
<Network Working Group> Larry Zhu
Internet Draft Karthik Jaganathan
Updates: 1964 Microsoft
Category: Standards Track Sam Hartman
draft-ietf-krb-wg-gssapi-cfx-07.txt MIT
 March 9, 2004
 Expires: September 9, 2004

The Kerberos Version 5 GSS-API Mechanism: Version 2

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC-2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.ietf.org (US East Coast), nic.nordu.net (Europe),
 ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

 The distribution of this memo is unlimited. It is filed as
draft-ietf-krb-wg-gssapi-cfx-07.txt, and expires on September 9

 2004. Please send comments to: ietf-krb-wg@anl.gov.

Abstract

 This document defines protocols, procedures, and conventions to be
 employed by peers implementing the Generic Security Service
 Application Program Interface (GSS-API) when using the Kerberos
 Version 5 mechanism.

RFC-1964 is updated and incremental changes are proposed in response
 to recent developments such as the introduction of Kerberos
 cryptosystem framework. These changes support the inclusion of new
 cryptosystems, by defining new per-message tokens along with their
 encryption and checksum algorithms based on the cryptosystem
 profiles.

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-gssapi-cfx-07.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-gssapi-cfx-07.txt
https://datatracker.ietf.org/doc/html/rfc1964

Conventions used in this document

Zhu 1
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

 The term "little endian order" is used for brevity to refer to the
 least-significant-octet-first encoding, while the term "big endian
 order" is for the most-significant-octet-first encoding.

Table of Contents

1. Introduction ... 2
2. Key Derivation for Per-Message Tokens 3
3. Quality of Protection 4
4. Definitions and Token Formats 4
4.1. Context Establishment Tokens 4
4.1.1. Authenticator Checksum 5
4.2. Per-Message Tokens 8
4.2.1. Sequence Number .. 8
4.2.2. Flags Field .. 8
4.2.3. EC Field ... 9
4.2.4. Encryption and Checksum Operations 9
4.2.5. RRC Field .. 10
4.2.6. Message Layouts .. 10
4.3. Context Deletion Tokens 11
4.4. Token Identifier Assignment Considerations 11
5. Parameter Definitions 12
5.1. Minor Status Codes 12
5.1.1. Non-Kerberos-specific codes 12
5.1.2. Kerberos-specific-codes 12
5.2. Buffer Sizes ... 13
6. Backwards Compatibility Considerations 13
7. Security Considerations 13
8. Acknowledgments .. 14
9. Intellectual Property Statement 15
10. References .. 15
10.1. Normative References 15
10.2. Informative References 15
11. Author's Address .. 15

 Full Copyright Statement 17

1. Introduction

 [KCRYPTO] defines a generic framework for describing encryption and
 checksum types to be used with the Kerberos protocol and associated

https://datatracker.ietf.org/doc/html/rfc2119

 protocols.

 [RFC-1964] describes the GSS-API mechanism for Kerberos Version 5.
 It defines the format of context establishment, per-message and
 context deletion tokens and uses algorithm identifiers for each
 cryptosystem in per message and context deletion tokens.

 The approach taken in this document obviates the need for algorithm
 identifiers. This is accomplished by using the same encryption
 algorithm, specified by the crypto profile [KCRYPTO] for the session
 key or subkey that is created during context negotiation, and its
 required checksum algorithm. Message layouts of the per-message
Zhu 2
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 tokens are therefore revised to remove algorithm indicators and also
 to add extra information to support the generic crypto framework
 [KCRYPTO].

 Tokens transferred between GSS-API peers for security context
 establishment are also described in this document. The data
 elements exchanged between a GSS-API endpoint implementation and the
 Kerberos Key Distribution Center (KDC) [KRBCLAR] are not specific to
 GSS-API usage and are therefore defined within [KRBCLAR] rather than
 within this specification.

 The new token formats specified in this document MUST be used with
 all "newer" encryption types [KRBCLAR] and MAY be used with "older"
 encryption types, provided that the initiator and acceptor know,
 from the context establishment, that they can both process these new
 token formats.

 "Newer" encryption types are those which have been specified along
 with or since the new Kerberos cryptosystem specification [KCRYPTO],
 as defined in section 3.1.3 of [KRBCLAR]. The list of not-newer
 encryption types is as follows [KCRYPTO]:

 Encryption Type Assigned Number
 --
 des-cbc-crc 1
 des-cbc-md4 2
 des-cbc-md5 3
 des3-cbc-md5 5
 des3-cbc-sha1 7
 dsaWithSHA1-CmsOID 9
 md5WithRSAEncryption-CmsOID 10
 sha1WithRSAEncryption-CmsOID 11
 rc2CBC-EnvOID 12
 rsaEncryption-EnvOID 13
 rsaES-OAEP-ENV-OID 14
 des-ede3-cbc-Env-OID 15

 des3-cbc-sha1-kd 16
 rc4-hmac 23

2. Key Derivation for Per-Message Tokens

 To limit the exposure of a given key, [KCRYPTO] adopted "one-way"
 "entropy-preserving" derived keys, for different purposes or key
 usages, from a base key or protocol key.

 This document defines four key usage values below that are used to
 derive a specific key for signing and sealing messages, from the
 session key or subkey [KRBCLAR] created during the context
 establishment.

 Name Value

 KG-USAGE-ACCEPTOR-SEAL 22
 KG-USAGE-ACCEPTOR-SIGN 23
 KG-USAGE-INITIATOR-SEAL 24

Zhu 3
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 KG-USAGE-INITIATOR-SIGN 25

 When the sender is the context acceptor, KG-USAGE-ACCEPTOR-SIGN is
 used as the usage number in the key derivation function for deriving
 keys to be used in MIC tokens (as defined in section 4.2.6.1), and
 KG-USAGE-ACCEPTOR-SEAL is used for Wrap tokens(as defined in section

4.2.6.2); similarly when the sender is the context initiator, KG-
 USAGE-INITIATOR-SIGN is used as the usage number in the key
 derivation function for MIC tokens, KG-USAGE-INITIATOR-SEAL is used
 for Wrap Tokens. Even if the Wrap token does not provide for
 confidentiality the same usage values specified above are used.

 During the context initiation and acceptance sequence, the acceptor
 MAY assert a subkey, and if so, subsequent messages MUST use this
 subkey as the protocol key and these messages MUST be flagged as
 "AcceptorSubkey" as described in section 4.2.2.

3. Quality of Protection

 The GSS-API specification [RFC-2743] provides for Quality of
 Protection (QOP) values that can be used by applications to request
 a certain type of encryption or signing. A zero QOP value is used
 to indicate the "default" protection; applications which do not use
 the default QOP are not guaranteed to be portable across
 implementations or even inter-operate with different deployment
 configurations of the same implementation. Using an algorithm that
 is different from the one for which the key is defined may not be
 appropriate. Therefore, when the new method in this document is
 used, the QOP value is ignored.

https://datatracker.ietf.org/doc/html/rfc2743

 The encryption and checksum algorithms in per-message tokens are now
 implicitly defined by the algorithms associated with the session key
 or subkey. Algorithms identifiers as described in [RFC-1964] are
 therefore no longer needed and removed from the new token headers.

4. Definitions and Token Formats

 This section provides terms and definitions, as well as descriptions
 for tokens specific to the Kerberos Version 5 GSS-API mechanism.

4.1. Context Establishment Tokens

 All context establishment tokens emitted by the Kerberos Version 5
 GSS-API mechanism SHALL have the framing described in section 3.1 of
 [RFC-2743], as illustrated by the following pseudo-ASN.1 structures:

 GSS-API DEFINITIONS ::=

 BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- representing Kerberos V5 mechanism

 GSSAPI-Token ::=
 -- option indication (delegation, etc.) indicated within
Zhu 4
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 -- mechanism-specific token
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerToken ANY DEFINED BY thisMech
 -- contents mechanism-specific
 -- ASN.1 structure not required
 }

 END

 Where the innerToken field starts with a two-octet token-identifier
 (TOK_ID) expressed in big endian order, followed by a Kerberos
 message.

 Here are the TOK_ID values used in the context establishment tokens:

 Token TOK_ID Value in Hex

 KRB_AP_REQ 01 00
 KRB_AP_REP 02 00
 KRB_ERROR 03 00

 Where Kerberos message KRB_AP_REQUEST, KRB_AP_REPLY, and KRB_ERROR

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1

 are defined in [KRBCLAR].

 If an unknown token identifier (TOK_ID) is received in the initial
 context establishment token, the receiver MUST return
 GSS_S_CONTINUE_NEEDED major status, and the returned output token
 MUST contain a KRB_ERROR message with the error code
 KRB_AP_ERR_MSG_TYPE [KRBCLAR].

4.1.1. Authenticator Checksum

 The authenticator in the KRB_AP_REQ message MUST include the
 optional sequence number and the checksum field. The checksum field
 is used to convey service flags, channel bindings, and optional
 delegation information.

 The checksum type MUST be 0x8003. When delegation is used, a ticket-
 granting ticket will be transferred in a KRB_CRED message. This
 ticket SHOULD have its forwardable flag set. The EncryptedData
 field of the KRB_CRED message [KRBCLAR] MUST be encrypted in the
 session key of the ticket used to authenticate the context.

 The authenticator checksum field SHALL have the following format:

 Octet Name Description

 0..3 Lgth Number of octets in Bnd field; Represented
 in little-endian order; Currently contains
 hex value 10 00 00 00 (16).
 4..19 Bnd Channel binding information, as described in

section 4.1.1.2.
 20..23 Flags Four-octet context-establishment flags in
 little-endian order as described in section
Zhu 5
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 4.1.1.1.
 24..25 DlgOpt The delegation option identifier (=1) in
 little-endian order [optional]. This field
 and the next two fields are present if and
 only if GSS_C_DELEG_FLAG is set as described
 in section 4.1.1.1.
 26..27 Dlgth The length of the Deleg field in little-
 endian order [optional].
 28..(n-1) Deleg A KRB_CRED message (n = Dlgth + 28)
 [optional].
 n..last Exts Extensions [optional].

 The length of the checksum field MUST be at least 24 octets when
 GSS_C_DELEG_FLAG is not set (as described in section 4.1.1.1), and
 at least 28 octets plus Dlgth octets when GSS_C_DELEG_FLAG is set.
 When GSS_C_DELEG_FLAG is set, the DlgOpt, Dlgth and Deleg fields

 of the checksum data MUST immediately follow the Flags field. The
 optional trailing octets (namely the "Exts" field) facilitate
 future extensions to this mechanism. When delegation is not used
 but the Exts field is present, the Exts field starts at octet 24
 (DlgOpt, Dlgth and Deleg are absent).

 Initiators that do not support the extensions MUST NOT include more
 than 24 octets in the checksum field, when GSS_C_DELEG_FLAG is not
 set, or more than 28 octets plus the KRB_CRED in the Deleg field,
 when GSS_C_DELEG_FLAG is set. Acceptors that do not understand the
 extensions MUST ignore any octets past the Deleg field of the
 checksum data, when GSS_C_DELEG_FLAG is set, or past the Flags field
 of the checksum data, when GSS_C_DELEG_FLAG is not set.

4.1.1.1. Checksum Flags Field

 The checksum "Flags" field is used to convey service options or
 extension negotiation information.

 The following context establishment flags are defined in [RFC-2744].

 Flag Name Value

 GSS_C_DELEG_FLAG 1
 GSS_C_MUTUAL_FLAG 2
 GSS_C_REPLAY_FLAG 4
 GSS_C_SEQUENCE_FLAG 8
 GSS_C_CONF_FLAG 16
 GSS_C_INTEG_FLAG 32

 Context establishment flags are exposed to the calling application.
 If the calling application desires a particular service option then
 it requests that option via GSS_Init_sec_context() [RFC-2743]. If
 the corresponding return state values [RFC-2743] indicate that any
 of above optional context level services will be active on the
 context, the corresponding flag values in the table above MUST be
 set in the checksum Flags field.

Zhu 6
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 Flag values 4096..524288 (2^12, 2^13, ..., 2^19) are reserved for
 use with legacy vendor-specific extensions to this mechanism.

 All other flag values not specified herein are reserved for future
 use. Future revisions of this mechanism may use these reserved
 flags and may rely on implementations of this version to not use
 such flags in order to properly negotiate mechanism versions.
 Undefined flag values MUST be cleared by the sender, and unknown
 flags MUST be ignored by the receiver.

https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743

4.1.1.2. Channel Binding Information

 These tags are intended to be used to identify the particular
 communications channel for which the GSS-API security context
 establishment tokens are intended, thus limiting the scope within
 which an intercepted context establishment token can be reused by an
 attacker (see [RFC-2743], section 1.1.6).

 When using C language bindings, channel bindings are communicated
 to the GSS-API using the following structure [RFC-2744]:

 typedef struct gss_channel_bindings_struct {
 OM_uint32 initiator_addrtype;
 gss_buffer_desc initiator_address;
 OM_uint32 acceptor_addrtype;
 gss_buffer_desc acceptor_address;
 gss_buffer_desc application_data;
 } *gss_channel_bindings_t;

 The member fields and constants used for different address types
 are defined in [RFC-2744].

 The "Bnd" field contains the MD5 hash of channel bindings, taken
 over all non-null components of bindings, in order of declaration.
 Integer fields within channel bindings are represented in little-
 endian order for the purposes of the MD5 calculation.

 In computing the contents of the Bnd field, the following detailed
 points apply:

 (1) For purposes of MD5 hash computation, each integer field and
 input length field SHALL be formatted into four octets, using
 little endian octet ordering.

 (2) All input length fields within gss_buffer_desc elements of a
 gss_channel_bindings_struct even those which are zero-valued, SHALL
 be included in the hash calculation; the value elements of
 gss_buffer_desc elements SHALL be dereferenced, and the resulting
 data SHALL be included within the hash computation, only for the
 case of gss_buffer_desc elements having non-zero length specifiers.

 (3) If the caller passes the value GSS_C_NO_BINDINGS instead of a
 valid channel binding structure, the Bnd field SHALL be set to 16
 zero-valued octets.

Zhu 7
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 If the caller to GSS_Accept_sec_context [RFC-2743] passes in
 GSS_C_NO_CHANNEL_BINDINGS [RFC-2744] as the channel bindings then
 the acceptor MAY ignore any channel bindings supplied by the
 initiator, returning success even if the initiator did pass in

https://datatracker.ietf.org/doc/html/rfc2743#section-1.1.6
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744

 channel bindings.

 If the application supply, in the channel bindings, a buffer with a
 length field larger than 4294967295 (2^32 - 1), the implementation
 of this mechanism MAY chose to reject the channel bindings
 altogether, using major status GSS_S_BAD_BINDINGS [RFC-2743]. In
 any case, the size of channel binding data buffers that can be used
 (interoperable, without extensions) with this specification is
 limited to 4294967295 octets.

4.2. Per-Message Tokens

 Two classes of tokens are defined in this section: "MIC" tokens,
 emitted by calls to GSS_GetMIC() and consumed by calls to
 GSS_VerifyMIC(), "Wrap" tokens, emitted by calls to GSS_Wrap() and
 consumed by calls to GSS_Unwrap().

 The new per-message tokens introduced here do not include the
 generic GSS-API token framing used by the context establishment
 tokens. These new tokens are designed to be used with newer crypto
 systems that can, for example, have variable-size checksums.

4.2.1. Sequence Number

 To distinguish intentionally-repeated messages from maliciously-
 replayed ones, per-message tokens contain a sequence number field,
 which is a 64 bit integer expressed in big endian order. After
 sending a GSS_GetMIC() or GSS_Wrap() token, the sender's sequence
 numbers SHALL be incremented by one.

4.2.2. Flags Field

 The "Flags" field is a one-octet integer used to indicate a set of
 attributes for the protected message. For example, one flag is
 allocated as the direction-indicator, thus preventing an adversary
 from sending back the same message in the reverse direction and
 having it accepted.

 The meanings of bits in this field (the least significant bit is
 bit 0) are as follows:

 Bit Name Description

 0 SentByAcceptor When set, this flag indicates the sender
 is the context acceptor. When not set,
 it indicates the sender is the context
 initiator.
 1 Sealed When set in Wrap tokens, this flag
 indicates confidentiality is provided
 for. It SHALL NOT be set in MIC tokens.
 2 AcceptorSubkey A subkey asserted by the context acceptor
Zhu 8

https://datatracker.ietf.org/doc/html/rfc2743

DRAFT Kerberos Version 5 GSS-API Expires September 2004

 is used to protect the message.

 The rest of available bits are reserved for future use and MUST be
 cleared. The receiver MUST ignore unknown flags.

4.2.3. EC Field

 The "EC" (Extra Count) field is a two-octet integer field expressed
 in big endian order.

 In Wrap tokens with confidentiality, the EC field SHALL be used to
 encode the number of octets in the filler, as described in section

4.2.4.

 In Wrap tokens without confidentiality, the EC field SHALL be used
 to encode the number of octets in the trailing checksum, as
 described in section 4.2.4.

4.2.4. Encryption and Checksum Operations

 The encryption algorithms defined by the crypto profiles provide for
 integrity protection [KCRYPTO]. Therefore no separate checksum is
 needed.

 The result of decryption can be longer than the original plaintext
 [KCRYPTO] and the extra trailing octets are called "crypto-system
 residue" in this document. However, given the size of any plaintext
 data, one can always find a (possibly larger) size so that, when
 padding the to-be-encrypted text to that size, there will be no
 crypto-system residue added [KCRYPTO].

 In Wrap tokens that provide for confidentiality, the first 16 octets
 of the Wrap token (the "header", as defined in section 4.2.6), SHALL
 be appended to the plaintext data before encryption. Filler octets
 MAY be inserted between the plaintext data and the "header", and the
 values and size of the filler octets are chosen by implementations,
 such that there SHALL be no crypto-system residue present after the
 decryption. The resulting Wrap token is {"header" |
 encrypt(plaintext-data | filler | "header")}, where encrypt() is the
 encryption operation (which provides for integrity protection)
 defined in the crypto profile [KCRYPTO], and the RRC field (as
 defined in section 4.2.5) in the to-be-encrypted header contain the
 hex value 00 00.

 In Wrap tokens that do not provide for confidentiality, the checksum
 SHALL be calculated first over the to-be-signed plaintext data, and
 then the first 16 octets of the Wrap token (the "header", as defined
 in section 4.2.6). Both the EC field and the RRC field in the token
 header SHALL be filled with zeroes for the purpose of calculating
 the checksum. The resulting Wrap token is {"header" | plaintext-

 data | get_mic(plaintext-data | "header")}, where get_mic() is the
 checksum operation for the required checksum mechanism of the chosen
 encryption mechanism defined in the crypto profile [KCRYPTO].

Zhu 9
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 The parameters for the key and the cipher-state in the encrypt() and
 get_mic() operations have been omitted for brevity.

 For MIC tokens, the checksum SHALL be calculated as follows: the
 checksum operation is calculated first over the to-be-signed
 plaintext data, and then the first 16 octets of the MIC token, where
 the checksum mechanism is the required checksum mechanism of the
 chosen encryption mechanism defined in the crypto profile [KCRYPTO].

 The resulting Wrap and MIC tokens bind the data to the token header,
 including the sequence number and the direction indicator.

4.2.5. RRC Field

 The "RRC" (Right Rotation Count) field in Wrap tokens is added to
 allow the data to be encrypted in-place by existing SSPI (Security
 Service Provider Interface) [SSPI] applications that do not provide
 an additional buffer for the trailer (the cipher text after the in-
 place-encrypted data) in addition to the buffer for the header (the
 cipher text before the in-place-encrypted data). The resulting Wrap
 token in the previous section, excluding the first 16 octets of the
 token header, is rotated to the right by "RRC" octets. The net
 result is that "RRC" octets of trailing octets are moved toward the
 header. Consider the following as an example of this rotation
 operation: Assume that the RRC value is 3 and the token before the
 rotation is {"header" | aa | bb | cc | dd | ee | ff | gg | hh}, the
 token after rotation would be {"header" | ff | gg | hh | aa | bb |
 cc | dd | ee }, where {aa | bb | cc |...| hh} is used to indicate
 the octet sequence.

 The RRC field is expressed as a two-octet integer in big endian
 order.

 The rotation count value is chosen by the sender based on
 implementation details, and the receiver MUST be able to interpret
 all possible rotation count values, including rotation counts
 greater than the length of the token.

4.2.6. Message Layouts

 Per-message tokens start with a two-octet token identifier (TOK_ID)
 field, expressed in big endian order. These tokens are defined
 separately in subsequent sub-sections.

4.2.6.1. MIC Tokens

 Use of the GSS_GetMIC() call yields a token (referred as the MIC
 token in this document), separate from the user
 data being protected, which can be used to verify the integrity of
 that data as received. The token has the following format:

 Octet no Name Description

 0..1 TOK_ID Identification field. Tokens emitted by
 GSS_GetMIC() contain the hex value 04 04
Zhu 10
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 expressed in big endian order in this field.
 2 Flags Attributes field, as described in section

4.2.2.
 3..7 Filler Contains five octets of hex value FF.
 8..15 SND_SEQ Sequence number field in clear text,
 expressed in big endian order.
 16..last SGN_CKSUM Checksum of the "to-be-signed" data and
 octet 0..15, as described in section 4.2.4.

 The Filler field is included in the checksum calculation for
 simplicity.

4.2.6.2. Wrap Tokens

 Use of the GSS_Wrap() call yields a token (referred as the Wrap
 token in this document), which consists of a descriptive header,
 followed by a body portion that contains either the input user data
 in plaintext concatenated with the checksum, or the input user data
 encrypted. The GSS_Wrap() token SHALL have the following format:

 Octet no Name Description

 0..1 TOK_ID Identification field. Tokens emitted by
 GSS_Wrap() contain the the hex value 05 04
 expressed in big endian order in this field.
 2 Flags Attributes field, as described in section

4.2.2.
 3 Filler Contains the hex value FF.
 4..5 EC Contains the "extra count" field, in big
 endian order as described in section 4.2.3.
 6..7 RRC Contains the "right rotation count" in big
 endian order, as described in section 4.2.5.
 8..15 SND_SEQ Sequence number field in clear text,
 expressed in big endian order.
 16..last Data Encrypted data for Wrap tokens with
 confidentiality, or plaintext data followed
 by the checksum for Wrap tokens without

 confidentiality, as described in section
4.2.4.

4.3. Context Deletion Tokens

 Context deletion tokens are empty in this mechanism. Both peers to
 a security context invoke GSS_Delete_sec_context() [RFC-2743]
 independently, passing a null output_context_token buffer to
 indicate that no context_token is required. Implementations of
 GSS_Delete_sec_context() should delete relevant locally-stored
 context information.

4.4. Token Identifier Assignment Considerations

 Token identifiers (TOK_ID) from 0x60 0x00 through 0x60 0xFF
 inclusive are reserved and SHALL NOT be assigned. Thus by examining
 the first two octets of a token, one can tell unambiguously if it is
 wrapped with the generic GSS-API token framing.
Zhu 11
DRAFT Kerberos Version 5 GSS-API Expires September 2004

5. Parameter Definitions

 This section defines parameter values used by the Kerberos V5 GSS-
 API mechanism. It defines interface elements in support of
 portability, and assumes use of C language bindings per [RFC-2744].

5.1. Minor Status Codes

 This section recommends common symbolic names for minor_status
 values to be returned by the Kerberos V5 GSS-API mechanism. Use of
 these definitions will enable independent implementers to enhance
 application portability across different implementations of the
 mechanism defined in this specification. (In all cases,
 implementations of GSS_Display_status() will enable callers to
 convert minor_status indicators to text representations.) Each
 implementation should make available, through include files or other
 means, a facility to translate these symbolic names into the
 concrete values which a particular GSS-API implementation uses to
 represent the minor_status values specified in this section.

 It is recognized that this list may grow over time, and that the
 need for additional minor_status codes specific to particular
 implementations may arise. It is recommended, however, that
 implementations should return a minor_status value as defined on a
 mechanism-wide basis within this section when that code is
 accurately representative of reportable status rather than using a
 separate, implementation-defined code.

5.1.1. Non-Kerberos-specific codes

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744

 GSS_KRB5_S_G_BAD_SERVICE_NAME
 /* "No @ in SERVICE-NAME name string" */
 GSS_KRB5_S_G_BAD_STRING_UID
 /* "STRING-UID-NAME contains nondigits" */
 GSS_KRB5_S_G_NOUSER
 /* "UID does not resolve to username" */
 GSS_KRB5_S_G_VALIDATE_FAILED
 /* "Validation error" */
 GSS_KRB5_S_G_BUFFER_ALLOC
 /* "Couldn't allocate gss_buffer_t data" */
 GSS_KRB5_S_G_BAD_MSG_CTX
 /* "Message context invalid" */
 GSS_KRB5_S_G_WRONG_SIZE
 /* "Buffer is the wrong size" */
 GSS_KRB5_S_G_BAD_USAGE
 /* "Credential usage type is unknown" */
 GSS_KRB5_S_G_UNKNOWN_QOP
 /* "Unknown quality of protection specified" */

5.1.2. Kerberos-specific-codes

 GSS_KRB5_S_KG_CCACHE_NOMATCH
 /* "Client principal in credentials does not match
 specified name" */
Zhu 12
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 GSS_KRB5_S_KG_KEYTAB_NOMATCH
 /* "No key available for specified service principal" */
 GSS_KRB5_S_KG_TGT_MISSING
 /* "No Kerberos ticket-granting ticket available" */
 GSS_KRB5_S_KG_NO_SUBKEY
 /* "Authenticator has no subkey" */
 GSS_KRB5_S_KG_CONTEXT_ESTABLISHED
 /* "Context is already fully established" */
 GSS_KRB5_S_KG_BAD_SIGN_TYPE
 /* "Unknown signature type in token" */
 GSS_KRB5_S_KG_BAD_LENGTH
 /* "Invalid field length in token" */
 GSS_KRB5_S_KG_CTX_INCOMPLETE
 /* "Attempt to use incomplete security context" */

5.2. Buffer Sizes

 All implementations of this specification MUST be capable of
 accepting buffers of at least 16K octets as input to GSS_GetMIC(),
 GSS_VerifyMIC(), and GSS_Wrap(), and MUST be capable of accepting
 the output_token generated by GSS_Wrap() for a 16K octet input
 buffer as input to GSS_Unwrap(). Implementations SHOULD support 64K
 octet input buffers, and MAY support even larger input buffer sizes.

6. Backwards Compatibility Considerations

 The new token formats defined in this document will only be
 recognized by new implementations. To address this, implementations
 can always use the explicit sign or seal algorithm in [RFC-1964]
 when the key type corresponds to "older" enctypes. An alternative
 approach might be to retry sending the message with the sign or seal
 algorithm explicitly defined as in [RFC-1964]. However this would
 require either the use of a mechanism such as [RFC-2478] to securely
 negotiate the method or the use out of band mechanism to choose
 appropriate mechanism. For this reason, it is RECOMMENDED that the
 new token formats defined in this document SHOULD be used only if
 both peers are known to support the new mechanism during context
 negotiation because of, for example, the use of "new" enctypes.

 GSS_Unwrap() or GSS_VerifyMIC() can process a message token as
 follows: it can look at the first octet of the token header, if it
 is 0x60 then the token must carry the generic GSS-API pseudo ASN.1
 framing, otherwise the first two octets of the token contain the
 TOK_ID that uniquely identify the token message format.

7. Security Considerations

 Channel bindings are validated by the acceptor. The acceptor can
 ignore the channel bindings restriction supplied by the initiator
 and carried in the authenticator checksum, if channel bindings are
 not used by GSS_Accept_sec_context [RFC-2743], and the acceptor does
 not prove to the initiator that it has the same channel bindings as
 the initiator, even if the client requested mutual authentication.
 This limitation should be taken into consideration by designers of
 applications that would use channel bindings, whether to limit the
Zhu 13
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 use of GSS-API contexts to nodes with specific network addresses, to
 authenticate other established, secure channels using Kerberos
 Version 5, or for any other purpose.

 Session key types are selected by the KDC. Under the current
 mechanism, no negotiation of algorithm types occurs, so server-side
 (acceptor) implementations cannot request that clients not use
 algorithm types not understood by the server. However,
 administrators can control what enctypes can be used for session
 keys for this mechanism by controlling the set of the ticket session
 key enctypes which the KDC is willing to use in tickets for a given
 acceptor principal. The KDC could therefore be given the task of
 limiting session keys for a given service to types actually
 supported by the Kerberos and GSSAPI software on the server. This
 does have a drawback for cases where a service principal name is
 used both for GSSAPI-based and non-GSSAPI-based communication (most
 notably the "host" service key), if the GSSAPI implementation does

https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2478
https://datatracker.ietf.org/doc/html/rfc2743

 not understand (for example) AES [AES-KRB5] but the Kerberos
 implementation does. It means that AES session keys cannot be
 issued for that service principal, which keeps the protection of
 non-GSSAPI services weaker than necessary. KDC administrators
 desiring to limit the session key types to support interoperability
 with such GSSAPI implementations should carefully weigh the
 reduction in protection offered by such mechanisms against the
 benefits of interoperability.

8. Acknowledgments

 Ken Raeburn and Nicolas Williams corrected many of our errors in the
 use of generic profiles and were instrumental in the creation of
 this document.

 The text for security considerations was contributed by Nicolas
 Williams and Ken Raeburn.

 Sam Hartman and Ken Raeburn suggested the "floating trailer" idea,
 namely the encoding of the RRC field.

 Sam Hartman and Nicolas Williams recommended the replacing our
 earlier key derivation function for directional keys with different
 key usage numbers for each direction as well as retaining the
 directional bit for maximum compatibility.

 Paul Leach provided numerous suggestions and comments.

 Scott Field, Richard Ward, Dan Simon, Kevin Damour, and Simon
 Josefsson also provided valuable inputs on this document.

 Jeffrey Hutzelman provided comments and clarifications for the text
 related to the channel bindings.

 Jeffrey Hutzelman and Russ Housley suggested many editorial changes.

Zhu 14
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 Luke Howard provided implementations of this document for the
 Heimdal code base, and helped inter-operability testing with the
 Microsoft code base, together with Love Hornquist Astrand. These
 experiments formed the basis of this document.

 Martin Rex provided suggestions of TOK_ID assignment recommendations
 thus the token tagging in this document is unambiguous if the token
 is wrapped with the pseudo ASN.1 header.

 John Linn wrote the original Kerberos Version 5 mechanism
 specification [RFC-1964], of which some of the text has been retained

https://datatracker.ietf.org/doc/html/rfc1964

 in this document.

9. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances
 of licenses to be made available, or the result of an attempt made
 to obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification
 can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

10. References

10.1. Normative References

 [RFC-2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC-2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC-2744] Wray, J., "Generic Security Service API Version 2: C-
 bindings", RFC 2744, January 2000.

 [RFC-1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
RFC 1964, June 1996.

Zhu 15
DRAFT Kerberos Version 5 GSS-API Expires September 2004

 [KCRYPTO] RFC-Editor: To be replaced by RFC number for draft-ietf-
krb-wg-crypto. Work in Progress.

 [KRBCLAR] RFC-Editor: To be replaced by RFC number for draft-ietf-
krb-wg-kerberos-clarifications. Work in Progress.

https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-crypto
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-crypto
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications

10.2. Informative References

 [SSPI] Leach, P., "Security Service Provider Interface", Microsoft
 Developer Network (MSDN), April 2003.

 [AES-KRB5] RFC-Editor: To be replaced by RFC number for draft-
raeburn-krb-rijndael-krb. Work in Progress.

 [RFC-2478] Baize, E., Pinkas D., "The Simple and Protected GSS-API
 Negotiation Mechanism", RFC 2478, December 1998.

11. Author's Address

 Larry Zhu
 One Microsoft Way
 Redmond, WA 98052 - USA
 EMail: LZhu@microsoft.com

 Karthik Jaganathan
 One Microsoft Way
 Redmond, WA 98052 - USA
 EMail: karthikj@microsoft.com

 Sam Hartman
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139 - USA
 Email: hartmans@MIT.EDU

Zhu 16
DRAFT Kerberos Version 5 GSS-API Expires September 2004

Full Copyright Statement

https://datatracker.ietf.org/doc/html/draft-raeburn-krb-rijndael-krb
https://datatracker.ietf.org/doc/html/draft-raeburn-krb-rijndael-krb
https://datatracker.ietf.org/doc/html/rfc2478

 Copyright (C) The Internet Society (date). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Zhu 17

