
INTERNET-DRAFT Clifford Neuman
Obsoletes: 1510 USC-ISI
 Tom Yu
 Sam Hartman
 Ken Raeburn
 MIT
 September 7, 2004
 Expires 7 March, 2005

The Kerberos Network Authentication Service (V5)
draft-ietf-krb-wg-kerberos-clarifications-07.txt

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.ietf.org (US East Coast), nic.nordu.net (Europe),
 ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

 The distribution of this memo is unlimited. It is filed as draft-
ietf-krb-wg-kerberos-clarifications-07.txt, and expires 7 March

 2005. Please send comments to: ietf-krb-wg@anl.gov

ABSTRACT

 This document provides an overview and specification of Version 5 of
 the Kerberos protocol, and obsoletes RFC1510 to clarify aspects of
 the protocol and its intended use that require more detailed or
 clearer explanation than was provided in RFC1510. This document is
 intended to provide a detailed description of the protocol, suitable
 for implementation, together with descriptions of the appropriate use
 of protocol messages and fields within those messages.

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 1]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

OVERVIEW

 This document describes the concepts and model upon which the
 Kerberos network authentication system is based. It also specifies
 Version 5 of the Kerberos protocol. The motivations, goals,
 assumptions, and rationale behind most design decisions are treated
 cursorily; they are more fully described in a paper available in IEEE
 communications [NT94] and earlier in the Kerberos portion of the
 Athena Technical Plan [MNSS87].

 This document is not intended to describe Kerberos to the end user,
 system administrator, or application developer. Higher level papers
 describing Version 5 of the Kerberos system [NT94] and documenting
 version 4 [SNS88], are available elsewhere.

BACKGROUND

 The Kerberos model is based in part on Needham and Schroeder's
 trusted third-party authentication protocol [NS78] and on
 modifications suggested by Denning and Sacco [DS81]. The original
 design and implementation of Kerberos Versions 1 through 4 was the
 work of two former Project Athena staff members, Steve Miller of
 Digital Equipment Corporation and Clifford Neuman (now at the
 Information Sciences Institute of the University of Southern
 California), along with Jerome Saltzer, Technical Director of Project
 Athena, and Jeffrey Schiller, MIT Campus Network Manager. Many other
 members of Project Athena have also contributed to the work on
 Kerberos.

 Version 5 of the Kerberos protocol (described in this document) has
 evolved from Version 4 based on new requirements and desires for
 features not available in Version 4. The design of Version 5 of the
 Kerberos protocol was led by Clifford Neuman and John Kohl with much
 input from the community. The development of the MIT reference
 implementation was led at MIT by John Kohl and Theodore Ts'o, with
 help and contributed code from many others. Since RFC1510 was issued,
 extensions and revisions to the protocol have been proposed by many
 individuals. Some of these proposals are reflected in this document.
 Where such changes involved significant effort, the document cites
 the contribution of the proposer.

 Reference implementations of both version 4 and version 5 of Kerberos
 are publicly available and commercial implementations have been
 developed and are widely used. Details on the differences between
 Kerberos Versions 4 and 5 can be found in [KNT94].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

 document are to be interpreted as described in RFC 2119.

September 2004 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119

 Table of Contents

1. Introduction . 6
1.1. Cross-realm operation . 8
1.2. Choosing a principal with which to communicate 9
1.3. Authorization . 10
1.4. Extending Kerberos Without Breaking Interoperability 11
1.4.1. Compatibility with RFC 1510 11
1.4.2. Sending Extensible Messages 12
1.5. Environmental assumptions 12
1.6. Glossary of terms . 13
2. Ticket flag uses and requests 16
2.1. Initial, pre-authenticated, and hardware authenticated
 tickets . 16
2.2. Invalid tickets . 17
2.3. Renewable tickets . 17
2.4. Postdated tickets . 18
2.5. Proxiable and proxy tickets 19
2.6. Forwardable tickets . 19
2.7. Transited Policy Checking 20
2.8. OK as Delegate . 21
2.9. Other KDC options . 21
2.9.1. Renewable-OK . 21
2.9.2. ENC-TKT-IN-SKEY . 22
2.9.3. Passwordless Hardware Authentication 22
3. Message Exchanges . 22
3.1. The Authentication Service Exchange 22
3.1.1. Generation of KRB_AS_REQ message 24
3.1.2. Receipt of KRB_AS_REQ message 24
3.1.3. Generation of KRB_AS_REP message 24
3.1.4. Generation of KRB_ERROR message 27
3.1.5. Receipt of KRB_AS_REP message 27
3.1.6. Receipt of KRB_ERROR message 28
3.2. The Client/Server Authentication Exchange 29
3.2.1. The KRB_AP_REQ message 29
3.2.2. Generation of a KRB_AP_REQ message 29
3.2.3. Receipt of KRB_AP_REQ message 30
3.2.4. Generation of a KRB_AP_REP message 32
3.2.5. Receipt of KRB_AP_REP message 33
3.2.6. Using the encryption key 33
3.3. The Ticket-Granting Service (TGS) Exchange 34
3.3.1. Generation of KRB_TGS_REQ message 35
3.3.2. Receipt of KRB_TGS_REQ message 37
3.3.3. Generation of KRB_TGS_REP message 38
3.3.3.1. Checking for revoked tickets 40
3.3.3.2. Encoding the transited field 40
3.3.4. Receipt of KRB_TGS_REP message 42

https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 3]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

3.4. The KRB_SAFE Exchange . 42
3.4.1. Generation of a KRB_SAFE message 42
3.4.2. Receipt of KRB_SAFE message 43
3.5. The KRB_PRIV Exchange . 44
3.5.1. Generation of a KRB_PRIV message 44
3.5.2. Receipt of KRB_PRIV message 44
3.6. The KRB_CRED Exchange . 45
3.6.1. Generation of a KRB_CRED message 45
3.6.2. Receipt of KRB_CRED message 46
3.7. User-to-User Authentication Exchanges 47
4. Encryption and Checksum Specifications 48
5. Message Specifications . 50
5.1. Specific Compatibility Notes on ASN.1 51
5.1.1. ASN.1 Distinguished Encoding Rules 51
5.1.2. Optional Integer Fields 51
5.1.3. Empty SEQUENCE OF Types 52
5.1.4. Unrecognized Tag Numbers 52
5.1.5. Tag Numbers Greater Than 30 52
5.2. Basic Kerberos Types . 52
5.2.1. KerberosString . 53
5.2.2. Realm and PrincipalName 54
5.2.3. KerberosTime . 55
5.2.4. Constrained Integer types 55
5.2.5. HostAddress and HostAddresses 56
5.2.6. AuthorizationData . 56
5.2.6.1. IF-RELEVANT . 58
5.2.6.2. KDCIssued . 58
5.2.6.3. AND-OR . 59
5.2.6.4. MANDATORY-FOR-KDC . 59
5.2.7. PA-DATA . 60
5.2.7.1. PA-TGS-REQ . 61
5.2.7.2. Encrypted Timestamp Pre-authentication 61
5.2.7.3. PA-PW-SALT . 61
5.2.7.4. PA-ETYPE-INFO . 62
5.2.7.5. PA-ETYPE-INFO2 . 62
5.2.8. KerberosFlags . 63
5.2.9. Cryptosystem-related Types 64
5.3. Tickets . 66
5.4. Specifications for the AS and TGS exchanges 73
5.4.1. KRB_KDC_REQ definition 73
5.4.2. KRB_KDC_REP definition 81
5.5. Client/Server (CS) message specifications 84
5.5.1. KRB_AP_REQ definition . 84
5.5.2. KRB_AP_REP definition . 87
5.5.3. Error message reply . 88
5.6. KRB_SAFE message specification 89
5.6.1. KRB_SAFE definition . 89
5.7. KRB_PRIV message specification 90

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 4]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

5.7.1. KRB_PRIV definition . 91
5.8. KRB_CRED message specification 91
5.8.1. KRB_CRED definition . 91
5.9. Error message specification 94
5.9.1. KRB_ERROR definition . 94
5.10. Application Tag Numbers 96
6. Naming Constraints . 97
6.1. Realm Names . 97
6.2. Principal Names . 98
6.2.1. Name of server principals 100
7. Constants and other defined values 100
7.1. Host address types . 100
7.2. KDC messaging - IP Transports 102
7.2.1. UDP/IP transport . 102
7.2.2. TCP/IP transport . 102
7.2.3. KDC Discovery on IP Networks 103
7.2.3.1. DNS vs. Kerberos - Case Sensitivity of Realm Names 104
7.2.3.2. Specifying KDC Location information with DNS SRV
 records . 104
7.2.3.3. KDC Discovery for Domain Style Realm Names on IP
 Networks . 105
7.3. Name of the TGS . 105
7.4. OID arc for KerberosV5 . 105
7.5. Protocol constants and associated values 105
7.5.1. Key usage numbers . 106
7.5.2. PreAuthentication Data Types 107
7.5.3. Address Types . 108
7.5.4. Authorization Data Types 108
7.5.5. Transited Encoding Types 108
7.5.6. Protocol Version Number 109
7.5.7. Kerberos Message Types 109
7.5.8. Name Types . 109
7.5.9. Error Codes . 109
8. Interoperability requirements 111
8.1. Specification 2 . 111
8.2. Recommended KDC values . 114
9. IANA considerations . 114
10. Security Considerations . 115
11. Author's Addresses . 119
12. Acknowledgements . 120
13. REFERENCES . 120
13.1 NORMATIVE REFERENCES . 120
13.2 INFORMATIVE REFERENCES . 122
14. Copyright Statement . 123
15. Intellectual Property . 123
A. ASN.1 module . 124
B. Changes since RFC-1510 . 132
END NOTES . 135

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 5]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

1. Introduction

 Kerberos provides a means of verifying the identities of principals,
 (e.g. a workstation user or a network server) on an open
 (unprotected) network. This is accomplished without relying on
 assertions by the host operating system, without basing trust on host
 addresses, without requiring physical security of all the hosts on
 the network, and under the assumption that packets traveling along
 the network can be read, modified, and inserted at will. Kerberos
 performs authentication under these conditions as a trusted third-
 party authentication service by using conventional (shared secret
 key) cryptography. Extensions to Kerberos (outside the scope of this
 document) can provide for the use of public key cryptography during
 certain phases of the authentication protocol [@RFCE: if PKINIT
 advances concurrently include reference to the RFC here]. Such
 extensions support Kerberos authentication for users registered with
 public key certification authorities and provide certain benefits of
 public key cryptography in situations where they are needed.

 The basic Kerberos authentication process proceeds as follows: A
 client sends a request to the authentication server (AS) requesting
 "credentials" for a given server. The AS responds with these
 credentials, encrypted in the client's key. The credentials consist
 of a "ticket" for the server and a temporary encryption key (often
 called a "session key"). The client transmits the ticket (which
 contains the client's identity and a copy of the session key, all
 encrypted in the server's key) to the server. The session key (now
 shared by the client and server) is used to authenticate the client,
 and may optionally be used to authenticate the server. It may also be
 used to encrypt further communication between the two parties or to
 exchange a separate sub-session key to be used to encrypt further
 communication. Note that many applications use Kerberos' functions
 only upon the initiation of a stream-based network connection. Unless
 an application performs encryption or integrity protection for the
 data stream, the identity verification applies only to the initiation
 of the connection, and does not guarantee that subsequent messages on
 the connection originate from the same principal.

 Implementation of the basic protocol consists of one or more
 authentication servers running on physically secure hosts. The
 authentication servers maintain a database of principals (i.e., users
 and servers) and their secret keys. Code libraries provide encryption
 and implement the Kerberos protocol. In order to add authentication
 to its transactions, a typical network application adds calls to the
 Kerberos library directly or through the Generic Security Services
 Application Programming Interface, GSSAPI, described in separate
 document [ref to GSSAPI RFC]. These calls result in the transmission
 of the necessary messages to achieve authentication.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 6]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The Kerberos protocol consists of several sub-protocols (or
 exchanges). There are two basic methods by which a client can ask a
 Kerberos server for credentials. In the first approach, the client
 sends a cleartext request for a ticket for the desired server to the
 AS. The reply is sent encrypted in the client's secret key. Usually
 this request is for a ticket-granting ticket (TGT) which can later be
 used with the ticket-granting server (TGS). In the second method,
 the client sends a request to the TGS. The client uses the TGT to
 authenticate itself to the TGS in the same manner as if it were
 contacting any other application server that requires Kerberos
 authentication. The reply is encrypted in the session key from the
 TGT. Though the protocol specification describes the AS and the TGS
 as separate servers, they are implemented in practice as different
 protocol entry points within a single Kerberos server.

 Once obtained, credentials may be used to verify the identity of the
 principals in a transaction, to ensure the integrity of messages
 exchanged between them, or to preserve privacy of the messages. The
 application is free to choose whatever protection may be necessary.

 To verify the identities of the principals in a transaction, the
 client transmits the ticket to the application server. Since the
 ticket is sent "in the clear" (parts of it are encrypted, but this
 encryption doesn't thwart replay) and might be intercepted and reused
 by an attacker, additional information is sent to prove that the
 message originated with the principal to whom the ticket was issued.
 This information (called the authenticator) is encrypted in the
 session key, and includes a timestamp. The timestamp proves that the
 message was recently generated and is not a replay. Encrypting the
 authenticator in the session key proves that it was generated by a
 party possessing the session key. Since no one except the requesting
 principal and the server know the session key (it is never sent over
 the network in the clear) this guarantees the identity of the client.

 The integrity of the messages exchanged between principals can also
 be guaranteed using the session key (passed in the ticket and
 contained in the credentials). This approach provides detection of
 both replay attacks and message stream modification attacks. It is
 accomplished by generating and transmitting a collision-proof
 checksum (elsewhere called a hash or digest function) of the client's
 message, keyed with the session key. Privacy and integrity of the
 messages exchanged between principals can be secured by encrypting
 the data to be passed using the session key contained in the ticket
 or the sub-session key found in the authenticator.

 The authentication exchanges mentioned above require read-only access
 to the Kerberos database. Sometimes, however, the entries in the
 database must be modified, such as when adding new principals or

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 7]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 changing a principal's key. This is done using a protocol between a
 client and a third Kerberos server, the Kerberos Administration
 Server (KADM). There is also a protocol for maintaining multiple
 copies of the Kerberos database. Neither of these protocols are
 described in this document.

1.1. Cross-realm operation

 The Kerberos protocol is designed to operate across organizational
 boundaries. A client in one organization can be authenticated to a
 server in another. Each organization wishing to run a Kerberos server
 establishes its own "realm". The name of the realm in which a client
 is registered is part of the client's name, and can be used by the
 end-service to decide whether to honor a request.

 By establishing "inter-realm" keys, the administrators of two realms
 can allow a client authenticated in the local realm to prove its
 identity to servers in other realms. The exchange of inter-realm keys
 (a separate key may be used for each direction) registers the ticket-
 granting service of each realm as a principal in the other realm. A
 client is then able to obtain a ticket-granting ticket for the remote
 realm's ticket-granting service from its local realm. When that
 ticket-granting ticket is used, the remote ticket-granting service
 uses the inter-realm key (which usually differs from its own normal
 TGS key) to decrypt the ticket-granting ticket, and is thus certain
 that it was issued by the client's own TGS. Tickets issued by the
 remote ticket-granting service will indicate to the end-service that
 the client was authenticated from another realm.

 Without cross-realm operation, and with appropriate permission the
 client can arrange registration of a separately-named principal in a
 remote realm, and engage in normal exchanges with that realm's
 services. However, for even small numbers of clients this becomes
 cumbersome, and more automatic methods as described here are
 necessary.

 A realm is said to communicate with another realm if the two realms
 share an inter-realm key, or if the local realm shares an inter-realm
 key with an intermediate realm that communicates with the remote
 realm. An authentication path is the sequence of intermediate realms
 that are transited in communicating from one realm to another.

 Realms may be organized hierarchically. Each realm shares a key with
 its parent and a different key with each child. If an inter-realm key
 is not directly shared by two realms, the hierarchical organization
 allows an authentication path to be easily constructed. If a
 hierarchical organization is not used, it may be necessary to consult
 a database in order to construct an authentication path between

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 8]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 realms.

 Although realms are typically hierarchical, intermediate realms may
 be bypassed to achieve cross-realm authentication through alternate
 authentication paths (these might be established to make
 communication between two realms more efficient). It is important for
 the end-service to know which realms were transited when deciding how
 much faith to place in the authentication process. To facilitate this
 decision, a field in each ticket contains the names of the realms
 that were involved in authenticating the client.

 The application server is ultimately responsible for accepting or
 rejecting authentication and SHOULD check the transited field. The
 application server may choose to rely on the KDC for the application
 server's realm to check the transited field. The application server's
 KDC will set the TRANSITED-POLICY-CHECKED flag in this case. The KDCs
 for intermediate realms may also check the transited field as they
 issue ticket-granting tickets for other realms, but they are
 encouraged not to do so. A client may request that the KDCs not check
 the transited field by setting the DISABLE-TRANSITED-CHECK flag. KDCs
 SHOULD honor this flag.

1.2. Choosing a principal with which to communicate

 The Kerberos protocol provides the means for verifying (subject to
 the assumptions in 1.5) that the entity with which one communicates
 is the same entity that was registered with the KDC using the claimed
 identity (principal name). It is still necessary to determine whether
 that identity corresponds to the entity with which one intends to
 communicate.

 When appropriate data has been exchanged in advance, this
 determination may be performed syntactically by the application based
 on the application protocol specification, information provided by
 the user, and configuration files. For example, the server principal
 name (including realm) for a telnet server might be derived from the
 user specified host name (from the telnet command line), the "host/"
 prefix specified in the application protocol specification, and a
 mapping to a Kerberos realm derived syntactically from the domain
 part of the specified hostname and information from the local
 Kerberos realms database.

 One can also rely on trusted third parties to make this
 determination, but only when the data obtained from the third party
 is suitably integrity protected while resident on the third party
 server and when transmitted. Thus, for example, one should not rely
 on an unprotected domain name system record to map a host alias to
 the primary name of a server, accepting the primary name as the party

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 9]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 one intends to contact, since an attacker can modify the mapping and
 impersonate the party with which one intended to communicate.

 Implementations of Kerberos and protocols based on Kerberos MUST NOT
 use insecure DNS queries to canonicalize the hostname components of
 the service principal names (i.e. MUST NOT use insecure DNS queries
 to map one name to another to determine the host part of the
 principal name with which one is to communicate). In an environment
 without secure name service, application authors MAY append a
 statically configured domain name to unqualified hostnames before
 passing the name to the security mechanisms, but should do no more
 than that. Secure name service facilities, if available, might be
 trusted for hostname canonicalization, but such canonicalization by
 the client SHOULD NOT be required by KDC implementations.

 Implementation note: Many current implementations do some degree of
 canonicalization of the provided service name, often using DNS even
 though it creates security problems. However there is no consistency
 among implementations about whether the service name is case folded
 to lower case or whether reverse resolution is used. To maximize
 interoperability and security, applications SHOULD provide security
 mechanisms with names which result from folding the user-entered name
 to lower case, without performing any other modifications or
 canonicalization.

1.3. Authorization

 As an authentication service, Kerberos provides a means of verifying
 the identity of principals on a network. Authentication is usually
 useful primarily as a first step in the process of authorization,
 determining whether a client may use a service, which objects the
 client is allowed to access, and the type of access allowed for each.
 Kerberos does not, by itself, provide authorization. Possession of a
 client ticket for a service provides only for authentication of the
 client to that service, and in the absence of a separate
 authorization procedure, it should not be considered by an
 application as authorizing the use of that service.

 Such separate authorization methods MAY be implemented as application
 specific access control functions and may utilize files on the
 application server, or on separately issued authorization credentials
 such as those based on proxies [Neu93], or on other authorization
 services. Separately authenticated authorization credentials MAY be
 embedded in a ticket's authorization data when encapsulated by the
 KDC-issued authorization data element.

 Applications should not accept the mere issuance of a service ticket
 by the Kerberos server (even by a modified Kerberos server) as

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 10]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 granting authority to use the service, since such applications may
 become vulnerable to the bypass of this authorization check in an
 environment if they interoperate with other KDCs or where other
 options for application authentication are provided.

1.4. Extending Kerberos Without Breaking Interoperability

 As the deployed base of Kerberos implementations grows, extending
 Kerberos becomes more important. Unfortunately some extensions to the
 existing Kerberos protocol create interoperability issues because of
 uncertainty regarding the treatment of certain extensibility options
 by some implementations. This section includes guidelines that will
 enable future implementations to maintain interoperability.

 Kerberos provides a general mechanism for protocol extensibility.
 Some protocol messages contain typed holes -- sub-messages that
 contain an octet-string along with an integer that defines how to
 interpret the octet-string. The integer types are registered
 centrally, but can be used both for vendor extensions and for
 extensions standardized through the IETF.

 In this document, the word "extension" means an extension by defining
 a new type to insert into an existing typed hole in a protocol
 message. It does not mean extension by addition of new fields to
 ASN.1 types, unless explicitly indicated otherwise in the text.

1.4.1. Compatibility with RFC 1510

 It is important to note that existing Kerberos message formats can
 not be readily extended by adding fields to the ASN.1 types. Sending
 additional fields often results in the entire message being discarded
 without an error indication. Future versions of this specification
 will provide guidelines to ensure that ASN.1 fields can be added
 without creating an interoperability problem.

 In the meantime, all new or modified implementations of Kerberos that
 receive an unknown message extension SHOULD preserve the encoding of
 the extension but otherwise ignore the presence of the extension.
 Recipients MUST NOT decline a request simply because an extension is
 present.

 There is one exception to this rule. If an unknown authorization data
 element type is received by a server other than the ticket granting
 service either in an AP-REQ or in a ticket contained in an AP-REQ,
 then authentication MUST fail. One of the primary uses of
 authorization data is to restrict the use of the ticket. If the
 service cannot determine whether the restriction applies to that
 service then a security weakness may result if the ticket can be used

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 11]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 for that service. Authorization elements that are optional SHOULD be
 enclosed in the AD-IF-RELEVANT element.

 The ticket granting service MUST ignore but propagate to derivative
 tickets any unknown authorization data types, unless those data types
 are embedded in a MANDATORY-FOR-KDC element, in which case the
 request will be rejected. This behavior is appropriate because
 requiring that the ticket granting service understand unknown
 authorization data types would require that KDC software be upgraded
 to understand new application-level restrictions before applications
 used these restrictions, decreasing the utility of authorization data
 as a mechanism for restricting the use of tickets. No security
 problem is created because services to which the tickets are issued
 will verify the authorization data.

 Implementation note: Many RFC 1510 implementations ignore unknown
 authorization data elements. Depending on these implementations to
 honor authorization data restrictions may create a security weakness.

1.4.2. Sending Extensible Messages

 Care must be taken to ensure that old implementations can understand
 messages sent to them even if they do not understand an extension
 that is used. Unless the sender knows an extension is supported, the
 extension cannot change the semantics of the core message or
 previously defined extensions.

 For example, an extension including key information necessary to
 decrypt the encrypted part of a KDC-REP could only be used in
 situations where the recipient was known to support the extension.
 Thus when designing such extensions it is important to provide a way
 for the recipient to notify the sender of support for the extension.
 For example in the case of an extension that changes the KDC-REP
 reply key, the client could indicate support for the extension by
 including a padata element in the AS-REQ sequence. The KDC should
 only use the extension if this padata element is present in the AS-
 REQ. Even if policy requires the use of the extension, it is better
 to return an error indicating that the extension is required than to
 use the extension when the recipient may not support it; debugging
 why implementations do not interoperate is easier when errors are
 returned.

1.5. Environmental assumptions

 Kerberos imposes a few assumptions on the environment in which it can
 properly function:

 * "Denial of service" attacks are not solved with Kerberos. There

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 12]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 are places in the protocols where an intruder can prevent an
 application from participating in the proper authentication steps.
 Detection and solution of such attacks (some of which can appear
 to be not-uncommon "normal" failure modes for the system) is
 usually best left to the human administrators and users.

 * Principals MUST keep their secret keys secret. If an intruder
 somehow steals a principal's key, it will be able to masquerade as
 that principal or impersonate any server to the legitimate
 principal.

 * "Password guessing" attacks are not solved by Kerberos. If a user
 chooses a poor password, it is possible for an attacker to
 successfully mount an offline dictionary attack by repeatedly
 attempting to decrypt, with successive entries from a dictionary,
 messages obtained which are encrypted under a key derived from the
 user's password.

 * Each host on the network MUST have a clock which is "loosely
 synchronized" to the time of the other hosts; this synchronization
 is used to reduce the bookkeeping needs of application servers
 when they do replay detection. The degree of "looseness" can be
 configured on a per-server basis, but is typically on the order of
 5 minutes. If the clocks are synchronized over the network, the
 clock synchronization protocol MUST itself be secured from network
 attackers.

 * Principal identifiers are not recycled on a short-term basis. A
 typical mode of access control will use access control lists
 (ACLs) to grant permissions to particular principals. If a stale
 ACL entry remains for a deleted principal and the principal
 identifier is reused, the new principal will inherit rights
 specified in the stale ACL entry. By not re-using principal
 identifiers, the danger of inadvertent access is removed.

1.6. Glossary of terms

 Below is a list of terms used throughout this document.

 Authentication
 Verifying the claimed identity of a principal.

 Authentication header
 A record containing a Ticket and an Authenticator to be presented
 to a server as part of the authentication process.

 Authentication path
 A sequence of intermediate realms transited in the authentication

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 13]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 process when communicating from one realm to another.

 Authenticator
 A record containing information that can be shown to have been
 recently generated using the session key known only by the client
 and server.

 Authorization
 The process of determining whether a client may use a service,
 which objects the client is allowed to access, and the type of
 access allowed for each.

 Capability
 A token that grants the bearer permission to access an object or
 service. In Kerberos, this might be a ticket whose use is
 restricted by the contents of the authorization data field, but
 which lists no network addresses, together with the session key
 necessary to use the ticket.

 Ciphertext
 The output of an encryption function. Encryption transforms
 plaintext into ciphertext.

 Client
 A process that makes use of a network service on behalf of a user.
 Note that in some cases a Server may itself be a client of some
 other server (e.g. a print server may be a client of a file
 server).

 Credentials
 A ticket plus the secret session key necessary to successfully use
 that ticket in an authentication exchange.

 Encryption Type (etype)
 When associated with encrypted data, an encryption type identifies
 the algorithm used to encrypt the data and is used to select the
 appropriate algorithm for decrypting the data. Encryption type
 tags are communicated in other messages to enumerate algorithms
 that are desired, supported, preferred, or allowed to be used for
 encryption of data between parties. This preference is combined
 with local information and policy to select an algorithm to be
 used.

 KDC
 Key Distribution Center, a network service that supplies tickets
 and temporary session keys; or an instance of that service or the
 host on which it runs. The KDC services both initial ticket and
 ticket-granting ticket requests. The initial ticket portion is

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 14]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 sometimes referred to as the Authentication Server (or service).
 The ticket-granting ticket portion is sometimes referred to as the
 ticket-granting server (or service).

 Kerberos
 The name given to the Project Athena's authentication service, the
 protocol used by that service, or the code used to implement the
 authentication service. The name is adopted from the three-headed
 dog which guards Hades.

 Key Version Number (kvno)
 A tag associated with encrypted data identifies which key was used
 for encryption when a long lived key associated with a principal
 changes over time. It is used during the transition to a new key
 so that the party decrypting a message can tell whether the data
 was encrypted using the old or the new key.

 Plaintext
 The input to an encryption function or the output of a decryption
 function. Decryption transforms ciphertext into plaintext.

 Principal
 A named client or server entity that participates in a network
 communication, with one name that is considered canonical.

 Principal identifier
 The canonical name used to uniquely identify each different
 principal.

 Seal
 To encipher a record containing several fields in such a way that
 the fields cannot be individually replaced without either
 knowledge of the encryption key or leaving evidence of tampering.

 Secret key
 An encryption key shared by a principal and the KDC, distributed
 outside the bounds of the system, with a long lifetime. In the
 case of a human user's principal, the secret key MAY be derived
 from a password.

 Server
 A particular Principal which provides a resource to network
 clients. The server is sometimes referred to as the Application
 Server.

 Service
 A resource provided to network clients; often provided by more
 than one server (for example, remote file service).

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 15]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Session key
 A temporary encryption key used between two principals, with a
 lifetime limited to the duration of a single login "session". In
 the Kerberos system, a session key is generated by the KDC. The
 session key is distinct from the sub-session key, described next..

 Sub-session key
 A temporary encryption key used between two principals, selected
 and exchanged by the principals using the session key, and with a
 lifetime limited to the duration of a single association. The sub-
 session key is also referred to as the subkey.

 Ticket
 A record that helps a client authenticate itself to a server; it
 contains the client's identity, a session key, a timestamp, and
 other information, all sealed using the server's secret key. It
 only serves to authenticate a client when presented along with a
 fresh Authenticator.

2. Ticket flag uses and requests

 Each Kerberos ticket contains a set of flags which are used to
 indicate attributes of that ticket. Most flags may be requested by a
 client when the ticket is obtained; some are automatically turned on
 and off by a Kerberos server as required. The following sections
 explain what the various flags mean and give examples of reasons to
 use them. With the exception of the INVALID flag clients MUST ignore
 ticket flags that are not recognized. KDCs MUST ignore KDC options
 that are not recognized. Some implementations of RFC 1510 are known
 to reject unknown KDC options, so clients may need to resend a
 request without new KDC options if the request was rejected when sent
 with options added since RFC 1510. Since new KDCs will ignore unknown
 options, clients MUST confirm that the ticket returned by the KDC
 meets their needs.

 Note that it is not, in general, possible to determine whether an
 option was not honored because it was not understood or because it
 was rejected either through configuration or policy. When adding a
 new option to the Kerberos protocol, designers should consider
 whether the distinction is important for their option. In cases where
 it is, a mechanism for the KDC to return an indication that the
 option was understood but rejected needs to be provided in the
 specification of the option. Often in such cases, the mechanism needs
 to be broad enough to permit an error or reason to be returned.

2.1. Initial, pre-authenticated, and hardware authenticated tickets

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 16]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The INITIAL flag indicates that a ticket was issued using the AS
 protocol, rather than issued based on a ticket-granting ticket.
 Application servers that want to require the demonstrated knowledge
 of a client's secret key (e.g. a password-changing program) can
 insist that this flag be set in any tickets they accept, and thus be
 assured that the client's key was recently presented to the
 application client.

 The PRE-AUTHENT and HW-AUTHENT flags provide additional information
 about the initial authentication, regardless of whether the current
 ticket was issued directly (in which case INITIAL will also be set)
 or issued on the basis of a ticket-granting ticket (in which case the
 INITIAL flag is clear, but the PRE-AUTHENT and HW-AUTHENT flags are
 carried forward from the ticket-granting ticket).

2.2. Invalid tickets

 The INVALID flag indicates that a ticket is invalid. Application
 servers MUST reject tickets which have this flag set. A postdated
 ticket will be issued in this form. Invalid tickets MUST be validated
 by the KDC before use, by presenting them to the KDC in a TGS request
 with the VALIDATE option specified. The KDC will only validate
 tickets after their starttime has passed. The validation is required
 so that postdated tickets which have been stolen before their
 starttime can be rendered permanently invalid (through a hot-list
 mechanism) (see section 3.3.3.1).

2.3. Renewable tickets

 Applications may desire to hold tickets which can be valid for long
 periods of time. However, this can expose their credentials to
 potential theft for equally long periods, and those stolen
 credentials would be valid until the expiration time of the
 ticket(s). Simply using short-lived tickets and obtaining new ones
 periodically would require the client to have long-term access to its
 secret key, an even greater risk. Renewable tickets can be used to
 mitigate the consequences of theft. Renewable tickets have two
 "expiration times": the first is when the current instance of the
 ticket expires, and the second is the latest permissible value for an
 individual expiration time. An application client must periodically
 (i.e. before it expires) present a renewable ticket to the KDC, with
 the RENEW option set in the KDC request. The KDC will issue a new
 ticket with a new session key and a later expiration time. All other
 fields of the ticket are left unmodified by the renewal process. When
 the latest permissible expiration time arrives, the ticket expires
 permanently. At each renewal, the KDC MAY consult a hot-list to
 determine if the ticket had been reported stolen since its last
 renewal; it will refuse to renew such stolen tickets, and thus the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 17]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 usable lifetime of stolen tickets is reduced.

 The RENEWABLE flag in a ticket is normally only interpreted by the
 ticket-granting service (discussed below in section 3.3). It can
 usually be ignored by application servers. However, some particularly
 careful application servers MAY disallow renewable tickets.

 If a renewable ticket is not renewed by its expiration time, the KDC
 will not renew the ticket. The RENEWABLE flag is reset by default,
 but a client MAY request it be set by setting the RENEWABLE option in
 the KRB_AS_REQ message. If it is set, then the renew-till field in
 the ticket contains the time after which the ticket may not be
 renewed.

2.4. Postdated tickets

 Applications may occasionally need to obtain tickets for use much
 later, e.g. a batch submission system would need tickets to be valid
 at the time the batch job is serviced. However, it is dangerous to
 hold valid tickets in a batch queue, since they will be on-line
 longer and more prone to theft. Postdated tickets provide a way to
 obtain these tickets from the KDC at job submission time, but to
 leave them "dormant" until they are activated and validated by a
 further request of the KDC. If a ticket theft were reported in the
 interim, the KDC would refuse to validate the ticket, and the thief
 would be foiled.

 The MAY-POSTDATE flag in a ticket is normally only interpreted by the
 ticket-granting service. It can be ignored by application servers.
 This flag MUST be set in a ticket-granting ticket in order to issue a
 postdated ticket based on the presented ticket. It is reset by
 default; it MAY be requested by a client by setting the ALLOW-
 POSTDATE option in the KRB_AS_REQ message. This flag does not allow
 a client to obtain a postdated ticket-granting ticket; postdated
 ticket-granting tickets can only by obtained by requesting the
 postdating in the KRB_AS_REQ message. The life (endtime-starttime) of
 a postdated ticket will be the remaining life of the ticket-granting
 ticket at the time of the request, unless the RENEWABLE option is
 also set, in which case it can be the full life (endtime-starttime)
 of the ticket-granting ticket. The KDC MAY limit how far in the
 future a ticket may be postdated.

 The POSTDATED flag indicates that a ticket has been postdated. The
 application server can check the authtime field in the ticket to see
 when the original authentication occurred. Some services MAY choose
 to reject postdated tickets, or they may only accept them within a
 certain period after the original authentication. When the KDC issues
 a POSTDATED ticket, it will also be marked as INVALID, so that the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 18]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 application client MUST present the ticket to the KDC to be validated
 before use.

2.5. Proxiable and proxy tickets

 At times it may be necessary for a principal to allow a service to
 perform an operation on its behalf. The service must be able to take
 on the identity of the client, but only for a particular purpose. A
 principal can allow a service to take on the principal's identity for
 a particular purpose by granting it a proxy.

 The process of granting a proxy using the proxy and proxiable flags
 is used to provide credentials for use with specific services. Though
 conceptually also a proxy, users wishing to delegate their identity
 in a form usable for all purpose MUST use the ticket forwarding
 mechanism described in the next section to forward a ticket-granting
 ticket.

 The PROXIABLE flag in a ticket is normally only interpreted by the
 ticket-granting service. It can be ignored by application servers.
 When set, this flag tells the ticket-granting server that it is OK to
 issue a new ticket (but not a ticket-granting ticket) with a
 different network address based on this ticket. This flag is set if
 requested by the client on initial authentication. By default, the
 client will request that it be set when requesting a ticket-granting
 ticket, and reset when requesting any other ticket.

 This flag allows a client to pass a proxy to a server to perform a
 remote request on its behalf (e.g. a print service client can give
 the print server a proxy to access the client's files on a particular
 file server in order to satisfy a print request).

 In order to complicate the use of stolen credentials, Kerberos
 tickets are often valid from only those network addresses
 specifically included in the ticket, but it is permissible as a
 policy option to allow requests and issue tickets with no network
 addresses specified. When granting a proxy, the client MUST specify
 the new network address from which the proxy is to be used, or
 indicate that the proxy is to be issued for use from any address.

 The PROXY flag is set in a ticket by the TGS when it issues a proxy
 ticket. Application servers MAY check this flag and at their option
 they MAY require additional authentication from the agent presenting
 the proxy in order to provide an audit trail.

2.6. Forwardable tickets

 Authentication forwarding is an instance of a proxy where the service

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 19]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 that is granted is complete use of the client's identity. An example
 where it might be used is when a user logs in to a remote system and
 wants authentication to work from that system as if the login were
 local.

 The FORWARDABLE flag in a ticket is normally only interpreted by the
 ticket-granting service. It can be ignored by application servers.
 The FORWARDABLE flag has an interpretation similar to that of the
 PROXIABLE flag, except ticket-granting tickets may also be issued
 with different network addresses. This flag is reset by default, but
 users MAY request that it be set by setting the FORWARDABLE option in
 the AS request when they request their initial ticket-granting
 ticket.

 This flag allows for authentication forwarding without requiring the
 user to enter a password again. If the flag is not set, then
 authentication forwarding is not permitted, but the same result can
 still be achieved if the user engages in the AS exchange specifying
 the requested network addresses and supplies a password.

 The FORWARDED flag is set by the TGS when a client presents a ticket
 with the FORWARDABLE flag set and requests a forwarded ticket by
 specifying the FORWARDED KDC option and supplying a set of addresses
 for the new ticket. It is also set in all tickets issued based on
 tickets with the FORWARDED flag set. Application servers may choose
 to process FORWARDED tickets differently than non-FORWARDED tickets.

 If addressless tickets are forwarded from one system to another,
 clients SHOULD still use this option to obtain a new TGT in order to
 have different session keys on the different systems.

2.7. Transited Policy Checking

 In Kerberos, the application server is ultimately responsible for
 accepting or rejecting authentication and SHOULD check that only
 suitably trusted KDCs are relied upon to authenticate a principal.
 The transited field in the ticket identifies which realms (and thus
 which KDCs) were involved in the authentication process and an
 application server would normally check this field. If any of these
 are untrusted to authenticate the indicated client principal
 (probably determined by a realm-based policy), the authentication
 attempt MUST be rejected. The presence of trusted KDCs in this list
 does not provide any guarantee; an untrusted KDC may have fabricated
 the list.

 While the end server ultimately decides whether authentication is
 valid, the KDC for the end server's realm MAY apply a realm specific
 policy for validating the transited field and accepting credentials

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 20]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 for cross-realm authentication. When the KDC applies such checks and
 accepts such cross-realm authentication it will set the TRANSITED-
 POLICY-CHECKED flag in the service tickets it issues based on the
 cross-realm TGT. A client MAY request that the KDCs not check the
 transited field by setting the DISABLE-TRANSITED-CHECK flag. KDCs are
 encouraged but not required to honor this flag.

 Application servers MUST either do the transited-realm checks
 themselves, or reject cross-realm tickets without TRANSITED-POLICY-
 CHECKED set.

2.8. OK as Delegate

 For some applications a client may need to delegate authority to a
 server to act on its behalf in contacting other services. This
 requires that the client forward credentials to an intermediate
 server. The ability for a client to obtain a service ticket to a
 server conveys no information to the client about whether the server
 should be trusted to accept delegated credentials. The OK-AS-
 DELEGATE provides a way for a KDC to communicate local realm policy
 to a client regarding whether an intermediate server is trusted to
 accept such credentials.

 The copy of the ticket flags in the encrypted part of the KDC reply
 may have the OK-AS-DELEGATE flag set to indicates to the client that
 the server specified in the ticket has been determined by policy of
 the realm to be a suitable recipient of delegation. A client can use
 the presence of this flag to help it make a decision whether to
 delegate credentials (either grant a proxy or a forwarded ticket-
 granting ticket) to this server. It is acceptable to ignore the
 value of this flag. When setting this flag, an administrator should
 consider the security and placement of the server on which the
 service will run, as well as whether the service requires the use of
 delegated credentials.

2.9. Other KDC options

 There are three additional options which MAY be set in a client's
 request of the KDC.

2.9.1. Renewable-OK

 The RENEWABLE-OK option indicates that the client will accept a
 renewable ticket if a ticket with the requested life cannot otherwise
 be provided. If a ticket with the requested life cannot be provided,
 then the KDC MAY issue a renewable ticket with a renew-till equal to
 the requested endtime. The value of the renew-till field MAY still be
 adjusted by site-determined limits or limits imposed by the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 21]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 individual principal or server.

2.9.2. ENC-TKT-IN-SKEY

 In its basic form the Kerberos protocol supports authentication in a
 client-server
 setting and is not well suited to authentication in a peer-to-peer
 environment because the long term key of the user does not remain on
 the workstation after initial login. Authentication of such peers may
 be supported by Kerberos in its user-to-user variant. The ENC-TKT-IN-
 SKEY option supports user-to-user authentication by allowing the KDC
 to issue a service ticket encrypted using the session key from
 another ticket-granting ticket issued to another user. The ENC-TKT-
 IN-SKEY option is honored only by the ticket-granting service. It
 indicates that the ticket to be issued for the end server is to be
 encrypted in the session key from the additional second ticket-
 granting ticket provided with the request. See section 3.3.3 for
 specific details.

2.9.3. Passwordless Hardware Authentication

 The OPT-HARDWARE-AUTH option indicates that the client wishes to use
 some form of hardware authentication instead of or in addition to the
 client's password or other long-lived encryption key. OPT-HARDWARE-
 AUTH is honored only by the authentication service. If supported and
 allowed by policy, the KDC will return an errorcode
 KDC_ERR_PREAUTH_REQUIRED and include the required METHOD-DATA to
 perform such authentication.

3. Message Exchanges

 The following sections describe the interactions between network
 clients and servers and the messages involved in those exchanges.

3.1. The Authentication Service Exchange

 Summary

 Message direction Message type Section
1. Client to Kerberos KRB_AS_REQ 5.4.1

 2. Kerberos to client KRB_AS_REP or 5.4.2
 KRB_ERROR 5.9.1

 The Authentication Service (AS) Exchange between the client and the
 Kerberos Authentication Server is initiated by a client when it
 wishes to obtain authentication credentials for a given server but
 currently holds no credentials. In its basic form, the client's

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 22]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 secret key is used for encryption and decryption. This exchange is
 typically used at the initiation of a login session to obtain
 credentials for a Ticket-Granting Server which will subsequently be
 used to obtain credentials for other servers (see section 3.3)
 without requiring further use of the client's secret key. This
 exchange is also used to request credentials for services which must
 not be mediated through the Ticket-Granting Service, but rather
 require knowledge of a principal's secret key, such as the password-
 changing service (the password changing service denies requests
 unless the requester can demonstrate knowledge of the user's old
 password; requiring this knowledge prevents unauthorized password
 changes by someone walking up to an unattended session).

 This exchange does not by itself provide any assurance of the
 identity of the user (to authenticate a user logging on to a local
 system, the credentials obtained in the AS exchange may first be used
 in a TGS exchange to obtain credentials for a local server; those
 credentials must then be verified by a local server through
 successful completion of the Client/Server exchange).

 The AS exchange consists of two messages: KRB_AS_REQ from the client
 to Kerberos, and KRB_AS_REP or KRB_ERROR in reply. The formats for
 these messages are described in sections 5.4.1, 5.4.2, and 5.9.1.

 In the request, the client sends (in cleartext) its own identity and
 the identity of the server for which it is requesting credentials,
 other information about the credentials it is requesting, and a
 randomly generated nonce which can be used to detect replays, and to
 associate replies with the matching requests. This nonce MUST be
 generated randomly by the client and remembered for checking against
 the nonce in the expected reply. The response, KRB_AS_REP, contains a
 ticket for the client to present to the server, and a session key
 that will be shared by the client and the server. The session key
 and additional information are encrypted in the client's secret key.
 The encrypted part of the KRB_AS_REP message also contains the nonce
 which MUST be matched with the nonce from the KRB_AS_REQ message.

 Without pre-authentication, the authentication server does not know
 whether the client is actually the principal named in the request. It
 simply sends a reply without knowing or caring whether they are the
 same. This is acceptable because nobody but the principal whose
 identity was given in the request will be able to use the reply. Its
 critical information is encrypted in that principal's key. However,
 an attacker can send a KRB_AS_REQ message to get known plaintext in
 order to attack the principal's key. Especially if the key is based
 on a password, this may create a security exposure. So, the initial
 request supports an optional field that can be used to pass
 additional information that might be needed for the initial exchange.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 23]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 This field SHOULD be used for pre-authentication as described in
 sections 3.1.1 and 5.2.7.

 Various errors can occur; these are indicated by an error response
 (KRB_ERROR) instead of the KRB_AS_REP response. The error message is
 not encrypted. The KRB_ERROR message contains information which can
 be used to associate it with the message to which it replies. The
 contents of the KRB_ERROR message are not integrity-protected. As
 such, the client cannot detect replays, fabrications or
 modifications. A solution to this problem will be included in a
 future version of the protocol.

3.1.1. Generation of KRB_AS_REQ message

 The client may specify a number of options in the initial request.
 Among these options are whether pre-authentication is to be
 performed; whether the requested ticket is to be renewable,
 proxiable, or forwardable; whether it should be postdated or allow
 postdating of derivative tickets; and whether a renewable ticket will
 be accepted in lieu of a non-renewable ticket if the requested ticket
 expiration date cannot be satisfied by a non-renewable ticket (due to
 configuration constraints).

 The client prepares the KRB_AS_REQ message and sends it to the KDC.

3.1.2. Receipt of KRB_AS_REQ message

 If all goes well, processing the KRB_AS_REQ message will result in
 the creation of a ticket for the client to present to the server. The
 format for the ticket is described in section 5.3.

 Because Kerberos can run over unreliable transports such as UDP, the
 KDC MUST be prepared to retransmit responses in case they are lost.
 If a KDC receives a request identical to one it has recently
 successfully processed, the KDC MUST respond with a KRB_AS_REP
 message rather than a replay error. In order to reduce ciphertext
 given to a potential attacker, KDCs MAY send the same response
 generated when the request was first handled. KDCs MUST obey this
 replay behavior even if the actual transport in use is reliable.

3.1.3. Generation of KRB_AS_REP message

 The authentication server looks up the client and server principals
 named in the KRB_AS_REQ in its database, extracting their respective
 keys. If the requested client principal named in the request is not
 known because it doesn't exist in the KDC's principal database, then
 an error message with a KDC_ERR_C_PRINCIPAL_UNKNOWN is returned.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 24]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 If required, the server pre-authenticates the request, and if the
 pre-authentication check fails, an error message with the code
 KDC_ERR_PREAUTH_FAILED is returned. If pre-authentication is
 required, but was not present in the request, an error message with
 the code KDC_ERR_PREAUTH_REQUIRED is returned and a METHOD-DATA
 object will be stored in the e-data field of the KRB-ERROR message to
 specify which pre-authentication mechanisms are acceptable. Usually
 this will include PA-ETYPE-INFO and/or PA-ETYPE-INFO2 elements as
 described below. If the server cannot accommodate any encryption type
 requested by the client, an error message with code
 KDC_ERR_ETYPE_NOSUPP is returned. Otherwise the KDC generates a
 'random' session key, meaning that, among other things, it should be
 impossible to guess the next session key based on knowledge of past
 session keys. While this can be achieved in a pseudo-random number
 generator if it is based on cryptographic principles, it is more
 desirable to use a truly random number generator, such as one based
 on measurements of random physical phenomena. See [RFC1750] for an
 in depth discussion of randomness.

 When responding to an AS request, if there are multiple encryption
 keys registered for a client in the Kerberos database, then the etype
 field from the AS request is used by the KDC to select the encryption
 method to be used to protect the encrypted part of the KRB_AS_REP
 message which is sent to the client. If there is more than one
 supported strong encryption type in the etype list, the KDC SHOULD
 use the first valid strong etype for which an encryption key is
 available.

 When the user's key is generated from a password or pass phrase, the
 string-to-key function for the particular encryption key type is
 used, as specified in [@KCRYPTO]. The salt value and additional
 parameters for the string-to-key function have default values
 (specified by section 4 and by the encryption mechanism
 specification, respectively) that may be overridden by pre-
 authentication data (PA-PW-SALT, PA-AFS3-SALT, PA-ETYPE-INFO, PA-
 ETYPE-INFO2, etc). Since the KDC is presumed to store a copy of the
 resulting key only, these values should not be changed for password-
 based keys except when changing the principal's key.

 When the AS server is to include pre-authentication data in a KRB-
 ERROR or in an AS-REP, it MUST use PA-ETYPE-INFO2, not PA-ETYPE-INFO,
 if the etype field of the client's AS-REQ lists at least one "newer"
 encryption type. Otherwise (when the etype field of the client's AS-
 REQ does not list any "newer" encryption types) it MUST send both,
 PA-ETYPE-INFO2 and PA-ETYPE-INFO (both with an entry for each
 enctype). A "newer" enctype is any enctype first officially
 specified concurrently with or subsequent to the issue of this RFC.
 The enctypes DES, 3DES or RC4 and any defined in [RFC1510] are not

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 25]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 "newer" enctypes.

 It is not possible to reliably generate a user's key given a pass
 phrase without contacting the KDC, since it will not be known whether
 alternate salt or parameter values are required.

 The KDC will attempt to assign the type of the random session key
 from the list of methods in the etype field. The KDC will select the
 appropriate type using the list of methods provided together with
 information from the Kerberos database indicating acceptable
 encryption methods for the application server. The KDC will not issue
 tickets with a weak session key encryption type.

 If the requested start time is absent, indicates a time in the past,
 or is within the window of acceptable clock skew for the KDC and the
 POSTDATE option has not been specified, then the start time of the
 ticket is set to the authentication server's current time. If it
 indicates a time in the future beyond the acceptable clock skew, but
 the POSTDATED option has not been specified then the error
 KDC_ERR_CANNOT_POSTDATE is returned. Otherwise the requested start
 time is checked against the policy of the local realm (the
 administrator might decide to prohibit certain types or ranges of
 postdated tickets), and if acceptable, the ticket's start time is set
 as requested and the INVALID flag is set in the new ticket. The
 postdated ticket MUST be validated before use by presenting it to the
 KDC after the start time has been reached.

 The expiration time of the ticket will be set to the earlier of the
 requested endtime and a time determined by local policy, possibly
 determined using realm or principal specific factors. For example,
 the expiration time MAY be set to the earliest of the following:

 * The expiration time (endtime) requested in the KRB_AS_REQ
 message.

 * The ticket's start time plus the maximum allowable lifetime
 associated with the client principal from the authentication
 server's database.

 * The ticket's start time plus the maximum allowable lifetime
 associated with the server principal.

 * The ticket's start time plus the maximum lifetime set by the
 policy of the local realm.

 If the requested expiration time minus the start time (as determined
 above) is less than a site-determined minimum lifetime, an error
 message with code KDC_ERR_NEVER_VALID is returned. If the requested

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 26]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 expiration time for the ticket exceeds what was determined as above,
 and if the 'RENEWABLE-OK' option was requested, then the 'RENEWABLE'
 flag is set in the new ticket, and the renew-till value is set as if
 the 'RENEWABLE' option were requested (the field and option names are
 described fully in section 5.4.1).

 If the RENEWABLE option has been requested or if the RENEWABLE-OK
 option has been set and a renewable ticket is to be issued, then the
 renew-till field MAY be set to the earliest of:

 * Its requested value.

 * The start time of the ticket plus the minimum of the two
 maximum renewable lifetimes associated with the principals'
 database entries.

 * The start time of the ticket plus the maximum renewable
 lifetime set by the policy of the local realm.

 The flags field of the new ticket will have the following options set
 if they have been requested and if the policy of the local realm
 allows: FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXIABLE, RENEWABLE.
 If the new ticket is postdated (the start time is in the future), its
 INVALID flag will also be set.

 If all of the above succeed, the server will encrypt the ciphertext
 part of the ticket using the encryption key extracted from the server
 principal's record in the Kerberos database using the encryption type
 associated with the server principal's key (this choice is NOT
 affected by the etype field in the request). It then formats a
 KRB_AS_REP message (see section 5.4.2), copying the addresses in the
 request into the caddr of the response, placing any required pre-
 authentication data into the padata of the response, and encrypts the
 ciphertext part in the client's key using an acceptable encryption
 method requested in the etype field of the request, or in some key
 specified by pre-authentication mechanisms being used.

3.1.4. Generation of KRB_ERROR message

 Several errors can occur, and the Authentication Server responds by
 returning an error message, KRB_ERROR, to the client, with the error-
 code and e-text fields set to appropriate values. The error message
 contents and details are described in Section 5.9.1.

3.1.5. Receipt of KRB_AS_REP message

 If the reply message type is KRB_AS_REP, then the client verifies
 that the cname and crealm fields in the cleartext portion of the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 27]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 reply match what it requested. If any padata fields are present, they
 may be used to derive the proper secret key to decrypt the message.
 The client decrypts the encrypted part of the response using its
 secret key, verifies that the nonce in the encrypted part matches the
 nonce it supplied in its request (to detect replays). It also
 verifies that the sname and srealm in the response match those in the
 request (or are otherwise expected values), and that the host address
 field is also correct. It then stores the ticket, session key, start
 and expiration times, and other information for later use. The last-
 req field (and the deprecated key-expiration field) from the
 encrypted part of the response MAY be checked to notify the user of
 impending key expiration. This enables the client program to suggest
 remedial action, such as a password change.

 Upon validation of the KRB_AS_REP message (by checking the returned
 nonce against that sent in the KRB_AS_REQ message) the client knows
 that the current time on the KDC is that read from the authtime field
 of the encrypted part of the reply. The client can optionally use
 this value for clock synchronization in subsequent messages by
 recording with the ticket the difference (offset) between the
 authtime value and the local clock. This offset can then be used by
 the same user to adjust the time read from the system clock when
 generating messages [DGT96].

 This technique MUST be used when adjusting for clock skew instead of
 directly changing the system clock because the KDC reply is only
 authenticated to the user whose secret key was used, but not to the
 system or workstation. If the clock were adjusted, an attacker
 colluding with a user logging into a workstation could agree on a
 password, resulting in a KDC reply that would be correctly validated
 even though it did not originate from a KDC trusted by the
 workstation.

 Proper decryption of the KRB_AS_REP message is not sufficient for the
 host to verify the identity of the user; the user and an attacker
 could cooperate to generate a KRB_AS_REP format message which
 decrypts properly but is not from the proper KDC. If the host wishes
 to verify the identity of the user, it MUST require the user to
 present application credentials which can be verified using a
 securely-stored secret key for the host. If those credentials can be
 verified, then the identity of the user can be assured.

3.1.6. Receipt of KRB_ERROR message

 If the reply message type is KRB_ERROR, then the client interprets it
 as an error and performs whatever application-specific tasks are
 necessary to recover.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 28]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

3.2. The Client/Server Authentication Exchange

 Summary
 Message direction Message type Section
 Client to Application server KRB_AP_REQ 5.5.1
 [optional] Application server to client KRB_AP_REP or 5.5.2
 KRB_ERROR 5.9.1

 The client/server authentication (CS) exchange is used by network
 applications to authenticate the client to the server and vice versa.
 The client MUST have already acquired credentials for the server
 using the AS or TGS exchange.

3.2.1. The KRB_AP_REQ message

 The KRB_AP_REQ contains authentication information which SHOULD be
 part of the first message in an authenticated transaction. It
 contains a ticket, an authenticator, and some additional bookkeeping
 information (see section 5.5.1 for the exact format). The ticket by
 itself is insufficient to authenticate a client, since tickets are
 passed across the network in cleartext (tickets contain both an
 encrypted and unencrypted portion, so cleartext here refers to the
 entire unit, which can be copied from one message and replayed in
 another without any cryptographic skill), so the authenticator is
 used to prevent invalid replay of tickets by proving to the server
 that the client knows the session key of the ticket and thus is
 entitled to use the ticket. The KRB_AP_REQ message is referred to
 elsewhere as the 'authentication header.'

3.2.2. Generation of a KRB_AP_REQ message

 When a client wishes to initiate authentication to a server, it
 obtains (either through a credentials cache, the AS exchange, or the
 TGS exchange) a ticket and session key for the desired service. The
 client MAY re-use any tickets it holds until they expire. To use a
 ticket the client constructs a new Authenticator from the system
 time, its name, and optionally an application specific checksum, an
 initial sequence number to be used in KRB_SAFE or KRB_PRIV messages,
 and/or a session subkey to be used in negotiations for a session key
 unique to this particular session. Authenticators MUST NOT be re-
 used and SHOULD be rejected if replayed to a server. Note that this
 can make applications based on unreliable transports difficult to
 code correctly. If the transport might deliver duplicated messages,
 either a new authenticator MUST be generated for each retry, or the
 application server MUST match requests and replies and replay the
 first reply in response to a detected duplicate.

 If a sequence number is to be included, it SHOULD be randomly chosen

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 29]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 so that even after many messages have been exchanged it is not likely
 to collide with other sequence numbers in use.

 The client MAY indicate a requirement of mutual authentication or the
 use of a session-key based ticket (for user-to-user authentication -
 see section 3.7) by setting the appropriate flag(s) in the ap-options
 field of the message.

 The Authenticator is encrypted in the session key and combined with
 the ticket to form the KRB_AP_REQ message which is then sent to the
 end server along with any additional application-specific
 information.

3.2.3. Receipt of KRB_AP_REQ message

 Authentication is based on the server's current time of day (clocks
 MUST be loosely synchronized), the authenticator, and the ticket.
 Several errors are possible. If an error occurs, the server is
 expected to reply to the client with a KRB_ERROR message. This
 message MAY be encapsulated in the application protocol if its raw
 form is not acceptable to the protocol. The format of error messages
 is described in section 5.9.1.

 The algorithm for verifying authentication information is as follows.
 If the message type is not KRB_AP_REQ, the server returns the
 KRB_AP_ERR_MSG_TYPE error. If the key version indicated by the Ticket
 in the KRB_AP_REQ is not one the server can use (e.g., it indicates
 an old key, and the server no longer possesses a copy of the old
 key), the KRB_AP_ERR_BADKEYVER error is returned. If the USE-SESSION-
 KEY flag is set in the ap-options field, it indicates to the server
 that user-to-user authentication is in use, and that the ticket is
 encrypted in the session key from the server's ticket-granting ticket
 rather than in the server's secret key. See section 3.7 for a more
 complete description of the effect of user-to-user authentication on
 all messages in the Kerberos protocol.

 Since it is possible for the server to be registered in multiple
 realms, with different keys in each, the srealm field in the
 unencrypted portion of the ticket in the KRB_AP_REQ is used to
 specify which secret key the server should use to decrypt that
 ticket. The KRB_AP_ERR_NOKEY error code is returned if the server
 doesn't have the proper key to decipher the ticket.

 The ticket is decrypted using the version of the server's key
 specified by the ticket. If the decryption routines detect a
 modification of the ticket (each encryption system MUST provide
 safeguards to detect modified ciphertext), the
 KRB_AP_ERR_BAD_INTEGRITY error is returned (chances are good that

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 30]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 different keys were used to encrypt and decrypt).

 The authenticator is decrypted using the session key extracted from
 the decrypted ticket. If decryption shows it to have been modified,
 the KRB_AP_ERR_BAD_INTEGRITY error is returned. The name and realm of
 the client from the ticket are compared against the same fields in
 the authenticator. If they don't match, the KRB_AP_ERR_BADMATCH
 error is returned; this normally is caused by a client error or
 attempted attack. The addresses in the ticket (if any) are then
 searched for an address matching the operating-system reported
 address of the client. If no match is found or the server insists on
 ticket addresses but none are present in the ticket, the
 KRB_AP_ERR_BADADDR error is returned. If the local (server) time and
 the client time in the authenticator differ by more than the
 allowable clock skew (e.g., 5 minutes), the KRB_AP_ERR_SKEW error is
 returned.

 Unless the application server provides its own suitable means to
 protect against replay (for example, a challenge-response sequence
 initiated by the server after authentication, or use of a server-
 generated encryption subkey), the server MUST utilize a replay cache
 to remember any authenticator presented within the allowable clock
 skew. Careful analysis of the application protocol and implementation
 is recommended before eliminating this cache. The replay cache will
 store at least the server name, along with the client name, time and
 microsecond fields from the recently-seen authenticators and if a
 matching tuple is found, the KRB_AP_ERR_REPEAT error is returned.
 Note that the rejection here is restricted to authenticators from the
 same principal to the same server. Other client principals
 communicating with the same server principal should not have their
 authenticators rejected if the time and microsecond fields happen to
 match some other client's authenticator.

 If a server loses track of authenticators presented within the
 allowable clock skew, it MUST reject all requests until the clock
 skew interval has passed, providing assurance that any lost or
 replayed authenticators will fall outside the allowable clock skew
 and can no longer be successfully replayed. If this were not done,
 an attacker could subvert the authentication by recording the ticket
 and authenticator sent over the network to a server and replaying
 them following an event that caused the server to lose track of
 recently seen authenticators.

 Implementation note: If a client generates multiple requests to the
 KDC with the same timestamp, including the microsecond field, all but
 the first of the requests received will be rejected as replays. This
 might happen, for example, if the resolution of the client's clock is
 too coarse. Client implementations SHOULD ensure that the timestamps

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 31]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 are not reused, possibly by incrementing the microseconds field in
 the time stamp when the clock returns the same time for multiple
 requests.

 If multiple servers (for example, different services on one machine,
 or a single service implemented on multiple machines) share a service
 principal (a practice we do not recommend in general, but acknowledge
 will be used in some cases), they MUST either share this replay
 cache, or the application protocol MUST be designed so as to
 eliminate the need for it. Note that this applies to all of the
 services, if any of the application protocols does not have replay
 protection built in; an authenticator used with such a service could
 later be replayed to a different service with the same service
 principal but no replay protection, if the former doesn't record the
 authenticator information in the common replay cache.

 If a sequence number is provided in the authenticator, the server
 saves it for later use in processing KRB_SAFE and/or KRB_PRIV
 messages. If a subkey is present, the server either saves it for
 later use or uses it to help generate its own choice for a subkey to
 be returned in a KRB_AP_REP message.

 The server computes the age of the ticket: local (server) time minus
 the start time inside the Ticket. If the start time is later than the
 current time by more than the allowable clock skew or if the INVALID
 flag is set in the ticket, the KRB_AP_ERR_TKT_NYV error is returned.
 Otherwise, if the current time is later than end time by more than
 the allowable clock skew, the KRB_AP_ERR_TKT_EXPIRED error is
 returned.

 If all these checks succeed without an error, the server is assured
 that the client possesses the credentials of the principal named in
 the ticket and thus, the client has been authenticated to the server.

 Passing these checks provides only authentication of the named
 principal; it does not imply authorization to use the named service.
 Applications MUST make a separate authorization decision based upon
 the authenticated name of the user, the requested operation, local
 access control information such as that contained in a .k5login or
 .k5users file, and possibly a separate distributed authorization
 service.

3.2.4. Generation of a KRB_AP_REP message

 Typically, a client's request will include both the authentication
 information and its initial request in the same message, and the
 server need not explicitly reply to the KRB_AP_REQ. However, if
 mutual authentication (not only authenticating the client to the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 32]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 server, but also the server to the client) is being performed, the
 KRB_AP_REQ message will have MUTUAL-REQUIRED set in its ap-options
 field, and a KRB_AP_REP message is required in response. As with the
 error message, this message MAY be encapsulated in the application
 protocol if its "raw" form is not acceptable to the application's
 protocol. The timestamp and microsecond field used in the reply MUST
 be the client's timestamp and microsecond field (as provided in the
 authenticator). If a sequence number is to be included, it SHOULD be
 randomly chosen as described above for the authenticator. A subkey
 MAY be included if the server desires to negotiate a different
 subkey. The KRB_AP_REP message is encrypted in the session key
 extracted from the ticket.

 Note that in the Kerberos version 4 protocol, the timestamp in the
 reply was the client's timestamp plus one. This is not necessary in
 version 5 because version 5 messages are formatted in such a way that
 it is not possible to create the reply by judicious message surgery
 (even in encrypted form) without knowledge of the appropriate
 encryption keys.

3.2.5. Receipt of KRB_AP_REP message

 If a KRB_AP_REP message is returned, the client uses the session key
 from the credentials obtained for the server to decrypt the message
 (Note that for encrypting the KRB_AP_REP message, the sub-session key
 is not used, even if present in the Authenticator), and verifies that
 the timestamp and microsecond fields match those in the Authenticator
 it sent to the server. If they match, then the client is assured that
 the server is genuine. The sequence number and subkey (if present)
 are retained for later use.

3.2.6. Using the encryption key

 After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and
 server share an encryption key which can be used by the application.
 In some cases, the use of this session key will be implicit in the
 protocol; in others the method of use must be chosen from several
 alternatives. The actual encryption key to be used for KRB_PRIV,
 KRB_SAFE, or other application-specific uses MAY be chosen by the
 application based on the session key from the ticket and subkeys in
 the KRB_AP_REP message and the authenticator. Implementations of the
 protocol MAY provide routines to choose subkeys based on session keys
 and random numbers and to generate a negotiated key to be returned in
 the KRB_AP_REP message.

 To mitigate the effect of failures in random number generation on the
 client it is strongly encouraged that any key derived by an
 application for subsequent use include the full key entropy derived

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 33]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 from the KDC generated session key carried in the ticket. We leave
 the protocol negotiations of how to use the key (e.g. selecting an
 encryption or checksum type) to the application programmer; the
 Kerberos protocol does not constrain the implementation options, but
 an example of how this might be done follows.

 One way that an application may choose to negotiate a key to be used
 for subsequent integrity and privacy protection is for the client to
 propose a key in the subkey field of the authenticator. The server
 can then choose a key using the proposed key from the client as
 input, returning the new subkey in the subkey field of the
 application reply. This key could then be used for subsequent
 communication.

 With both the one-way and mutual authentication exchanges, the peers
 should take care not to send sensitive information to each other
 without proper assurances. In particular, applications that require
 privacy or integrity SHOULD use the KRB_AP_REP response from the
 server to client to assure both client and server of their peer's
 identity. If an application protocol requires privacy of its
 messages, it can use the KRB_PRIV message (section 3.5). The KRB_SAFE
 message (section 3.4) can be used to assure integrity.

3.3. The Ticket-Granting Service (TGS) Exchange

 Summary
 Message direction Message type Section

1. Client to Kerberos KRB_TGS_REQ 5.4.1
 2. Kerberos to client KRB_TGS_REP or 5.4.2
 KRB_ERROR 5.9.1

 The TGS exchange between a client and the Kerberos Ticket-Granting
 Server is initiated by a client when it wishes to obtain
 authentication credentials for a given server (which might be
 registered in a remote realm), when it wishes to renew or validate an
 existing ticket, or when it wishes to obtain a proxy ticket. In the
 first case, the client must already have acquired a ticket for the
 Ticket-Granting Service using the AS exchange (the ticket-granting
 ticket is usually obtained when a client initially authenticates to
 the system, such as when a user logs in). The message format for the
 TGS exchange is almost identical to that for the AS exchange. The
 primary difference is that encryption and decryption in the TGS
 exchange does not take place under the client's key. Instead, the
 session key from the ticket-granting ticket or renewable ticket, or
 sub-session key from an Authenticator is used. As is the case for all
 application servers, expired tickets are not accepted by the TGS, so
 once a renewable or ticket-granting ticket expires, the client must
 use a separate exchange to obtain valid tickets.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 34]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The TGS exchange consists of two messages: A request (KRB_TGS_REQ)
 from the client to the Kerberos Ticket-Granting Server, and a reply
 (KRB_TGS_REP or KRB_ERROR). The KRB_TGS_REQ message includes
 information authenticating the client plus a request for credentials.
 The authentication information consists of the authentication header
 (KRB_AP_REQ) which includes the client's previously obtained ticket-
 granting, renewable, or invalid ticket. In the ticket-granting
 ticket and proxy cases, the request MAY include one or more of: a
 list of network addresses, a collection of typed authorization data
 to be sealed in the ticket for authorization use by the application
 server, or additional tickets (the use of which are described later).
 The TGS reply (KRB_TGS_REP) contains the requested credentials,
 encrypted in the session key from the ticket-granting ticket or
 renewable ticket, or if present, in the sub-session key from the
 Authenticator (part of the authentication header). The KRB_ERROR
 message contains an error code and text explaining what went wrong.
 The KRB_ERROR message is not encrypted. The KRB_TGS_REP message
 contains information which can be used to detect replays, and to
 associate it with the message to which it replies. The KRB_ERROR
 message also contains information which can be used to associate it
 with the message to which it replies. The same comments about
 integrity protection of KRB_ERROR messages mentioned in section 3.1
 apply to the TGS exchange.

3.3.1. Generation of KRB_TGS_REQ message

 Before sending a request to the ticket-granting service, the client
 MUST determine in which realm the application server is believed to
 be registered. This can be accomplished in several ways. It might be
 known beforehand (since the realm is part of the principal
 identifier), it might be stored in a nameserver, or it might be
 obtained from a configuration file. If the realm to be used is
 obtained from a nameserver, there is a danger of being spoofed if the
 nameservice providing the realm name is not authenticated. This
 might result in the use of a realm which has been compromised, and
 would result in an attacker's ability to compromise the
 authentication of the application server to the client.

 If the client knows the service principal name and realm and it does
 not already possess a ticket-granting ticket for the appropriate
 realm, then one must be obtained. This is first attempted by
 requesting a ticket-granting ticket for the destination realm from a
 Kerberos server for which the client possesses a ticket-granting
 ticket (using the KRB_TGS_REQ message recursively). The Kerberos
 server MAY return a TGT for the desired realm in which case one can
 proceed. Alternatively, the Kerberos server MAY return a TGT for a
 realm which is 'closer' to the desired realm (further along the
 standard hierarchical path between the client's realm and the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 35]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 requested realm server's realm). It should be noted in this case that
 misconfiguration of the Kerberos servers may cause loops in the
 resulting authentication path, which the client should be careful to
 detect and avoid.

 If the Kerberos server returns a TGT for a 'closer' realm other than
 the desired realm, the client MAY use local policy configuration to
 verify that the authentication path used is an acceptable one.
 Alternatively, a client MAY choose its own authentication path,
 rather than relying on the Kerberos server to select one. In either
 case, any policy or configuration information used to choose or
 validate authentication paths, whether by the Kerberos server or
 client, MUST be obtained from a trusted source.

 When a client obtains a ticket-granting ticket that is 'closer' to
 the destination realm, the client MAY cache this ticket and reuse it
 in future KRB-TGS exchanges with services in the 'closer' realm.
 However, if the client were to obtain a ticket-granting ticket for
 the 'closer' realm by starting at the initial KDC rather than as part
 of obtaining another ticket, then a shorter path to the 'closer'
 realm might be used. This shorter path may be desirable because fewer
 intermediate KDCs would know the session key of the ticket involved.
 For this reason, clients SHOULD evaluate whether they trust the
 realms transited in obtaining the 'closer' ticket when making a
 decision to use the ticket in future.

 Once the client obtains a ticket-granting ticket for the appropriate
 realm, it determines which Kerberos servers serve that realm, and
 contacts one. The list might be obtained through a configuration file
 or network service or it MAY be generated from the name of the realm;
 as long as the secret keys exchanged by realms are kept secret, only
 denial of service results from using a false Kerberos server.

 As in the AS exchange, the client MAY specify a number of options in
 the KRB_TGS_REQ message. One of these options is the ENC-TKT-IN-SKEY
 option used for user-to-user authentication. An overview of user-to-
 user authentication can be found in section 3.7. When generating the
 KRB_TGS_REQ message, this option indicates that the client is
 including a ticket-granting ticket obtained from the application
 server in the additional tickets field of the request and that the
 KDC SHOULD encrypt the ticket for the application server using the
 session key from this additional ticket, instead of using a server
 key from the principal database.

 The client prepares the KRB_TGS_REQ message, providing an
 authentication header as an element of the padata field, and
 including the same fields as used in the KRB_AS_REQ message along
 with several optional fields: the enc-authorizatfion-data field for

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 36]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 application server use and additional tickets required by some
 options.

 In preparing the authentication header, the client can select a sub-
 session key under which the response from the Kerberos server will be
 encrypted. If the client selects a sub-session key, care must be
 taken to ensure the randomness of the selected sub-session key.

 If the sub-session key is not specified, the session key from the
 ticket-granting ticket will be used. If the enc-authorization-data is
 present, it MUST be encrypted in the sub-session key, if present,
 from the authenticator portion of the authentication header, or if
 not present, using the session key from the ticket-granting ticket.

 Once prepared, the message is sent to a Kerberos server for the
 destination realm.

3.3.2. Receipt of KRB_TGS_REQ message

 The KRB_TGS_REQ message is processed in a manner similar to the
 KRB_AS_REQ message, but there are many additional checks to be
 performed. First, the Kerberos server MUST determine which server the
 accompanying ticket is for and it MUST select the appropriate key to
 decrypt it. For a normal KRB_TGS_REQ message, it will be for the
 ticket granting service, and the TGS's key will be used. If the TGT
 was issued by another realm, then the appropriate inter-realm key
 MUST be used. If the accompanying ticket is not a ticket-granting
 ticket for the current realm, but is for an application server in the
 current realm, the RENEW, VALIDATE, or PROXY options are specified in
 the request, and the server for which a ticket is requested is the
 server named in the accompanying ticket, then the KDC will decrypt
 the ticket in the authentication header using the key of the server
 for which it was issued. If no ticket can be found in the padata
 field, the KDC_ERR_PADATA_TYPE_NOSUPP error is returned.

 Once the accompanying ticket has been decrypted, the user-supplied
 checksum in the Authenticator MUST be verified against the contents
 of the request, and the message rejected if the checksums do not
 match (with an error code of KRB_AP_ERR_MODIFIED) or if the checksum
 is not collision-proof (with an error code of
 KRB_AP_ERR_INAPP_CKSUM). If the checksum type is not supported, the
 KDC_ERR_SUMTYPE_NOSUPP error is returned. If the authorization-data
 are present, they are decrypted using the sub-session key from the
 Authenticator.

 If any of the decryptions indicate failed integrity checks, the
 KRB_AP_ERR_BAD_INTEGRITY error is returned.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 37]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 As discussed in section 3.1.2, the KDC MUST send a valid KRB_TGS_REP
 message if it receives a KRB_TGS_REQ message identical to one it has
 recently processed. However, if the authenticator is a replay, but
 the rest of the request is not identical, then the KDC SHOULD return
 KRB_AP_ERR_REPEAT.

3.3.3. Generation of KRB_TGS_REP message

 The KRB_TGS_REP message shares its format with the KRB_AS_REP
 (KRB_KDC_REP), but with its type field set to KRB_TGS_REP. The
 detailed specification is in section 5.4.2.

 The response will include a ticket for the requested server or for a
 ticket granting server of an intermediate KDC to be contacted to
 obtain the requested ticket. The Kerberos database is queried to
 retrieve the record for the appropriate server (including the key
 with which the ticket will be encrypted). If the request is for a
 ticket-granting ticket for a remote realm, and if no key is shared
 with the requested realm, then the Kerberos server will select the
 realm 'closest' to the requested realm with which it does share a
 key, and use that realm instead. This is the only case where the
 response for the KDC will be for a different server than that
 requested by the client.

 By default, the address field, the client's name and realm, the list
 of transited realms, the time of initial authentication, the
 expiration time, and the authorization data of the newly-issued
 ticket will be copied from the ticket-granting ticket (TGT) or
 renewable ticket. If the transited field needs to be updated, but the
 transited type is not supported, the KDC_ERR_TRTYPE_NOSUPP error is
 returned.

 If the request specifies an endtime, then the endtime of the new
 ticket is set to the minimum of (a) that request, (b) the endtime
 from the TGT, and (c) the starttime of the TGT plus the minimum of
 the maximum life for the application server and the maximum life for
 the local realm (the maximum life for the requesting principal was
 already applied when the TGT was issued). If the new ticket is to be
 a renewal, then the endtime above is replaced by the minimum of (a)
 the value of the renew_till field of the ticket and (b) the starttime
 for the new ticket plus the life (endtime-starttime) of the old
 ticket.

 If the FORWARDED option has been requested, then the resulting ticket
 will contain the addresses specified by the client. This option will
 only be honored if the FORWARDABLE flag is set in the TGT. The PROXY
 option is similar; the resulting ticket will contain the addresses
 specified by the client. It will be honored only if the PROXIABLE

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 38]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 flag in the TGT is set. The PROXY option will not be honored on
 requests for additional ticket-granting tickets.

 If the requested start time is absent, indicates a time in the past,
 or is within the window of acceptable clock skew for the KDC and the
 POSTDATE option has not been specified, then the start time of the
 ticket is set to the authentication server's current time. If it
 indicates a time in the future beyond the acceptable clock skew, but
 the POSTDATED option has not been specified or the MAY-POSTDATE flag
 is not set in the TGT, then the error KDC_ERR_CANNOT_POSTDATE is
 returned. Otherwise, if the ticket-granting ticket has the MAY-
 POSTDATE flag set, then the resulting ticket will be postdated and
 the requested starttime is checked against the policy of the local
 realm. If acceptable, the ticket's start time is set as requested,
 and the INVALID flag is set. The postdated ticket MUST be validated
 before use by presenting it to the KDC after the starttime has been
 reached. However, in no case may the starttime, endtime, or renew-
 till time of a newly-issued postdated ticket extend beyond the renew-
 till time of the ticket-granting ticket.

 If the ENC-TKT-IN-SKEY option has been specified and an additional
 ticket has been included in the request, it indicates that the client
 is using user- to-user authentication to prove its identity to a
 server that does not have access to a persistent key. Section 3.7
 describes the affect of this option on the entire Kerberos protocol.
 When generating the KRB_TGS_REP message, this option in the
 KRB_TGS_REQ message tells the KDC to decrypt the additional ticket
 using the key for the server to which the additional ticket was
 issued and verify that it is a ticket-granting ticket. If the name of
 the requested server is missing from the request, the name of the
 client in the additional ticket will be used. Otherwise the name of
 the requested server will be compared to the name of the client in
 the additional ticket and if different, the request will be rejected.
 If the request succeeds, the session key from the additional ticket
 will be used to encrypt the new ticket that is issued instead of
 using the key of the server for which the new ticket will be used.

 If the name of the server in the ticket that is presented to the KDC
 as part of the authentication header is not that of the ticket-
 granting server itself, the server is registered in the realm of the
 KDC, and the RENEW option is requested, then the KDC will verify that
 the RENEWABLE flag is set in the ticket, that the INVALID flag is not
 set in the ticket, and that the renew_till time is still in the
 future. If the VALIDATE option is requested, the KDC will check that
 the starttime has passed and the INVALID flag is set. If the PROXY
 option is requested, then the KDC will check that the PROXIABLE flag
 is set in the ticket. If the tests succeed, and the ticket passes the
 hotlist check described in the next section, the KDC will issue the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 39]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 appropriate new ticket.

 The ciphertext part of the response in the KRB_TGS_REP message is
 encrypted in the sub-session key from the Authenticator, if present,
 or the session key from the ticket-granting ticket. It is not
 encrypted using the client's secret key. Furthermore, the client's
 key's expiration date and the key version number fields are left out
 since these values are stored along with the client's database
 record, and that record is not needed to satisfy a request based on a
 ticket-granting ticket.

3.3.3.1. Checking for revoked tickets

 Whenever a request is made to the ticket-granting server, the
 presented ticket(s) is(are) checked against a hot-list of tickets
 which have been canceled. This hot-list might be implemented by
 storing a range of issue timestamps for 'suspect tickets'; if a
 presented ticket had an authtime in that range, it would be rejected.
 In this way, a stolen ticket-granting ticket or renewable ticket
 cannot be used to gain additional tickets (renewals or otherwise)
 once the theft has been reported to the KDC for the realm in which
 the server resides. Any normal ticket obtained before it was reported
 stolen will still be valid (because they require no interaction with
 the KDC), but only until their normal expiration time. If TGT's have
 been issued for cross-realm authentication, use of the cross-realm
 TGT will not be affected unless the hot-list is propagated to the
 KDCs for the realms for which such cross-realm tickets were issued.

3.3.3.2. Encoding the transited field

 If the identity of the server in the TGT that is presented to the KDC
 as part of the authentication header is that of the ticket-granting
 service, but the TGT was issued from another realm, the KDC will look
 up the inter-realm key shared with that realm and use that key to
 decrypt the ticket. If the ticket is valid, then the KDC will honor
 the request, subject to the constraints outlined above in the section
 describing the AS exchange. The realm part of the client's identity
 will be taken from the ticket-granting ticket. The name of the realm
 that issued the ticket-granting ticket, if it is not the realm of the
 client principal, will be added to the transited field of the ticket
 to be issued. This is accomplished by reading the transited field
 from the ticket-granting ticket (which is treated as an unordered set
 of realm names), adding the new realm to the set, then constructing
 and writing out its encoded (shorthand) form (this may involve a
 rearrangement of the existing encoding).

 Note that the ticket-granting service does not add the name of its
 own realm. Instead, its responsibility is to add the name of the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 40]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 previous realm. This prevents a malicious Kerberos server from
 intentionally leaving out its own name (it could, however, omit other
 realms' names).

 The names of neither the local realm nor the principal's realm are to
 be included in the transited field. They appear elsewhere in the
 ticket and both are known to have taken part in authenticating the
 principal. Since the endpoints are not included, both local and
 single-hop inter-realm authentication result in a transited field
 that is empty.

 Because the name of each realm transited is added to this field, it
 might potentially be very long. To decrease the length of this field,
 its contents are encoded. The initially supported encoding is
 optimized for the normal case of inter-realm communication: a
 hierarchical arrangement of realms using either domain or X.500 style
 realm names. This encoding (called DOMAIN-X500-COMPRESS) is now
 described.

 Realm names in the transited field are separated by a ",". The ",",
 "\", trailing "."s, and leading spaces (" ") are special characters,
 and if they are part of a realm name, they MUST be quoted in the
 transited field by preceding them with a "\".

 A realm name ending with a "." is interpreted as being prepended to
 the previous realm. For example, we can encode traversal of EDU,
 MIT.EDU, ATHENA.MIT.EDU, WASHINGTON.EDU, and CS.WASHINGTON.EDU as:

 "EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".

 Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were end-points,
 that they would not be included in this field, and we would have:

 "EDU,MIT.,WASHINGTON.EDU"

 A realm name beginning with a "/" is interpreted as being appended to
 the previous realm. For the purpose of appending, the realm
 preceding the first listed realm is considered to be the null realm
 (""). If a realm name beginning with a "/" is to stand by itself,
 then it SHOULD be preceded by a space (" "). For example, we can
 encode traversal of /COM/HP/APOLLO, /COM/HP, /COM, and /COM/DEC as:

 "/COM,/HP,/APOLLO, /COM/DEC".

 Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints,
 they would not be included in this field, and we would have:

 "/COM,/HP"

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 41]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 A null subfield preceding or following a "," indicates that all
 realms between the previous realm and the next realm have been
 traversed. For the purpose of interpreting null subfields, the
 client's realm is considered to precede those in the transited field,
 and the server's realm is considered to follow them. Thus, "," means
 that all realms along the path between the client and the server have
 been traversed. ",EDU, /COM," means that all realms from the client's
 realm up to EDU (in a domain style hierarchy) have been traversed,
 and that everything from /COM down to the server's realm in an X.500
 style has also been traversed. This could occur if the EDU realm in
 one hierarchy shares an inter-realm key directly with the /COM realm
 in another hierarchy.

3.3.4. Receipt of KRB_TGS_REP message

 When the KRB_TGS_REP is received by the client, it is processed in
 the same manner as the KRB_AS_REP processing described above. The
 primary difference is that the ciphertext part of the response must
 be decrypted using the sub-session key from the Authenticator, if it
 was specified in the request, or the session key from the ticket-
 granting ticket, rather than the client's secret key. The server name
 returned in the reply is the true principal name of the service.

3.4. The KRB_SAFE Exchange

 The KRB_SAFE message MAY be used by clients requiring the ability to
 detect modifications of messages they exchange. It achieves this by
 including a keyed collision-proof checksum of the user data and some
 control information. The checksum is keyed with an encryption key
 (usually the last key negotiated via subkeys, or the session key if
 no negotiation has occurred).

3.4.1. Generation of a KRB_SAFE message

 When an application wishes to send a KRB_SAFE message, it collects
 its data and the appropriate control information and computes a
 checksum over them. The checksum algorithm should be the keyed
 checksum mandated to be implemented along with the crypto system used
 for the sub-session or session key. The checksum is generated using
 the sub-session key if present or the session key. Some
 implementations use a different checksum algorithm for the KRB_SAFE
 messages but doing so in a interoperable manner is not always
 possible.

 The control information for the KRB_SAFE message includes both a
 timestamp and a sequence number. The designer of an application using
 the KRB_SAFE message MUST choose at least one of the two mechanisms.
 This choice SHOULD be based on the needs of the application protocol.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 42]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Sequence numbers are useful when all messages sent will be received
 by one's peer. Connection state is presently required to maintain the
 session key, so maintaining the next sequence number should not
 present an additional problem.

 If the application protocol is expected to tolerate lost messages
 without them being resent, the use of the timestamp is the
 appropriate replay detection mechanism. Using timestamps is also the
 appropriate mechanism for multi-cast protocols where all of one's
 peers share a common sub-session key, but some messages will be sent
 to a subset of one's peers.

 After computing the checksum, the client then transmits the
 information and checksum to the recipient in the message format
 specified in section 5.6.1.

3.4.2. Receipt of KRB_SAFE message

 When an application receives a KRB_SAFE message, it verifies it as
 follows. If any error occurs, an error code is reported for use by
 the application.

 The message is first checked by verifying that the protocol version
 and type fields match the current version and KRB_SAFE, respectively.
 A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
 error. The application verifies that the checksum used is a
 collision-proof keyed checksum that uses keys compatible with the
 sub-session or session key as appropriate (or with the application
 key derived from the session or sub-session keys), and if it is not,
 a KRB_AP_ERR_INAPP_CKSUM error is generated. The sender's address
 MUST be included in the control information; the recipient verifies
 that the operating system's report of the sender's address matches
 the sender's address in the message, and (if a recipient address is
 specified or the recipient requires an address) that one of the
 recipient's addresses appears as the recipient's address in the
 message. To work with network address translation, senders MAY use
 the directional address type specified in section 8.1 for the sender
 address and not include recipient addresses. A failed match for
 either case generates a KRB_AP_ERR_BADADDR error. Then the timestamp
 and usec and/or the sequence number fields are checked. If timestamp
 and usec are expected and not present, or they are present but not
 current, the KRB_AP_ERR_SKEW error is generated. Timestamps are not
 required to be strictly ordered; they are only required to be in the
 skew window. If the server name, along with the client name, time
 and microsecond fields from the Authenticator match any recently-seen
 (sent or received) such tuples, the KRB_AP_ERR_REPEAT error is
 generated. If an incorrect sequence number is included, or a sequence
 number is expected but not present, the KRB_AP_ERR_BADORDER error is

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 43]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 generated. If neither a time-stamp and usec or a sequence number is
 present, a KRB_AP_ERR_MODIFIED error is generated. Finally, the
 checksum is computed over the data and control information, and if it
 doesn't match the received checksum, a KRB_AP_ERR_MODIFIED error is
 generated.

 If all the checks succeed, the application is assured that the
 message was generated by its peer and was not modified in transit.

 Implementations SHOULD accept any checksum algorithm they implement
 that both have adequate security and that have keys compatible with
 the sub-session or session key. Unkeyed or non-collision-proof
 checksums are not suitable for this use.

3.5. The KRB_PRIV Exchange

 The KRB_PRIV message MAY be used by clients requiring confidentiality
 and the ability to detect modifications of exchanged messages. It
 achieves this by encrypting the messages and adding control
 information.

3.5.1. Generation of a KRB_PRIV message

 When an application wishes to send a KRB_PRIV message, it collects
 its data and the appropriate control information (specified in

section 5.7.1) and encrypts them under an encryption key (usually the
 last key negotiated via subkeys, or the session key if no negotiation
 has occurred). As part of the control information, the client MUST
 choose to use either a timestamp or a sequence number (or both); see
 the discussion in section 3.4.1 for guidelines on which to use. After
 the user data and control information are encrypted, the client
 transmits the ciphertext and some 'envelope' information to the
 recipient.

3.5.2. Receipt of KRB_PRIV message

 When an application receives a KRB_PRIV message, it verifies it as
 follows. If any error occurs, an error code is reported for use by
 the application.

 The message is first checked by verifying that the protocol version
 and type fields match the current version and KRB_PRIV, respectively.
 A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
 error. The application then decrypts the ciphertext and processes the
 resultant plaintext. If decryption shows the data to have been
 modified, a KRB_AP_ERR_BAD_INTEGRITY error is generated.

 The sender's address MUST be included in the control information; the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 44]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 recipient verifies that the operating system's report of the sender's
 address matches the sender's address in the message. If a recipient
 address is specified or the recipient requires an address then one of
 the recipient's addresses MUST also appear as the recipient's address
 in the message. Where a sender's or receiver's address might not
 otherwise match the address in a message because of network address
 translation, an application MAY be written to use addresses of the
 directional address type in place of the actual network address.

 A failed match for either case generates a KRB_AP_ERR_BADADDR error.
 To work with network address translation, implementations MAY use the
 directional address type defined in section 7.1 for the sender
 address and include no recipient address.

 Then the timestamp and usec and/or the sequence number fields are
 checked. If timestamp and usec are expected and not present, or they
 are present but not current, the KRB_AP_ERR_SKEW error is generated.
 If the server name, along with the client name, time and microsecond
 fields from the Authenticator match any recently-seen such tuples,
 the KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence
 number is included, or a sequence number is expected but not present,
 the KRB_AP_ERR_BADORDER error is generated. If neither a time-stamp
 and usec or a sequence number is present, a KRB_AP_ERR_MODIFIED error
 is generated.

 If all the checks succeed, the application can assume the message was
 generated by its peer, and was securely transmitted (without
 intruders able to see the unencrypted contents).

3.6. The KRB_CRED Exchange

 The KRB_CRED message MAY be used by clients requiring the ability to
 send Kerberos credentials from one host to another. It achieves this
 by sending the tickets together with encrypted data containing the
 session keys and other information associated with the tickets.

3.6.1. Generation of a KRB_CRED message

 When an application wishes to send a KRB_CRED message it first (using
 the KRB_TGS exchange) obtains credentials to be sent to the remote
 host. It then constructs a KRB_CRED message using the ticket or
 tickets so obtained, placing the session key needed to use each
 ticket in the key field of the corresponding KrbCredInfo sequence of
 the encrypted part of the KRB_CRED message.

 Other information associated with each ticket and obtained during the
 KRB_TGS exchange is also placed in the corresponding KrbCredInfo
 sequence in the encrypted part of the KRB_CRED message. The current

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 45]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 time and, if specifically required by the application the nonce, s-
 address, and r-address fields, are placed in the encrypted part of
 the KRB_CRED message which is then encrypted under an encryption key
 previously exchanged in the KRB_AP exchange (usually the last key
 negotiated via subkeys, or the session key if no negotiation has
 occurred).

 Implementation note: When constructing a KRB_CRED message for
 inclusion in a GSSAPI initial context token, the MIT implementation
 of Kerberos will not encrypt the KRB_CRED message if the session key
 is a DES or triple DES key. For interoperability with MIT, the
 Microsoft implementation will not encrypt the KRB_CRED in a GSSAPI
 token if it is using a DES session key. Starting at version 1.2.5,
 MIT Kerberos can receive and decode either encrypted or unencrypted
 KRB_CRED tokens in the GSSAPI exchange. The Heimdal implementation of
 Kerberos can also accept either encrypted or unencrypted KRB_CRED
 messages. Since the KRB_CRED message in a GSSAPI token is encrypted
 in the authenticator, the MIT behavior does not present a security
 problem, although it is a violation of the Kerberos specification.

3.6.2. Receipt of KRB_CRED message

 When an application receives a KRB_CRED message, it verifies it. If
 any error occurs, an error code is reported for use by the
 application. The message is verified by checking that the protocol
 version and type fields match the current version and KRB_CRED,
 respectively. A mismatch generates a KRB_AP_ERR_BADVERSION or
 KRB_AP_ERR_MSG_TYPE error. The application then decrypts the
 ciphertext and processes the resultant plaintext. If decryption shows
 the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is
 generated.

 If present or required, the recipient MAY verify that the operating
 system's report of the sender's address matches the sender's address
 in the message, and that one of the recipient's addresses appears as
 the recipient's address in the message. The address check does not
 provide any added security, since the address if present has already
 been checked in the KRB_AP_REQ message and there is not any benefit
 to be gained by an attacker in reflecting a KRB_CRED message back to
 its originator. Thus, the recipient MAY ignore the address even if
 present in order to work better in NAT environments. A failed match
 for either case generates a KRB_AP_ERR_BADADDR error. Recipients MAY
 skip the address check as the KRB_CRED message cannot generally be
 reflected back to the originator. The timestamp and usec fields (and
 the nonce field if required) are checked next. If the timestamp and
 usec are not present, or they are present but not current, the
 KRB_AP_ERR_SKEW error is generated.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 46]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 If all the checks succeed, the application stores each of the new
 tickets in its credentials cache together with the session key and
 other information in the corresponding KrbCredInfo sequence from the
 encrypted part of the KRB_CRED message.

3.7. User-to-User Authentication Exchanges

 User-to-User authentication provides a method to perform
 authentication when the verifier does not have a access to long term
 service key. This might be the case when running a server (for
 example a window server) as a user on a workstation. In such cases,
 the server may have access to the ticket-granting ticket obtained
 when the user logged in to the workstation, but because the server is
 running as an unprivileged user it might not have access to system
 keys. Similar situations may arise when running peer-to-peer
 applications.

 Summary
 Message direction Message type Sections
 0. Message from application server Not Specified
 1. Client to Kerberos KRB_TGS_REQ 3.3 + 5.4.1
 2. Kerberos to client KRB_TGS_REP or 3.3 + 5.4.2
 KRB_ERROR 5.9.1
 3. Client to Application server KRB_AP_REQ 3.2 + 5.5.1

 To address this problem, the Kerberos protocol allows the client to
 request that the ticket issued by the KDC be encrypted using a
 session key from a ticket-granting ticket issued to the party that
 will verify the authentication. This ticket-granting ticket must be
 obtained from the verifier by means of an exchange external to the
 Kerberos protocol, usually as part of the application protocol. This
 message is shown in the summary above as message 0. Note that because
 the ticket-granting ticket is encrypted in the KDC's secret key, it
 can not be used for authentication without possession of the
 corresponding secret key. Furthermore, because the verifier does not
 reveal the corresponding secret key, providing a copy of the
 verifier's ticket-granting ticket does not allow impersonation of the
 verifier.

 Message 0 in the table above represents an application specific
 negotiation between the client and server, at the end of which both
 have determined that they will use user-to-user authentication and
 the client has obtained the server's TGT.

 Next, the client includes the server's TGT as an additional ticket in
 its KRB_TGS_REQ request to the KDC (message 1 in the table above) and
 specifies the ENC-TKT-IN-SKEY option in its request.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 47]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 If validated according to the instructions in 3.3.3, the application
 ticket returned to the client (message 2 in the table above) will be
 encrypted using the session key from the additional ticket and the
 client will note this when it uses or stores the application ticket.

 When contacting the server using a ticket obtained for user-to-user
 authentication (message 3 in the table above), the client MUST
 specify the USE-SESSION-KEY flag in the ap-options field. This tells
 the application server to use the session key associated with its
 ticket-granting ticket to decrypt the server ticket provided in the
 application request.

4. Encryption and Checksum Specifications

 The Kerberos protocols described in this document are designed to
 encrypt messages of arbitrary sizes, using stream or block encryption
 ciphers. Encryption is used to prove the identities of the network
 entities participating in message exchanges. The Key Distribution
 Center for each realm is trusted by all principals registered in that
 realm to store a secret key in confidence. Proof of knowledge of this
 secret key is used to verify the authenticity of a principal.

 The KDC uses the principal's secret key (in the AS exchange) or a
 shared session key (in the TGS exchange) to encrypt responses to
 ticket requests; the ability to obtain the secret key or session key
 implies the knowledge of the appropriate keys and the identity of the
 KDC. The ability of a principal to decrypt the KDC response and
 present a Ticket and a properly formed Authenticator (generated with
 the session key from the KDC response) to a service verifies the
 identity of the principal; likewise the ability of the service to
 extract the session key from the Ticket and prove its knowledge
 thereof in a response verifies the identity of the service.

 [@KCRYPTO] defines a framework for defining encryption and checksum
 mechanisms for use with Kerberos. It also defines several such
 mechanisms, and more may be added in future updates to that document.

 The string-to-key operation provided by [@KCRYPTO] is used to produce
 a long-term key for a principal (generally for a user). The default
 salt string, if none is provided via pre-authentication data, is the
 concatenation of the principal's realm and name components, in order,
 with no separators. Unless otherwise indicated, the default string-
 to-key opaque parameter set as defined in [@KCRYPTO] is used.

 Encrypted data, keys and checksums are transmitted using the
 EncryptedData, EncryptionKey and Checksum data objects defined in

section 5.2.9. The encryption, decryption, and checksum operations
 described in this document use the corresponding encryption,

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 48]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 decryption, and get_mic operations described in [@KCRYPTO], with
 implicit "specific key" generation using the "key usage" values
 specified in the description of each EncryptedData or Checksum object
 to vary the key for each operation. Note that in some cases, the
 value to be used is dependent on the method of choosing the key or
 the context of the message.

 Key usages are unsigned 32 bit integers; zero is not permitted. The
 key usage values for encrypting or checksumming Kerberos messages are
 indicated in section 5 along with the message definitions. Key usage
 values 512-1023 are reserved for uses internal to a Kerberos
 implementation. (For example, seeding a pseudo-random number
 generator with a value produced by encrypting something with a
 session key and a key usage value not used for any other purpose.)
 Key usage values between 1024 and 2047 (inclusive) are reserved for
 application use; applications SHOULD use even values for encryption
 and odd values for checksums within this range. Key usage values are
 also summarized in a table in section 7.5.1.

 There might exist other documents which define protocols in terms of
 the RFC1510 encryption types or checksum types. Such documents would
 not know about key usages. In order that these specifications
 continue to be meaningful until they are updated, if no key usage
 values are specified then key usages 1024 and 1025 must be used to
 derive keys for encryption and checksums, respectively (this does not
 apply to protocols that do their own encryption independent of this
 framework, directly using the key resulting from the Kerberos
 authentication exchange.) New protocols defined in terms of the
 Kerberos encryption and checksum types SHOULD use their own key usage
 values.

 Unless otherwise indicated, no cipher state chaining is done from one
 encryption operation to another.

 Implementation note: While not recommended, some application
 protocols will continue to use the key data directly, even if only in
 currently existing protocol specifications. An implementation
 intended to support general Kerberos applications may therefore need
 to make key data available, as well as the attributes and operations
 described in [@KCRYPTO]. One of the more common reasons for directly
 performing encryption is direct control over negotiation and
 selection of a "sufficiently strong" encryption algorithm (in the
 context of a given application). While Kerberos does not directly
 provide a facility for negotiating encryption types between the
 application client and server, there are approaches for using
 Kerberos to facilitate this negotiation - for example, a client may
 request only "sufficiently strong" session key types from the KDC and
 expect that any type returned by the KDC will be understood and

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 49]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 supported by the application server.

5. Message Specifications

 NOTE: The ASN.1 collected here should be identical to the contents of
Appendix A. In case of conflict, the contents of Appendix A shall

 take precedence.

 The Kerberos protocol is defined here in terms of Abstract Syntax
 Notation One (ASN.1) [X680], which provides a syntax for specifying
 both the abstract layout of protocol messages as well as their
 encodings. Implementors not utilizing an existing ASN.1 compiler or
 support library are cautioned to thoroughly understand the actual
 ASN.1 specification to ensure correct implementation behavior, as
 there is more complexity in the notation than is immediately obvious,
 and some tutorials and guides to ASN.1 are misleading or erroneous.

 Note that in several places, there have been changes here from RFC
1510 that change the abstract types. This is in part to address

 widespread assumptions that various implementors have made, in some
 cases resulting in unintentional violations of the ASN.1 standard.
 These are clearly flagged where they occur. The differences between
 the abstract types in RFC 1510 and abstract types in this document
 can cause incompatible encodings to be emitted when certain encoding
 rules, e.g. the Packed Encoding Rules (PER), are used. This
 theoretical incompatibility should not be relevant for Kerberos,
 since Kerberos explicitly specifies the use of the Distinguished
 Encoding Rules (DER). It might be an issue for protocols wishing to
 use Kerberos types with other encoding rules. (This practice is not
 recommended.) With very few exceptions (most notably the usages of
 BIT STRING), the encodings resulting from using the DER remain
 identical between the types defined in RFC 1510 and the types defined
 in this document.

 The type definitions in this section assume an ASN.1 module
 definition of the following form:

 KerberosV5Spec2 {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2) modules(4) krb5spec2(2)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- rest of definitions here

 END

 This specifies that the tagging context for the module will be
 explicit and non-automatic.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 50]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Note that in some other publications [RFC1510] [RFC1964], the "dod"
 portion of the object identifier is erroneously specified as having
 the value "5". In the case of RFC 1964, use of the "correct" OID
 value would result in a change in the wire protocol; therefore, it
 remains unchanged for now.

 Note that elsewhere in this document, nomenclature for various
 message types is inconsistent, but largely follows C language
 conventions, including use of underscore (_) characters and all-caps
 spelling of names intended to be numeric constants. Also, in some
 places, identifiers (especially ones referring to constants) are
 written in all-caps in order to distinguish them from surrounding
 explanatory text.

 The ASN.1 notation does not permit underscores in identifiers, so in
 actual ASN.1 definitions, underscores are replaced with hyphens (-).
 Additionally, structure member names and defined values in ASN.1 MUST
 begin with a lowercase letter, while type names MUST begin with an
 uppercase letter.

5.1. Specific Compatibility Notes on ASN.1

 For compatibility purposes, implementors should heed the following
 specific notes regarding the use of ASN.1 in Kerberos. These notes do
 not describe deviations from standard usage of ASN.1. The purpose of
 these notes is to instead describe some historical quirks and non-
 compliance of various implementations, as well as historical
 ambiguities, which, while being valid ASN.1, can lead to confusion
 during implementation.

5.1.1. ASN.1 Distinguished Encoding Rules

 The encoding of Kerberos protocol messages shall obey the
 Distinguished Encoding Rules (DER) of ASN.1 as described in [X690].
 Some implementations (believed to be primarily ones derived from DCE
 1.1 and earlier) are known to use the more general Basic Encoding
 Rules (BER); in particular, these implementations send indefinite
 encodings of lengths. Implementations MAY accept such encodings in
 the interests of backwards compatibility, though implementors are
 warned that decoding fully-general BER is fraught with peril.

5.1.2. Optional Integer Fields

 Some implementations do not internally distinguish between an omitted
 optional integer value and a transmitted value of zero. The places in
 the protocol where this is relevant include various microseconds
 fields, nonces, and sequence numbers. Implementations SHOULD treat
 omitted optional integer values as having been transmitted with a

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

September 2004 [Page 51]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 value of zero, if the application is expecting this.

5.1.3. Empty SEQUENCE OF Types

 There are places in the protocol where a message contains a SEQUENCE
 OF type as an optional member. This can result in an encoding that
 contains an empty SEQUENCE OF encoding. The Kerberos protocol does
 not semantically distinguish between an absent optional SEQUENCE OF
 type and a present optional but empty SEQUENCE OF type.
 Implementations SHOULD NOT send empty SEQUENCE OF encodings that are
 marked OPTIONAL, but SHOULD accept them as being equivalent to an
 omitted OPTIONAL type. In the ASN.1 syntax describing Kerberos
 messages, instances of these problematic optional SEQUENCE OF types
 are indicated with a comment.

5.1.4. Unrecognized Tag Numbers

 Future revisions to this protocol may include new message types with
 different APPLICATION class tag numbers. Such revisions should
 protect older implementations by only sending the message types to
 parties that are known to understand them, e.g. by means of a flag
 bit set by the receiver in a preceding request. In the interest of
 robust error handling, implementations SHOULD gracefully handle
 receiving a message with an unrecognized tag anyway, and return an
 error message if appropriate.

 In particular, KDCs SHOULD return KRB_AP_ERR_MSG_TYPE if the
 incorrect tag is sent over a TCP transport. The KDCs SHOULD NOT
 respond to messages received with an unknown tag over UDP transport
 in order to avoid denial of service attacks. For non-KDC
 applications, the Kerberos implementation typically indicates an
 error to the application which takes appropriate steps based on the
 application protocol.

5.1.5. Tag Numbers Greater Than 30

 A naive implementation of a DER ASN.1 decoder may experience problems
 with ASN.1 tag numbers greater than 30, due to such tag numbers being
 encoded using more than one byte. Future revisions of this protocol
 may utilize tag numbers greater than 30, and implementations SHOULD
 be prepared to gracefully return an error, if appropriate, if they do
 not recognize the tag.

5.2. Basic Kerberos Types

 This section defines a number of basic types that are potentially
 used in multiple Kerberos protocol messages.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 52]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

5.2.1. KerberosString

 The original specification of the Kerberos protocol in RFC 1510 uses
 GeneralString in numerous places for human-readable string data.
 Historical implementations of Kerberos cannot utilize the full power
 of GeneralString. This ASN.1 type requires the use of designation
 and invocation escape sequences as specified in ISO-2022/ECMA-35
 [ISO-2022/ECMA-35] to switch character sets, and the default
 character set that is designated as G0 is the ISO-646/ECMA-6
 [ISO-646,ECMA-6] International Reference Version (IRV) (aka U.S.
 ASCII), which mostly works.

 ISO-2022/ECMA-35 defines four character-set code elements (G0..G3)
 and two Control-function code elements (C0..C1). DER prohibits the
 designation of character sets as any but the G0 and C0 sets.
 Unfortunately, this seems to have the side effect of prohibiting the
 use of ISO-8859 (ISO Latin) [ISO-8859] character-sets or any other
 character-sets that utilize a 96-character set, since it is
 prohibited by ISO-2022/ECMA-35 to designate them as the G0 code
 element. This side effect is being investigated in the ASN.1
 standards community.

 In practice, many implementations treat GeneralStrings as if they
 were 8-bit strings of whichever character set the implementation
 defaults to, without regard for correct usage of character-set
 designation escape sequences. The default character set is often
 determined by the current user's operating system dependent locale.
 At least one major implementation places unescaped UTF-8 encoded
 Unicode characters in the GeneralString. This failure to adhere to
 the GeneralString specifications results in interoperability issues
 when conflicting character encodings are utilized by the Kerberos
 clients, services, and KDC.

 This unfortunate situation is the result of improper documentation of
 the restrictions of the ASN.1 GeneralString type in prior Kerberos
 specifications.

 The new (post-RFC 1510) type KerberosString, defined below, is a
 GeneralString that is constrained to only contain characters in
 IA5String

 KerberosString ::= GeneralString (IA5String)

 In general, US-ASCII control characters should not be used in
 KerberosString. Control characters SHOULD NOT be used in principal
 names or realm names.

 For compatibility, implementations MAY choose to accept GeneralString

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 53]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 values that contain characters other than those permitted by
 IA5String, but they should be aware that character set designation
 codes will likely be absent, and that the encoding should probably be
 treated as locale-specific in almost every way. Implementations MAY
 also choose to emit GeneralString values that are beyond those
 permitted by IA5String, but should be aware that doing so is
 extraordinarily risky from an interoperability perspective.

 Some existing implementations use GeneralString to encode unescaped
 locale-specific characters. This is a violation of the ASN.1
 standard. Most of these implementations encode US-ASCII in the left-
 hand half, so as long the implementation transmits only US-ASCII, the
 ASN.1 standard is not violated in this regard. As soon as such an
 implementation encodes unescaped locale-specific characters with the
 high bit set, it violates the ASN.1 standard.

 Other implementations have been known to use GeneralString to contain
 a UTF-8 encoding. This also violates the ASN.1 standard, since UTF-8
 is a different encoding, not a 94 or 96 character "G" set as defined
 by ISO 2022. It is believed that these implementations do not even
 use the ISO 2022 escape sequence to change the character encoding.
 Even if implementations were to announce the change of encoding by
 using that escape sequence, the ASN.1 standard prohibits the use of
 any escape sequences other than those used to designate/invoke "G" or
 "C" sets allowed by GeneralString.

 Future revisions to this protocol will almost certainly allow for a
 more interoperable representation of principal names, probably
 including UTF8String.

 Note that applying a new constraint to a previously unconstrained
 type constitutes creation of a new ASN.1 type. In this particular
 case, the change does not result in a changed encoding under DER.

5.2.2. Realm and PrincipalName

 Realm ::= KerberosString

 PrincipalName ::= SEQUENCE {
 name-type [0] Int32,
 name-string [1] SEQUENCE OF KerberosString
 }

 Kerberos realm names are encoded as KerberosStrings. Realms shall not
 contain a character with the code 0 (the US-ASCII NUL). Most realms
 will usually consist of several components separated by periods (.),
 in the style of Internet Domain Names, or separated by slashes (/) in
 the style of X.500 names. Acceptable forms for realm names are

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 54]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 specified in section 6.1.. A PrincipalName is a typed sequence of
 components consisting of the following sub-fields:

 name-type
 This field specifies the type of name that follows. Pre-defined
 values for this field are specified in section 6.2. The name-type
 SHOULD be treated as a hint. Ignoring the name type, no two names
 can be the same (i.e. at least one of the components, or the
 realm, must be different).

 name-string
 This field encodes a sequence of components that form a name, each
 component encoded as a KerberosString. Taken together, a
 PrincipalName and a Realm form a principal identifier. Most
 PrincipalNames will have only a few components (typically one or
 two).

5.2.3. KerberosTime

 KerberosTime ::= GeneralizedTime -- with no fractional seconds

 The timestamps used in Kerberos are encoded as GeneralizedTimes. A
 KerberosTime value shall not include any fractional portions of the
 seconds. As required by the DER, it further shall not include any
 separators, and it shall specify the UTC time zone (Z). Example: The
 only valid format for UTC time 6 minutes, 27 seconds after 9 pm on 6
 November 1985 is 19851106210627Z.

5.2.4. Constrained Integer types

 Some integer members of types SHOULD be constrained to values
 representable in 32 bits, for compatibility with reasonable
 implementation limits.

 Int32 ::= INTEGER (-2147483648..2147483647)
 -- signed values representable in 32 bits

 UInt32 ::= INTEGER (0..4294967295)
 -- unsigned 32 bit values

 Microseconds ::= INTEGER (0..999999)
 -- microseconds

 While this results in changes to the abstract types from the RFC 1510
 version, the encoding in DER should be unaltered. Historical
 implementations were typically limited to 32-bit integer values
 anyway, and assigned numbers SHOULD fall in the space of integer
 values representable in 32 bits in order to promote interoperability

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 55]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 anyway.

 There are several integer fields in messages that are constrained to
 fixed values.

 pvno
 also TKT-VNO or AUTHENTICATOR-VNO, this recurring field is always
 the constant integer 5. There is no easy way to make this field
 into a useful protocol version number, so its value is fixed.

 msg-type
 this integer field is usually identical to the application tag
 number of the containing message type.

5.2.5. HostAddress and HostAddresses

 HostAddress ::= SEQUENCE {
 addr-type [0] Int32,
 address [1] OCTET STRING
 }

 -- NOTE: HostAddresses is always used as an OPTIONAL field and
 -- should not be empty.
 HostAddresses -- NOTE: subtly different from rfc1510,
 -- but has a value mapping and encodes the same
 ::= SEQUENCE OF HostAddress

 The host address encodings consists of two fields:

 addr-type
 This field specifies the type of address that follows. Pre-defined
 values for this field are specified in section 7.5.3.

 address
 This field encodes a single address of type addr-type.

5.2.6. AuthorizationData

 -- NOTE: AuthorizationData is always used as an OPTIONAL field and
 -- should not be empty.
 AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type [0] Int32,
 ad-data [1] OCTET STRING
 }

 ad-data
 This field contains authorization data to be interpreted according
 to the value of the corresponding ad-type field.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 56]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 ad-type
 This field specifies the format for the ad-data subfield. All
 negative values are reserved for local use. Non-negative values
 are reserved for registered use.

 Each sequence of type and data is referred to as an authorization
 element. Elements MAY be application specific, however, there is a
 common set of recursive elements that should be understood by all
 implementations. These elements contain other elements embedded
 within them, and the interpretation of the encapsulating element
 determines which of the embedded elements must be interpreted, and
 which may be ignored.

 These common authorization data elements are recursively defined,
 meaning the ad-data for these types will itself contain a sequence of
 authorization data whose interpretation is affected by the
 encapsulating element. Depending on the meaning of the encapsulating
 element, the encapsulated elements may be ignored, might be
 interpreted as issued directly by the KDC, or they might be stored in
 a separate plaintext part of the ticket. The types of the
 encapsulating elements are specified as part of the Kerberos
 specification because the behavior based on these values should be
 understood across implementations whereas other elements need only be
 understood by the applications which they affect.

 Authorization data elements are considered critical if present in a
 ticket or authenticator. Unless encapsulated in a known authorization
 data element amending the criticality of the elements it contains, if
 an unknown authorization data element type is received by a server
 either in an AP-REQ or in a ticket contained in an AP-REQ, then
 authentication MUST fail. Authorization data is intended to restrict
 the use of a ticket. If the service cannot determine whether the
 restriction applies to that service then a security weakness may
 result if the ticket can be used for that service. Authorization
 elements that are optional can be enclosed in AD-IF-RELEVANT element.

 In the definitions that follow, the value of the ad-type for the
 element will be specified as the least significant part of the
 subsection number, and the value of the ad-data will be as shown in
 the ASN.1 structure that follows the subsection heading.

 contents of ad-data ad-type

 DER encoding of AD-IF-RELEVANT 1

 DER encoding of AD-KDCIssued 4

 DER encoding of AD-AND-OR 5

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 57]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 DER encoding of AD-MANDATORY-FOR-KDC 8

5.2.6.1. IF-RELEVANT

 AD-IF-RELEVANT ::= AuthorizationData

 AD elements encapsulated within the if-relevant element are intended
 for interpretation only by application servers that understand the
 particular ad-type of the embedded element. Application servers that
 do not understand the type of an element embedded within the if-
 relevant element MAY ignore the uninterpretable element. This element
 promotes interoperability across implementations which may have local
 extensions for authorization. The ad-type for AD-IF-RELEVANT is (1).

5.2.6.2. KDCIssued

 AD-KDCIssued ::= SEQUENCE {
 ad-checksum [0] Checksum,
 i-realm [1] Realm OPTIONAL,
 i-sname [2] PrincipalName OPTIONAL,
 elements [3] AuthorizationData
 }

 ad-checksum
 A cryptographic checksum computed over the DER encoding of the
 AuthorizationData in the "elements" field, keyed with the session
 key. Its checksumtype is the mandatory checksum type for the
 encryption type of the session key, and its key usage value is 19.

 i-realm, i-sname
 The name of the issuing principal if different from the KDC
 itself. This field would be used when the KDC can verify the
 authenticity of elements signed by the issuing principal and it
 allows this KDC to notify the application server of the validity
 of those elements.

 elements
 A sequence of authorization data elements issued by the KDC.

 The KDC-issued ad-data field is intended to provide a means for
 Kerberos principal credentials to embed within themselves privilege
 attributes and other mechanisms for positive authorization,
 amplifying the privileges of the principal beyond what can be done
 using a credentials without such an a-data element.

 This can not be provided without this element because the definition
 of the authorization-data field allows elements to be added at will
 by the bearer of a TGT at the time that they request service tickets

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 58]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 and elements may also be added to a delegated ticket by inclusion in
 the authenticator.

 For KDC-issued elements this is prevented because the elements are
 signed by the KDC by including a checksum encrypted using the
 server's key (the same key used to encrypt the ticket - or a key
 derived from that key). Elements encapsulated with in the KDC-issued
 element MUST be ignored by the application server if this
 "signature" is not present. Further, elements encapsulated within
 this element from a ticket-granting ticket MAY be interpreted by the
 KDC, and used as a basis according to policy for including new signed
 elements within derivative tickets, but they will not be copied to a
 derivative ticket directly. If they are copied directly to a
 derivative ticket by a KDC that is not aware of this element, the
 signature will not be correct for the application ticket elements,
 and the field will be ignored by the application server.

 This element and the elements it encapsulates MAY be safely ignored
 by applications, application servers, and KDCs that do not implement
 this element.

 The ad-type for AD-KDC-ISSUED is (4).

5.2.6.3. AND-OR

 AD-AND-OR ::= SEQUENCE {
 condition-count [0] INTEGER,
 elements [1] AuthorizationData
 }

 When restrictive AD elements are encapsulated within the and-or
 element, the and-or element is considered satisfied if and only if at
 least the number of encapsulated elements specified in condition-
 count are satisfied. Therefore, this element MAY be used to
 implement an "or" operation by setting the condition-count field to
 1, and it MAY specify an "and" operation by setting the condition
 count to the number of embedded elements. Application servers that do
 not implement this element MUST reject tickets that contain
 authorization data elements of this type.

 The ad-type for AD-AND-OR is (5).

5.2.6.4. MANDATORY-FOR-KDC

 AD-MANDATORY-FOR-KDC ::= AuthorizationData

 AD elements encapsulated within the mandatory-for-kdc element are to

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 59]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 be interpreted by the KDC. KDCs that do not understand the type of an
 element embedded within the mandatory-for-kdc element MUST reject the
 request.

 The ad-type for AD-MANDATORY-FOR-KDC is (8).

5.2.7. PA-DATA

 Historically, PA-DATA have been known as "pre-authentication data",
 meaning that they were used to augment the initial authentication
 with the KDC. Since that time, they have also been used as a typed
 hole with which to extend protocol exchanges with the KDC.

 PA-DATA ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 padata-type [1] Int32,
 padata-value [2] OCTET STRING -- might be encoded AP-REQ
 }

 padata-type
 indicates the way that the padata-value element is to be
 interpreted. Negative values of padata-type are reserved for
 unregistered use; non-negative values are used for a registered
 interpretation of the element type.

 padata-value
 Usually contains the DER encoding of another type; the padata-type
 field identifies which type is encoded here.

 padata-type name contents of padata-value

 1 pa-tgs-req DER encoding of AP-REQ

 2 pa-enc-timestamp DER encoding of PA-ENC-TIMESTAMP

 3 pa-pw-salt salt (not ASN.1 encoded)

 11 pa-etype-info DER encoding of ETYPE-INFO

 19 pa-etype-info2 DER encoding of ETYPE-INFO2

 This field MAY also contain information needed by certain
 extensions to the Kerberos protocol. For example, it might be used
 to initially verify the identity of a client before any response
 is returned.

 The padata field can also contain information needed to help the
 KDC or the client select the key needed for generating or

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 60]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 decrypting the response. This form of the padata is useful for
 supporting the use of certain token cards with Kerberos. The
 details of such extensions are specified in separate documents.
 See [Pat92] for additional uses of this field.

5.2.7.1. PA-TGS-REQ

 In the case of requests for additional tickets (KRB_TGS_REQ), padata-
 value will contain an encoded AP-REQ. The checksum in the
 authenticator (which MUST be collision-proof) is to be computed over
 the KDC-REQ-BODY encoding.

5.2.7.2. Encrypted Timestamp Pre-authentication

 There are pre-authentication types that may be used to pre-
 authenticate a client by means of an encrypted timestamp.

 PA-ENC-TIMESTAMP ::= EncryptedData -- PA-ENC-TS-ENC

 PA-ENC-TS-ENC ::= SEQUENCE {
 patimestamp [0] KerberosTime -- client's time --,
 pausec [1] Microseconds OPTIONAL
 }

 Patimestamp contains the client's time, and pausec contains the
 microseconds, which MAY be omitted if a client will not generate more
 than one request per second. The ciphertext (padata-value) consists
 of the PA-ENC-TS-ENC encoding, encrypted using the client's secret
 key and a key usage value of 1.

 This pre-authentication type was not present in RFC 1510, but many
 implementations support it.

5.2.7.3. PA-PW-SALT

 The padata-value for this pre-authentication type contains the salt
 for the string-to-key to be used by the client to obtain the key for
 decrypting the encrypted part of an AS-REP message. Unfortunately,
 for historical reasons, the character set to be used is unspecified
 and probably locale-specific.

 This pre-authentication type was not present in RFC 1510, but many
 implementations support it. It is necessary in any case where the
 salt for the string-to-key algorithm is not the default.

 In the trivial example, a zero-length salt string is very commonplace
 for realms that have converted their principal databases from
 Kerberos 4.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 61]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 A KDC SHOULD NOT send PA-PW-SALT when issuing a KRB-ERROR message
 that requests additional pre-authentication. Implementation note:
 some KDC implementations issue an erroneous PA-PW-SALT when issuing a
 KRB-ERROR message that requests additional pre-authentication.
 Therefore, clients SHOULD ignore a PA-PW-SALT accompanying a KRB-
 ERROR message that requests additional pre-authentication. As noted
 in section 3.1.3, a KDC MUST NOT send PA-PW-SALT when the client's
 AS-REQ includes at least one "newer" etype.

5.2.7.4. PA-ETYPE-INFO

 The ETYPE-INFO pre-authentication type is sent by the KDC in a KRB-
 ERROR indicating a requirement for additional pre-authentication. It
 is usually used to notify a client of which key to use for the
 encryption of an encrypted timestamp for the purposes of sending a
 PA-ENC-TIMESTAMP pre-authentication value. It MAY also be sent in an
 AS-REP to provide information to the client about which key salt to
 use for the string-to-key to be used by the client to obtain the key
 for decrypting the encrypted part the AS-REP.

 ETYPE-INFO-ENTRY ::= SEQUENCE {
 etype [0] Int32,
 salt [1] OCTET STRING OPTIONAL
 }

 ETYPE-INFO ::= SEQUENCE OF ETYPE-INFO-ENTRY

 The salt, like that of PA-PW-SALT, is also completely unspecified
 with respect to character set and is probably locale-specific.

 If ETYPE-INFO is sent in an AS-REP, there shall be exactly one ETYPE-
 INFO-ENTRY, and its etype shall match that of the enc-part in the AS-
 REP.

 This pre-authentication type was not present in RFC 1510, but many
 implementations that support encrypted timestamps for pre-
 authentication need to support ETYPE-INFO as well. As noted in

section 3.1.3, a KDC MUST NOT send PA-ETYPE-INFO when the client's
 AS-REQ includes at least one "newer" etype.

5.2.7.5. PA-ETYPE-INFO2

 The ETYPE-INFO2 pre-authentication type is sent by the KDC in a KRB-
 ERROR indicating a requirement for additional pre-authentication. It
 is usually used to notify a client of which key to use for the
 encryption of an encrypted timestamp for the purposes of sending a
 PA-ENC-TIMESTAMP pre-authentication value. It MAY also be sent in an
 AS-REP to provide information to the client about which key salt to

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 62]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 use for the string-to-key to be used by the client to obtain the key
 for decrypting the encrypted part the AS-REP.

 ETYPE-INFO2-ENTRY ::= SEQUENCE {
 etype [0] Int32,
 salt [1] KerberosString OPTIONAL,
 s2kparams [2] OCTET STRING OPTIONAL
 }

 ETYPE-INFO2 ::= SEQUENCE SIZE (1..MAX) OF ETYPE-INFO2-ENTRY

 The type of the salt is KerberosString, but existing installations
 might have locale-specific characters stored in salt strings, and
 implementors MAY choose to handle them.

 The interpretation of s2kparams is specified in the cryptosystem
 description associated with the etype. Each cryptosystem has a
 default interpretation of s2kparams that will hold if that element is
 omitted from the encoding of ETYPE-INFO2-ENTRY.

 If ETYPE-INFO2 is sent in an AS-REP, there shall be exactly one
 ETYPE-INFO2-ENTRY, and its etype shall match that of the enc-part in
 the AS-REP.

 The preferred ordering of the "hint" pre-authentication data that
 affect client key selection is: ETYPE-INFO2, followed by ETYPE-INFO,
 followed by PW-SALT. As noted in section 3.1.3, a KDC MUST NOT send
 ETYPE-INFO or PW-SALT when the client's AS-REQ includes at least one
 "newer" etype.

 The ETYPE-INFO2 pre-authentication type was not present in RFC 1510.

5.2.8. KerberosFlags

 For several message types, a specific constrained bit string type,
 KerberosFlags, is used.

 KerberosFlags ::= BIT STRING (SIZE (32..MAX)) -- minimum number of bits
 -- shall be sent, but no fewer than 32

 Compatibility note: the following paragraphs describe a change from
 the RFC1510 description of bit strings that would result in
 incompatility in the case of an implementation that strictly
 conformed to ASN.1 DER and RFC1510.

 ASN.1 bit strings have multiple uses. The simplest use of a bit
 string is to contain a vector of bits, with no particular meaning
 attached to individual bits. This vector of bits is not necessarily a

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 63]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 multiple of eight bits long. The use in Kerberos of a bit string as
 a compact boolean vector wherein each element has a distinct meaning
 poses some problems. The natural notation for a compact boolean
 vector is the ASN.1 "NamedBit" notation, and the DER require that
 encodings of a bit string using "NamedBit" notation exclude any
 trailing zero bits. This truncation is easy to neglect, especially
 given C language implementations that naturally choose to store
 boolean vectors as 32 bit integers.

 For example, if the notation for KDCOptions were to include the
 "NamedBit" notation, as in RFC 1510, and a KDCOptions value to be
 encoded had only the "forwardable" (bit number one) bit set, the DER
 encoding MUST include only two bits: the first reserved bit
 ("reserved", bit number zero, value zero) and the one-valued bit (bit
 number one) for "forwardable".

 Most existing implementations of Kerberos unconditionally send 32
 bits on the wire when encoding bit strings used as boolean vectors.
 This behavior violates the ASN.1 syntax used for flag values in RFC

1510, but occurs on such a widely installed base that the protocol
 description is being modified to accommodate it.

 Consequently, this document removes the "NamedBit" notations for
 individual bits, relegating them to comments. The size constraint on
 the KerberosFlags type requires that at least 32 bits be encoded at
 all times, though a lenient implementation MAY choose to accept fewer
 than 32 bits and to treat the missing bits as set to zero.

 Currently, no uses of KerberosFlags specify more than 32 bits worth
 of flags, although future revisions of this document may do so. When
 more than 32 bits are to be transmitted in a KerberosFlags value,
 future revisions to this document will likely specify that the
 smallest number of bits needed to encode the highest-numbered one-
 valued bit should be sent. This is somewhat similar to the DER
 encoding of a bit string that is declared with the "NamedBit"
 notation.

5.2.9. Cryptosystem-related Types

 Many Kerberos protocol messages contain an EncryptedData as a
 container for arbitrary encrypted data, which is often the encrypted
 encoding of another data type. Fields within EncryptedData assist the
 recipient in selecting a key with which to decrypt the enclosed data.

 EncryptedData ::= SEQUENCE {
 etype [0] Int32 -- EncryptionType --,
 kvno [1] UInt32 OPTIONAL,
 cipher [2] OCTET STRING -- ciphertext

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 64]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 }

 etype
 This field identifies which encryption algorithm was used to
 encipher the cipher.

 kvno
 This field contains the version number of the key under which data
 is encrypted. It is only present in messages encrypted under long
 lasting keys, such as principals' secret keys.

 cipher
 This field contains the enciphered text, encoded as an OCTET
 STRING. (Note that the encryption mechanisms defined in
 [@KCRYPTO] MUST incorporate integrity protection as well, so no
 additional checksum is required.)

 The EncryptionKey type is the means by which cryptographic keys used
 for encryption are transferred.

 EncryptionKey ::= SEQUENCE {
 keytype [0] Int32 -- actually encryption type --,
 keyvalue [1] OCTET STRING
 }

 keytype
 This field specifies the encryption type of the encryption key
 that follows in the keyvalue field. While its name is "keytype",
 it actually specifies an encryption type. Previously, multiple
 cryptosystems that performed encryption differently but were
 capable of using keys with the same characteristics were permitted
 to share an assigned number to designate the type of key; this
 usage is now deprecated.

 keyvalue
 This field contains the key itself, encoded as an octet string.

 Messages containing cleartext data to be authenticated will usually
 do so by using a member of type Checksum. Most instances of Checksum
 use a keyed hash, though exceptions will be noted.

 Checksum ::= SEQUENCE {
 cksumtype [0] Int32,
 checksum [1] OCTET STRING
 }

 cksumtype
 This field indicates the algorithm used to generate the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 65]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 accompanying checksum.

 checksum
 This field contains the checksum itself, encoded as an octet
 string.

 See section 4 for a brief description of the use of encryption and
 checksums in Kerberos.

5.3. Tickets

 This section describes the format and encryption parameters for
 tickets and authenticators. When a ticket or authenticator is
 included in a protocol message it is treated as an opaque object. A
 ticket is a record that helps a client authenticate to a service. A
 Ticket contains the following information:

 Ticket ::= [APPLICATION 1] SEQUENCE {
 tkt-vno [0] INTEGER (5),
 realm [1] Realm,
 sname [2] PrincipalName,
 enc-part [3] EncryptedData -- EncTicketPart
 }

 -- Encrypted part of ticket
 EncTicketPart ::= [APPLICATION 3] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] Realm,
 cname [3] PrincipalName,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL
 }

 -- encoded Transited field
 TransitedEncoding ::= SEQUENCE {
 tr-type [0] Int32 -- must be registered --,
 contents [1] OCTET STRING
 }

 TicketFlags ::= KerberosFlags
 -- reserved(0),
 -- forwardable(1),

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 66]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 -- forwarded(2),
 -- proxiable(3),
 -- proxy(4),
 -- may-postdate(5),
 -- postdated(6),
 -- invalid(7),
 -- renewable(8),
 -- initial(9),
 -- pre-authent(10),
 -- hw-authent(11),
 -- the following are new since 1510
 -- transited-policy-checked(12),
 -- ok-as-delegate(13)

 tkt-vno
 This field specifies the version number for the ticket format.
 This document describes version number 5.

 realm
 This field specifies the realm that issued a ticket. It also
 serves to identify the realm part of the server's principal
 identifier. Since a Kerberos server can only issue tickets for
 servers within its realm, the two will always be identical.

 sname
 This field specifies all components of the name part of the
 server's identity, including those parts that identify a specific
 instance of a service.

 enc-part
 This field holds the encrypted encoding of the EncTicketPart
 sequence. It is encrypted in the key shared by Kerberos and the
 end server (the server's secret key), using a key usage value of
 2.

 flags
 This field indicates which of various options were used or
 requested when the ticket was issued. The meanings of the flags
 are:

 Bit(s) Name Description

 0 reserved Reserved for future expansion of this
 field.

 The FORWARDABLE flag is normally only
 interpreted by the TGS, and can be
 ignored by end servers. When set, this

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 67]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 1 forwardable flag tells the ticket-granting server
 that it is OK to issue a new
 ticket-granting ticket with a
 different network address based on the
 presented ticket.

 When set, this flag indicates that the
 ticket has either been forwarded or
 2 forwarded was issued based on authentication
 involving a forwarded ticket-granting
 ticket.

 The PROXIABLE flag is normally only
 interpreted by the TGS, and can be
 ignored by end servers. The PROXIABLE
 flag has an interpretation identical
 3 proxiable to that of the FORWARDABLE flag,
 except that the PROXIABLE flag tells
 the ticket-granting server that only
 non-ticket-granting tickets may be
 issued with different network
 addresses.

 4 proxy When set, this flag indicates that a
 ticket is a proxy.

 The MAY-POSTDATE flag is normally only
 interpreted by the TGS, and can be
 5 may-postdate ignored by end servers. This flag
 tells the ticket-granting server that
 a post-dated ticket MAY be issued
 based on this ticket-granting ticket.

 This flag indicates that this ticket
 has been postdated. The end-service
 6 postdated can check the authtime field to see
 when the original authentication
 occurred.

 This flag indicates that a ticket is
 invalid, and it must be validated by
 7 invalid the KDC before use. Application
 servers must reject tickets which have
 this flag set.

 The RENEWABLE flag is normally only
 interpreted by the TGS, and can
 usually be ignored by end servers

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 68]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 8 renewable (some particularly careful servers MAY
 disallow renewable tickets). A
 renewable ticket can be used to obtain
 a replacement ticket that expires at a
 later date.

 This flag indicates that this ticket
 9 initial was issued using the AS protocol, and
 not issued based on a ticket-granting
 ticket.

 This flag indicates that during
 initial authentication, the client was
 authenticated by the KDC before a
 10 pre-authent ticket was issued. The strength of the
 pre-authentication method is not
 indicated, but is acceptable to the
 KDC.

 This flag indicates that the protocol
 employed for initial authentication
 required the use of hardware expected
 11 hw-authent to be possessed solely by the named
 client. The hardware authentication
 method is selected by the KDC and the
 strength of the method is not
 indicated.

 This flag indicates that the KDC for
 the realm has checked the transited
 field against a realm defined policy
 for trusted certifiers. If this flag
 is reset (0), then the application
 server must check the transited field
 itself, and if unable to do so it must
 reject the authentication. If the flag
 12 transited- is set (1) then the application server
 policy-checked MAY skip its own validation of the
 transited field, relying on the
 validation performed by the KDC. At
 its option the application server MAY
 still apply its own validation based
 on a separate policy for acceptance.

 This flag is new since RFC 1510.

 This flag indicates that the server
 (not the client) specified in the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 69]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 ticket has been determined by policy
 of the realm to be a suitable
 recipient of delegation. A client can
 use the presence of this flag to help
 it make a decision whether to delegate
 credentials (either grant a proxy or a
 forwarded ticket-granting ticket) to
 13 ok-as-delegate this server. The client is free to
 ignore the value of this flag. When
 setting this flag, an administrator
 should consider the Security and
 placement of the server on which the
 service will run, as well as whether
 the service requires the use of
 delegated credentials.

 This flag is new since RFC 1510.

 14-31 reserved Reserved for future use.

 key
 This field exists in the ticket and the KDC response and is used
 to pass the session key from Kerberos to the application server
 and the client.

 crealm
 This field contains the name of the realm in which the client is
 registered and in which initial authentication took place.

 cname
 This field contains the name part of the client's principal
 identifier.

 transited
 This field lists the names of the Kerberos realms that took part
 in authenticating the user to whom this ticket was issued. It does
 not specify the order in which the realms were transited. See

section 3.3.3.2 for details on how this field encodes the
 traversed realms. When the names of CA's are to be embedded in
 the transited field (as specified for some extensions to the
 protocol), the X.500 names of the CA's SHOULD be mapped into items
 in the transited field using the mapping defined by RFC2253.

 authtime
 This field indicates the time of initial authentication for the
 named principal. It is the time of issue for the original ticket
 on which this ticket is based. It is included in the ticket to
 provide additional information to the end service, and to provide

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2253

September 2004 [Page 70]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 the necessary information for implementation of a `hot list'
 service at the KDC. An end service that is particularly paranoid
 could refuse to accept tickets for which the initial
 authentication occurred "too far" in the past. This field is also
 returned as part of the response from the KDC. When returned as
 part of the response to initial authentication (KRB_AS_REP), this
 is the current time on the Kerberos server. It is NOT recommended
 that this time value be used to adjust the workstation's clock
 since the workstation cannot reliably determine that such a
 KRB_AS_REP actually came from the proper KDC in a timely manner.

 starttime

 This field in the ticket specifies the time after which the ticket
 is valid. Together with endtime, this field specifies the life of
 the ticket. If the starttime field is absent from the ticket, then
 the authtime field SHOULD be used in its place to determine the
 life of the ticket.

 endtime
 This field contains the time after which the ticket will not be
 honored (its expiration time). Note that individual services MAY
 place their own limits on the life of a ticket and MAY reject
 tickets which have not yet expired. As such, this is really an
 upper bound on the expiration time for the ticket.

 renew-till
 This field is only present in tickets that have the RENEWABLE flag
 set in the flags field. It indicates the maximum endtime that may
 be included in a renewal. It can be thought of as the absolute
 expiration time for the ticket, including all renewals.

 caddr
 This field in a ticket contains zero (if omitted) or more (if
 present) host addresses. These are the addresses from which the
 ticket can be used. If there are no addresses, the ticket can be
 used from any location. The decision by the KDC to issue or by the
 end server to accept addressless tickets is a policy decision and
 is left to the Kerberos and end-service administrators; they MAY
 refuse to issue or accept such tickets. Because of the wide
 deployment of network address translation, it is recommended that
 policy allow the issue and acceptance of such tickets.

 Network addresses are included in the ticket to make it harder for
 an attacker to use stolen credentials. Because the session key is
 not sent over the network in cleartext, credentials can't be
 stolen simply by listening to the network; an attacker has to gain

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 71]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 access to the session key (perhaps through operating system
 security breaches or a careless user's unattended session) to make
 use of stolen tickets.

 It is important to note that the network address from which a
 connection is received cannot be reliably determined. Even if it
 could be, an attacker who has compromised the client's workstation
 could use the credentials from there. Including the network
 addresses only makes it more difficult, not impossible, for an
 attacker to walk off with stolen credentials and then use them
 from a "safe" location.

 authorization-data
 The authorization-data field is used to pass authorization data
 from the principal on whose behalf a ticket was issued to the
 application service. If no authorization data is included, this
 field will be left out. Experience has shown that the name of this
 field is confusing, and that a better name for this field would be
 restrictions. Unfortunately, it is not possible to change the name
 of this field at this time.

 This field contains restrictions on any authority obtained on the
 basis of authentication using the ticket. It is possible for any
 principal in possession of credentials to add entries to the
 authorization data field since these entries further restrict what
 can be done with the ticket. Such additions can be made by
 specifying the additional entries when a new ticket is obtained
 during the TGS exchange, or they MAY be added during chained
 delegation using the authorization data field of the
 authenticator.

 Because entries may be added to this field by the holder of
 credentials, except when an entry is separately authenticated by
 encapsulation in the KDC-issued element, it is not allowable for
 the presence of an entry in the authorization data field of a
 ticket to amplify the privileges one would obtain from using a
 ticket.

 The data in this field may be specific to the end service; the
 field will contain the names of service specific objects, and the
 rights to those objects. The format for this field is described in

section 5.2.6. Although Kerberos is not concerned with the format
 of the contents of the sub-fields, it does carry type information
 (ad-type).

 By using the authorization_data field, a principal is able to
 issue a proxy that is valid for a specific purpose. For example, a
 client wishing to print a file can obtain a file server proxy to

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 72]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 be passed to the print server. By specifying the name of the file
 in the authorization_data field, the file server knows that the
 print server can only use the client's rights when accessing the
 particular file to be printed.

 A separate service providing authorization or certifying group
 membership may be built using the authorization-data field. In
 this case, the entity granting authorization (not the authorized
 entity), may obtain a ticket in its own name (e.g. the ticket is
 issued in the name of a privilege server), and this entity adds
 restrictions on its own authority and delegates the restricted
 authority through a proxy to the client. The client would then
 present this authorization credential to the application server
 separately from the authentication exchange. Alternatively, such
 authorization credentials MAY be embedded in the ticket
 authenticating the authorized entity, when the authorization is
 separately authenticated using the KDC-issued authorization data
 element (see 5.2.6.2).

 Similarly, if one specifies the authorization-data field of a
 proxy and leaves the host addresses blank, the resulting ticket
 and session key can be treated as a capability. See [Neu93] for
 some suggested uses of this field.

 The authorization-data field is optional and does not have to be
 included in a ticket.

5.4. Specifications for the AS and TGS exchanges

 This section specifies the format of the messages used in the
 exchange between the client and the Kerberos server. The format of
 possible error messages appears in section 5.9.1.

5.4.1. KRB_KDC_REQ definition

 The KRB_KDC_REQ message has no application tag number of its own.
 Instead, it is incorporated into one of KRB_AS_REQ or KRB_TGS_REQ,
 which each have an application tag, depending on whether the request
 is for an initial ticket or an additional ticket. In either case, the
 message is sent from the client to the KDC to request credentials for
 a service.

 The message fields are:

 AS-REQ ::= [APPLICATION 10] KDC-REQ

 TGS-REQ ::= [APPLICATION 12] KDC-REQ

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 73]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 KDC-REQ ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 pvno [1] INTEGER (5) ,
 msg-type [2] INTEGER (10 -- AS -- | 12 -- TGS --),
 padata [3] SEQUENCE OF PA-DATA OPTIONAL
 -- NOTE: not empty --,
 req-body [4] KDC-REQ-BODY
 }

 KDC-REQ-BODY ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalName OPTIONAL
 -- Used only in AS-REQ --,
 realm [2] Realm
 -- Server's realm
 -- Also client's in AS-REQ --,
 sname [3] PrincipalName OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime,
 rtime [6] KerberosTime OPTIONAL,
 nonce [7] UInt32,
 etype [8] SEQUENCE OF Int32 -- EncryptionType
 -- in preference order --,
 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData OPTIONAL
 -- AuthorizationData --,
 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty
 }

 KDCOptions ::= KerberosFlags
 -- reserved(0),
 -- forwardable(1),
 -- forwarded(2),
 -- proxiable(3),
 -- proxy(4),
 -- allow-postdate(5),
 -- postdated(6),
 -- unused7(7),
 -- renewable(8),
 -- unused9(9),
 -- unused10(10),
 -- opt-hardware-auth(11),
 -- unused12(12),
 -- unused13(13),
 -- 15 is reserved for canonicalize
 -- unused15(15),
 -- 26 was unused in 1510

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 74]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 -- disable-transited-check(26),
 --
 -- renewable-ok(27),
 -- enc-tkt-in-skey(28),
 -- renew(30),
 -- validate(31)

 The fields in this message are:

 pvno
 This field is included in each message, and specifies the protocol
 version number. This document specifies protocol version 5.

 msg-type
 This field indicates the type of a protocol message. It will
 almost always be the same as the application identifier associated
 with a message. It is included to make the identifier more readily
 accessible to the application. For the KDC-REQ message, this type
 will be KRB_AS_REQ or KRB_TGS_REQ.

 padata
 Contains pre-authentication data. Requests for additional tickets
 (KRB_TGS_REQ) MUST contain a padata of PA-TGS-REQ.

 The padata (pre-authentication data) field contains a sequence of
 authentication information which may be needed before credentials
 can be issued or decrypted.

 req-body
 This field is a placeholder delimiting the extent of the remaining
 fields. If a checksum is to be calculated over the request, it is
 calculated over an encoding of the KDC-REQ-BODY sequence which is
 enclosed within the req-body field.

 kdc-options
 This field appears in the KRB_AS_REQ and KRB_TGS_REQ requests to
 the KDC and indicates the flags that the client wants set on the
 tickets as well as other information that is to modify the
 behavior of the KDC. Where appropriate, the name of an option may
 be the same as the flag that is set by that option. Although in
 most case, the bit in the options field will be the same as that
 in the flags field, this is not guaranteed, so it is not
 acceptable to simply copy the options field to the flags field.
 There are various checks that must be made before honoring an
 option anyway.

 The kdc_options field is a bit-field, where the selected options
 are indicated by the bit being set (1), and the unselected options

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 75]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 and reserved fields being reset (0). The encoding of the bits is
 specified in section 5.2. The options are described in more detail
 above in section 2. The meanings of the options are:

 Bits Name Description

 0 RESERVED Reserved for future expansion of
 this field.

 The FORWARDABLE option indicates
 that the ticket to be issued is to
 have its forwardable flag set. It
 1 FORWARDABLE may only be set on the initial
 request, or in a subsequent request
 if the ticket-granting ticket on
 which it is based is also
 forwardable.

 The FORWARDED option is only
 specified in a request to the
 ticket-granting server and will only
 be honored if the ticket-granting
 ticket in the request has its
 2 FORWARDED FORWARDABLE bit set. This option
 indicates that this is a request for
 forwarding. The address(es) of the
 host from which the resulting ticket
 is to be valid are included in the
 addresses field of the request.

 The PROXIABLE option indicates that
 the ticket to be issued is to have
 its proxiable flag set. It may only
 3 PROXIABLE be set on the initial request, or in
 a subsequent request if the
 ticket-granting ticket on which it
 is based is also proxiable.

 The PROXY option indicates that this
 is a request for a proxy. This
 option will only be honored if the
 ticket-granting ticket in the
 4 PROXY request has its PROXIABLE bit set.
 The address(es) of the host from
 which the resulting ticket is to be
 valid are included in the addresses
 field of the request.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 76]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The ALLOW-POSTDATE option indicates
 that the ticket to be issued is to
 have its MAY-POSTDATE flag set. It
 5 ALLOW-POSTDATE may only be set on the initial
 request, or in a subsequent request
 if the ticket-granting ticket on
 which it is based also has its
 MAY-POSTDATE flag set.

 The POSTDATED option indicates that
 this is a request for a postdated
 ticket. This option will only be
 honored if the ticket-granting
 ticket on which it is based has its
 6 POSTDATED MAY-POSTDATE flag set. The resulting
 ticket will also have its INVALID
 flag set, and that flag may be reset
 by a subsequent request to the KDC
 after the starttime in the ticket
 has been reached.

 7 RESERVED This option is presently unused.

 The RENEWABLE option indicates that
 the ticket to be issued is to have
 its RENEWABLE flag set. It may only
 be set on the initial request, or
 when the ticket-granting ticket on
 8 RENEWABLE which the request is based is also
 renewable. If this option is
 requested, then the rtime field in
 the request contains the desired
 absolute expiration time for the
 ticket.

 9 RESERVED Reserved for PK-Cross

 10 RESERVED Reserved for future use.

 11 RESERVED Reserved for opt-hardware-auth.

 12-25 RESERVED Reserved for future use.

 By default the KDC will check the
 transited field of a
 ticket-granting-ticket against the
 policy of the local realm before it
 will issue derivative tickets based

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 77]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 on the ticket-granting ticket. If
 this flag is set in the request,
 checking of the transited field is
 disabled. Tickets issued without the
 26 DISABLE-TRANSITED-CHECK performance of this check will be
 noted by the reset (0) value of the
 TRANSITED-POLICY-CHECKED flag,
 indicating to the application server
 that the tranisted field must be
 checked locally. KDCs are
 encouraged but not required to honor
 the DISABLE-TRANSITED-CHECK option.

 This flag is new since RFC 1510

 The RENEWABLE-OK option indicates
 that a renewable ticket will be
 acceptable if a ticket with the
 requested life cannot otherwise be
 provided. If a ticket with the
 requested life cannot be provided,
 27 RENEWABLE-OK then a renewable ticket may be
 issued with a renew-till equal to
 the requested endtime. The value
 of the renew-till field may still be
 limited by local limits, or limits
 selected by the individual principal
 or server.

 This option is used only by the
 ticket-granting service. The
 ENC-TKT-IN-SKEY option indicates
 28 ENC-TKT-IN-SKEY that the ticket for the end server
 is to be encrypted in the session
 key from the additional
 ticket-granting ticket provided.

 29 RESERVED Reserved for future use.

 This option is used only by the
 ticket-granting service. The RENEW
 option indicates that the present
 request is for a renewal. The ticket
 provided is encrypted in the secret
 key for the server on which it is
 30 RENEW valid. This option will only be
 honored if the ticket to be renewed
 has its RENEWABLE flag set and if

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 78]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 the time in its renew-till field has
 not passed. The ticket to be renewed
 is passed in the padata field as
 part of the authentication header.

 This option is used only by the
 ticket-granting service. The
 VALIDATE option indicates that the
 request is to validate a postdated
 ticket. It will only be honored if
 the ticket presented is postdated,
 presently has its INVALID flag set,
 31 VALIDATE and would be otherwise usable at
 this time. A ticket cannot be
 validated before its starttime. The
 ticket presented for validation is
 encrypted in the key of the server
 for which it is valid and is passed
 in the padata field as part of the
 authentication header.
 cname and sname
 These fields are the same as those described for the ticket in

section 5.3. The sname may only be absent when the ENC-TKT-IN-SKEY
 option is specified. If absent, the name of the server is taken
 from the name of the client in the ticket passed as additional-
 tickets.

 enc-authorization-data
 The enc-authorization-data, if present (and it can only be present
 in the TGS_REQ form), is an encoding of the desired authorization-
 data encrypted under the sub-session key if present in the
 Authenticator, or alternatively from the session key in the
 ticket-granting ticket (both the Authenticator and ticket-granting
 ticket come from the padata field in the KRB_TGS_REQ). The key
 usage value used when encrypting is 5 if a sub-session key is
 used, or 4 if the session key is used.

 realm
 This field specifies the realm part of the server's principal
 identifier. In the AS exchange, this is also the realm part of the
 client's principal identifier.

 from
 This field is included in the KRB_AS_REQ and KRB_TGS_REQ ticket
 requests when the requested ticket is to be postdated. It
 specifies the desired start time for the requested ticket. If this
 field is omitted then the KDC SHOULD use the current time instead.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 79]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 till
 This field contains the expiration date requested by the client in
 a ticket request. It is not optional, but if the requested endtime
 is "19700101000000Z", the requested ticket is to have the maximum
 endtime permitted according to KDC policy. Implementation note:
 This special timestamp corresponds to a UNIX time_t value of zero
 on most systems.

 rtime
 This field is the requested renew-till time sent from a client to
 the KDC in a ticket request. It is optional.

 nonce
 This field is part of the KDC request and response. It is intended
 to hold a random number generated by the client. If the same
 number is included in the encrypted response from the KDC, it
 provides evidence that the response is fresh and has not been
 replayed by an attacker. Nonces MUST NEVER be reused.

 etype
 This field specifies the desired encryption algorithm to be used
 in the response.

 addresses
 This field is included in the initial request for tickets, and
 optionally included in requests for additional tickets from the
 ticket-granting server. It specifies the addresses from which the
 requested ticket is to be valid. Normally it includes the
 addresses for the client's host. If a proxy is requested, this
 field will contain other addresses. The contents of this field are
 usually copied by the KDC into the caddr field of the resulting
 ticket.

 additional-tickets
 Additional tickets MAY be optionally included in a request to the
 ticket-granting server. If the ENC-TKT-IN-SKEY option has been
 specified, then the session key from the additional ticket will be
 used in place of the server's key to encrypt the new ticket. When
 the ENC-TKT-IN-SKEY option is used for user-to-user
 authentication, this additional ticket MAY be a TGT issued by the
 local realm or an inter-realm TGT issued for the current KDC's
 realm by a remote KDC. If more than one option which requires
 additional tickets has been specified, then the additional tickets
 are used in the order specified by the ordering of the options
 bits (see kdc-options, above).

 The application tag number will be either ten (10) or twelve (12)
 depending on whether the request is for an initial ticket (AS-REQ) or

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 80]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 for an additional ticket (TGS-REQ).

 The optional fields (addresses, authorization-data and additional-
 tickets) are only included if necessary to perform the operation
 specified in the kdc-options field.

 It should be noted that in KRB_TGS_REQ, the protocol version number
 appears twice and two different message types appear: the KRB_TGS_REQ
 message contains these fields as does the authentication header
 (KRB_AP_REQ) that is passed in the padata field.

5.4.2. KRB_KDC_REP definition

 The KRB_KDC_REP message format is used for the reply from the KDC for
 either an initial (AS) request or a subsequent (TGS) request. There
 is no message type for KRB_KDC_REP. Instead, the type will be either
 KRB_AS_REP or KRB_TGS_REP. The key used to encrypt the ciphertext
 part of the reply depends on the message type. For KRB_AS_REP, the
 ciphertext is encrypted in the client's secret key, and the client's
 key version number is included in the key version number for the
 encrypted data. For KRB_TGS_REP, the ciphertext is encrypted in the
 sub-session key from the Authenticator, or if absent, the session key
 from the ticket-granting ticket used in the request. In that case,
 no version number will be present in the EncryptedData sequence.

 The KRB_KDC_REP message contains the following fields:

 AS-REP ::= [APPLICATION 11] KDC-REP

 TGS-REP ::= [APPLICATION 13] KDC-REP

 KDC-REP ::= SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (11 -- AS -- | 13 -- TGS --),
 padata [2] SEQUENCE OF PA-DATA OPTIONAL
 -- NOTE: not empty --,
 crealm [3] Realm,
 cname [4] PrincipalName,
 ticket [5] Ticket,
 enc-part [6] EncryptedData
 -- EncASRepPart or EncTGSRepPart,
 -- as appropriate
 }

 EncASRepPart ::= [APPLICATION 25] EncKDCRepPart

 EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 81]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 EncKDCRepPart ::= SEQUENCE {
 key [0] EncryptionKey,
 last-req [1] LastReq,
 nonce [2] UInt32,
 key-expiration [3] KerberosTime OPTIONAL,
 flags [4] TicketFlags,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 srealm [9] Realm,
 sname [10] PrincipalName,
 caddr [11] HostAddresses OPTIONAL
 }

 LastReq ::= SEQUENCE OF SEQUENCE {
 lr-type [0] Int32,
 lr-value [1] KerberosTime
 }

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 either KRB_AS_REP or KRB_TGS_REP.

 padata
 This field is described in detail in section 5.4.1. One possible
 use for this field is to encode an alternate "salt" string to be
 used with a string-to-key algorithm. This ability is useful to
 ease transitions if a realm name needs to change (e.g. when a
 company is acquired); in such a case all existing password-derived
 entries in the KDC database would be flagged as needing a special
 salt string until the next password change.

 crealm, cname, srealm and sname
 These fields are the same as those described for the ticket in

section 5.3.

 ticket
 The newly-issued ticket, from section 5.3.

 enc-part
 This field is a place holder for the ciphertext and related
 information that forms the encrypted part of a message. The
 description of the encrypted part of the message follows each
 appearance of this field.

 The key usage value for encrypting this field is 3 in an AS-REP
 message, using the client's long-term key or another key selected

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 82]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 via pre-authentication mechanisms. In a TGS-REP message, the key
 usage value is 8 if the TGS session key is used, or 9 if a TGS
 authenticator subkey is used.

 Compatibility note: Some implementations unconditionally send an
 encrypted EncTGSRepPart (application tag number 26) in this field
 regardless of whether the reply is a AS-REP or a TGS-REP. In the
 interests of compatibility, implementors MAY relax the check on
 the tag number of the decrypted ENC-PART.

 key
 This field is the same as described for the ticket in section 5.3.

 last-req
 This field is returned by the KDC and specifies the time(s) of the
 last request by a principal. Depending on what information is
 available, this might be the last time that a request for a
 ticket-granting ticket was made, or the last time that a request
 based on a ticket-granting ticket was successful. It also might
 cover all servers for a realm, or just the particular server. Some
 implementations MAY display this information to the user to aid in
 discovering unauthorized use of one's identity. It is similar in
 spirit to the last login time displayed when logging into
 timesharing systems.

 lr-type
 This field indicates how the following lr-value field is to be
 interpreted. Negative values indicate that the information
 pertains only to the responding server. Non-negative values
 pertain to all servers for the realm.

 If the lr-type field is zero (0), then no information is
 conveyed by the lr-value subfield. If the absolute value of the
 lr-type field is one (1), then the lr-value subfield is the
 time of last initial request for a TGT. If it is two (2), then
 the lr-value subfield is the time of last initial request. If
 it is three (3), then the lr-value subfield is the time of
 issue for the newest ticket-granting ticket used. If it is four
 (4), then the lr-value subfield is the time of the last
 renewal. If it is five (5), then the lr-value subfield is the
 time of last request (of any type). If it is (6), then the lr-
 value subfield is the time when the password will expire. If
 it is (7), then the lr-value subfield is the time when the
 account will expire.

 lr-value
 This field contains the time of the last request. The time MUST
 be interpreted according to the contents of the accompanying

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 83]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 lr-type subfield.

 nonce
 This field is described above in section 5.4.1.

 key-expiration
 The key-expiration field is part of the response from the KDC and
 specifies the time that the client's secret key is due to expire.
 The expiration might be the result of password aging or an account
 expiration. If present, it SHOULD be set to the earliest of the
 user's key expiration and account expiration. The use of this
 field is deprecated and the last-req field SHOULD be used to
 convey this information instead. This field will usually be left
 out of the TGS reply since the response to the TGS request is
 encrypted in a session key and no client information need be
 retrieved from the KDC database. It is up to the application
 client (usually the login program) to take appropriate action
 (such as notifying the user) if the expiration time is imminent.

 flags, authtime, starttime, endtime, renew-till and caddr
 These fields are duplicates of those found in the encrypted
 portion of the attached ticket (see section 5.3), provided so the
 client MAY verify they match the intended request and to assist in
 proper ticket caching. If the message is of type KRB_TGS_REP, the
 caddr field will only be filled in if the request was for a proxy
 or forwarded ticket, or if the user is substituting a subset of
 the addresses from the ticket-granting ticket. If the client-
 requested addresses are not present or not used, then the
 addresses contained in the ticket will be the same as those
 included in the ticket-granting ticket.

5.5. Client/Server (CS) message specifications

 This section specifies the format of the messages used for the
 authentication of the client to the application server.

5.5.1. KRB_AP_REQ definition

 The KRB_AP_REQ message contains the Kerberos protocol version number,
 the message type KRB_AP_REQ, an options field to indicate any options
 in use, and the ticket and authenticator themselves. The KRB_AP_REQ
 message is often referred to as the 'authentication header'.

 AP-REQ ::= [APPLICATION 14] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (14),
 ap-options [2] APOptions,
 ticket [3] Ticket,

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 84]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 authenticator [4] EncryptedData -- Authenticator
 }

 APOptions ::= KerberosFlags
 -- reserved(0),
 -- use-session-key(1),
 -- mutual-required(2)

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_AP_REQ.

 ap-options
 This field appears in the application request (KRB_AP_REQ) and
 affects the way the request is processed. It is a bit-field, where
 the selected options are indicated by the bit being set (1), and
 the unselected options and reserved fields being reset (0). The
 encoding of the bits is specified in section 5.2. The meanings of
 the options are:

 Bit(s) Name Description

 0 reserved Reserved for future expansion of this field.

 The USE-SESSION-KEY option indicates that the
 ticket the client is presenting to a server
 1 use-session-key is encrypted in the session key from the
 server's ticket-granting ticket. When this
 option is not specified, the ticket is
 encrypted in the server's secret key.

 The MUTUAL-REQUIRED option tells the server
 2 mutual-required that the client requires mutual
 authentication, and that it must respond with
 a KRB_AP_REP message.

 3-31 reserved Reserved for future use.

 ticket
 This field is a ticket authenticating the client to the server.

 authenticator
 This contains the encrypted authenticator, which includes the
 client's choice of a subkey.

 The encrypted authenticator is included in the AP-REQ; it certifies
 to a server that the sender has recent knowledge of the encryption
 key in the accompanying ticket, to help the server detect replays. It

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 85]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 also assists in the selection of a "true session key" to use with the
 particular session. The DER encoding of the following is encrypted
 in the ticket's session key, with a key usage value of 11 in normal
 application exchanges, or 7 when used as the PA-TGS-REQ PA-DATA field
 of a TGS-REQ exchange (see section 5.4.1):

 -- Unencrypted authenticator
 Authenticator ::= [APPLICATION 2] SEQUENCE {
 authenticator-vno [0] INTEGER (5),
 crealm [1] Realm,
 cname [2] PrincipalName,
 cksum [3] Checksum OPTIONAL,
 cusec [4] Microseconds,
 ctime [5] KerberosTime,
 subkey [6] EncryptionKey OPTIONAL,
 seq-number [7] UInt32 OPTIONAL,
 authorization-data [8] AuthorizationData OPTIONAL
 }

 authenticator-vno
 This field specifies the version number for the format of the
 authenticator. This document specifies version 5.

 crealm and cname
 These fields are the same as those described for the ticket in

section 5.3.

 cksum
 This field contains a checksum of the application data that
 accompanies the KRB_AP_REQ, computed using a key usage value of 10
 in normal application exchanges, or 6 when used in the TGS-REQ PA-
 TGS-REQ AP-DATA field.

 cusec
 This field contains the microsecond part of the client's
 timestamp. Its value (before encryption) ranges from 0 to 999999.
 It often appears along with ctime. The two fields are used
 together to specify a reasonably accurate timestamp.

 ctime
 This field contains the current time on the client's host.

 subkey
 This field contains the client's choice for an encryption key
 which is to be used to protect this specific application session.
 Unless an application specifies otherwise, if this field is left
 out the session key from the ticket will be used.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 86]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 seq-number
 This optional field includes the initial sequence number to be
 used by the KRB_PRIV or KRB_SAFE messages when sequence numbers
 are used to detect replays (It may also be used by application
 specific messages). When included in the authenticator this field
 specifies the initial sequence number for messages from the client
 to the server. When included in the AP-REP message, the initial
 sequence number is that for messages from the server to the
 client. When used in KRB_PRIV or KRB_SAFE messages, it is
 incremented by one after each message is sent. Sequence numbers
 fall in the range of 0 through 2^32 - 1 and wrap to zero following
 the value 2^32 - 1.

 For sequence numbers to adequately support the detection of
 replays they SHOULD be non-repeating, even across connection
 boundaries. The initial sequence number SHOULD be random and
 uniformly distributed across the full space of possible sequence
 numbers, so that it cannot be guessed by an attacker and so that
 it and the successive sequence numbers do not repeat other
 sequences. In the event that more than 2^32 messages are to be
 generated in a series of KRB_PRIV or KRB_SAFE messages, rekeying
 SHOULD be performed before sequence numbers are reused with the
 same encryption key.

 Implmentation note: historically, some implementations transmit
 signed twos-complement numbers for sequence numbers. In the
 interests of compatibility, implementations MAY accept the
 equivalent negative number where a positive number greater than
 2^31 - 1 is expected.

 Implementation note: as noted before, some implementations omit
 the optional sequence number when its value would be zero.
 Implementations MAY accept an omitted sequence number when
 expecting a value of zero, and SHOULD NOT transmit an
 Authenticator with a initial sequence number of zero.

 authorization-data
 This field is the same as described for the ticket in section 5.3.
 It is optional and will only appear when additional restrictions
 are to be placed on the use of a ticket, beyond those carried in
 the ticket itself.

5.5.2. KRB_AP_REP definition

 The KRB_AP_REP message contains the Kerberos protocol version number,
 the message type, and an encrypted time-stamp. The message is sent in
 response to an application request (KRB_AP_REQ) where the mutual
 authentication option has been selected in the ap-options field.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 87]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 AP-REP ::= [APPLICATION 15] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (15),
 enc-part [2] EncryptedData -- EncAPRepPart
 }

 EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] Microseconds,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] UInt32 OPTIONAL
 }

 The encoded EncAPRepPart is encrypted in the shared session key of
 the ticket. The optional subkey field can be used in an application-
 arranged negotiation to choose a per association session key.

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_AP_REP.

 enc-part
 This field is described above in section 5.4.2. It is computed
 with a key usage value of 12.

 ctime
 This field contains the current time on the client's host.

 cusec
 This field contains the microsecond part of the client's
 timestamp.

 subkey
 This field contains an encryption key which is to be used to
 protect this specific application session. See section 3.2.6 for
 specifics on how this field is used to negotiate a key. Unless an
 application specifies otherwise, if this field is left out, the
 sub-session key from the authenticator, or if also left out, the
 session key from the ticket will be used.

 seq-number
 This field is described above in section 5.3.2.

5.5.3. Error message reply

 If an error occurs while processing the application request, the
 KRB_ERROR message will be sent in response. See section 5.9.1 for the
 format of the error message. The cname and crealm fields MAY be left

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 88]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 out if the server cannot determine their appropriate values from the
 corresponding KRB_AP_REQ message. If the authenticator was
 decipherable, the ctime and cusec fields will contain the values from
 it.

5.6. KRB_SAFE message specification

 This section specifies the format of a message that can be used by
 either side (client or server) of an application to send a tamper-
 proof message to its peer. It presumes that a session key has
 previously been exchanged (for example, by using the
 KRB_AP_REQ/KRB_AP_REP messages).

5.6.1. KRB_SAFE definition

 The KRB_SAFE message contains user data along with a collision-proof
 checksum keyed with the last encryption key negotiated via subkeys,
 or the session key if no negotiation has occurred. The message fields
 are:

 KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (20),
 safe-body [2] KRB-SAFE-BODY,
 cksum [3] Checksum
 }

 KRB-SAFE-BODY ::= SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] UInt32 OPTIONAL,
 s-address [4] HostAddress,
 r-address [5] HostAddress OPTIONAL
 }

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_SAFE.

 safe-body
 This field is a placeholder for the body of the KRB-SAFE message.

 cksum
 This field contains the checksum of the application data, computed
 with a key usage value of 15.

 The checksum is computed over the encoding of the KRB-SAFE

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 89]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 sequence. First, the cksum is set to a type zero, zero-length
 value and the checksum is computed over the encoding of the KRB-
 SAFE sequence, then the checksum is set to the result of that
 computation, and finally the KRB-SAFE sequence is encoded again.
 This method, while different than the one specified in RFC 1510,
 corresponds to existing practice.

 user-data
 This field is part of the KRB_SAFE and KRB_PRIV messages and
 contain the application specific data that is being passed from
 the sender to the recipient.

 timestamp
 This field is part of the KRB_SAFE and KRB_PRIV messages. Its
 contents are the current time as known by the sender of the
 message. By checking the timestamp, the recipient of the message
 is able to make sure that it was recently generated, and is not a
 replay.

 usec
 This field is part of the KRB_SAFE and KRB_PRIV headers. It
 contains the microsecond part of the timestamp.

 seq-number
 This field is described above in section 5.3.2.

 s-address
 Sender's address.

 This field specifies the address in use by the sender of the
 message.

 r-address
 This field specifies the address in use by the recipient of the
 message. It MAY be omitted for some uses (such as broadcast
 protocols), but the recipient MAY arbitrarily reject such
 messages. This field, along with s-address, can be used to help
 detect messages which have been incorrectly or maliciously
 delivered to the wrong recipient.

5.7. KRB_PRIV message specification

 This section specifies the format of a message that can be used by
 either side (client or server) of an application to securely and
 privately send a message to its peer. It presumes that a session key
 has previously been exchanged (for example, by using the
 KRB_AP_REQ/KRB_AP_REP messages).

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 90]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

5.7.1. KRB_PRIV definition

 The KRB_PRIV message contains user data encrypted in the Session Key.
 The message fields are:

 KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (21),
 -- NOTE: there is no [2] tag
 enc-part [3] EncryptedData -- EncKrbPrivPart
 }

 EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] UInt32 OPTIONAL,
 s-address [4] HostAddress -- sender's addr --,
 r-address [5] HostAddress OPTIONAL -- recip's addr
 }

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_PRIV.

 enc-part
 This field holds an encoding of the EncKrbPrivPart sequence
 encrypted under the session key, with a key usage value of 13.
 This encrypted encoding is used for the enc-part field of the KRB-
 PRIV message.

 user-data, timestamp, usec, s-address and r-address
 These fields are described above in section 5.6.1.

 seq-number
 This field is described above in section 5.3.2.

5.8. KRB_CRED message specification

 This section specifies the format of a message that can be used to
 send Kerberos credentials from one principal to another. It is
 presented here to encourage a common mechanism to be used by
 applications when forwarding tickets or providing proxies to
 subordinate servers. It presumes that a session key has already been
 exchanged perhaps by using the KRB_AP_REQ/KRB_AP_REP messages.

5.8.1. KRB_CRED definition

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 91]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The KRB_CRED message contains a sequence of tickets to be sent and
 information needed to use the tickets, including the session key from
 each. The information needed to use the tickets is encrypted under
 an encryption key previously exchanged or transferred alongside the
 KRB_CRED message. The message fields are:

 KRB-CRED ::= [APPLICATION 22] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (22),
 tickets [2] SEQUENCE OF Ticket,
 enc-part [3] EncryptedData -- EncKrbCredPart
 }

 EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
 ticket-info [0] SEQUENCE OF KrbCredInfo,
 nonce [1] UInt32 OPTIONAL,
 timestamp [2] KerberosTime OPTIONAL,
 usec [3] Microseconds OPTIONAL,
 s-address [4] HostAddress OPTIONAL,
 r-address [5] HostAddress OPTIONAL
 }

 KrbCredInfo ::= SEQUENCE {
 key [0] EncryptionKey,
 prealm [1] Realm OPTIONAL,
 pname [2] PrincipalName OPTIONAL,
 flags [3] TicketFlags OPTIONAL,
 authtime [4] KerberosTime OPTIONAL,
 starttime [5] KerberosTime OPTIONAL,
 endtime [6] KerberosTime OPTIONAL,
 renew-till [7] KerberosTime OPTIONAL,
 srealm [8] Realm OPTIONAL,
 sname [9] PrincipalName OPTIONAL,
 caddr [10] HostAddresses OPTIONAL
 }

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_CRED.

 tickets
 These are the tickets obtained from the KDC specifically for use
 by the intended recipient. Successive tickets are paired with the
 corresponding KrbCredInfo sequence from the enc-part of the KRB-
 CRED message.

 enc-part
 This field holds an encoding of the EncKrbCredPart sequence

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 92]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 encrypted under the session key shared between the sender and the
 intended recipient, with a key usage value of 14. This encrypted
 encoding is used for the enc-part field of the KRB-CRED message.

 Implementation note: implementations of certain applications, most
 notably certain implementations of the Kerberos GSS-API mechanism,
 do not separately encrypt the contents of the EncKrbCredPart of
 the KRB-CRED message when sending it. In the case of those GSS-
 API mechanisms, this is not a security vulnerability, as the
 entire KRB-CRED message is itself embedded in an encrypted
 message.

 nonce
 If practical, an application MAY require the inclusion of a nonce
 generated by the recipient of the message. If the same value is
 included as the nonce in the message, it provides evidence that
 the message is fresh and has not been replayed by an attacker. A
 nonce MUST NEVER be reused.

 timestamp and usec
 These fields specify the time that the KRB-CRED message was
 generated. The time is used to provide assurance that the message
 is fresh.

 s-address and r-address
 These fields are described above in section 5.6.1. They are used
 optionally to provide additional assurance of the integrity of the
 KRB-CRED message.

 key
 This field exists in the corresponding ticket passed by the KRB-
 CRED message and is used to pass the session key from the sender
 to the intended recipient. The field's encoding is described in

section 5.2.9.

 The following fields are optional. If present, they can be associated
 with the credentials in the remote ticket file. If left out, then it
 is assumed that the recipient of the credentials already knows their
 value.

 prealm and pname
 The name and realm of the delegated principal identity.

 flags, authtime, starttime, endtime, renew-till, srealm, sname, and
 caddr
 These fields contain the values of the corresponding fields from
 the ticket found in the ticket field. Descriptions of the fields
 are identical to the descriptions in the KDC-REP message.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 93]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

5.9. Error message specification

 This section specifies the format for the KRB_ERROR message. The
 fields included in the message are intended to return as much
 information as possible about an error. It is not expected that all
 the information required by the fields will be available for all
 types of errors. If the appropriate information is not available when
 the message is composed, the corresponding field will be left out of
 the message.

 Note that since the KRB_ERROR message is not integrity protected, it
 is quite possible for an intruder to synthesize or modify such a
 message. In particular, this means that the client SHOULD NOT use any
 fields in this message for security-critical purposes, such as
 setting a system clock or generating a fresh authenticator. The
 message can be useful, however, for advising a user on the reason for
 some failure.

5.9.1. KRB_ERROR definition

 The KRB_ERROR message consists of the following fields:

 KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (30),
 ctime [2] KerberosTime OPTIONAL,
 cusec [3] Microseconds OPTIONAL,
 stime [4] KerberosTime,
 susec [5] Microseconds,
 error-code [6] Int32,
 crealm [7] Realm OPTIONAL,
 cname [8] PrincipalName OPTIONAL,
 realm [9] Realm -- service realm --,
 sname [10] PrincipalName -- service name --,
 e-text [11] KerberosString OPTIONAL,
 e-data [12] OCTET STRING OPTIONAL
 }

 pvno and msg-type
 These fields are described above in section 5.4.1. msg-type is
 KRB_ERROR.

 ctime, cusec
 These fields are described above in section 5.5.2. If the values
 for these fields are known to the entity generating the error
 (such as it would if the KRB-ERROR is generated in reply to, e.g.,
 a failed authentication service request), they should be populated
 in the KRB-ERROR. If the values are not available, these fields

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 94]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 can be omitted.

 stime
 This field contains the current time on the server. It is of type
 KerberosTime.

 susec
 This field contains the microsecond part of the server's
 timestamp. Its value ranges from 0 to 999999. It appears along
 with stime. The two fields are used in conjunction to specify a
 reasonably accurate timestamp.

 error-code
 This field contains the error code returned by Kerberos or the
 server when a request fails. To interpret the value of this field
 see the list of error codes in section 7.5.9. Implementations are
 encouraged to provide for national language support in the display
 of error messages.

 crealm, and cname
 These fields are described above in section 5.3. When the entity
 generating the error knows these values, they should be populated
 in the KRB-ERROR. If the values are not known, the crealm and
 cname fields SHOULD be omitted.

 realm and sname
 These fields are described above in section 5.3.

 e-text
 This field contains additional text to help explain the error code
 associated with the failed request (for example, it might include
 a principal name which was unknown).

 e-data
 This field contains additional data about the error for use by the
 application to help it recover from or handle the error. If the
 errorcode is KDC_ERR_PREAUTH_REQUIRED, then the e-data field will
 contain an encoding of a sequence of padata fields, each
 corresponding to an acceptable pre-authentication method and
 optionally containing data for the method:

 METHOD-DATA ::= SEQUENCE OF PA-DATA

 For error codes defined in this document other than
 KDC_ERR_PREAUTH_REQUIRED, the format and contents of the e-data field
 are implementation-defined. Similarly, for future error codes, the
 format and contents of the e-data field are implementation-defined
 unless specified. Whether defined by the implementation or in a

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 95]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 future document, the e-data field MAY take the form of TYPED-DATA:

 TYPED-DATA ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 data-type [0] INTEGER,
 data-value [1] OCTET STRING OPTIONAL
 }

5.10. Application Tag Numbers

 The following table lists the application class tag numbers used by
 various data types defined in this section.

 Tag Number(s) Type Name Comments

 0 unused

 1 Ticket PDU

 2 Authenticator non-PDU

 3 EncTicketPart non-PDU

 4-9 unused

 10 AS-REQ PDU

 11 AS-REP PDU

 12 TGS-REQ PDU

 13 TGS-REP PDU

 14 AP-REQ PDU

 15 AP-REP PDU

 16 RESERVED16 TGT-REQ (for user-to-user)

 17 RESERVED17 TGT-REP (for user-to-user)

 18-19 unused

 20 KRB-SAFE PDU

 21 KRB-PRIV PDU

 22 KRB-CRED PDU

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 96]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 23-24 unused

 25 EncASRepPart non-PDU

 26 EncTGSRepPart non-PDU

 27 EncApRepPart non-PDU

 28 EncKrbPrivPart non-PDU

 29 EncKrbCredPart non-PDU

 30 KRB-ERROR PDU

 The ASN.1 types marked as "PDU" (Protocol Data Unit) in the above are
 the only ASN.1 types intended as top-level types of the Kerberos
 protocol, and are the only types that may be used as elements in
 another protocol that makes use of Kerberos.

6. Naming Constraints

6.1. Realm Names

 Although realm names are encoded as GeneralStrings and although a
 realm can technically select any name it chooses, interoperability
 across realm boundaries requires agreement on how realm names are to
 be assigned, and what information they imply.

 To enforce these conventions, each realm MUST conform to the
 conventions itself, and it MUST require that any realms with which
 inter-realm keys are shared also conform to the conventions and
 require the same from its neighbors.

 Kerberos realm names are case sensitive. Realm names that differ only
 in the case of the characters are not equivalent. There are presently
 three styles of realm names: domain, X500, and other. Examples of
 each style follow:

 domain: ATHENA.MIT.EDU
 X500: C=US/O=OSF
 other: NAMETYPE:rest/of.name=without-restrictions

 Domain style realm names MUST look like domain names: they consist of
 components separated by periods (.) and they contain neither colons
 (:) nor slashes (/). Though domain names themselves are case
 insensitive, in order for realms to match, the case must match as
 well. When establishing a new realm name based on an internet domain
 name it is recommended by convention that the characters be converted

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 97]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 to upper case.

 X.500 names contain an equal (=) and cannot contain a colon (:)
 before the equal. The realm names for X.500 names will be string
 representations of the names with components separated by slashes.
 Leading and trailing slashes will not be included. Note that the
 slash separator is consistent with Kerberos implementations based on

RFC1510, but it is different from the separator recommended in
RFC2253.

 Names that fall into the other category MUST begin with a prefix that
 contains no equal (=) or period (.) and the prefix MUST be followed
 by a colon (:) and the rest of the name. All prefixes expect those
 beginning with used. Presently none are assigned.

 The reserved category includes strings which do not fall into the
 first three categories. All names in this category are reserved. It
 is unlikely that names will be assigned to this category unless there
 is a very strong argument for not using the 'other' category.

 These rules guarantee that there will be no conflicts between the
 various name styles. The following additional constraints apply to
 the assignment of realm names in the domain and X.500 categories: the
 name of a realm for the domain or X.500 formats must either be used
 by the organization owning (to whom it was assigned) an Internet
 domain name or X.500 name, or in the case that no such names are
 registered, authority to use a realm name MAY be derived from the
 authority of the parent realm. For example, if there is no domain
 name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can
 authorize the creation of a realm with that name.

 This is acceptable because the organization to which the parent is
 assigned is presumably the organization authorized to assign names to
 its children in the X.500 and domain name systems as well. If the
 parent assigns a realm name without also registering it in the domain
 name or X.500 hierarchy, it is the parent's responsibility to make
 sure that there will not in the future exist a name identical to the
 realm name of the child unless it is assigned to the same entity as
 the realm name.

6.2. Principal Names

 As was the case for realm names, conventions are needed to ensure
 that all agree on what information is implied by a principal name.
 The name-type field that is part of the principal name indicates the
 kind of information implied by the name. The name-type SHOULD be
 treated only as a hint to interpreting the meaning of a name. It is
 not significant when checking for equivalence. Principal names that

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2253

September 2004 [Page 98]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 differ only in the name-type identify the same principal. The name
 type does not partition the name space. Ignoring the name type, no
 two names can be the same (i.e. at least one of the components, or
 the realm, MUST be different). The following name types are defined:

 name-type value meaning

 name types

 NT-UNKNOWN 0 Name type not known
 NT-PRINCIPAL 1 Just the name of the principal as in DCE, or for users
 NT-SRV-INST 2 Service and other unique instance (krbtgt)
 NT-SRV-HST 3 Service with host name as instance (telnet, rcommands)
 NT-SRV-XHST 4 Service with host as remaining components
 NT-UID 5 Unique ID
 NT-X500-PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]
 NT-SMTP-NAME 7 Name in form of SMTP email name (e.g. user@foo.com)
 NT-ENTERPRISE 10 Enterprise name - may be mapped to principal name

 When a name implies no information other than its uniqueness at a
 particular time the name type PRINCIPAL SHOULD be used. The principal
 name type SHOULD be used for users, and it might also be used for a
 unique server. If the name is a unique machine generated ID that is
 guaranteed never to be reassigned then the name type of UID SHOULD be
 used (note that it is generally a bad idea to reassign names of any
 type since stale entries might remain in access control lists).

 If the first component of a name identifies a service and the
 remaining components identify an instance of the service in a server
 specified manner, then the name type of SRV-INST SHOULD be used. An
 example of this name type is the Kerberos ticket-granting service
 whose name has a first component of krbtgt and a second component
 identifying the realm for which the ticket is valid.

 If the first component of a name identifies a service and there is a
 single component following the service name identifying the instance
 as the host on which the server is running, then the name type SRV-
 HST SHOULD be used. This type is typically used for Internet services
 such as telnet and the Berkeley R commands. If the separate
 components of the host name appear as successive components following
 the name of the service, then the name type SRV-XHST SHOULD be used.
 This type might be used to identify servers on hosts with X.500 names
 where the slash (/) might otherwise be ambiguous.

 A name type of NT-X500-PRINCIPAL SHOULD be used when a name from an
 X.509 certificate is translated into a Kerberos name. The encoding of
 the X.509 name as a Kerberos principal shall conform to the encoding
 rules specified in RFC 2253.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2253

September 2004 [Page 99]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 A name type of SMTP allows a name to be of a form that resembles a
 SMTP email name. This name, including an "@" and a domain name, is
 used as the one component of the principal name.

 A name type of UNKNOWN SHOULD be used when the form of the name is
 not known. When comparing names, a name of type UNKNOWN will match
 principals authenticated with names of any type. A principal
 authenticated with a name of type UNKNOWN, however, will only match
 other names of type UNKNOWN.

 Names of any type with an initial component of 'krbtgt' are reserved
 for the Kerberos ticket granting service. See section 7.3 for the
 form of such names.

6.2.1. Name of server principals

 The principal identifier for a server on a host will generally be
 composed of two parts: (1) the realm of the KDC with which the server
 is registered, and (2) a two-component name of type NT-SRV-HST if the
 host name is an Internet domain name or a multi-component name of
 type NT-SRV-XHST if the name of the host is of a form such as X.500
 that allows slash (/) separators. The first component of the two- or
 multi-component name will identify the service and the latter
 components will identify the host. Where the name of the host is not
 case sensitive (for example, with Internet domain names) the name of
 the host MUST be lower case. If specified by the application protocol
 for services such as telnet and the Berkeley R commands which run
 with system privileges, the first component MAY be the string 'host'
 instead of a service specific identifier.

7. Constants and other defined values

7.1. Host address types

 All negative values for the host address type are reserved for local
 use. All non-negative values are reserved for officially assigned
 type fields and interpretations.

 Internet (IPv4) Addresses

 Internet (IPv4) addresses are 32-bit (4-octet) quantities, encoded
 in MSB order (most significant byte first). The IPv4 loopback
 address SHOULD NOT appear in a Kerberos PDU. The type of IPv4
 addresses is two (2).

 Internet (IPv6) Addresses

 IPv6 addresses [RFC2373] are 128-bit (16-octet) quantities,

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc2373

September 2004 [Page 100]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 encoded in MSB order (most significant byte first). The type of
 IPv6 addresses is twenty-four (24). The following addresses MUST
 NOT appear in any Kerberos PDU:

 * the Unspecified Address
 * the Loopback Address
 * Link-Local addresses

 This restriction applies to the inclusion in the address fields of
 Kerberos PDU's, but not to the address fields of packets that
 might carry such PDU's. The restriction is necessary because the
 use of an address with non-global scope could allow the acceptance
 of a message sent from a node that may have the same address, but
 which is not the host intended by the entity that added the
 restriction. If the link-local address type needs to be used for
 communication, then the address restriction in tickets must not be
 used (i.e. addressless tickets must be used).

 IPv4-mapped IPv6 addresses MUST be represented as addresses of
 type 2.

 DECnet Phase IV addresses

 DECnet Phase IV addresses are 16-bit addresses, encoded in LSB
 order. The type of DECnet Phase IV addresses is twelve (12).

 Netbios addresses

 Netbios addresses are 16-octet addresses typically composed of 1
 to 15 alphanumeric characters and padded with the US-ASCII SPC
 character (code 32). The 16th octet MUST be the US-ASCII NUL
 character (code 0). The type of Netbios addresses is twenty (20).

 Directional Addresses

 In many environments, including the sender address in KRB_SAFE and
 KRB_PRIV messages is undesirable because the addresses may be
 changed in transport by network address translators. However, if
 these addresses are removed, the messages may be subject to a
 reflection attack in which a message is reflected back to its
 originator. The directional address type provides a way to avoid
 transport addresses and reflection attacks. Directional addresses
 are encoded as four byte unsigned integers in network byte order.
 If the message is originated by the party sending the original
 KRB_AP_REQ message, then an address of 0 SHOULD be used. If the
 message is originated by the party to whom that KRB_AP_REQ was
 sent, then the address 1 SHOULD be used. Applications involving
 multiple parties can specify the use of other addresses.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 101]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Directional addresses MUST only be used for the sender address
 field in the KRB_SAFE or KRB_PRIV messages. They MUST NOT be used
 as a ticket address or in a KRB_AP_REQ message. This address type
 SHOULD only be used in situations where the sending party knows
 that the receiving party supports the address type. This generally
 means that directional addresses may only be used when the
 application protocol requires their support. Directional addresses
 are type (3).

7.2. KDC messaging - IP Transports

 Kerberos defines two IP transport mechanisms for communication
 between clients and servers: UDP/IP and TCP/IP.

7.2.1. UDP/IP transport

 Kerberos servers (KDCs) supporting IP transports MUST accept UDP
 requests and SHOULD listen for such requests on port 88 (decimal)
 unless specifically configured to listen on an alternative UDP port.
 Alternate ports MAY be used when running multiple KDCs for multiple
 realms on the same host.

 Kerberos clients supporting IP transports SHOULD support the sending
 of UDP requests. Clients SHOULD use KDC discovery [7.2.3] to identify
 the IP address and port to which they will send their request.

 When contacting a KDC for a KRB_KDC_REQ request using UDP/IP
 transport, the client shall send a UDP datagram containing only an
 encoding of the request to the KDC. The KDC will respond with a reply
 datagram containing only an encoding of the reply message (either a
 KRB_ERROR or a KRB_KDC_REP) to the sending port at the sender's IP
 address. The response to a request made through UDP/IP transport MUST
 also use UDP/IP transport. If the response can not be handled using
 UDP (for example because it is too large), the KDC MUST return
 KRB_ERR_RESPONSE_TOO_BIG, forcing the client to retry the request
 using the TCP transport.

7.2.2. TCP/IP transport

 Kerberos servers (KDCs) supporting IP transports MUST accept TCP
 requests and SHOULD listen for such requests on port 88 (decimal)
 unless specifically configured to listen on an alternate TCP port.
 Alternate ports MAY be used when running multiple KDCs for multiple
 realms on the same host.

 Clients MUST support the sending of TCP requests, but MAY choose to
 initially try a request using the UDP transport. Clients SHOULD use
 KDC discovery [7.2.3] to identify the IP address and port to which

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 102]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 they will send their request.

 Implementation note: Some extensions to the Kerberos protocol will
 not succeed if any client or KDC not supporting the TCP transport is
 involved. Implementations of RFC 1510 were not required to support
 TCP/IP transports.

 When the KRB_KDC_REQ message is sent to the KDC over a TCP stream,
 the response (KRB_KDC_REP or KRB_ERROR message) MUST be returned to
 the client on the same TCP stream that was established for the
 request. The KDC MAY close the TCP stream after sending a response,
 but MAY leave the stream open for a reasonable period of time if it
 expects a followup. Care must be taken in managing TCP/IP connections
 on the KDC to prevent denial of service attacks based on the number
 of open TCP/IP connections.

 The client MUST be prepared to have the stream closed by the KDC at
 anytime after the receipt of a response. A stream closure SHOULD NOT
 be treated as a fatal error. Instead, if multiple exchanges are
 required (e.g., certain forms of pre-authentication) the client may
 need to establish a new connection when it is ready to send
 subsequent messages. A client MAY close the stream after receiving a
 response, and SHOULD close the stream if it does not expect to send
 followup messages.

 A client MAY send multiple requests before receiving responses,
 though it must be prepared to handle the connection being closed
 after the first response.

 Each request (KRB_KDC_REQ) and response (KRB_KDC_REP or KRB_ERROR)
 sent over the TCP stream is preceded by the length of the request as
 4 octets in network byte order. The high bit of the length is
 reserved for future expansion and MUST currently be set to zero. If
 a KDC that does not understand how to interpret a set high bit of the
 length encoding receives a request with the high order bit of the
 length set, it MUST return a KRB-ERROR message with the error
 KRB_ERR_FIELD_TOOLONG and MUST close the TCP stream.

 If multiple requests are sent over a single TCP connection, and the
 KDC sends multiple responses, the KDC is not required to send the
 responses in the order of the corresponding requests. This may permit
 some implementations to send each response as soon as it is ready
 even if earlier requests are still being processed (for example,
 waiting for a response from an external device or database).

7.2.3. KDC Discovery on IP Networks

 Kerberos client implementations MUST provide a means for the client

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 103]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 to determine the location of the Kerberos Key Distribution Centers
 (KDCs). Traditionally, Kerberos implementations have stored such
 configuration information in a file on each client machine.
 Experience has shown this method of storing configuration information
 presents problems with out-of-date information and scaling problems,
 especially when using cross-realm authentication. This section
 describes a method for using the Domain Name System [RFC 1035] for
 storing KDC location information.

7.2.3.1. DNS vs. Kerberos - Case Sensitivity of Realm Names

 In Kerberos, realm names are case sensitive. While it is strongly
 encouraged that all realm names be all upper case this recommendation
 has not been adopted by all sites. Some sites use all lower case
 names and other use mixed case. DNS on the other hand is case
 insensitive for queries. Since the realm names "MYREALM", "myrealm",
 and "MyRealm" are all different, but resolve the same in the domain
 name system, it is necessary that only one of the possible
 combinations of upper and lower case characters be used in realm
 names.

7.2.3.2. Specifying KDC Location information with DNS SRV records

 KDC location information is to be stored using the DNS SRV RR [RFC
 2782]. The format of this RR is as follows:

 _Service._Proto.Realm TTL Class SRV Priority Weight Port Target

 The Service name for Kerberos is always "kerberos".

 The Proto can be one of "udp", "tcp". If these SRV records are to be
 used, both "udp" and "tcp" records MUST be specified for all KDC
 deployments.

 The Realm is the Kerberos realm that this record corresponds to. The
 realm MUST be a domain style realm name.

 TTL, Class, SRV, Priority, Weight, and Target have the standard
 meaning as defined in RFC 2782.

 As per RFC 2782 the Port number used for "_udp" and "_tcp" SRV
 records SHOULD be the value assigned to "kerberos" by the Internet
 Assigned Number Authority: 88 (decimal) unless the KDC is configured
 to listen on an alternate TCP port.

 Implementation note: Many existing client implementations do not
 support KDC Discovery and are configured to send requests to the IANA
 assigned port (88 decimal), so it is strongly recommended that KDCs

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

September 2004 [Page 104]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 be configured to listen on that port.

7.2.3.3. KDC Discovery for Domain Style Realm Names on IP Networks

 These are DNS records for a Kerberos realm EXAMPLE.COM. It has two
 Kerberos servers, kdc1.example.com and kdc2.example.com. Queries
 should be directed to kdc1.example.com first as per the specified
 priority. Weights are not used in these sample records.

 _kerberos._udp.EXAMPLE.COM. IN SRV 0 0 88 kdc1.example.com.
 _kerberos._udp.EXAMPLE.COM. IN SRV 1 0 88 kdc2.example.com.
 _kerberos._tcp.EXAMPLE.COM. IN SRV 0 0 88 kdc1.example.com.
 _kerberos._tcp.EXAMPLE.COM. IN SRV 1 0 88 kdc2.example.com.

7.3. Name of the TGS

 The principal identifier of the ticket-granting service shall be
 composed of three parts: (1) the realm of the KDC issuing the TGS
 ticket (2) a two-part name of type NT-SRV-INST, with the first part
 "krbtgt" and the second part the name of the realm which will accept
 the ticket-granting ticket. For example, a ticket-granting ticket
 issued by the ATHENA.MIT.EDU realm to be used to get tickets from the
 ATHENA.MIT.EDU KDC has a principal identifier of "ATHENA.MIT.EDU"
 (realm), ("krbtgt", "ATHENA.MIT.EDU") (name). A ticket-granting
 ticket issued by the ATHENA.MIT.EDU realm to be used to get tickets
 from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
 (realm), ("krbtgt", "MIT.EDU") (name).

7.4. OID arc for KerberosV5

 This OID MAY be used to identify Kerberos protocol messages
 encapsulated in other protocols. It also designates the OID arc for
 KerberosV5-related OIDs assigned by future IETF action.
 Implementation note:: RFC 1510 had an incorrect value (5) for "dod"
 in its OID.

 id-krb5 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2)
 }

 Assignment of OIDs beneath the id-krb5 arc must be obtained by
 contacting the registrar for the id-krb5 arc, or its designee. At
 the time of the issuance of this RFC, such registrations can be
 obtained by contacting krb5-oid-registrar@mit.edu.

7.5. Protocol constants and associated values

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 105]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The following tables list constants used in the protocol and define
 their meanings. Ranges are specified in the "specification" section
 that limit the values of constants for which values are defined here.
 This allows implementations to make assumptions about the maximum
 values that will be received for these constants. Implementation
 receiving values outside the range specified in the "specification"
 section MAY reject the request, but they MUST recover cleanly.

7.5.1. Key usage numbers

 The encryption and checksum specifications in [@KCRYPTO] require as
 input a "key usage number", to alter the encryption key used in any
 specific message, to make certain types of cryptographic attack more
 difficult. These are the key usage values assigned in this document:

 1. AS-REQ PA-ENC-TIMESTAMP padata timestamp, encrypted
 with the client key (section 5.2.7.2)
 2. AS-REP Ticket and TGS-REP Ticket (includes TGS session
 key or application session key), encrypted with the
 service key (section 5.3)
 3. AS-REP encrypted part (includes TGS session key or
 application session key), encrypted with the client key
 (section 5.4.2)
 4. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with
 the TGS session key (section 5.4.1)
 5. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with
 the TGS authenticator subkey (section 5.4.1)
 6. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator cksum,
 keyed with the TGS session key (sections 5.5.1)
 7. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator
 (includes TGS authenticator subkey), encrypted with the
 TGS session key (section 5.5.1)
 8. TGS-REP encrypted part (includes application session
 key), encrypted with the TGS session key (section

5.4.2)
 9. TGS-REP encrypted part (includes application session
 key), encrypted with the TGS authenticator subkey
 (section 5.4.2)
 10. AP-REQ Authenticator cksum, keyed with the application
 session key (section 5.5.1)
 11. AP-REQ Authenticator (includes application
 authenticator subkey), encrypted with the application
 session key (section 5.5.1)
 12. AP-REP encrypted part (includes application session
 subkey), encrypted with the application session key
 (section 5.5.2)
 13. KRB-PRIV encrypted part, encrypted with a key chosen by
 the application (section 5.7.1)

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 106]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 14. KRB-CRED encrypted part, encrypted with a key chosen by
 the application (section 5.8.1)
 15. KRB-SAFE cksum, keyed with a key chosen by the
 application (section 5.6.1)
 16-18. Reserved for future use in Kerberos and related
 protocols.
 19. AD-KDC-ISSUED checksum (ad-checksum in 5.2.6.4)
 20-21. Reserved for future use in Kerberos and related
 protocols.
 22-25. Reserved for use in the Kerberos Verson 5 GSSAPI
 mechanisms [@GSSAPI-CFX].
 26-511. Reserved for future use in Kerberos and related
 protocols.
 512-1023. Reserved for uses internal to a Kerberos
 implementation.
 1024. Encryption for application use in protocols that
 do not specify key usage values
 1025. Checksums for application use in protocols that
 do not specify key usage values
 1026-2047. Reserved for application use.

7.5.2. PreAuthentication Data Types

 padata and data types padata-type value comment

 PA-TGS-REQ 1
 PA-ENC-TIMESTAMP 2
 PA-PW-SALT 3
 [reserved] 4
 PA-ENC-UNIX-TIME 5 (deprecated)
 PA-SANDIA-SECUREID 6
 PA-SESAME 7
 PA-OSF-DCE 8
 PA-CYBERSAFE-SECUREID 9
 PA-AFS3-SALT 10
 PA-ETYPE-INFO 11
 PA-SAM-CHALLENGE 12 (sam/otp)
 PA-SAM-RESPONSE 13 (sam/otp)
 PA-PK-AS-REQ 14 (pkinit)
 PA-PK-AS-REP 15 (pkinit)
 PA-ETYPE-INFO2 19 (replaces pa-etype-info)
 PA-USE-SPECIFIED-KVNO 20
 PA-SAM-REDIRECT 21 (sam/otp)
 PA-GET-FROM-TYPED-DATA 22 (embedded in typed data)
 TD-PADATA 22 (embeds padata)
 PA-SAM-ETYPE-INFO 23 (sam/otp)
 PA-ALT-PRINC 24 (crawdad@fnal.gov)

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 107]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 PA-SAM-CHALLENGE2 30 (kenh@pobox.com)
 PA-SAM-RESPONSE2 31 (kenh@pobox.com)
 PA-EXTRA-TGT 41 Reserved extra TGT
 TD-PKINIT-CMS-CERTIFICATES 101 CertificateSet from CMS
 TD-KRB-PRINCIPAL 102 PrincipalName
 TD-KRB-REALM 103 Realm
 TD-TRUSTED-CERTIFIERS 104 from PKINIT
 TD-CERTIFICATE-INDEX 105 from PKINIT
 TD-APP-DEFINED-ERROR 106 application specific
 TD-REQ-NONCE 107 INTEGER
 TD-REQ-SEQ 108 INTEGER
 PA-PAC-REQUEST 128 (jbrezak@exchange.microsoft.com)

7.5.3. Address Types

 Address type value

 IPv4 2
 Directional 3
 ChaosNet 5
 XNS 6
 ISO 7
 DECNET Phase IV 12
 AppleTalk DDP 16
 NetBios 20
 IPv6 24

7.5.4. Authorization Data Types

 authorization data type ad-type value
 AD-IF-RELEVANT 1
 AD-INTENDED-FOR-SERVER 2
 AD-INTENDED-FOR-APPLICATION-CLASS 3
 AD-KDC-ISSUED 4
 AD-AND-OR 5
 AD-MANDATORY-TICKET-EXTENSIONS 6
 AD-IN-TICKET-EXTENSIONS 7
 AD-MANDATORY-FOR-KDC 8
 reserved values 9-63
 OSF-DCE 64
 SESAME 65
 AD-OSF-DCE-PKI-CERTID 66 (hemsath@us.ibm.com)
 AD-WIN2K-PAC 128 (jbrezak@exchange.microsoft.com)

7.5.5. Transited Encoding Types

 transited encoding type tr-type value
 DOMAIN-X500-COMPRESS 1

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 108]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 reserved values all others

7.5.6. Protocol Version Number

 Label Value Meaning or MIT code

 pvno 5 current Kerberos protocol version number

7.5.7. Kerberos Message Types

 message types

 KRB_AS_REQ 10 Request for initial authentication
 KRB_AS_REP 11 Response to KRB_AS_REQ request
 KRB_TGS_REQ 12 Request for authentication based on TGT
 KRB_TGS_REP 13 Response to KRB_TGS_REQ request
 KRB_AP_REQ 14 application request to server
 KRB_AP_REP 15 Response to KRB_AP_REQ_MUTUAL
 KRB_RESERVED16 16 Reserved for user-to-user krb_tgt_request
 KRB_RESERVED17 17 Reserved for user-to-user krb_tgt_reply
 KRB_SAFE 20 Safe (checksummed) application message
 KRB_PRIV 21 Private (encrypted) application message
 KRB_CRED 22 Private (encrypted) message to forward credentials
 KRB_ERROR 30 Error response

7.5.8. Name Types

 name types

 KRB_NT_UNKNOWN 0 Name type not known
 KRB_NT_PRINCIPAL 1 Just the name of the principal as in DCE, or for users
 KRB_NT_SRV_INST 2 Service and other unique instance (krbtgt)
 KRB_NT_SRV_HST 3 Service with host name as instance (telnet, rcommands)
 KRB_NT_SRV_XHST 4 Service with host as remaining components
 KRB_NT_UID 5 Unique ID
 KRB_NT_X500_PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]
 KRB_NT_SMTP_NAME 7 Name in form of SMTP email name (e.g. user@foo.com)
 KRB_NT_ENTERPRISE 10 Enterprise name - may be mapped to principal name

7.5.9. Error Codes

 error codes

 KDC_ERR_NONE 0 No error
 KDC_ERR_NAME_EXP 1 Client's entry in database has expired
 KDC_ERR_SERVICE_EXP 2 Server's entry in database has expired
 KDC_ERR_BAD_PVNO 3 Requested protocol version number
 not supported

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc2253

September 2004 [Page 109]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 KDC_ERR_C_OLD_MAST_KVNO 4 Client's key encrypted in old master key
 KDC_ERR_S_OLD_MAST_KVNO 5 Server's key encrypted in old master key
 KDC_ERR_C_PRINCIPAL_UNKNOWN 6 Client not found in Kerberos database
 KDC_ERR_S_PRINCIPAL_UNKNOWN 7 Server not found in Kerberos database
 KDC_ERR_PRINCIPAL_NOT_UNIQUE 8 Multiple principal entries in database
 KDC_ERR_NULL_KEY 9 The client or server has a null key
 KDC_ERR_CANNOT_POSTDATE 10 Ticket not eligible for postdating
 KDC_ERR_NEVER_VALID 11 Requested start time is later than end time
 KDC_ERR_POLICY 12 KDC policy rejects request
 KDC_ERR_BADOPTION 13 KDC cannot accommodate requested option
 KDC_ERR_ETYPE_NOSUPP 14 KDC has no support for encryption type
 KDC_ERR_SUMTYPE_NOSUPP 15 KDC has no support for checksum type
 KDC_ERR_PADATA_TYPE_NOSUPP 16 KDC has no support for padata type
 KDC_ERR_TRTYPE_NOSUPP 17 KDC has no support for transited type
 KDC_ERR_CLIENT_REVOKED 18 Clients credentials have been revoked
 KDC_ERR_SERVICE_REVOKED 19 Credentials for server have been revoked
 KDC_ERR_TGT_REVOKED 20 TGT has been revoked
 KDC_ERR_CLIENT_NOTYET 21 Client not yet valid - try again later
 KDC_ERR_SERVICE_NOTYET 22 Server not yet valid - try again later
 KDC_ERR_KEY_EXPIRED 23 Password has expired
 - change password to reset
 KDC_ERR_PREAUTH_FAILED 24 Pre-authentication information was invalid
 KDC_ERR_PREAUTH_REQUIRED 25 Additional pre-authenticationrequired
 KDC_ERR_SERVER_NOMATCH 26 Requested server and ticket don't match
 KDC_ERR_MUST_USE_USER2USER 27 Server principal valid for user2user only
 KDC_ERR_PATH_NOT_ACCPETED 28 KDC Policy rejects transited path
 KDC_ERR_SVC_UNAVAILABLE 29 A service is not available
 KRB_AP_ERR_BAD_INTEGRITY 31 Integrity check on decrypted field failed
 KRB_AP_ERR_TKT_EXPIRED 32 Ticket expired
 KRB_AP_ERR_TKT_NYV 33 Ticket not yet valid
 KRB_AP_ERR_REPEAT 34 Request is a replay
 KRB_AP_ERR_NOT_US 35 The ticket isn't for us
 KRB_AP_ERR_BADMATCH 36 Ticket and authenticator don't match
 KRB_AP_ERR_SKEW 37 Clock skew too great
 KRB_AP_ERR_BADADDR 38 Incorrect net address
 KRB_AP_ERR_BADVERSION 39 Protocol version mismatch
 KRB_AP_ERR_MSG_TYPE 40 Invalid msg type
 KRB_AP_ERR_MODIFIED 41 Message stream modified
 KRB_AP_ERR_BADORDER 42 Message out of order
 KRB_AP_ERR_BADKEYVER 44 Specified version of key is not available
 KRB_AP_ERR_NOKEY 45 Service key not available
 KRB_AP_ERR_MUT_FAIL 46 Mutual authentication failed
 KRB_AP_ERR_BADDIRECTION 47 Incorrect message direction
 KRB_AP_ERR_METHOD 48 Alternative authentication method required
 KRB_AP_ERR_BADSEQ 49 Incorrect sequence number in message
 KRB_AP_ERR_INAPP_CKSUM 50 Inappropriate type of checksum in message
 KRB_AP_PATH_NOT_ACCEPTED 51 Policy rejects transited path
 KRB_ERR_RESPONSE_TOO_BIG 52 Response too big for UDP, retry with TCP

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 110]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 KRB_ERR_GENERIC 60 Generic error (description in e-text)
 KRB_ERR_FIELD_TOOLONG 61 Field is too long for this implementation
 KDC_ERROR_CLIENT_NOT_TRUSTED 62 Reserved for PKINIT
 KDC_ERROR_KDC_NOT_TRUSTED 63 Reserved for PKINIT
 KDC_ERROR_INVALID_SIG 64 Reserved for PKINIT
 KDC_ERR_KEY_TOO_WEAK 65 Reserved for PKINIT
 KDC_ERR_CERTIFICATE_MISMATCH 66 Reserved for PKINIT
 KRB_AP_ERR_NO_TGT 67 No TGT available to validate USER-TO-USER
 KDC_ERR_WRONG_REALM 68 Reserved for future use
 KRB_AP_ERR_USER_TO_USER_REQUIRED 69 Ticket must be for USER-TO-USER
 KDC_ERR_CANT_VERIFY_CERTIFICATE 70 Reserved for PKINIT
 KDC_ERR_INVALID_CERTIFICATE 71 Reserved for PKINIT
 KDC_ERR_REVOKED_CERTIFICATE 72 Reserved for PKINIT
 KDC_ERR_REVOCATION_STATUS_UNKNOWN 73 Reserved for PKINIT
 KDC_ERR_REVOCATION_STATUS_UNAVAILABLE 74 Reserved for PKINIT
 KDC_ERR_CLIENT_NAME_MISMATCH 75 Reserved for PKINIT
 KDC_ERR_KDC_NAME_MISMATCH 76 Reserved for PKINIT

8. Interoperability requirements

 Version 5 of the Kerberos protocol supports a myriad of options.
 Among these are multiple encryption and checksum types, alternative
 encoding schemes for the transited field, optional mechanisms for
 pre-authentication, the handling of tickets with no addresses,
 options for mutual authentication, user-to-user authentication,
 support for proxies, forwarding, postdating, and renewing tickets,
 the format of realm names, and the handling of authorization data.

 In order to ensure the interoperability of realms, it is necessary to
 define a minimal configuration which must be supported by all
 implementations. This minimal configuration is subject to change as
 technology does. For example, if at some later date it is discovered
 that one of the required encryption or checksum algorithms is not
 secure, it will be replaced.

8.1. Specification 2

 This section defines the second specification of these options.
 Implementations which are configured in this way can be said to
 support Kerberos Version 5 Specification 2 (5.2). Specification 1
 (deprecated) may be found in RFC1510.

 Transport

 TCP/IP and UDP/IP transport MUST be supported by clients and KDCs
 claiming conformance to specification 2.

 Encryption and checksum methods

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 111]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The following encryption and checksum mechanisms MUST be
 supported.

 Encryption: AES256-CTS-HMAC-SHA1-96
 Checksums: HMAC-SHA1-96-AES256

 Implementations SHOULD support other mechanisms as well, but the
 additional mechanisms may only be used when communicating with
 principals known to also support them. The mechanisms that SHOULD
 be supported are:

 Encryption: AES128-CTS-HMAC-SHA1-96, DES-CBC-MD5, DES3-CBC-SHA1-KD
 Checksums: DES-MD5, HMAC-SHA1-DES3-KD, HMAC-SHA1-96-AES128

 Implementations MAY support other mechanisms as well, but the
 additional mechanisms may only be used when communicating with
 principals known to also support them.

 Implementation note: earlier implementations of Kerberos generate
 messages using the CRC-32, RSA-MD5 checksum methods. For
 interoperability with these earlier releases implementors MAY
 consider supporting these checksum methods but should carefully
 analyze the security impplications to limit the situations within
 which these methods are accepted.

 Realm Names

 All implementations MUST understand hierarchical realms in both
 the Internet Domain and the X.500 style. When a ticket-granting
 ticket for an unknown realm is requested, the KDC MUST be able to
 determine the names of the intermediate realms between the KDCs
 realm and the requested realm.

 Transited field encoding

 DOMAIN-X500-COMPRESS (described in section 3.3.3.2) MUST be
 supported. Alternative encodings MAY be supported, but they may
 be used only when that encoding is supported by ALL intermediate
 realms.

 Pre-authentication methods

 The TGS-REQ method MUST be supported. The TGS-REQ method is not
 used on the initial request. The PA-ENC-TIMESTAMP method MUST be
 supported by clients but whether it is enabled by default MAY be
 determined on a realm by realm basis. If not used in the initial
 request and the error KDC_ERR_PREAUTH_REQUIRED is returned
 specifying PA-ENC-TIMESTAMP as an acceptable method, the client

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 112]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 SHOULD retry the initial request using the PA-ENC-TIMESTAMP pre-
 authentication method. Servers need not support the PA-ENC-
 TIMESTAMP method, but if not supported the server SHOULD ignore
 the presence of PA-ENC-TIMESTAMP pre-authentication in a request.

 The ETYPE-INFO2 method MUST be supported; this method is used to
 communicate the set of supported encryption types, and
 corresponding salt and string to key paramters. The ETYPE-INFO
 method SHOULD be supported for interoperability with older
 implementation.

 Mutual authentication

 Mutual authentication (via the KRB_AP_REP message) MUST be
 supported.

 Ticket addresses and flags

 All KDCs MUST pass through tickets that carry no addresses (i.e.
 if a TGT contains no addresses, the KDC will return derivative
 tickets). Implementations SHOULD default to requesting
 addressless tickets as this significantly increases
 interoperability with network address translation. In some cases
 realms or application servers MAY require that tickets have an
 address.

 Implementations SHOULD accept directional address type for the
 KRB_SAFE and KRB_PRIV message and SHOULD include directional
 addresses in these messages when other address types are not
 available.

 Proxies and forwarded tickets MUST be supported. Individual realms
 and application servers can set their own policy on when such
 tickets will be accepted.

 All implementations MUST recognize renewable and postdated
 tickets, but need not actually implement them. If these options
 are not supported, the starttime and endtime in the ticket shall
 specify a ticket's entire useful life. When a postdated ticket is
 decoded by a server, all implementations shall make the presence
 of the postdated flag visible to the calling server.

 User-to-user authentication

 Support for user-to-user authentication (via the ENC-TKT-IN-SKEY
 KDC option) MUST be provided by implementations, but individual
 realms MAY decide as a matter of policy to reject such requests on
 a per-principal or realm-wide basis.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 113]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Authorization data

 Implementations MUST pass all authorization data subfields from
 ticket-granting tickets to any derivative tickets unless directed
 to suppress a subfield as part of the definition of that
 registered subfield type (it is never incorrect to pass on a
 subfield, and no registered subfield types presently specify
 suppression at the KDC).

 Implementations MUST make the contents of any authorization data
 subfields available to the server when a ticket is used.
 Implementations are not required to allow clients to specify the
 contents of the authorization data fields.

 Constant ranges

 All protocol constants are constrained to 32 bit (signed) values
 unless further constrained by the protocol definition. This limit
 is provided to allow implementations to make assumptions about the
 maximum values that will be received for these constants.
 Implementation receiving values outside this range MAY reject the
 request, but they MUST recover cleanly.

8.2. Recommended KDC values

 Following is a list of recommended values for a KDC configuration.

 minimum lifetime 5 minutes
 maximum renewable lifetime 1 week
 maximum ticket lifetime 1 day
 acceptable clock skew 5 minutes
 empty addresses Allowed.
 proxiable, etc. Allowed.

9. IANA considerations

Section 7 of this document specifies protocol constants and other
 defined values required for the interoperability of multiple
 implementations. Until otherwise specified in a subsequent RFC, or
 upon disbanding of the Kerberos working group, allocations of
 additional protocol constants and other defined values required for
 extensions to the Kerberos protocol will be administered by the
 kerberos working group. Following the recomendations outlined in
 [RFC 2434], guidance is provided to the IANA as follows:

 "reserved" realm name types in section 6.1 and "other" realm types
 except those beginning with "X-" or "x-" will not be registered
 without IETF standards action, at which point guidlines for further

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc2434

September 2004 [Page 114]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 assignment will be specified. Realm name types beginning with "X-"
 or "x-" are for private use.

 For host address types described in section 7.1, negative values are
 for private use. Assignment of additional positive numbers is
 subject to review by the kerberos working group or other expert
 review.

 Additional key usage numbers as defined in section 7.5.1 will be
 assigned subject to review by the kerberos working group or other
 expert review.

 Additional preauthentciation data type values as defined in section
7.5.2 will be assigned subject to review by the kerberos working

 group or other expert review.

 Additional Authorization Data Types as defined in section 7.5.4 will
 be assigned subject to review by the kerberos working group or other
 expert review. Although it is anticipated that there may be
 significant demand for private use types, provision is intentionaly
 not made for a private use portion of the namespace because conficts
 between privately assigned values coule have detrimental security
 implications.

 Additional Transited Encoding Types as defined in section 7.5.5
 present special concerns for interoperability with existing
 implementations. As such, such assignments will only be made by
 standards action, except that the Kerberos working group or another
 other working group with competent jurisdiction may make preliminary
 assignments for documents which are moving through the standards
 process.

 Additional Kerberos Message Types as described in section 7.5.7 will
 be assigned subject to review by the kerberos working group or other
 expert review.

 Additional Name Types as described in section 7.5.8 will be assigned
 subject to review by the kerberos working group or other expert
 review.

 Additional error codes described in section 7.5.9 will be assigned
 subject to review by the kerberos working group or other expert
 review.

10. Security Considerations

 As an authentication service, Kerberos provides a means of verifying
 the identity of principals on a network. Kerberos does not, by

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 115]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 itself, provide authorization. Applications should not accept the
 issuance of a service ticket by the Kerberos server as granting
 authority to use the service, since such applications may become
 vulnerable to the bypass of this authorization check in an
 environment if they inter-operate with other KDCs or where other
 options for application authentication are provided.

 Denial of service attacks are not solved with Kerberos. There are
 places in the protocols where an intruder can prevent an application
 from participating in the proper authentication steps. Because
 authentication is a required step for the use of many services,
 successful denial of service attacks on a Kerberos server might
 result in the denial of other network services that rely on Kerberos
 for authentication. Kerberos is vulnerable to many kinds of denial of
 service attacks: denial of service attacks on the network which would
 prevent clients from contacting the KDC; denial of service attacks on
 the domain name system which could prevent a client from finding the
 IP address of the Kerberos server; and denial of service attack by
 overloading the Kerberos KDC itself with repeated requests.

 Interoperability conflicts caused by incompatible character-set usage
 (see 5.2.1) can result in denial of service for clients that utilize
 character-sets in Kerberos strings other than those stored in the KDC
 database.

 Authentication servers maintain a database of principals (i.e., users
 and servers) and their secret keys. The security of the
 authentication server machines is critical. The breach of security of
 an authentication server will compromise the security of all servers
 that rely upon the compromised KDC, and will compromise the
 authentication of any principals registered in the realm of the
 compromised KDC.

 Principals must keep their secret keys secret. If an intruder somehow
 steals a principal's key, it will be able to masquerade as that
 principal or impersonate any server to the legitimate principal.

 Password guessing attacks are not solved by Kerberos. If a user
 chooses a poor password, it is possible for an attacker to
 successfully mount an off-line dictionary attack by repeatedly
 attempting to decrypt, with successive entries from a dictionary,
 messages obtained which are encrypted under a key derived from the
 user's password.

 Unless pre-authentication options are required by the policy of a
 realm, the KDC will not know whether a request for authentication
 succeeds. An attacker can request a reply with credentials for any
 principal. These credentials will likely not be of much use to the

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 116]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 attacker unless it knows the client's secret key, but the
 availability of the response encrypted in the client's secret key
 provides the attacker with ciphertext that may be used to mount brute
 force or dictionary attacks to decrypt the credentials, by guessing
 the user's password. For this reason it is strongly encouraged that
 Kerberos realms require the use of pre-authentication. Even with pre-
 authentication, attackers may try brute force or dictionary attacks
 against credentials that are observed by eavesdropping on the
 network.

 Because a client can request a ticket for any server principal and
 can attempt a brute force or dictionary attack against the server
 principal's key using that ticket, it is strongly encouraged that
 keys be randomly generated (rather than generated from passwords) for
 any principals that are usable as the target principal for a
 KRB_TGS_REQ or KRB_AS_REQ messages. [RFC1750]

 Although the DES-CBC-MD5 encryption method and DES-MD5 checksum
 methods are listed as SHOULD be implemented for backward
 compatibility, the single DES encryption algorithm on which these are
 based is weak and stronger algorithms should be used whenever
 possible.

 Each host on the network must have a clock which is loosely
 synchronized to the time of the other hosts; this synchronization is
 used to reduce the bookkeeping needs of application servers when they
 do replay detection. The degree of "looseness" can be configured on a
 per-server basis, but is typically on the order of 5 minutes. If the
 clocks are synchronized over the network, the clock synchronization
 protocol MUST itself be secured from network attackers.

 Principal identifiers must not recycled on a short-term basis. A
 typical mode of access control will use access control lists (ACLs)
 to grant permissions to particular principals. If a stale ACL entry
 remains for a deleted principal and the principal identifier is
 reused, the new principal will inherit rights specified in the stale
 ACL entry. By not reusing principal identifiers, the danger of
 inadvertent access is removed.

 Proper decryption of an KRB_AS_REP message from the KDC is not
 sufficient for the host to verify the identity of the user; the user
 and an attacker could cooperate to generate a KRB_AS_REP format
 message which decrypts properly but is not from the proper KDC. To
 authenticate a user logging on to a local system, the credentials
 obtained in the AS exchange may first be used in a TGS exchange to
 obtain credentials for a local server. Those credentials must then be
 verified by a local server through successful completion of the
 Client/Server exchange.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1750

September 2004 [Page 117]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Many RFC 1510 compliant implementations ignore unknown authorization
 data elements. Depending on these implementations to honor
 authorization data restrictions may create a security weakness.

 Kerberos credentials contain clear-text information identifying the
 principals to which they apply. If privacy of this information is
 needed, this exchange should itself be encapsulated in a protocol
 providing for confidentiality on the exchange of these credentials.

 Applications must take care to protect communications subsequent to
 authentication either by using the KRB_PRIV or KRB_SAFE messages as
 appropriate, or by applying their own confidentiality or integrity
 mechanisms on such communications. Completion of the KRB_AP_REQ and
 KRB_AP_REP exchange without subsequent use of confidentiality and
 integrity mechanisms provides only for authentication of the parties
 to the communication and not confidentiality and integrity of the
 subsequent communication. Application applying confidentiality and
 integrity protection mechanisms other than KRB_PRIV and KRB_SAFE must
 make sure that the authentication step is appropriately linked with
 the protected communication channel that is established by the
 application.

 Unless the application server provides its own suitable means to
 protect against replay (for example, a challenge-response sequence
 initiated by the server after authentication, or use of a server-
 generated encryption subkey), the server must utilize a replay cache
 to remember any authenticator presented within the allowable clock
 skew. All services sharing a key need to use the same replay cache.
 If separate replay caches are used, then and authenticator used with
 one such service could later be replayed to a different service with
 the same service principal.

 If a server loses track of authenticators presented within the
 allowable clock skew, it must reject all requests until the clock
 skew interval has passed, providing assurance that any lost or
 replayed authenticators will fall outside the allowable clock skew
 and can no longer be successfully replayed.

 Implementations of Kerberos should not use untrusted directory
 servers to determine the realm of a host. To allow such would allow
 the compromise of the directory server to enable an attacker to
 direct the client to accept authentication with the wrong principal
 (i.e. one with a similar name, but in a realm with which the
 legitimate host was not registered).

 Implementations of Kerberos must not use DNS to map one name to
 another (canonicalize) to determine the host part of the principal
 name with which one is to communicate. To allow such

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 118]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 canonicalization would allow a compromise of the DNS to result in a
 client obtaining credentials and correctly authenticating to the
 wrong principal. Though the client will know who it is communicating
 with, it will not be the principal with which it intended to
 communicate.

 If the Kerberos server returns a TGT for a 'closer' realm other than
 the desired realm, the client may use local policy configuration to
 verify that the authentication path used is an acceptable one.
 Alternatively, a client may choose its own authentication path,
 rather than relying on the Kerberos server to select one. In either
 case, any policy or configuration information used to choose or
 validate authentication paths, whether by the Kerberos server or
 client, must be obtained from a trusted source.

 The Kerberos protocol in its basic form does not provide perfect
 forward secrecy for communications. If traffic has been recorded by
 an eavesdropper, then messages encrypted using the KRB_PRIV message,
 or messages encrypted using application specific encryption under
 keys exchanged using Kerberos can be decrypted if any of the user's,
 application server's, or KDC's key is subsequently discovered. This
 is because the session key use to encrypt such messages is
 transmitted over the network encrypted in the key of the application
 server, and also encrypted under the session key from the user's
 ticket-granting ticket when returned to the user in the KRB_TGS_REP
 message. The session key from the ticket-granting ticket was sent to
 the user in the KRB_AS_REP message encrypted in the user's secret
 key, and embedded in the ticket-granting ticket, which was encrypted
 in the key of the KDC. Application requiring perfect forward secrecy
 must exchange keys through mechanisms that provide such assurance,
 but may use Kerberos for authentication of the encrypted channel
 established through such other means.

11. Author's Addresses

 Clifford Neuman
 Information Sciences Institute
 University of Southern California
 4676 Admiralty Way
 Marina del Rey, CA 90292, USA
 Email: bcn@isi.edu

 Tom Yu
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139, USA
 Email: tlyu@mit.edu

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 119]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Sam Hartman
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139, USA
 Email: hartmans@mit.edu

 Kenneth Raeburn
 Massachusetts Institute of Technology
 77 Massachusetts Avenue
 Cambridge, MA 02139, USA
 Email: raeburn@MIT.EDU

12. Acknowledgements

 This document is a revision to RFC1510 which was co-authored with
 John Kohl. The specification of the Kerberos protocol described in
 this document is the result of many years of effort. Over this
 period many individuals have contributed to the definition of the
 protocol and to the writing of the specification. Unfortunately it is
 not possible to list all contributors as authors of this document,
 though there are many not listed who are authors in spirit, because
 they contributed text for parts of some sections, because they
 contributed to the design of parts of the protocol, or because they
 contributed significantly to the discussion of the protocol in the
 IETF common authentication technology (CAT) and Kerberos working
 groups.

 Among those contributing to the development and specification of
 Kerberos were Jeffrey Altman, John Brezak, Marc Colan, Johan
 Danielsson, Don Davis, Doug Engert, Dan Geer, Paul Hill, John Kohl,
 Marc Horowitz, Matt Hur, Jeffrey Hutzelman, Paul Leach, John Linn,
 Ari Medvinsky, Sasha Medvinsky, Steve Miller, Jon Rochlis, Jerome
 Saltzer, Jeffrey Schiller, Jennifer Steiner, Ralph Swick, Mike Swift,
 Jonathan Trostle, Theodore Ts'o, Brian Tung, Jacques Vidrine, Assar
 Westerlund, and Nicolas Williams. Many other members of MIT Project
 Athena, the MIT networking group, and the Kerberos and CAT working
 groups of the IETF contributed but are not listed.

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

13. REFERENCES

13.1 NORMATIVE REFERENCES

 [@KCRYPTO]
 RFC-Editor: To be replaced by RFC number for draft-ietf-krb-wg-

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg

September 2004 [Page 120]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 crypto.

 [@AES]
 RFC-Editor: To be replaced by RFC number for draft-raeburn-krb-

rijndael-krb.

 [@GSSAPI-CFX]
 RFC-Editor: To be replaced by RFC number for draft-ietf-krb-wg-

gssapi-cfx

 [ISO-646/ECMA-6]
 7-bit Coded Character Set

 [ISO-2022/ECMA-35]
 Character Code Structure and Extension Techniques

 [RFC1035]
 P.V. Mockapetris, RFC1035: "Domain Names - Implementations and
 Specification," November 1, 1987, Obsoletes - RFC973, RFC882,

RFC883. Updated by RFC1101, RFC1183, RFC1348, RFCRFC1876, RFC1982,
RFC1995, RFC1996, RFC2065, RFC2136, RFC2137, RFC2181, RFC2308,
RFC2535, RFC2845, and RFC3425. Status: Standard.

 [RFC2119]

 S. Bradner, RFC2119: "Key words for use in RFC's to Indicate
 Requirement Levels", March 1997.

 [RFC2434]
 T. Narten, H. Alvestrand, RFC2434: "Guidelines for writing IANA
 Consideration Secionts in RFCs" October, 1998.

 [RFC2782]
 A. Gulbrandsen, P. Vixie and L. Esibov., RFC2782: "A DNS RR for
 Specifying the Location of Services (DNS SRV)," February 2000.

 [RFC2253]
 M. Wahl, S. Killie, and T. Howes, RFC2253: "Lightweight Directory
 Access Protocol (v3): UTF-8 String Representation or Distinguished
 Names," December 1997, Obsoletes - RFC1779, Updated by RFC3377,
 Status: Proposed Standard.

 [RFC2373]
 R. Hinden, S. Deering, RFC2373: "IP Version 6 Addressing
 Architecture," July 1998, Status: Proposed Standard.

 [X680]
 Abstract Syntax Notation One (ASN.1): Specification of Basic

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/draft-raeburn-krb-rijndael-krb
https://datatracker.ietf.org/doc/html/draft-raeburn-krb-rijndael-krb
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-gssapi-cfx
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-gssapi-cfx
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc973
https://datatracker.ietf.org/doc/html/rfc882
https://datatracker.ietf.org/doc/html/rfc883
https://datatracker.ietf.org/doc/html/rfc1101
https://datatracker.ietf.org/doc/html/rfc1183
https://datatracker.ietf.org/doc/html/rfc1348
https://datatracker.ietf.org/doc/html/rfc1982
https://datatracker.ietf.org/doc/html/rfc1995
https://datatracker.ietf.org/doc/html/rfc1996
https://datatracker.ietf.org/doc/html/rfc2065
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2137
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2308
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc3425
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc1779
https://datatracker.ietf.org/doc/html/rfc3377
https://datatracker.ietf.org/doc/html/rfc2373

September 2004 [Page 121]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Notation, ITU-T Recommendation X.680 (1997) | ISO/IEC
 International Standard 8824-1:1998.

 [X690]
 ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished Encoding Rules
 (DER), ITU-T Recommendation X.690 (1997)| ISO/IEC International
 Standard 8825-1:1998.

13.2 INFORMATIVE REFERENCES

 [DGT96]
 Don Davis, Daniel Geer, and Theodore Ts'o, "Kerberos With Clocks
 Adrift: History, Protocols, and Implementation", USENIX Computing
 Systems 9:1 (January 1996).

 [DS81]
 Dorothy E. Denning and Giovanni Maria Sacco, "Time-stamps in Key
 Distribution Protocols," Communications of the ACM, Vol. 24(8),
 pp. 533-536 (August 1981).

 [KNT94]

 John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts'o, "The
 Evolution of the Kerberos Authentication System". In Distributed
 Open Systems, pages 78-94. IEEE Computer Society Press, 1994.

 [MNSS87]
 S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer,
 Section E.2.1: Kerberos Authentication and Authorization System,
 M.I.T. Project Athena, Cambridge, Massachusetts (December 21,
 1987).

 [NS78]
 Roger M. Needham and Michael D. Schroeder, "Using Encryption for
 Authentication in Large Networks of Computers," Communications of
 the ACM, Vol. 21(12), pp. 993-999 (December, 1978).

 [Neu93]
 B. Clifford Neuman, "Proxy-Based Authorization and Accounting for
 Distributed Systems," in Proceedings of the 13th International
 Conference on Distributed Computing Systems, Pittsburgh, PA (May,
 1993).

 [NT94]
 B. Clifford Neuman and Theodore Y. Ts'o, "An Authentication
 Service for Computer Networks," IEEE Communications Magazine, Vol.
 32(9), pp. 33-38 (September 1994).

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 122]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 [Pat92].
 J. Pato, Using Pre-Authentication to Avoid Password Guessing
 Attacks, Open Software Foundation DCE Request for Comments 26
 (December 1992).

 [RFC1510]
 J. Kohl and B. C. Neuman, RFC1510: "The Kerberos Network
 Authentication Service (v5)," September 1993, Status: Proposed
 Standard.

 [RFC1750]
 D. Eastlake, S. Crocker, and J. Schiller "Randomness
 Recommendation for Security" December 1994, Status: Informational.

 [RFC2026]
 S. Bradner, RFC2026: "The Internet Standard Process - Revision
 3," October 1996, Obsoletes - RFC 1602, Status: Best Current
 Practice.

 [SNS88]
 J. G. Steiner, B. C. Neuman, and J. I. Schiller, "Kerberos: An
 Authentication Service for Open Network Systems," pp. 191-202 in
 Usenix Conference Proceedings, Dallas, Texas (February, 1988).

14. Copyright Statement

 Copyright (C) The Internet Society (2004). This document is
 subject to the rights, licenses and restrictions contained in BCP

78 and except as set forth therein, the authors retain all their
 rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

15. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
 described in this document or the extent to which any license
 under such rights might or might not be available; nor does it

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc1602
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78

September 2004 [Page 123]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 represent that it has made any independent effort to identify any
 such rights. Information on the procedures with respect to rights
 in RFC documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
 any copyrights, patents or patent applications, or other
 proprietary rights that may cover technology that may be required
 to implement this standard. Please address the information to the
 IETF at ietf-ipr@ietf.org.

A. ASN.1 module

 KerberosV5Spec2 {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2) modules(4) krb5spec2(2)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- OID arc for KerberosV5
 --
 -- This OID may be used to identify Kerberos protocol messages
 -- encapsulated in other protocols.
 --
 -- This OID also designates the OID arc for KerberosV5-related OIDs.
 --
 -- NOTE: RFC 1510 had an incorrect value (5) for "dod" in its OID.
 id-krb5 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2)
 }

 Int32 ::= INTEGER (-2147483648..2147483647)
 -- signed values representable in 32 bits

 UInt32 ::= INTEGER (0..4294967295)
 -- unsigned 32 bit values

 Microseconds ::= INTEGER (0..999999)
 -- microseconds

 KerberosString ::= GeneralString (IA5String)

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 124]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Realm ::= KerberosString

 PrincipalName ::= SEQUENCE {
 name-type [0] Int32,
 name-string [1] SEQUENCE OF KerberosString
 }

 KerberosTime ::= GeneralizedTime -- with no fractional seconds

 HostAddress ::= SEQUENCE {
 addr-type [0] Int32,
 address [1] OCTET STRING
 }

 -- NOTE: HostAddresses is always used as an OPTIONAL field and
 -- should not be empty.
 HostAddresses -- NOTE: subtly different from rfc1510,
 -- but has a value mapping and encodes the same
 ::= SEQUENCE OF HostAddress

 -- NOTE: AuthorizationData is always used as an OPTIONAL field and
 -- should not be empty.
 AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type [0] Int32,
 ad-data [1] OCTET STRING
 }

 PA-DATA ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 padata-type [1] Int32,
 padata-value [2] OCTET STRING -- might be encoded AP-REQ
 }

 KerberosFlags ::= BIT STRING (SIZE (32..MAX)) -- minimum number of bits
 -- shall be sent, but no fewer than 32

 EncryptedData ::= SEQUENCE {
 etype [0] Int32 -- EncryptionType --,
 kvno [1] UInt32 OPTIONAL,
 cipher [2] OCTET STRING -- ciphertext
 }

 EncryptionKey ::= SEQUENCE {
 keytype [0] Int32 -- actually encryption type --,
 keyvalue [1] OCTET STRING
 }

 Checksum ::= SEQUENCE {

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 125]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 cksumtype [0] Int32,
 checksum [1] OCTET STRING
 }

 Ticket ::= [APPLICATION 1] SEQUENCE {
 tkt-vno [0] INTEGER (5),
 realm [1] Realm,
 sname [2] PrincipalName,
 enc-part [3] EncryptedData -- EncTicketPart
 }

 -- Encrypted part of ticket
 EncTicketPart ::= [APPLICATION 3] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] Realm,
 cname [3] PrincipalName,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL
 }

 -- encoded Transited field
 TransitedEncoding ::= SEQUENCE {
 tr-type [0] Int32 -- must be registered --,
 contents [1] OCTET STRING
 }

 TicketFlags ::= KerberosFlags
 -- reserved(0),
 -- forwardable(1),
 -- forwarded(2),
 -- proxiable(3),
 -- proxy(4),
 -- may-postdate(5),
 -- postdated(6),
 -- invalid(7),
 -- renewable(8),
 -- initial(9),
 -- pre-authent(10),
 -- hw-authent(11),
 -- the following are new since 1510
 -- transited-policy-checked(12),
 -- ok-as-delegate(13)

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 126]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 AS-REQ ::= [APPLICATION 10] KDC-REQ

 TGS-REQ ::= [APPLICATION 12] KDC-REQ

 KDC-REQ ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 pvno [1] INTEGER (5) ,
 msg-type [2] INTEGER (10 -- AS -- | 12 -- TGS --),
 padata [3] SEQUENCE OF PA-DATA OPTIONAL
 -- NOTE: not empty --,
 req-body [4] KDC-REQ-BODY
 }

 KDC-REQ-BODY ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalName OPTIONAL
 -- Used only in AS-REQ --,
 realm [2] Realm
 -- Server's realm
 -- Also client's in AS-REQ --,
 sname [3] PrincipalName OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime,
 rtime [6] KerberosTime OPTIONAL,
 nonce [7] UInt32,
 etype [8] SEQUENCE OF Int32 -- EncryptionType
 -- in preference order --,
 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData OPTIONAL
 -- AuthorizationData --,
 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty
 }

 KDCOptions ::= KerberosFlags
 -- reserved(0),
 -- forwardable(1),
 -- forwarded(2),
 -- proxiable(3),
 -- proxy(4),
 -- allow-postdate(5),
 -- postdated(6),
 -- unused7(7),
 -- renewable(8),
 -- unused9(9),
 -- unused10(10),
 -- opt-hardware-auth(11),
 -- unused12(12),

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 127]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 -- unused13(13),
 -- 15 is reserved for canonicalize
 -- unused15(15),
 -- 26 was unused in 1510
 -- disable-transited-check(26),
 --
 -- renewable-ok(27),
 -- enc-tkt-in-skey(28),
 -- renew(30),
 -- validate(31)

 AS-REP ::= [APPLICATION 11] KDC-REP

 TGS-REP ::= [APPLICATION 13] KDC-REP

 KDC-REP ::= SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (11 -- AS -- | 13 -- TGS --),
 padata [2] SEQUENCE OF PA-DATA OPTIONAL
 -- NOTE: not empty --,
 crealm [3] Realm,
 cname [4] PrincipalName,
 ticket [5] Ticket,
 enc-part [6] EncryptedData
 -- EncASRepPart or EncTGSRepPart,
 -- as appropriate
 }

 EncASRepPart ::= [APPLICATION 25] EncKDCRepPart

 EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

 EncKDCRepPart ::= SEQUENCE {
 key [0] EncryptionKey,
 last-req [1] LastReq,
 nonce [2] UInt32,
 key-expiration [3] KerberosTime OPTIONAL,
 flags [4] TicketFlags,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 srealm [9] Realm,
 sname [10] PrincipalName,
 caddr [11] HostAddresses OPTIONAL
 }

 LastReq ::= SEQUENCE OF SEQUENCE {

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 128]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 lr-type [0] Int32,
 lr-value [1] KerberosTime
 }

 AP-REQ ::= [APPLICATION 14] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (14),
 ap-options [2] APOptions,
 ticket [3] Ticket,
 authenticator [4] EncryptedData -- Authenticator
 }

 APOptions ::= KerberosFlags
 -- reserved(0),
 -- use-session-key(1),
 -- mutual-required(2)

 -- Unencrypted authenticator
 Authenticator ::= [APPLICATION 2] SEQUENCE {
 authenticator-vno [0] INTEGER (5),
 crealm [1] Realm,
 cname [2] PrincipalName,
 cksum [3] Checksum OPTIONAL,
 cusec [4] Microseconds,
 ctime [5] KerberosTime,
 subkey [6] EncryptionKey OPTIONAL,
 seq-number [7] UInt32 OPTIONAL,
 authorization-data [8] AuthorizationData OPTIONAL
 }

 AP-REP ::= [APPLICATION 15] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (15),
 enc-part [2] EncryptedData -- EncAPRepPart
 }

 EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] Microseconds,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] UInt32 OPTIONAL
 }

 KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (20),
 safe-body [2] KRB-SAFE-BODY,
 cksum [3] Checksum

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 129]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 }

 KRB-SAFE-BODY ::= SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] UInt32 OPTIONAL,
 s-address [4] HostAddress,
 r-address [5] HostAddress OPTIONAL
 }

 KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (21),
 -- NOTE: there is no [2] tag
 enc-part [3] EncryptedData -- EncKrbPrivPart
 }

 EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] UInt32 OPTIONAL,
 s-address [4] HostAddress -- sender's addr --,
 r-address [5] HostAddress OPTIONAL -- recip's addr
 }

 KRB-CRED ::= [APPLICATION 22] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (22),
 tickets [2] SEQUENCE OF Ticket,
 enc-part [3] EncryptedData -- EncKrbCredPart
 }

 EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
 ticket-info [0] SEQUENCE OF KrbCredInfo,
 nonce [1] UInt32 OPTIONAL,
 timestamp [2] KerberosTime OPTIONAL,
 usec [3] Microseconds OPTIONAL,
 s-address [4] HostAddress OPTIONAL,
 r-address [5] HostAddress OPTIONAL
 }

 KrbCredInfo ::= SEQUENCE {
 key [0] EncryptionKey,
 prealm [1] Realm OPTIONAL,
 pname [2] PrincipalName OPTIONAL,
 flags [3] TicketFlags OPTIONAL,

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 130]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 authtime [4] KerberosTime OPTIONAL,
 starttime [5] KerberosTime OPTIONAL,
 endtime [6] KerberosTime OPTIONAL,
 renew-till [7] KerberosTime OPTIONAL,
 srealm [8] Realm OPTIONAL,
 sname [9] PrincipalName OPTIONAL,
 caddr [10] HostAddresses OPTIONAL
 }

 KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (30),
 ctime [2] KerberosTime OPTIONAL,
 cusec [3] Microseconds OPTIONAL,
 stime [4] KerberosTime,
 susec [5] Microseconds,
 error-code [6] Int32,
 crealm [7] Realm OPTIONAL,
 cname [8] PrincipalName OPTIONAL,
 realm [9] Realm -- service realm --,
 sname [10] PrincipalName -- service name --,
 e-text [11] KerberosString OPTIONAL,
 e-data [12] OCTET STRING OPTIONAL
 }

 METHOD-DATA ::= SEQUENCE OF PA-DATA

 TYPED-DATA ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 data-type [0] INTEGER,
 data-value [1] OCTET STRING OPTIONAL
 }

 -- preauth stuff follows

 PA-ENC-TIMESTAMP ::= EncryptedData -- PA-ENC-TS-ENC

 PA-ENC-TS-ENC ::= SEQUENCE {
 patimestamp [0] KerberosTime -- client's time --,
 pausec [1] Microseconds OPTIONAL
 }

 ETYPE-INFO-ENTRY ::= SEQUENCE {
 etype [0] Int32,
 salt [1] OCTET STRING OPTIONAL
 }

 ETYPE-INFO ::= SEQUENCE OF ETYPE-INFO-ENTRY

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt

September 2004 [Page 131]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 ETYPE-INFO2-ENTRY ::= SEQUENCE {
 etype [0] Int32,
 salt [1] KerberosString OPTIONAL,
 s2kparams [2] OCTET STRING OPTIONAL
 }

 ETYPE-INFO2 ::= SEQUENCE SIZE (1..MAX) OF ETYPE-INFO2-ENTRY

 AD-IF-RELEVANT ::= AuthorizationData

 AD-KDCIssued ::= SEQUENCE {
 ad-checksum [0] Checksum,
 i-realm [1] Realm OPTIONAL,
 i-sname [2] PrincipalName OPTIONAL,
 elements [3] AuthorizationData
 }

 AD-AND-OR ::= SEQUENCE {
 condition-count [0] INTEGER,
 elements [1] AuthorizationData
 }

 AD-MANDATORY-FOR-KDC ::= AuthorizationData

 END

B. Changes since RFC-1510

 This document replaces RFC-1510 and clarifies specification of items
 that were not completely specified. Where changes to recommended
 implementation choices were made, or where new options were added,
 those changes are described within the document and listed in this
 section. More significantly, "Specification 2" in section 8 changes
 the required encryption and checksum methods to bring them in line
 with the best current practices and to deprecate methods that are no
 longer considered sufficiently strong.

 Discussion was added to section 1 regarding the ability to rely on
 the KDC to check the transited field, and on the inclusion of a flag
 in a ticket indicating that this check has occurred. This is a new
 capability not present in RFC1510. Pre-existing implementations may
 ignore or not set this flag without negative security implications.

 The definition of the secret key says that in the case of a user the
 key may be derived from a password. In 1510, it said that the key was
 derived from the password. This change was made to accommodate
 situations where the user key might be stored on a smart-card, or
 otherwise obtained independent of a password.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 132]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 The introduction mentions the use of public key cryptography for
 initial authentication in Kerberos by reference. RFC1510 did not
 include such a reference.

Section 1.2 was added to explain that while Kerberos provides
 authentication of a named principal, it is still the responsibility
 of the application to ensure that the authenticated name is the
 entity with which the application wishes to communicate.

 Discussion of extensibility has been added to the introduction.

 Discussion of how extensibility affects ticket flags and KDC options
 was added to the introduction of section 2. No changes were made to
 existing options and flags specified in RFC1510, though some of the
 sections in the specification were renumbered, and text was revised
 to make the description and intent of existing options clearer,
 especially with respect to the ENC-TKT-IN-SKEY option (now section

2.9.2) which is used for user-to-user authentication. The new option
 and ticket flag transited policy checking (section 2.7) was added.

 A warning regarding generation of session keys for application use
 was added to section 3, urging the inclusion of key entropy from the
 KDC generated session key in the ticket. An example regarding use of
 the sub-session key was added to section 3.2.6. Descriptions of the
 pa-etype-info, pa-etype-info2, and pa-pw-salt pre-authentication data
 items were added. The recommendation for use of pre-authentication
 was changed from "may" to "should" and a note was added regarding
 known plaintext attacks.

 In RFC 1510, section 4 described the database in the KDC. This
 discussion was not necessary for interoperability and unnecessarily
 constrained implementation. The old section 4 was removed.

 The current section 4 was formerly section 6 on encryption and
 checksum specifications. The major part of this section was brought
 up to date to support new encryption methods, and move to a separate
 document. Those few remaining aspects of the encryption and checksum
 specification specific to Kerberos are now specified in section 4.

 Significant changes were made to the layout of section 5 to clarify
 the correct behavior for optional fields. Many of these changes were
 made necessary because of improper ASN.1 description in the original
 Kerberos specification which left the correct behavior
 underspecified. Additionally, the wording in this section was
 tightened wherever possible to ensure that implementations conforming
 to this specification will be extensible with the addition of new
 fields in future specifications.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510#section-4

September 2004 [Page 133]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 Text was added describing time_t=0 issues in the ASN.1. Text was also
 added, clarifying issues with implementations treating omitted
 optional integers as zero. Text was added clarifying behavior for
 optional SEQUENCE or SEQUENCE OF that may be empty. Discussion was
 added regarding sequence numbers and behavior of some
 implementations, including "zero" behavior and negative numbers. A
 compatibility note was added regarding the unconditional sending of
 EncTGSRepPart regardless of the enclosing reply type. Minor changes
 were made to the description of the HostAddresses type. Integer types
 were constrained. KerberosString was defined as a (significantly)
 constrained GeneralString. KerberosFlags was defined to reflect
 existing implementation behavior that departs from the definition in

RFC 1510. The transited-policy-checked(12) and the ok-as-delegate(13)
 ticket flags were added. The disable-transited-check(26) KDC option
 was added.

 Descriptions of commonly implemented PA-DATA were added to section 5.
 The description of KRB-SAFE has been updated to note the existing
 implementation behavior of double-encoding.

 There were two definitions of METHOD-DATA in RFC 1510. The second
 one, intended for use with KRB_AP_ERR_METHOD was removed leaving the
 SEQUENCE OF PA-DATA definition.

Section 7, naming constraints, from RFC1510 was moved to section 6.

 Words were added describing the convention that domain based realm
 names for newly created realms should be specified as upper case.
 This recommendation does not make lower case realm names illegal.
 Words were added highlighting that the slash separated components in
 the X500 style of realm names is consistent with existing RFC1510
 based implementations, but that it conflicts with the general
 recommendation of X.500 name representation specified in RFC2253.

Section 8, network transport, constants and defined values, from
RFC1510 was moved to section 7. Since RFC1510, the definition of the

 TCP transport for Kerberos messages was added, and the encryption and
 checksum number assignments have been moved into a separate document.

 "Specification 2" in section 8 of the current document changes the
 required encryption and checksum methods to bring them in line with
 the best current practices and to deprecate methods that are no
 longer considered sufficiently strong.

 Two new sections, on IANA considerations and security considerations
 were added.

 The pseudo-code has been removed from the appendix. The pseudo-code

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

September 2004 [Page 134]

Neuman, et al. draft-ietf-krb-wg-kerberos-clarifications-07.txt DRAFT

 was sometimes misinterpreted to limit implementation choices and in
RFC 1510, it was not always consistent with the words in the

 specification. Effort was made to clear up any ambiguities in the
 specification, rather than to rely on the pseudo-code.

 An appendix was added containing the complete ASN.1 module drawn from
 the discussion in section 5 of the current document.

END NOTES

 (*TM) Project Athena, Athena, and Kerberos are trademarks of the
 Massachusetts Institute of Technology (MIT).

September 2004 [Page 135]

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/rfc1510

