
INTERNET-DRAFT Jeffrey Altman
<draft-ietf-krb-wg-info-ascii-gen-string-00.txt> Columbia University
November 13, 2001
Expires: May 13, 2002

Informational: Kerberos GeneralString to be Interpreted as ASCII Only

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited. It is filed as
draft-ietf-kerberos-info-ascii-gen-string-00.txt, and expires on

 May 13, 2001. Please send comments to the Kerberos Working Group
 mailing list.

Abstract:

 To ensure future interoperability between existing deployments
 of Kerberos 5 (RFC 1510) and future standards efforts the
 Kerberos Working Group strongly recommends that users of Kerberos 5
 implementations SHOULD NOT deploy Kerberos principal or service
 names that utilize characters not included in the 94 printable
 characters specified in the International Reference Version of
 ISO-646/ECMA-6 (aka U.S. ASCII).

Background:

 The original specification of the Kerberos protocol in RFC 1510 uses
 GeneralString in numerous places for human-readable string data.
 Historical implementations of Kerberos cannot utilize the full power
 of GeneralString. This ASN.1 type requires the use of designation

https://datatracker.ietf.org/doc/pdf/draft-ietf-krb-wg-info-ascii-gen-string-00.txt
https://datatracker.ietf.org/doc/pdf/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/pdf/draft-ietf-kerberos-info-ascii-gen-string-00.txt
https://datatracker.ietf.org/doc/pdf/rfc1510
https://datatracker.ietf.org/doc/pdf/rfc1510

 and invocation escape sequences as specified in ISO-2022/ECMA-35 to
 switch character sets, and the default character set that is designated
 for G0 is the ISO-646/ECMA-6 International Reference Version (IRV) (aka
 U.S. ASCII), which mostly works.

 ISO-2022/ECMA-35 defines four character-set code elements (G0..G3) and
 two Control-function code elements (C0..C1). DER prohibits the
 invocation of character sets into any but the G0 and C0 sets.
 Unfortunately, this seems to have the side effect of prohibiting the
 use of ISO-8859 (ISO Latin) character-sets or any other character-sets
 that utilize a 96-character set, since it is prohibited by ISO-2022/
 ECMA-35 to invoke them into the G0 code element.

 In practice, many implementations treat GeneralStrings as if they were
 8-bit strings of whichever character set the implementation
 defaults to, without regard for correct usage of character-set
 designation escape sequences. The default character set is often
 determined by the current user's operating system dependent locale.
 At least one major implementation places unescaped UTF-8 encoded
 Unicode characters in the GeneralString. This failure to adhere to
 the GeneralString specifications results in interoperability issues
 when conflicting character encodings are utilized by the Kerberos
 clients, services, and KDC.

 This unfortunate situation is the result of improper documentation
 of the restrictions of the ASN.1 GeneralString type in prior
 Kerberos specifications.

Transitioning to the use of UTF-8:

 For various reasons, a transition to the use of UTF-8 encoding is
 desirable. First, there is a mandate from the IESG to support
 international character sets generally, and UTF-8 specifically.
 Also, the fact that there are existing installations violating the
 ISO-646/ECMA-6 restrictions and accepting the resulting pain indicates
 that there is a clear need to support alternate character sets in
 princpal names and passwords. As I8N support is deployed in DNS
 there will be a need to represent Unicode service names.

 At the same time, backward compatibility with the existing installed
 base is crucial. Few site administrators have the luxury of declaring a
 flash cut-over of all users, applications, servers, etc to an incompatible
 protocol -- many have non-local users over whom they have little or no
 control. To this end, it is important for new implementations to be able
 to tell whether a particular non-US-ASCII string was encoded as UTF-8 by a
 new implementation, or as something else by an old implementation. In the
 latter case, it is of course impossible to know what the "something else"
 is without being told in advance.

 There have been three proposals for how the fields currently encoded
 as GeneralStrings should be interpreted in order to accomplish such

 a transition:

 (1) Lie. Start using UTF-8, but continue to encode all of these
 fields as GeneralStrings. To my knowledge, this is what Microsoft
 is doing today. This approach is attractive because it requires
 no changes to the message format specification and provides 100%
 compatibility with deployments that adhere to the ISO-646/ECMA-6
 standards. However, it has several key problems. First, it does
 not allow a new implementation to tell whether a particular string
 was encoded as UTF-8 by a post-RFC-1510 implementation or as some
 8-bit local character set by an older implementation. Second,
 there are potential problems with encoding arbitrary 8-bit strings,
 particularly for those who are using off-the-shelf ASN.1 compilers.
 Finally, violating the ASN.1 specification in this manner would be
 unpopular with the ITU which is a serious issue.

 (2) Don't lie. Start using UTF-8 encoded in GeneralStrings with
 ISO-2022/ECMA-35 compatible escape sequences. While this has the
 appearance of following the ASN.1 specification for GeneralString,
 it has the problem that UTF-8 cannot be legally encoded due to the
 restriction that only G0 compatible character-set can be specified.
 This creates problems for implementors using off-the-shelf ASN.1
 compilers as well as political issues with the ITU.

 (3) Don't use GeneralString. In all the places where we currently
 use GeneralString, begin using a new "KerberosString" type instead.
 This type would be defined as an ASN.1 choice, with GeneralString
 and some form of UTF-8 strings as alternatives. The selection of
 which alternative to use would be based on whether one was talking
 to an old implementation or a new one. This approach does involve
 changing the message format _specifications_, but as long as the
 GeneralString choice is used, the actual ASN.1 DER encoding does
 not change. There is a transition issue in that replacing a type
 with a choice containing that type is not always a legitimate thing
 to do, but as long as DER are used (which is always the case in
 Kerberos 5), it does work correctly.

 The new KerberosString could be implemented as one of:

 KerberosString ::= CHOICE {
 general GeneralString (VisibleString),
 utf8 UTF8String
 }

 or as

 KerberosString ::= CHOICE {
 general GeneralString (VisibleString),
 ...
 }

 In both cases, most (if not all) occurrences of GeneralString
 would be replaced with the new KerberosString.

 It is the belief of the Kerberos Working group that regardless of the
 final decision that is reached on how to transition to the use of UTF-8
 those implementors and deployments which have restricted their use of
 character-sets to the ISO-646/ECMA-6 IRV will have significantly fewer
 difficulties making the transition. This is because the IRV is a proper
 subset of the UTF-8 encoding.

Security Considerations:

 Interoperability conflicts can result in denial of service for clients
 that utilize character-sets in Kerberos strings other than those stored
 in the KDC database.

References:

 RFC-1510 The Kerberos Network Authentication Service (V5)
 ISO-646/ECMA-6 7-bit Coded Character Set
 ISO-1022/ECMA-35 Character Code Structure and Extension Techniques
 ISO-4873/ECMA-43 8-bit Coded Character Set Structure and Rules
 RFC-2279 UTF-8, a transformation format of ISO-10646

Acknowledgements:

 This document while edited by Jeffrey Altman <jaltman@columbia.edu>
 (Columbia University) was directly derived from e-mail discussions
 with Jeffrey T. Hutzelman <jhutz+@cmu.edu> (CMU) and Tom Yu <tlyu@mit.edu>
 (MIT).

https://datatracker.ietf.org/doc/pdf/rfc1510
https://datatracker.ietf.org/doc/pdf/rfc2279

