zeroes out the 'checksum' field (of length appropriate
 to exactly hold the checksum to be computed); calculates the
 appropriate checksum over the whole sequence, placing the result in
 'checksum'; adds the necessary padding; then encrypts using the
 specified encryption type and the appropriate key.

 String or random-data to key transformation

 To generate a DES key from two UTF-8 text strings (password and

Raeburn [Page 19]

INTERNET DRAFT February 2004

 salt), the two strings are concatenated, password first, and the
 result is then padded with zero-valued octets to a multiple of 8
 octets.

 The top bit of each octet (always zero if the password is plain
 ASCII, as was assumed when the original specification was written) is
 discarded, and a bitstring is formed of the remaining seven bits of
 each octet. This bitstring is then fan-folded and eXclusive-ORed
 with itself to produce a 56-bit string. An eight-octet key is formed
 from this string, each octet using seven bits from the bitstring,
 leaving the least significant bit unassigned. The key is then
 "corrected" by correcting the parity on the key, and if the key
 matches a 'weak' or 'semi-weak' key as described in the DES
 specification, it is eXclusive-ORed with the constant
 0x00000000000000F0. This key is then used to generate a DES CBC
 checksum on the initial string with the salt appended. The result of
 the CBC checksum is then "corrected" as described above to form the
 result which is returned as the key.

 For purposes of the string-to-key function, the DES CBC checksum is
 calculated by CBC encrypting a string using the key as IV and using
 the final 8 byte block as the checksum.

 Pseudocode follows:

 removeMSBits(8byteblock) {
 /* Treats a 64 bit block as 8 octets and remove the MSB in
 each octect (in big endian mode) and concatenates the
 result. E.g., input octet string:
 01110000 01100001 11110011 01110011 11110111 01101111
 11110010 01100100
 results in output bitstring:
 1110000 1100001 1110011 1110011 1110111 1101111
 1110010 1100100 */
 }

 reverse(56bitblock) {
 /* Treats a 56-bit block as a binary string and reverse it.
 E.g., input string:
 1000001 1010100 1001000 1000101 1001110 1000001
 0101110 1001101
 results in output string:
 1011001 0111010 1000001 0111001 1010001 0001001
 0010101 1000001 */
 }

Raeburn [Page 20]

INTERNET DRAFT February 2004

 add_parity_bits(56bitblock) {
 /* Copies a 56-bit block into a 64-bit block, left shift
 content in each octet and add DES parity bit.
 E.g., input string:
 1100000 0001111 0011100 0110100 1000101 1100100
 0110110 0010111
 results in output string:
 11000001 00011111 00111000 01101000 10001010 11001000
 01101101 00101111 */
 }

 key_correction(key) {
 fixparity(key);
 if (is_weak_key(key))
 key = key XOR 0xF0;
 return(key);
 }

 mit_des_string_to_key(string,salt) {
 odd = 1;
 s = string | salt;
 tempstring = 0; /* 56-bit string */
 pad(s); /* with nulls to 8 byte boundary */
 for (8byteblock in s) {
 56bitstring = removeMSBits(8byteblock);
 if (odd == 0) reverse(56bitstring);
 odd = ! odd;
 tempstring = tempstring XOR 56bitstring;
 }
 tempkey = key_correction(add_parity_bits(tempstring));
 key = key_correction(DES-CBC-check(s,tempkey));
 return(key);
 }

 des_string_to_key(string,salt,params) {
 if (length(params) == 0)
 type = 0;
 else if (length(params) == 1)
 type = params[0];
 else
 error("invalid params");
 if (type == 0)
 mit_des_string_to_key(string,salt);
 else
 error("invalid params");
 }

 One common extension is to support the "AFS string-to-key" algorithm,

Raeburn [Page 21]

INTERNET DRAFT February 2004

 which is not defined here, if the type value above is one (1).

 For generation of a key from a random bitstring, we start with a
 56-bit string, and as with the string-to-key operation above, insert
 parity bits, and if the result is a weak or semi-weak key, modify it
 by exclusive-OR with the constart 0x00000000000000F0:

 des_random_to_key(bitstring) {
 return key_correction(add_parity_bits(bitstring));
 }

6.2.1. DES with MD5

 The des-cbc-md5 encryption mode encrypts information under DES in CBC
 mode with an all-zero initial vector, with an MD5 checksum (described
 in [MD5-92]) computed and placed in the checksum field.

 The encryption system parameters for des-cbc-md5 are:

 des-cbc-md5
 --
 protocol key format 8 bytes, parity in low bit of each

 specific key structure copy of original key

 required checksum rsa-md5-des
 mechanism

 key-generation seed 8 bytes
 length

 cipher state 8 bytes (CBC initial vector)

 initial cipher state all-zero

 encryption function des-cbc(confounder | checksum | msg | pad,
 ivec=oldstate)
 where
 checksum = md5(confounder | 0000...
 | msg | pad)

 newstate = last block of des-cbc output

 decryption function decrypt encrypted text and verify checksum

 newstate = last block of ciphertext

Raeburn [Page 22]

INTERNET DRAFT February 2004

 des-cbc-md5
 --
 default string-to-key empty string
 params

 pseudo-random function des-cbc(md5(input-string), ivec=0)

 key generation functions:

 string-to-key des_string_to_key

 random-to-key des_random_to_key

 key-derivation identity

 The des-cbc-md5 encryption type is assigned the etype value three
 (3).

6.2.2. DES with MD4

 The des-cbc-md4 encryption mode also encrypts information under DES
 in CBC mode, with an all-zero initial vector. An MD4 checksum
 (described in [MD4-92]) is computed and placed in the checksum field.

 des-cbc-md4
 --
 protocol key format 8 bytes, parity in low bit of each

 specific key structure copy of original key

 required checksum rsa-md4-des
 mechanism

 key-generation seed 8 bytes
 length

 cipher state 8 bytes (CBC initial vector)

 initial cipher state all-zero

 encryption function des-cbc(confounder | checksum | msg | pad,
 ivec=oldstate)
 where
 checksum = md4(confounder | 0000...
 | msg | pad)

 newstate = last block of des-cbc output

Raeburn [Page 23]

INTERNET DRAFT February 2004

 des-cbc-md4
 --

 decryption function decrypt encrypted text and verify checksum

 newstate = last block of ciphertext

 default string-to-key empty string
 params

 pseudo-random function des-cbc(md5(input-string), ivec=0)

 key generation functions:

 string-to-key des_string_to_key

 random-to-key copy input, then fix parity bits

 key-derivation identity

 Note that des-cbc-md4 uses md5, not md4, in the PRF definition.

 The des-cbc-md4 encryption algorithm is assigned the etype value two
 (2).

6.2.3. DES with CRC

 The des-cbc-crc encryption type uses DES in CBC mode with the key
 used as the initialization vector, with a 4-octet CRC-based checksum
 computed as described in section 6.1.3. Note that this is not a
 standard CRC-32 checksum, but a slightly modified one.

 des-cbc-crc
 --
 protocol key format 8 bytes, parity in low bit of each

 specific key structure copy of original key

 required checksum rsa-md5-des
 mechanism

 key-generation seed 8 bytes
 length

 cipher state 8 bytes (CBC initial vector)

Raeburn [Page 24]

INTERNET DRAFT February 2004

 des-cbc-crc
 --
 initial cipher state copy of original key

 encryption function des-cbc(confounder | checksum | msg | pad,
 ivec=oldstate)
 where
 checksum = crc(confounder | 00000000
 | msg | pad)

 newstate = last block of des-cbc output

 decryption function decrypt encrypted text and verify checksum

 newstate = last block of ciphertext

 default string-to-key empty string
 params

 pseudo-random function des-cbc(md5(input-string), ivec=0)

 key generation functions:

 string-to-key des_string_to_key

 random-to-key copy input, then fix parity bits

 key-derivation identity

 The des-cbc-crc encryption algorithm is assigned the etype value one
 (1).

6.2.4. RSA MD5 Cryptographic Checksum Using DES

 The RSA-MD5-DES checksum calculates a keyed collision-proof checksum
 by prepending an 8 octet confounder before the text, applying the RSA
 MD5 checksum algorithm, and encrypting the confounder and the
 checksum using DES in cipher-block-chaining (CBC) mode using a
 variant of the key, where the variant is computed by eXclusive-ORing
 the key with the hexadecimal constant 0xF0F0F0F0F0F0F0F0. The
 initialization vector should be zero. The resulting checksum is 24
 octets long. This checksum is tamper-proof and believed to be
 collision-proof.

Raeburn [Page 25]

INTERNET DRAFT February 2004

 rsa-md5-des
 --
 associated cryptosystem des-cbc-md5, des-cbc-md4, des-cbc-crc

 get_mic des-cbc(key XOR 0xF0F0F0F0F0F0F0F0,
 conf | rsa-md5(conf | msg))

 verify_mic decrypt and verify rsa-md5 checksum

 The rsa-md5-des checksum algorithm is assigned a checksum type number
 of eight (8).

6.2.5. RSA MD4 Cryptographic Checksum Using DES

 The RSA-MD4-DES checksum calculates a keyed collision-proof checksum
 by prepending an 8 octet confounder before the text, applying the RSA
 MD4 checksum algorithm [MD4-92], and encrypting the confounder and
 the checksum using DES in cipher-block-chaining (CBC) mode using a
 variant of the key, where the variant is computed by eXclusive-ORing
 the key with the constant 0xF0F0F0F0F0F0F0F0. [7] The initialization
 vector should be zero. The resulting checksum is 24 octets long.
 This checksum is tamper-proof and believed to be collision-proof.

 rsa-md4-des
 --
 associated cryptosystem des-cbc-md5, des-cbc-md4, des-cbc-crc

 get_mic des-cbc(key XOR 0xF0F0F0F0F0F0F0F0,
 conf | rsa-md4(conf | msg),
 ivec=0)

 verify_mic decrypt and verify rsa-md4 checksum

 The rsa-md4-des checksum algorithm is assigned a checksum type number
 of three (3).

6.2.6. RSA MD4 Cryptographic Checksum Using DES alternative

 The RSA-MD4-DES-K checksum calculates a keyed collision-proof
 checksum by applying the RSA MD4 checksum algorithm and encrypting
 the results using DES in cipher block chaining (CBC) mode using a DES
 key as both key and initialization vector. The resulting checksum is
 16 octets long. This checksum is tamper-proof and believed to be
 collision-proof. Note that this checksum type is the old method for
 encoding the RSA-MD4-DES checksum and it is no longer recommended.

Raeburn [Page 26]

INTERNET DRAFT February 2004

 rsa-md4-des-k
 --
 associated cryptosystem des-cbc-md5, des-cbc-md4, des-cbc-crc

 get_mic des-cbc(key, md4(msg), ivec=key)

 verify_mic decrypt, compute checksum and compare

 The rsa-md4-des-k checksum algorithm is assigned a checksum type
 number of six (6).

6.2.7. DES CBC checksum

 The DES-MAC checksum is computed by prepending an 8 octet confounder
 to the plaintext, padding with zero-valued octets if necessary to
 bring the length to a multiple of 8 octets, performing a DES CBC-mode
 encryption on the result using the key and an initialization vector
 of zero, taking the last block of the ciphertext, prepending the same
 confounder and encrypting the pair using DES in cipher-block-chaining
 (CBC) mode using a variant of the key, where the variant is computed
 by eXclusive-ORing the key with the constant 0xF0F0F0F0F0F0F0F0. The
 initialization vector should be zero. The resulting checksum is 128
 bits (16 octets) long, 64 bits of which are redundant. This checksum
 is tamper-proof and collision-proof.

 des-mac
 --
 associated des-cbc-md5, des-cbc-md4, des-cbc-crc
 cryptosystem

 get_mic des-cbc(key XOR 0xF0F0F0F0F0F0F0F0,
 conf | des-mac(key, conf | msg | pad, ivec=0),
 ivec=0)

 verify_mic decrypt, compute DES MAC using confounder, compare

 The des-mac checksum algorithm is assigned a checksum type number of
 four (4).

6.2.8. DES CBC checksum alternative

 The DES-MAC-K checksum is computed by performing a DES CBC-mode
 encryption of the plaintext, with zero-valued padding bytes if
 necessary to bring the length to a multiple of 8 octets, and using
 the last block of the ciphertext as the checksum value. It is keyed

Raeburn [Page 27]

INTERNET DRAFT February 2004

 with an encryption key which is also used as the initialization
 vector. The resulting checksum is 64 bits (8 octets) long. This
 checksum is tamper-proof and collision-proof. Note that this
 checksum type is the old method for encoding the DESMAC checksum and
 it is no longer recommended.

 des-mac-k
 --
 associated cryptosystem des-cbc-md5, des-cbc-md4, des-cbc-crc

 get_mic des-mac(key, msg | pad, ivec=key)

 verify_mic compute MAC and compare

 The des-mac-k checksum algorithm is assigned a checksum type number
 of five (5).

6.3. Triple-DES based encryption and checksum types

 This encryption and checksum type pair is based on the Triple DES
 cryptosystem in Outer-CBC mode, and the HMAC-SHA1 message
 authentication algorithm.

 A Triple DES key is the concatenation of three DES keys as described
 above for des-cbc-md5. A Triple DES key is generated from random
 data by creating three DES keys from separate sequences of random
 data.

 Encrypted data using this type must be generated as described in
section 5.3. If the length of the input data is not a multiple of

 the block size, zero-valued octets must be used to pad the plaintext
 to the next eight-octet boundary. The confounder must be eight
 random octets (one block).

 The simplified profile for Triple DES, with key derivation as defined
 in section 5, is as follows:

 des3-cbc-hmac-sha1-kd, hmac-sha1-des3-kd
 --
 protocol key format 24 bytes, parity in low
 bit of each

 key-generation seed 21 bytes
 length

Raeburn [Page 28]

INTERNET DRAFT February 2004

 des3-cbc-hmac-sha1-kd, hmac-sha1-des3-kd
 --
 hash function SHA-1

 HMAC output size 160 bits

 message block size 8 bytes

 default string-to-key empty string
 params

 encryption and triple-DES encrypt and
 decryption functions decrypt, in outer-CBC
 mode (cipher block size
 8 octets)

 key generation functions:

 random-to-key DES3random-to-key (see
 below)

 string-to-key DES3string-to-key (see
 below)

 The des3-cbc-hmac-sha1-kd encryption type is assigned the value
 sixteen (16). The hmac-sha1-des3-kd checksum algorithm is assigned a
 checksum type number of twelve (12).

6.3.1. Triple DES Key Production (random-to-key, string-to-key)

 The 168 bits of random key data are converted to a protocol key value
 as follows. First, the 168 bits are divided into three groups of 56
 bits, which are expanded individually into 64 bits as follows:

 DES3random-to-key:
 1 2 3 4 5 6 7 p
 9 10 11 12 13 14 15 p
 17 18 19 20 21 22 23 p
 25 26 27 28 29 30 31 p
 33 34 35 36 37 38 39 p
 41 42 43 44 45 46 47 p
 49 50 51 52 53 54 55 p
 56 48 40 32 24 16 8 p

 The "p" bits are parity bits computed over the data bits. The output
 of the three expansions, each corrected to avoid "weak" and "semi-
 weak" keys as in section 6.2, are concatenated to form the protocol
 key value.

Raeburn [Page 29]

INTERNET DRAFT February 2004

 The string-to-key function is used to transform UTF-8 passwords into
 DES3 keys. The DES3 string-to-key function relies on the "N-fold"
 algorithm and DK function, described in section 5.

 The n-fold algorithm is applied to the password string concatenated
 with a salt value. For 3-key triple DES, the operation will involve
 a 168-fold of the input password string, to generate an intermediate
 key, from which the user's long-term key will be derived with the DK
 function. The DES3 string-to-key function is shown here in
 pseudocode:

 DES3string-to-key(passwordString, salt, params)
 if (params != emptyString)
 error("invalid params");
 s = passwordString + salt
 tmpKey = random-to-key(168-fold(s))
 key = DK (tmpKey, KerberosConstant)

 Weak key checking is performed in the random-to-key and DK
 operations. The KerberosConstant value is the byte string {0x6b 0x65
 0x72 0x62 0x65 0x72 0x6f 0x73}. These values correspond to the ASCII
 encoding for the string "kerberos".

7. Use of Kerberos encryption outside this specification

 Several Kerberos-based application protocols and preauthentication
 systems have been designed and deployed that perform encryption and
 message integrity checks in various ways. While in some cases there
 may be good reason for specifying these protocols in terms of
 specific encryption or checksum algorithms, we anticipate that in
 many cases this will not be true, and more generic approaches
 independent of particular algorithms will be desirable. Rather than
 having each protocol designer reinvent schemes for protecting data,
 using multiple keys, etc, we have attempted to present in this
 section a general framework that should be sufficient not only for
 the Kerberos protocol itself but also for many preauthentication
 systems and application protocols, while trying to avoid some of the
 assumptions that can work their way into such protocol designs.

 Some problematic assumptions we've seen (and sometimes made) include:
 that a random bitstring is always valid as a key (not true for DES
 keys with parity); that the basic block encryption chaining mode
 provides no integrity checking, or can easily be separated from such
 checking (not true for many modes in development that do both
 simultaneously); that a checksum for a message always results in the
 same value (not true if a confounder is incorporated); that an
 initial vector is used (may not be true if a block cipher in CBC mode
 is not in use).

Raeburn [Page 30]

INTERNET DRAFT February 2004

 Such assumptions, while they may hold for any given set of encryption
 and checksum algorithms, may not be true of the next algorithms to be
 defined, leaving the application protocol unable to make use of those
 algorithms without updates to its specification.

 The Kerberos protocol uses only the attributes and operations
 described in sections 3 and 4. Preauthentication systems and
 application protocols making use of Kerberos are encouraged to use
 them as well. The specific key and string-to-key parameters should
 generally be treated as opaque. While the string-to-key parameters
 are manipulated as an octet string, the representation for the
 specific key structure is implementation-defined; it may not even be
 a single object.

 While we don't recommend it, some application protocols will
 undoubtedly continue to use the key data directly, even if only in
 some of the currently existing protocol specifications. An
 implementation intended to support general Kerberos applications may
 therefore need to make the key data available, as well as the
 attributes and operations described in sections 3 and 4. [8]

8. Assigned Numbers

 The following encryption type numbers are already assigned or
 reserved for use in Kerberos and related protocols.

 encryption type etype section or comment

 des-cbc-crc 1 6.2.3
 des-cbc-md4 2 6.2.2
 des-cbc-md5 3 6.2.1
 [reserved] 4
 des3-cbc-md5 5
 [reserved] 6
 des3-cbc-sha1 7
 dsaWithSHA1-CmsOID 9 (pkinit)
 md5WithRSAEncryption-CmsOID 10 (pkinit)
 sha1WithRSAEncryption-CmsOID 11 (pkinit)
 rc2CBC-EnvOID 12 (pkinit)
 rsaEncryption-EnvOID 13 (pkinit from PKCS#1 v1.5)
 rsaES-OAEP-ENV-OID 14 (pkinit from PKCS#1 v2.0)
 des-ede3-cbc-Env-OID 15 (pkinit)
 des3-cbc-sha1-kd 16 6.3
 aes128-cts-hmac-sha1-96 17 [KRB5-AES]
 aes256-cts-hmac-sha1-96 18 [KRB5-AES]
 rc4-hmac 23 (Microsoft)

Raeburn [Page 31]

INTERNET DRAFT February 2004

 rc4-hmac-exp 24 (Microsoft)
 subkey-keymaterial 65 (opaque; PacketCable)

 (The "des3-cbc-sha1" assignment is a deprecated version using no key
 derivation. It should not be confused with des3-cbc-sha1-kd.)

 Several numbers have been reserved for use in encryption systems not
 defined here. Encryption type numbers have unfortunately been
 overloaded on occasion in Kerberos-related protocols, so some of the
 reserved numbers do not and will not correspond to encryption systems
 fitting the profile presented here.

 The following checksum type numbers are assigned or reserved. As
 with encryption type numbers, some overloading of checksum numbers
 has occurred.

 Checksum type sumtype checksum section or
 value size reference
 --
 CRC32 1 4 6.1.3
 rsa-md4 2 16 6.1.2
 rsa-md4-des 3 24 6.2.5
 des-mac 4 16 6.2.7
 des-mac-k 5 8 6.2.8
 rsa-md4-des-k 6 16 6.2.6
 rsa-md5 7 16 6.1.1
 rsa-md5-des 8 24 6.2.4
 rsa-md5-des3 9 24 ??
 sha1 (unkeyed) 10 20 ??
 hmac-sha1-des3-kd 12 20 6.3
 hmac-sha1-des3 13 20 ??
 sha1 (unkeyed) 14 20 ??
 hmac-sha1-96-aes128 15 20 [KRB5-AES]
 hmac-sha1-96-aes256 16 20 [KRB5-AES]
 [reserved] 0x8003 ? [GSS-KRB5]

 Encryption and checksum type numbers are signed 32-bit values. Zero
 is invalid, and negative numbers are reserved for local use. All
 standardized values must be positive.

Raeburn [Page 32]

INTERNET DRAFT February 2004

9. Implementation Notes

 The "interface" described here is the minimal information that must
 be defined to make a cryptosystem useful within Kerberos in an
 interoperable fashion. Despite the functional notation used in some
 places, it is not an attempt to define an API for cryptographic
 functionality within Kerberos. Actual implementations providing
 clean APIs will probably find it useful to make additional
 information available, which should be possible to derive from a
 specification written to the framework given here. For example, an
 application designer may wish to determine the largest number of
 bytes that can be encrypted without overflowing a certain size output
 buffer, or conversely, the maximum number of bytes that might be
 obtained by decrypting a ciphertext message of a given size. (In
 fact, an implementation of the GSS-API Kerberos mechanism [GSS-KRB5]
 will require some of these.)

 The presence of a mechanism in this document should not be taken as
 an indication that it must be implemented for compliance with any
 specification; required mechanisms will be specified elsewhere.
 Indeed, some of the mechanisms described here for backwards
 compatibility are now considered rather weak for protecting critical
 data.

10. Security Considerations

 Recent years have brought advancements in the ability to perform
 large-scale attacks against DES, to such a degree that it is not
 considered a strong encryption mechanism any longer; triple-DES is
 generally preferred in its place, despite the poorer performance.
 See [ESP-DES] for a summary of some of the potential attacks, and
 [EFF-DES] for a detailed discussion of the implementation of
 particular attack. However, most Kerberos implementations still have
 DES as their primary interoperable encryption type.

 DES has four 'weak' keys and twelve 'semi-weak' keys, and the use of
 single-DES here avoids them. However, DES also has 48 'possibly-
 weak' keys [Schneier96] (note that the tables in many editions of the
 reference contains errors) which are not avoided.

 DES weak keys are keys with the property that E1(E1(P)) = P (where E1
 denotes encryption of a single block with key 1). DES semi-weak keys
 or "dual" keys are pairs of keys with the property that E1(P) =
 D2(P), and thus E2(E1(P)) = P. Because of the use of CBC mode and
 leading random confounder, however, these properties are unlikely to
 present a security problem.

 Many of the choices concerning when weak-key corrections are

Raeburn [Page 33]

INTERNET DRAFT February 2004

 performed relate more to compatibility with existing implementations
 than to any risk analysis.

 While checks are also done for the component DES keys in a triple-DES
 key, the nature of the weak keys is such that it is extremely
 unlikely that they will weaken the triple-DES encryption -- only
 slightly more likely than having the middle of the three sub-keys
 match one of the other two, which effectively converts the encryption
 to single-DES, which is a case we make no effort to avoid.

 The true CRC-32 checksum is not collision-proof; an attacker could
 use a probabilistic chosen-plaintext attack to generate a valid
 message even if a confounder is used [SG92]. The use of collision-
 proof checksums is of course recommended for environments where such
 attacks represent a significant threat. The "simplifications" (read:
 bugs) introduced when CRC-32 was implemented for Kerberos cause
 leading zeros to effectively be ignored, so messages differing only
 in leading zero bits will have the same checksum.

 [HMAC] and [IPSEC-HMAC] discuss weaknesses of the HMAC algorithm.
 Unlike [IPSEC-HMAC], the triple-DES specification here does not use
 the suggested truncation of the HMAC output. As pointed out in
 [IPSEC-HMAC], SHA-1 was not developed to be used as a keyed hash
 function, which is a criterion of HMAC. [HMAC-TEST] contains test
 vectors for HMAC-SHA-1.

 The mit_des_string_to_key function was originally constructed with
 the assumption that all input would be ASCII; it ignores the top bit
 of each input byte. Folding with XOR is also not an especially good
 mixing mechanism in terms of preserving randomness.

 The n-fold function used in the string-to-key operation for des3-cbc-
 hmac-sha1-kd was designed to cause each bit of input to contribute
 equally to the output; it was not designed to maximize or equally
 distribute randomness in the input, and there are conceivable cases
 of partially structured input where randomness may be lost. This
 should only be an issue for highly structured passwords, however.

 [RFC1851] discusses the relative strength of triple-DES encryption.
 The relative slow speed of triple-DES encryption may also be an issue
 for some applications.

 In [Bellovin91], there is a suggestion that analyses of encryption
 schemes should include a model of an attacker capable of submitting
 known plaintexts to be encrypted with an unknown key, as well as
 being able to perform many types of operations on known protocol
 messages. Recent experiences with the chosen-plaintext attacks on
 Kerberos version 4 bear out the value of this suggestion.

Raeburn [Page 34]

INTERNET DRAFT February 2004

 The use of unkeyed encrypted checksums, such as those used in the
 single-DES cryptosystems specified in [Kerb1510], allows for cut-and-
 paste attacks, especially if a confounder is not used. In addition,
 unkeyed encrypted checksums are vulnerable to chosen-plaintext
 attacks: an attacker with access to an encryption oracle can easily
 encrypt the required unkeyed checksum along with the chosen
 plaintext. [Bellovin99] These weaknesses, combined with a common
 implementation design choice described below, allow for a cross-
 protocol attack from version 4 to version 5.

 The use of a random confounder is an important means of preventing an
 attacker from making effective use of protocol exchanges as an
 encryption oracle. In Kerberos version 4, the encryption of constant
 plaintext to constant ciphertext makes an effective encryption oracle
 for an attacker. The use of random confounders in [Kerb1510]
 frustrates this sort of chosen-plaintext attack.

 Using the same key for multiple purposes can enable or increase the
 scope of chosen-plaintext attacks. Some software which implements
 both versions 4 and 5 of the Kerberos protocol uses the same keys for
 both versions of the protocol. This enables the encryption oracle of
 version 4 to be used to attack version 5. Vulnerabilities such as
 this cross-protocol attack reinforce the wisdom of not using a key
 for multiple purposes.

 This document, like the Kerberos protocol, completely ignores the
 notion of limiting the amount of data a key may be used with to a
 quantity based on the robustness of the algorithm or size of the key.
 It is assumed that any defined algorithms and key sizes will be
 strong enough to support very large amounts of data, or they will be
 deprecated once significant attacks are known.

 This document also places no bounds on the amount of data that can be
 handled in various operations. In order to avoid denial of service
 attacks, implementations will probably want to restrict message sizes
 at some higher level.

11. IANA Considerations

 Two registries for numeric values should be created: Kerberos
 Encryption Type Numbers and Kerberos Checksum Type Numbers. These
 are signed values ranging from -2147483648 to 2147483647. Positive
 values should be assigned only for algorithms specified in accordance
 with this specification for use with Kerberos or related protocols.
 Negative values are for private use; local and experimental
 algorithms should use these values. Zero is reserved and may not be
 assigned.

Raeburn [Page 35]

INTERNET DRAFT February 2004

 Positive encryption and checksum type numbers may be assigned
 following either of two policies described in [BCP26].

 Standards-track specifications may be assigned values under the
 Standards Action policy.

 Specifications in non-standards track RFCs may be assigned values
 after Expert Review. A non-IETF specification may be assigned values
 by publishing an Informational or standards-track RFC referencing the
 external specification; that specification must be public and
 published in some permanent record much like the IETF RFCs. It is
 highly desirable, though not required, that the full specification be
 published as an IETF RFC.

 Smaller encryption type values should be used for IETF standards-
 track mechanisms, and much higher values (16777216 and above) for
 other mechanisms. (Rationale: In the Kerberos ASN.1 encoding,
 smaller numbers encode to smaller octet sequences, so this favors
 standards-track mechanisms with slightly smaller messages.) Aside
 from that guideline, IANA may choose numbers as it sees fit.

 Internet-Draft specifications should not include values for
 encryption and checksum type numbers. Instead, they should indicate
 that values would be assigned by IANA when the document is approved
 as an RFC. For development and interoperability testing, values in
 the private-use range (negative values) may be used, but should not
 be included in the draft specification.

 Each registered value should have an associated unique name to refer
 to it by. The lists given in section 8 should be used as an initial
 registry; they include reservations for specifications in progress in
 parallel with this document, and for certain other values believed to
 be in use already.

12. Acknowledgments

 This document is an extension of the encryption specification
 included in [Kerb1510] by B. Clifford Neuman and John Kohl, and much
 of the text of the background, concepts, and DES specifications are
 drawn directly from that document.

 The abstract framework presented in this document was put together by
 Jeff Altman, Sam Hartman, Jeff Hutzelman, Cliff Neuman, Ken Raeburn,
 and Tom Yu, and the details were refined several times based on
 comments from John Brezak and others.

 Marc Horowitz wrote the original specification of triple-DES and key
 derivation in a pair of Internet Drafts (under the names draft-

Raeburn [Page 36]

INTERNET DRAFT February 2004

 horowitz-key-derivation and draft-horowitz-kerb-key-derivation) which
 were later folded into a draft revision of [Kerb1510], from which
 this document was later split off.

 Tom Yu provided the text describing the modifications to the standard
 CRC algorithm as Kerberos implementations actually use it, and some
 of the Security Considerations section.

 Miroslav Jurisic provided information for one of the UTF-8 test cases
 for the string-to-key functions.

 Marcus Watts noticed some errors in earlier drafts, and pointed out
 that the simplified profile could easily be modified to support
 cipher text stealing modes.

 Simon Josefsson contributed some clarifications to the DES "CBC
 checksum", string-to-key and weak key descriptions, and some test
 vectors.

 Simon Josefsson, Louis LeVay and others also caught some errors in
 earlier drafts.

A. Test vectors

 This section provides test vectors for various functions defined or
 described in this document. For convenience, most inputs are ASCII
 strings, though some UTF-8 samples are be provided for string-to-key
 functions. Keys and other binary data are specified as hexadecimal
 strings.

A.1. n-fold

 The n-fold function is defined in section 5.1. As noted there, the
 sample vector in the original paper defining the algorithm appears to
 be incorrect. Here are some test cases provided by Marc Horowitz and
 Simon Josefsson:

https://datatracker.ietf.org/doc/html/draft-horowitz-kerb-key-derivation

Raeburn [Page 37]

INTERNET DRAFT February 2004

 64-fold("012345") =
 64-fold(303132333435) = be072631276b1955

 56-fold("password") =
 56-fold(70617373776f7264) = 78a07b6caf85fa

 64-fold("Rough Consensus, and Running Code") =
 64-fold(526f75676820436f6e73656e7375732c20616e642052756e
 6e696e6720436f6465) = bb6ed30870b7f0e0

 168-fold("password") =
 168-fold(70617373776f7264) =
 59e4a8ca7c0385c3c37b3f6d2000247cb6e6bd5b3e

 192-fold("MASSACHVSETTS INSTITVTE OF TECHNOLOGY"
 192-fold(4d41535341434856534554545320494e5354495456544520
 4f4620544543484e4f4c4f4759) =
 db3b0d8f0b061e603282b308a50841229ad798fab9540c1b

 168-fold("Q") =
 168-fold(51) =
 518a54a2 15a8452a 518a54a2 15a8452a
 518a54a2 15

 168-fold("ba") =
 168-fold(6261) =
 fb25d531 ae897449 9f52fd92 ea9857c4
 ba24cf29 7e

 Here are some additional values corresponding to folded values of the
 string "kerberos"; the 64-bit form is used in the des3 string-to-key
 (section 6.3.1).

 64-fold("kerberos") =
 6b657262 65726f73
 128-fold("kerberos") =
 6b657262 65726f73 7b9b5b2b 93132b93
 168-fold("kerberos") =
 8372c236 344e5f15 50cd0747 e15d62ca
 7a5a3bce a4
 256-fold("kerberos") =
 6b657262 65726f73 7b9b5b2b 93132b93
 5c9bdcda d95c9899 c4cae4de e6d6cae4

 Note that the initial octets exactly match the input string when the
 output length is a multiple of the input length.

Raeburn [Page 38]

INTERNET DRAFT February 2004

A.2. mit_des_string_to_key

 The function mit_des_string_to_key is defined in section 6.2. We
 present here several test values, with some of the intermediate
 results. The fourth test demonstrates the use of UTF-8 with three
 characters. The last two tests are specifically constructed so as to
 trigger the weak-key fixups for the intermediate key produced by fan-
 folding; we have no test cases that cause such fixups for the final
 key.

 UTF-8 encodings used in test vector:
 eszett U+00DF C3 9F s-caron U+0161 C5 A1
 c-acute U+0107 C4 87 g-clef U+1011E F0 9D 84 9E

 Test vector:

 salt: "ATHENA.MIT.EDUraeburn"
 415448454e412e4d49542e4544557261656275726e
 password: "password" 70617373776f7264
 fan-fold result: c01e38688ac86c2e
 intermediate key: c11f38688ac86d2f
 DES key: cbc22fae235298e3

 salt: "WHITEHOUSE.GOVdanny"
 5748495445484f5553452e474f5664616e6e79
 password: "potatoe" 706f7461746f65
 fan-fold result: a028944ee63c0416
 intermediate key: a129944fe63d0416
 DES key: df3d32a74fd92a01

 salt: "EXAMPLE.COMpianist" 4558414D504C452E434F4D7069616E697374
 password: g-clef (U+1011E) f09d849e
 fan-fold result: 3c4a262c18fab090
 intermediate key: 3d4a262c19fbb091
 DES key: 4ffb26bab0cd9413

 salt: "ATHENA.MIT.EDUJuri" + s-caron(U+0161) + "i" + c-acute(U+0107)

415448454e412e4d49542e4544554a757269c5a169c487
 password: eszett(U+00DF)
 c39f
 fan-fold result:b8f6c40e305afc9e
 intermediate key: b9f7c40e315bfd9e
 DES key: 62c81a5232b5e69d

Raeburn [Page 39]

INTERNET DRAFT February 2004

 salt: "AAAAAAAA" 4141414141414141
 password: "11119999" 3131313139393939
 fan-fold result: e0e0e0e0f0f0f0f0
 intermediate key: e0e0e0e0f1f1f101
 DES key: 984054d0f1a73e31

 salt: "FFFFAAAA" 4646464641414141
 password: "NNNN6666" 4e4e4e4e36363636
 fan-fold result: 1e1e1e1e0e0e0e0e
 intermediate key: 1f1f1f1f0e0e0efe
 DES key: c4bf6b25adf7a4f8

 This trace provided by Simon Josefsson shows the intermediate
 processing stages of one of the test inputs:

 string_to_key (des-cbc-md5, string, salt)
 ;; string:
 ;; `password' (length 8 bytes)
 ;; 70 61 73 73 77 6f 72 64
 ;; salt:
 ;; `ATHENA.MIT.EDUraeburn' (length 21 bytes)
 ;; 41 54 48 45 4e 41 2e 4d 49 54 2e 45 44 55 72 61
 ;; 65 62 75 72 6e
 des_string_to_key (string, salt)
 ;; String:
 ;; `password' (length 8 bytes)
 ;; 70 61 73 73 77 6f 72 64
 ;; Salt:
 ;; `ATHENA.MIT.EDUraeburn' (length 21 bytes)
 ;; 41 54 48 45 4e 41 2e 4d 49 54 2e 45 44 55 72 61
 ;; 65 62 75 72 6e
 odd = 1;
 s = string | salt;
 tempstring = 0; /* 56-bit string */
 pad(s); /* with nulls to 8 byte boundary */
 ;; s = pad(string|salt):
 ;; `passwordATHENA.MIT.EDUraeburn\x00\x00\x00'
 ;; (length 32 bytes)
 ;; 70 61 73 73 77 6f 72 64 41 54 48 45 4e 41 2e 4d
 ;; 49 54 2e 45 44 55 72 61 65 62 75 72 6e 00 00 00
 for (8byteblock in s) {
 ;; loop iteration 0
 ;; 8byteblock:
 ;; `password' (length 8 bytes)
 ;; 70 61 73 73 77 6f 72 64
 ;; 01110000 01100001 01110011 01110011 01110111 01101111

Raeburn [Page 40]

INTERNET DRAFT February 2004

 ;; 01110010 01100100
 56bitstring = removeMSBits(8byteblock);
 ;; 56bitstring:
 ;; 1110000 1100001 1110011 1110011 1110111 1101111
 ;; 1110010 1100100
 if (odd == 0) reverse(56bitstring); ;; odd=1
 odd = ! odd
 tempstring = tempstring XOR 56bitstring;
 ;; tempstring
 ;; 1110000 1100001 1110011 1110011 1110111 1101111
 ;; 1110010 1100100

 for (8byteblock in s) {
 ;; loop iteration 1
 ;; 8byteblock:
 ;; `ATHENA.M' (length 8 bytes)
 ;; 41 54 48 45 4e 41 2e 4d
 ;; 01000001 01010100 01001000 01000101 01001110 01000001
 ;; 00101110 01001101
 56bitstring = removeMSBits(8byteblock);
 ;; 56bitstring:
 ;; 1000001 1010100 1001000 1000101 1001110 1000001
 ;; 0101110 1001101
 if (odd == 0) reverse(56bitstring); ;; odd=0
 reverse(56bitstring)
 ;; 56bitstring after reverse
 ;; 1011001 0111010 1000001 0111001 1010001 0001001
 ;; 0010101 1000001
 odd = ! odd
 tempstring = tempstring XOR 56bitstring;
 ;; tempstring
 ;; 0101001 1011011 0110010 1001010 0100110 1100110
 ;; 1100111 0100101

 for (8byteblock in s) {
 ;; loop iteration 2
 ;; 8byteblock:
 ;; `IT.EDUra' (length 8 bytes)
 ;; 49 54 2e 45 44 55 72 61
 ;; 01001001 01010100 00101110 01000101 01000100 01010101
 ;; 01110010 01100001
 56bitstring = removeMSBits(8byteblock);
 ;; 56bitstring:
 ;; 1001001 1010100 0101110 1000101 1000100 1010101
 ;; 1110010 1100001
 if (odd == 0) reverse(56bitstring); ;; odd=1

Raeburn [Page 41]

INTERNET DRAFT February 2004

 odd = ! odd
 tempstring = tempstring XOR 56bitstring;
 ;; tempstring
 ;; 1100000 0001111 0011100 0001111 1100010 0110011
 ;; 0010101 1000100

 for (8byteblock in s) {
 ;; loop iteration 3
 ;; 8byteblock:
 ;; `eburn\x00\x00\x00' (length 8 bytes)
 ;; 65 62 75 72 6e 00 00 00
 ;; 01100101 01100010 01110101 01110010 01101110 00000000
 ;; 00000000 00000000
 56bitstring = removeMSBits(8byteblock);
 ;; 56bitstring:
 ;; 1100101 1100010 1110101 1110010 1101110 0000000
 ;; 0000000 0000000
 if (odd == 0) reverse(56bitstring); ;; odd=0
 reverse(56bitstring)
 ;; 56bitstring after reverse
 ;; 0000000 0000000 0000000 0111011 0100111 1010111
 ;; 0100011 1010011
 odd = ! odd
 tempstring = tempstring XOR 56bitstring;
 ;; tempstring
 ;; 1100000 0001111 0011100 0110100 1000101 1100100
 ;; 0110110 0010111

 for (8byteblock in s) {
 }
 ;; for loop terminated

 tempkey = key_correction(add_parity_bits(tempstring));
 ;; tempkey
 ;; `\xc1\x1f8h\x8a\xc8m\x2f' (length 8 bytes)
 ;; c1 1f 38 68 8a c8 6d 2f
 ;; 11000001 00011111 00111000 01101000 10001010 11001000
 ;; 01101101 00101111

Raeburn [Page 42]

INTERNET DRAFT February 2004

 key = key_correction(DES-CBC-check(s,tempkey));
 ;; key
 ;; `\xcb\xc2\x2f\xae\x23R\x98\xe3' (length 8 bytes)
 ;; cb c2 2f ae 23 52 98 e3
 ;; 11001011 11000010 00101111 10101110 00100011 01010010
 ;; 10011000 11100011

 ;; string_to_key key:
 ;; `\xcb\xc2\x2f\xae\x23R\x98\xe3' (length 8 bytes)
 ;; cb c2 2f ae 23 52 98 e3

A.3. DES3 DR and DK

 These tests show the derived-random and derived-key values for the
 des3-hmac-sha1-kd encryption scheme, using the DR and DK functions
 defined in section 6.3.1. The input keys were randomly generated;
 the usage values are from this specification.

 key: dce06b1f64c857a11c3db57c51899b2cc1791008ce973b92
 usage: 0000000155
 DR: 935079d14490a75c3093c4a6e8c3b049c71e6ee705
 DK: 925179d04591a79b5d3192c4a7e9c289b049c71f6ee604cd

 key: 5e13d31c70ef765746578531cb51c15bf11ca82c97cee9f2
 usage: 00000001aa
 DR: 9f58e5a047d894101c469845d67ae3c5249ed812f2
 DK: 9e58e5a146d9942a101c469845d67a20e3c4259ed913f207

 key: 98e6fd8a04a4b6859b75a176540b9752bad3ecd610a252bc
 usage: 0000000155
 DR: 12fff90c773f956d13fc2ca0d0840349dbd39908eb
 DK: 13fef80d763e94ec6d13fd2ca1d085070249dad39808eabf

 key: 622aec25a2fe2cad7094680b7c64940280084c1a7cec92b5
 usage: 00000001aa
 DR: f8debf05b097e7dc0603686aca35d91fd9a5516a70
 DK: f8dfbf04b097e6d9dc0702686bcb3489d91fd9a4516b703e

 key: d3f8298ccb166438dcb9b93ee5a7629286a491f838f802fb
 usage: 6b65726265726f73 ("kerberos")
 DR: 2270db565d2a3d64cfbfdc5305d4f778a6de42d9da
 DK: 2370da575d2a3da864cebfdc5204d56df779a7df43d9da43

 key: c1081649ada74362e6a1459d01dfd30d67c2234c940704da
 usage: 0000000155

Raeburn [Page 43]

INTERNET DRAFT February 2004

 DR: 348056ec98fcc517171d2b4d7a9493af482d999175
 DK: 348057ec98fdc48016161c2a4c7a943e92ae492c989175f7

 key: 5d154af238f46713155719d55e2f1f790dd661f279a7917c
 usage: 00000001aa
 DR: a8818bc367dadacbe9a6c84627fb60c294b01215e5
 DK: a8808ac267dada3dcbe9a7c84626fbc761c294b01315e5c1

 key: 798562e049852f57dc8c343ba17f2ca1d97394efc8adc443
 usage: 0000000155
 DR: c813f88b3be2b2f75424ce9175fbc8483b88c8713a
 DK: c813f88a3be3b334f75425ce9175fbe3c8493b89c8703b49

 key: 26dce334b545292f2feab9a8701a89a4b99eb9942cecd016
 usage: 00000001aa
 DR: f58efc6f83f93e55e695fd252cf8fe59f7d5ba37ec
 DK: f48ffd6e83f83e7354e694fd252cf83bfe58f7d5ba37ec5d

A.4. DES3string_to_key

 These are the keys generated for some of the above input strings for
 triple-DES with key derivation as defined in section 6.3.1.

 salt: "ATHENA.MIT.EDUraeburn"
 passwd: "password"
 key: 850bb51358548cd05e86768c313e3bfef7511937dcf72c3e

 salt: "WHITEHOUSE.GOVdanny"
 passwd: "potatoe"
 key: dfcd233dd0a43204ea6dc437fb15e061b02979c1f74f377a

 salt: "EXAMPLE.COMbuckaroo"
 passwd: "penny"
 key: 6d2fcdf2d6fbbc3ddcadb5da5710a23489b0d3b69d5d9d4a

 salt: "ATHENA.MIT.EDUJuri" + s-caron(U+0161) + "i"
 + c-acute(U+0107)
 passwd: eszett(U+00DF)
 key: 16d5a40e1ce3bacb61b9dce00470324c831973a7b952feb0

 salt: "EXAMPLE.COMpianist"
 passwd: g-clef(U+1011E)
 key: 85763726585dbc1cce6ec43e1f751f07f1c4cbb098f40b19

Raeburn [Page 44]

INTERNET DRAFT February 2004

A.5. Modified CRC-32

 Below are modified-CRC32 values for various ASCII and octet strings.
 Only the printable ASCII characters are checksummed, no C-style
 trailing zero-valued octet. The 32-bit modified CRC and the sequence
 of output bytes as used in Kerberos are shown. (The octet values are
 separated here to emphasize that they are octet values and not 32-bit
 numbers, which will be the most convenient form for manipulation in
 some implementations. The bit and byte order used internally for
 such a number is irrelevant; the octet sequence generated is what is
 important.)

 mod-crc-32("foo") = 33 bc 32 73
 mod-crc-32("test0123456789") = d6 88 3e b8
 mod-crc-32("MASSACHVSETTS INSTITVTE OF TECHNOLOGY") = f7 80 41 e3
 mod-crc-32(8000) = 4b 98 83 3b
 mod-crc-32(0008) = 32 88 db 0e
 mod-crc-32(0080) = 20 83 b8 ed
 mod-crc-32(80) = 20 83 b8 ed
 mod-crc-32(80000000) = 3b b6 59 ed
 mod-crc-32(00000001) = 96 30 07 77

B. Significant Changes from RFC 1510

 The encryption and checksum mechanism profiles are new. The old
 specification defined a few operations for various mechanisms, but
 didn't outline what should be required of new mechanisms in terms of
 abstract properties, nor how to ensure that a mechanism specification
 is complete enough for interoperability between implementations. The
 new profiles do differ from the old specification in a few ways:

 Some message definitions in [Kerb1510] could be read as permitting
 the initial vector to be specified by the application; the text
 was too vague. It is specifically not permitted in this
 specification. Some encryption algorithms may not use
 initialization vectors, so relying on chosen, secret
 initialization vectors for security is unwise. Also, the
 prepended confounder in the existing algorithms is roughly
 equivalent to a per-message initialization vector that is revealed
 in encrypted form. However, carrying state across from one
 encryption to another is explicitly permitted through the opaque
 "cipher state" object.

 The use of key derivation is new.

 Several new methods are introduced, including generation of a key

https://datatracker.ietf.org/doc/html/rfc1510

Raeburn [Page 45]

INTERNET DRAFT February 2004

 in wire-protocol format from random input data.

 The means for influencing the string-to-key algorithm are laid out
 more clearly.

 Triple-DES support is new.

 The pseudo-random function is new.

 The des-cbc-crc, DES string-to-key and CRC descriptions have been
 updated to align them with existing implementations.

 [Kerb1510] had no indication what character set or encoding might be
 used for pass phrases and salts.

 In [Kerb1510], key types, encryption algorithms and checksum
 algorithms were only loosely associated, and the association was not
 well described. In this specification, key types and encryption
 algorithms have a one-to-one correspondence, and associations between
 encryption and checksum algorithms are described so that checksums
 can be computed given negotiated keys, without requiring further
 negotiation for checksum types.

Notes

 [1] While Message Authentication Code (MAC) or Message Integrity
 Check (MIC) would be more appropriate terms for many of the
 uses in this document, we continue to use the term "checksum"
 for historical reasons.

 [2] Extending CBC mode across messages would be one obvious
 example of this chaining. Another might be the use of
 counter mode, with a counter randomly initialized and
 attached to the ciphertext; a second message could continue
 incrementing the counter when chaining the cipher state, thus
 avoiding having to transmit another counter value. However,
 this chaining is only useful for uninterrupted, ordered
 sequences of messages.

 [3] In the case of Kerberos, the encrypted objects will generally
 be ASN.1 DER encodings, which contain indications of their
 length in the first few octets.

 [4] As of the time of this writing, some new modes of operation
 have been proposed, some of which may permit encryption and
 integrity protection simultaneously. After some of these
 proposals have been subjected to adequate analysis, we may
 wish to formulate a new simplified profile based on one of

Raeburn [Page 46]

INTERNET DRAFT February 2004

 them.

 [5] It should be noted that the sample vector in Appendix B.2 of
 the original paper appears to be incorrect. Two independent
 implementations from the specification (one in C by Marc
 Horowitz, and another in Scheme by Bill Sommerfeld) agree on
 a value different from that in [Blumenthal96].

 [6] For example, in MIT's implementation of [Kerb1510], the rsa-
 md5 unkeyed checksum of application data may be included in
 an authenticator encrypted in a service's key; since rsa-md5
 is believed to be collision-proof, even if the application
 data is exposed to an attacker, it cannot be modified without
 causing the checksum verification to fail.

 [7] A variant of the key is used to limit the use of a key to a
 particular function, separating the functions of generating a
 checksum from other encryption performed using the session
 key. The constant 0xF0F0F0F0F0F0F0F0 was chosen because it
 maintains key parity. The properties of DES precluded the
 use of the complement. The same constant is used for similar
 purpose in the Message Integrity Check in the Privacy
 Enhanced Mail standard.

 [8] Perhaps one of the more common reasons for directly
 performing encryption is direct control over the negotiation
 and to select a "sufficiently strong" encryption algorithm
 (whatever that means in the context of a given application).
 While Kerberos directly provides no facility for negotiating
 encryption types between the application client and server,
 there are other means for accomplishing similar goals. For
 example, requesting only "strong" session key types from the
 KDC, and assuming that the type actually returned by the KDC
 will be understood and supported by the application server.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such

https://datatracker.ietf.org/doc/html/bcp11

Raeburn [Page 47]

INTERNET DRAFT February 2004

 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Normative References

 [Bellare98]
 Bellare, M., Desai, A., Pointcheval, D., and P. Rogaway,
 "Relations Among Notions of Security for Public-Key Encryption
 Schemes". Extended abstract published in Advances in Cryptology-
 Crypto 98 Proceedings, Lecture Notes in Computer Science Vol.
 1462, H. Krawcyzk ed., Springer-Verlag, 1998.
 [Blumenthal96]
 Blumenthal, U., and S. Bellovin, "A Better Key Schedule for DES-
 Like Ciphers", Proceedings of PRAGOCRYPT '96, 1996.
 [CRC]
 International Organization for Standardization, "ISO Information
 Processing Systems - Data Communication - High-Level Data Link
 Control Procedure - Frame Structure," IS 3309, 3rd Edition,
 October 1984.
 [DES77]
 National Bureau of Standards, U.S. Department of Commerce, "Data
 Encryption Standard," Federal Information Processing Standards
 Publication 46, Washington, DC, 1977.
 [DESI81]
 National Bureau of Standards, U.S. Department of Commerce,
 "Guidelines for implementing and using NBS Data Encryption
 Standard," Federal Information Processing Standards Publication
 74, Washington, DC, 1981.
 [DESM80]
 National Bureau of Standards, U.S. Department of Commerce, "DES
 Modes of Operation," Federal Information Processing Standards
 Publication 81, Springfield, VA, December 1980.
 [Dolev91]
 Dolev, D., Dwork, C., Naor, M., "Non-malleable cryptography",
 Proceedings of the 23rd Annual Symposium on Theory of Computing,
 ACM, 1991.
 [HMAC]
 Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

https://datatracker.ietf.org/doc/html/rfc2104

Raeburn [Page 48]

INTERNET DRAFT February 2004

 [KRB5-AES]
 Raeburn, K., "AES Encyrption for Kerberos 5", RFC XXXX, Xxxxxxxx
 2003.
 [MD4-92]
 Rivest, R., "The MD4 Message Digest Algorithm," RFC 1320, MIT
 Laboratory for Computer Science, April 1992.
 [MD5-92]
 Rivest, R., "The MD5 Message Digest Algorithm," RFC 1321, MIT
 Laboratory for Computer Science, April 1992.
 [RFC2026]
 Bradner, S., "The Internet Standards Process -- Revisions 3," RFC

2026, October 1996.
 [SG92]
 Stubblebine, S., and V. D. Gligor, "On Message Integrity in
 Cryptographic Protocols," in Proceedings of the IEEE Symposium on
 Research in Security and Privacy, Oakland, California, May 1992.

Informative References

 [Bellovin91]
 Bellovin, S. M., and M. Merrit, "Limitations of the Kerberos
 Authentication System", in Proceedings of the Winter 1991 Usenix
 Security Conference, January, 1991.
 [Bellovin99]
 Bellovin, S. M., and D. Atkins, private communications, 1999.
 [EFF-DES]
 Electronic Frontier Foundation, "Cracking DES: Secrets of
 Encryption Research, Wiretap Politics, and Chip Design", O'Reilly
 & Associates, Inc., May 1998.
 [ESP-DES]
 Madson, C., and N. Doraswamy, "The ESP DES-CBC Cipher Algorithm
 With Explicit IV", RFC 2405, November 1998.
 [GSS-KRB5]
 Linn, J., "The Kerberos Version 5 GSS-API Mechanism," RFC 1964,
 June 1996.
 [HMAC-TEST]
 Cheng, P., and R. Glenn, "Test Cases for HMAC-MD5 and HMAC-SHA-1",

RFC 2202, September 1997.
 [IPSEC-HMAC]
 Madson, C., and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and
 AH", RFC 2404, November 1998.
 [Kerb]
 Neuman, C., Kohl, J., Ts'o, T., Yu, T., Hartman, S., and K.
 Raeburn, "The Kerberos Network Authentication Service (V5)",

draft-ietf-krb-wg-kerberos-clarifications-00.txt, February 22,
 2002. Work in progress.

https://datatracker.ietf.org/doc/html/rfc1320
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2405
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2202
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-00.txt

Raeburn [Page 49]

INTERNET DRAFT February 2004

 [Kerb1510]
 Kohl, J., and C. Neuman, "The Kerberos Network Authentication
 Service (V5)", RFC 1510, September 1993.
 [RC5]
 Baldwin, R, and R. Rivest, "The RC5, RC5-CBC, RC5-CBC-Pad, and
 RC5-CTS Algorithms", RFC 2040, October 1996.
 [Schneier96]
 Schneier, B., "Applied Cryptography Second Edition", John Wiley &
 Sons, New York, NY, 1996. ISBN 0-471-12845-7.

Editor's address

 Kenneth Raeburn
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139
 raeburn@mit.edu

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2040

Raeburn [Page 50]

INTERNET DRAFT February 2004

Notes to RFC Editor

 Before publication of this document as an RFC, the following changes
 are needed:

 Change the reference "[KRB5-AES]" in Normative References to indicate
 the AES draft (draft-raeburn-krb-rijndael-krb-XX) that should be
 advancing to RFC at the same time. The RFC number and publication
 date are needed.

 If draft-ietf-krb-wg-kerberos-clarifications advances to RFC at the
 same time as this document, change the information for [Kerb] in the
 Informative References section as well.

 Change the first-page headers to indicate the RFC number, network
 working group, etc, as appropriate for an RFC instead of an I-D.

 Remove the contact-info paragraph from the Abstract.

 Delete this section.

https://datatracker.ietf.org/doc/html/draft-raeburn-krb-rijndael-krb-XX
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications

Raeburn [Page 51]

