
Network Working Group G. Richards
Internet-Draft RSA, The Security Division of
Intended status: Standards Track EMC
Expires: May 26, 2012 November 23, 2011

OTP Pre-authentication
draft-ietf-krb-wg-otp-preauth-21

Abstract

 The Kerberos protocol provides a framework authenticating a client
 using the exchange of pre-authentication data. This document
 describes the use of this framework to carry out One Time Password
 (OTP) authentication.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 26, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Richards Expires May 26, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OTP Pre-authentication November 2011

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Richards Expires May 26, 2012 [Page 2]

Internet-Draft OTP Pre-authentication November 2011

Table of Contents

1. Introduction . 4
1.1. Scope . 4
1.2. Overall Design . 4
1.3. Conventions Used in this Document 5

2. Usage Overview . 5
2.1. OTP Mechanism Support 5
2.2. Pre-Authentication . 5
2.3. PIN Change . 6
2.4. Re-Synchronization . 7

3. Pre-Authentication Protocol Details 7
3.1. Initial Client Request 7
3.2. KDC Challenge . 8
3.3. Client Response . 10
3.4. Verifying the pre-auth Data 14
3.5. Confirming the Reply Key Change 15
3.6. Reply Key Generation 16

4. OTP Kerberos Message Types 18
4.1. PA-OTP-CHALLENGE . 18
4.2. PA-OTP-REQUEST . 23
4.3. PA-OTP-PIN-CHANGE . 26

5. IANA Considerations . 28
6. Security Considerations 28
6.1. Man-in-the-Middle . 28
6.2. Reflection . 29
6.3. Denial of Service . 29
6.4. Replay . 30
6.5. Brute Force Attack . 30
6.6. FAST Facilities . 31

7. Acknowledgments . 31
8. References . 32
8.1. Normative References 32
8.2. Informative References 33

Appendix A. ASN.1 Module . 33
Appendix B. Examples of OTP Pre-Authentication Exchanges 36
B.1. Four Pass Authentication 36
B.2. Two Pass Authentication 38
B.3. PIN Change . 40
B.4. Resynchronization . 41

 Author's Address . 43

Richards Expires May 26, 2012 [Page 3]

Internet-Draft OTP Pre-authentication November 2011

1. Introduction

1.1. Scope

 This document describes a Flexible Authentication Secure Tunneling
 (FAST) [RFC6113] factor that allows One-Time Password (OTP) values to
 be used in the Kerberos V5 [RFC4120] pre-authentication in a manner
 that does not require use of the user's Kerberos password. The
 system is designed to work with different types of OTP algorithms
 such as time-based OTPs [RFC2808], counter-based tokens [RFC4226] and
 challenge-response systems such as [RFC2289]. It is also designed to
 work with tokens that are electronically connected to the user's
 computer via means such as a USB interface.

 This FAST factor provides the following facilities (as defined in
 [RFC6113]): client-authentication, replacing-reply-key and KDC-
 authentication. It does not provide the strengthening-reply-key
 facility.

 This proposal is partially based upon previous work on integrating
 single-use authentication mechanisms into Kerberos [HoReNeZo04].

1.2. Overall Design

 This proposal supports 4-pass and 2-pass variants. In the 4-pass
 system, the client sends the KDC an initial AS-REQ and the KDC
 responds with a KRB-ERROR containing padata that includes a random
 nonce. The client then encrypts the nonce and returns it to the KDC
 in a second AS-REQ. Finally, the KDC returns the AS-REP. In the
 2-pass variant, the client encrypts a timestamp rather than a nonce
 from the KDC and the encrypted data is sent to the KDC in the initial
 AS-REQ. The two-pass system can be used in cases where the client
 can determine in advance that OTP pre-authentication is supported by
 the KDC, which OTP key should be used and the encryption parameters
 required by the KDC.

 In both systems, in order to create the message sent to the KDC, the
 client must generate the OTP value and two keys: the classic Reply
 Key used to decrypt the KDC's reply and a key to encrypt the data
 sent to the KDC. In most cases, the OTP value will be used in the
 key generation but in order to support algorithms where the KDC
 cannot obtain the value (e.g. [RFC2289]), the system also supports
 the option of including the OTP value in the request along with the
 encrypted nonce. In addition, in order to support situations where
 the KDC is unable to obtain the plaintext OTP value, the system also
 supports the use of hashed OTP values in the key derivation.

 The preauth data sent from the client to the KDC is sent within the

https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc2808
https://datatracker.ietf.org/doc/html/rfc4226
https://datatracker.ietf.org/doc/html/rfc2289
https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/rfc2289

Richards Expires May 26, 2012 [Page 4]

Internet-Draft OTP Pre-authentication November 2011

 encrypted data provided by the FAST padata type of the AS-REQ. The
 KDC then obtains the OTP value, generates the same keys and verifies
 the pre-authentication data by decrypting the nonce. If the
 verification succeeds then it confirms knowledge of the Reply Key by
 using it to encrypt data in the AS-REP.

1.3. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document assumes familiarity with the Kerberos pre-
 authentication framework [RFC6113] and so freely uses terminology and
 notation from this document.

 The word padata is used as shorthand for pre-authentication data.

2. Usage Overview

2.1. OTP Mechanism Support

 As described above, this document describes a generic system for
 supporting different OTP mechanisms in Kerberos pre-authentication.
 To ensure interoperability, all implementations of this specification
 SHOULD provide a mechanism (e.g. a provider interface) to add or
 remove support for a particular OTP mechanism.

2.2. Pre-Authentication

 The approach uses pre-authentication data in AS-REQ, AS-REP and KRB-
 ERROR messages.

 In the 4-pass system, the client begins by sending an initial AS-REQ
 to the KDC that may contain pre-authentication data such as the
 standard Kerberos password data. The KDC will then determine, in an
 implementation dependent fashion, whether OTP authentication is
 required and if it is, it will respond with a KRB-ERROR message
 containing a PA-OTP-CHALLENGE (see Section 4.1) in the PA-DATA.

 The PA-OTP-CHALLENGE will contain a KDC generated nonce, a list of
 hash algorithm identifiers and an iteration count if hashed OTP
 values are used (see Section 3.6) and OPTIONAL information on how the
 OTP should be generated by the client. The client will then generate
 the OTP value and two keys: a Client Key to encrypt the KDC's nonce
 and a Reply Key used to decrypt the KDC's reply.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6113

Richards Expires May 26, 2012 [Page 5]

Internet-Draft OTP Pre-authentication November 2011

 As described in section 5.4.1 of [RFC6113], the FAST system uses an
 Armor Key to set up an encrypted tunnel for use by FAST factors. As
 described in Section 3.6 of this document, the Client Key and Reply
 Key will be generated from the Armor Key and the OTP value unless the
 OTP algorithm does not allow the KDC to obtain the OTP value. If
 hash algorithm identifiers were included in the PA-OTP-CHALLENGE then
 the client will use the hash of the OTP value rather than the
 plaintext value in the key generation. Both keys will have the same
 encryption type as the Armor Key.

 The generated Client Key will be used to encrypt the nonce received
 from the KDC. The encrypted value along with optional information on
 how the OTP was generated are then sent to the KDC in a PA-OTP-
 REQUEST (see Section 4.2) encrypted within the armored-data of a PA-
 FX-FAST-REQUEST PA-DATA element of a second AS-REQ.

 In the 2-pass system, the client sends the PA-OTP-REQUEST in the
 initial AS-REQ instead of sending it in response to a PA-OTP-
 CHALLENGE returned by the KDC. Since no challenge is received from
 the KDC, the client includes an encrypted timestamp in the request
 rather than the encrypted KDC nonce.

 In both cases, on receipt of a PA-OTP-REQUEST, the KDC generates the
 keys in the same way as the client, and uses the generated Client Key
 to verify the pre-authentication by decrypting the encrypted data
 sent by the client (either nonce or timestamp). If the validation
 succeeds then the KDC will authenticate itself to the client and
 confirm that the Reply Key has been updated by using the generated
 Reply Key in the AS-REP response.

2.3. PIN Change

 Most OTP tokens involve the use of a PIN in the generation of the OTP
 value. This PIN value will be combined with the value generated by
 the token to produce the final OTP value that will be used in this
 protocol.

 If, following successful validation of a PA-OTP-REQUEST in an AS-REQ,
 the KDC determines that the user's PIN has expired and needs to
 change then it SHOULD respond KRB-ERROR of type KDC_ERR_PIN_EXPIRED.
 It MAY include formatting information on the PIN in a PA-OTP-PIN-
 CHANGE (see Section 4.3) encrypted within the armored data of the PA-
 FX-FAST-REPLY PA-DATA element.

 KDC_ERR_PIN_EXPIRED 96

 If the PIN change is to be handled by a PIN-change service then it is
 assumed that authentication to that service will succeed if the PIN

https://datatracker.ietf.org/doc/html/rfc6113#section-5.4.1

Richards Expires May 26, 2012 [Page 6]

Internet-Draft OTP Pre-authentication November 2011

 has expired.

 If the user's PIN has not expired but has been changed then the KDC
 MAY return the new value to the client in a PA-OTP-PIN-CHANGE
 encrypted within the armored data of the PA-FX-FAST-REPLY PA-DATA
 element of the AS-REP. Similarly, if PIN change is not required then
 the KDC MAY return a PA-OTP-PIN-CHANGE to inform the client of the
 current PIN's expiration time.

2.4. Re-Synchronization

 It is possible with time and event-based tokens that the OTP server
 will lose synchronization with the current token state. For example,
 event-based tokens may drift since the counter on the token is
 incremented every time the token is used but the counter on the
 server is only incremented on an authentication. Similarly, the
 clocks on time-based tokens may drift.

 Methods to recover from this type of situation are OTP algorithm
 specific but may involve the client sending a sequence of OTP values
 to allow the server to further validate the correct position in its
 search window (see section 7.4 of [RFC4226] for an example).

 If, when processing a PA-OTP-REQUEST, the pre-authentication
 validation fails for this reason then the KDC MAY return a KRB-ERROR
 message. The KRB-ERROR message MAY contain a PA-OTP-CHALLENGE in the
 PA-DATA with a single otp-tokenInfo representing the token used in
 the initial authentication attempt but with "nextOTP" flag set. If
 this flag is set then the client SHOULD re-try the authentication
 using an OTP value generated using the token in the "state" after
 that used in the failed authentication attempt. For example, using
 the next time interval or counter value.

3. Pre-Authentication Protocol Details

3.1. Initial Client Request

 In the 4-pass mode, the client begins by sending an initial AS-REQ,
 possibly containing other pre-authentication data. If the KDC
 determines that OTP-based pre-authentication is required and the
 request does not contain a PA-OTP-REQUEST then it will respond as
 described in Section 3.2.

 If the client has all the necessary information, it MAY use the
 2-pass system by constructing a PA-OTP-REQUEST as described in

Section 3.3 and including it in the initial request.

https://datatracker.ietf.org/doc/html/rfc4226#section-7.4

Richards Expires May 26, 2012 [Page 7]

Internet-Draft OTP Pre-authentication November 2011

3.2. KDC Challenge

 If the user is required to authenticate using an OTP then the KDC
 SHALL respond to the initial AS-REQ with a KRB-ERROR, as described in

section 2.2 of [RFC6113], with a PA-OTP-CHALLENGE contained within
 the enc-fast-rep of the armored-data of a PA-FX-FAST-REPLY encrypted
 under the current Armor Key as described in [RFC6113].

 If the OTP mechanism is to be carried out as an individual mechanism
 then the PA-OTP-CHALLENGE SHALL be carried within the padata of the
 KrbFastResponse. Alternatively, if the OTP mechanism is required as
 part of an authentication set then the PA-OTP-CHALLENGE SHALL be
 carried within a PA-AUTHENTICATION-SET-ELEM as described in section

5.3 of [RFC6113].

 The PA-OTP-CHALLENGE SHALL contain a nonce value to be returned
 encrypted in the client's PA-OTP-REQUEST. This nonce string MUST
 contain a randomly chosen component at least as long as the armor key
 length. (See [RFC4086] for an in-depth discussion of > randomness.)
 In order to allow it to maintain any state necessary to verify the
 returned nonce, the KDC SHOULD use the mechanism described in section

5.2 of [RFC6113].

 The KDC MAY use the otp-service field to assist the client in
 locating the OTP token to be used by identifying the purpose of the
 authentication. For example, the otp-service field could assist a
 user in identifying the token to be used when a user has multiple OTP
 tokens that are used for different purposes. If the token is a
 connected device, then these values SHOULD be an exact octet-level
 match for the values present on the target token.

 The KDC SHALL include a sequence of one or more otp-tokenInfo
 elements containing information on the token or tokens that the user
 can use for the authentication and how the OTP value is to be
 generated using those tokens. If a single otp-tokenInfo element is
 included then only a single token is acceptable by the KDC and any
 OTP value generated by the client MUST be generated according to the
 information contained within that element. If more than one otp-
 tokenInfo element is included then the OTP value MUST be generated
 according to the information contained within one of those elements.

 The KDC MAY include the otp-vendor field in an otp-tokenInfo to
 identify the vendor of the token that can be used in the
 authentication request in order to assist the client in locating that
 token.

 If the KDC is able to obtain the OTP values for the token then the
 OTP value SHOULD be used in the key generation as described in

https://datatracker.ietf.org/doc/html/rfc6113#section-2.2
https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/rfc6113#section-5.3
https://datatracker.ietf.org/doc/html/rfc6113#section-5.3
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc6113#section-5.2
https://datatracker.ietf.org/doc/html/rfc6113#section-5.2

Richards Expires May 26, 2012 [Page 8]

Internet-Draft OTP Pre-authentication November 2011

Section 3.6 and so the KDC SHOULD set the "must-encrypt-nonce" flag
 in the otp-tokenInfo. If the KDC is unable to obtain the OTP values
 for the token then the "must-encrypt-nonce" flag MUST NOT be set. If
 the flag is not set then the OTP value will be returned by the client
 in the otp-value field of the PA-OTP-REQUEST and so if returning of
 OTP values in this way does not conform to KDC policy then the KDC
 SHOULD NOT include the otp-tokenInfo for that token in the PA-OTP-
 CHALLENGE.

 If the KDC requires that hashed OTPs be used in the key generation as
 described in Section 3.6 (for example, it is only able to obtain
 hashed OTP values for the token) then it MUST include the supported
 hash algorithms in order of preference in the supportedHashAlg of the
 otp-KeyInfo and the minimum value of the iteration count in the
 iterationCount element.

 Since the OTP mechanism described in this document is replacing the
 Reply Key, the classic shared-key system cannot be relied upon to
 allow the client to verify the KDC. Therefore, as described in

section 3.4 of [RFC6113], some other mechanism must be provided to
 support this. If the OTP value is used in the Reply Key generation
 then the client and KDC have a shared key and KDC-authentication is
 provided by the KDC using the Reply Key generated from the OTP value.
 However, if the OTP value is sent in the otp-value element of the PA-
 OTP-REQUEST then there is no such shared key and the OTP mechanism
 does not provide KDC-authentication. Therefore, if the OTP mechanism
 is not being used in an environment where KDC-authentication is being
 provided by other means (e.g. by the use of host key armor) then the
 KDC MUST NOT include any otp-tokenInfo elements in the PA-OTP-
 CHALLENGE that do not have the "must-encrypt-nonce" flag set.

 If the OTP for a token is to be generated using a server generated
 challenge then the value of the challenge SHALL be included in the
 otp-challenge field of the otp-tokenInfo for that token. If the
 token is a connected device and the OTP is to be generated by
 combining the challenge with the token's current state (e.g. time)
 then the "combine" flag SHALL be set within the otp-tokenInfo
 containing the challenge.

 If the KDC can determine which OTP token key (the seed value on the
 token used to generate the OTP) is to be used, then the otp-tokenID
 field MAY be included in the otp-tokenInfo to pass that value to the
 client.

 The otp-algID field MAY be included in an otp-tokenInfo to identify
 the algorithm that should be used in the OTP calculation for that
 token. For example, it could be used when a user has been issued
 with multiple tokens that support different algorithms.

https://datatracker.ietf.org/doc/html/rfc6113#section-3.4

Richards Expires May 26, 2012 [Page 9]

Internet-Draft OTP Pre-authentication November 2011

 If the KDC can determine that an OTP token that can be used by the
 user does not require the client to collect a PIN then it SHOULD set
 the "do-not-collect-pin" flag in the otp-tokenInfo representing that
 token. If the KDC can determine that the token requires the client
 to collect a PIN then it SHOULD set the "collect-pin" flag. If the
 KDC is unable to determine whether the client should collect a PIN or
 not then the "collect-pin" and "do-not-collect-pin" flags MUST NOT be
 set.

 If the KDC requires the PIN of an OTP token to be returned to it
 separately then it SHOULD set the "separate-pin-required" flag in the
 otp-KeyInfo representing that token.

 If the KDC requires that the OTPs generated by the token have a Luhn
 check digit appended, as defined in [ISOIEC7812], then it MUST set
 the "check-digit" flag. This flag only applies if the format of the
 OTP is decimal and so the otp-format field, if present, MUST have the
 value of "decimal".

 Finally, in order to support connected tokens that can generate OTP
 values of varying lengths or formats, the KDC MAY include the desired
 length and format of the OTP in the otp-length and otp-format fields
 of an otp-tokenInfo.

3.3. Client Response

 The client response SHALL be sent to the KDC as a PA-OTP-REQUEST
 included within the enc-fast-req of the armored-data within a PA-FX-
 FAST-REQUEST encrypted under the current Armor Key as described in
 [RFC6113].

 In order to generate its response, the client MUST generate an OTP
 value. If the PA-OTP-CHALLENGE contained one or more otp-tokenInfo
 elements then the OTP value MUST be based on the information
 contained within one of those elements.

 The otp-service, otp-vendor, otp-tokenID, otp-length, otp-format and
 otp-algID elements of the PA-OTP-CHALLENGE are provided by the KDC to
 assist the client in locating the correct token to use but the use of
 the above fields will depend on the type of token.

 If the token is a disconnected device, then the values of otp-service
 and otp-vendor MAY be displayed to the user in order to help the user
 select the correct token and the values of otp-algID, otp-tokenID,
 otp-length and otp-format MAY be ignored.

 If the token is a connected device, then these values, if present,
 SHOULD be used by the client to locate the correct token. When the

https://datatracker.ietf.org/doc/html/rfc6113

Richards Expires May 26, 2012 [Page 10]

Internet-Draft OTP Pre-authentication November 2011

 token is connected, clients MUST support matching based on a binary
 comparison of the otp-vendor and otp-service strings when comparing
 the values against those present on the token. Clients MAY have
 other comparisons including normalization insensitive comparisons to
 try and find the right token. The values of otp-vendor and otp-
 service MAY be displayed to prompt the user if the correct token is
 not found.

 If the "nextOTP" flag is set in the otp-tokenInfo from the PA-OTP-
 CHALLENGE, then the OTP value MUST be generated from the next token
 state than that used in the previous PA-OTP-REQUEST for that token.
 The "nextOTP" flag MUST also be set in the new PA-OTP-REQUEST.

 If the "collect-pin" flag is set then the token requires a PIN to be
 collected by the client. If the "do-not-collect-pin" flag is set in
 the otp-tokenInfo from the PA-OTP-CHALLENGE, then the token
 represented by the otp-tokenInfo does not require a PIN to be
 collected by the client as part of the OTP value. If neither of the
 "collect-pin" nor "do-not-collect-pin" flags are set then PIN
 requirements of the token are unspecified. If both flags are set
 then client SHALL regard the request as invalid.

 If the "separate-pin-required" flag is set then any PIN collected by
 the client MUST be included as a UTF-8 string in the otp-pin of the
 PA-OTP-REQUEST.

 If the token is a connected device, then how the PIN is used to
 generate the OTP value will depend on the type of device. However,
 if the token is a disconnected device, then it will depend on the
 "separate-pin-required" flag. If the flag is not set then the OTP
 value MUST be generated by appending the PIN with the value from the
 token entered by the user and, if the flag is set, then the OTP value
 MUST be the value from the token.

 The clients SHOULD NOT normalize the PIN value or any OTP value
 collected from the user or returned by a connected token in any way.

 If the "check-digit" flag is set then any OTP values SHOULD be
 decimal and have a Luhn check digit appended [ISOIEC7812]. If the
 token is disconnected then the Client MAY ignore this flag but if the
 token is connected then the Client MUST enforce it. The Client MUST
 regard the request as invalid if otp-format is present and set to any
 value other than "decimal".

 If an otp-challenge is present in the otp-tokenInfo selected by the
 client from the PA-OTP-CHALLENGE then the OTP value for the token
 MUST be generated based on a challenge if the token is capable of
 accepting a challenge. The client MAY ignore the provided challenge

Richards Expires May 26, 2012 [Page 11]

Internet-Draft OTP Pre-authentication November 2011

 if and only if the token is not capable of including a challenge in
 the OTP calculation.

 If the "combine" flag is not set in the otp-tokenInfo of the PA-OTP-
 CHALLENGE then the OTP SHALL be calculated based only the challenge
 and not the internal state (e.g. time or counter) of the token. If
 the "combine" flag is set then the OTP SHALL be calculated using both
 the internal state and the provided challenge if that value is
 obtainable by the client. If the flag is set but otp-challenge is
 not present then the client SHALL regard the request as invalid.

 If token is a connected device then the use of the challenge will
 depend on the type of device but will involve passing the challenge
 and the value of the "combine" flag in a token-specific manner to the
 token, along with a PIN if collected and the values of otp-length and
 otp-format if specified, in order to obtain the OTP value. If the
 token is disconnected then the challenge MUST be displayed to the
 user and the value of the "combine" flag MAY be ignored by the
 client.

 If the OTP value was generated using a challenge that was not sent by
 the KDC then the challenge SHALL be included in the otp-challenge of
 the PA-OTP-REQUEST. If the OTP was generated by combining a
 challenge (either received from the KDC or generated by the client)
 with the token state then the "combine" flag SHALL be set in the PA-
 OTP-REQUEST.

 If the "must-encrypt-nonce" flag is set in the otp-tokenInfo then the
 OTP value MUST be used to generate the Client Key and Reply Key as
 described in Section 3.6 and MUST NOT be included in the otp-value
 field of the PA-OTP-REQUEST. If the flag is not set then the OTP
 value MUST be included in the otp-value field of the PA-OTP-REQUEST
 and MUST NOT be used in the key derivation. In this case, the Client
 Key and Reply Key SHALL be the same as the Armor Key as described in

Section 3.6 and so if the returning of OTP values in this way does
 not conform to local policy on the client (for example, if KDC-
 Authentication is required and is not being provided by other means)
 then it SHOULD NOT use the token for authentication.

 If the supportedHashAlg and iterationCount elements are included in
 the otp-tokenInfo then the client MUST use hashed OTP values in the
 generation of the Reply Key and Client Key as described in

Section 3.6. The client MUST select the first algorithm from the
 list that it supports and the AlgorithmIdentifer [RFC5280] selected
 MUST be placed in the hashAlg element of the PA-OTP-REQUEST.
 However, if none of the algorithm identifiers conform to local policy
 restrictions then the authentication attempt MUST NOT proceed using
 that token. If the value of iterationCount does not conform to local

https://datatracker.ietf.org/doc/html/rfc5280

Richards Expires May 26, 2012 [Page 12]

Internet-Draft OTP Pre-authentication November 2011

 policy on the client then the client MAY use a larger value but MUST
 NOT use a lower value. The value of the iteration count used by the
 client MUST be returned in the PA-OTP-REQUEST sent to the KDC.

 If hashed OTP values are used then the nonce generated by the client
 MUST be as long as the longest key length of the symmetric key types
 that the it supports and MUST be chosen randomly. (See [RFC4086].)
 The nonce MUST be included in the PA-OTP-REQUEST along with the hash
 algorithm and iteration count used in the nonce, hashAlg and
 iterationCount fields of the PA-OTP-REQUEST. These fields MUST NOT
 be included if hashed OTP values were not used. It is RECOMMENDED
 that the iteration count used by the client be chosen in such a way
 that it is computationally infeasible/unattractive for an attacker to
 brute-force search for the given OTP.

 The PA-OTP-REQUEST returned by the client SHOULD include information
 on the generated OTP value reported by the OTP token when available
 to the client. The otp-time and otp-counter fields of the PA-OTP-
 REQUEST SHOULD be used to return the time and counter values used by
 the token if available to the client. The otp-format field MAY be
 used to report the format of the generated OTP. This field SHOULD be
 used if a token can generate OTP values in multiple formats. The
 otp-algID field SHOULD be used by the client to report the algorithm
 used in the OTP calculation and the otp-tokenID SHOULD be used to
 report the identifier of the OTP token key used if the information is
 known to the client.

 If the PA-OTP-REQUEST is being sent in response to a PA-OTP-CHALLENGE
 that contained an otp-vendor field in the selected otp-tokenInfo then
 the otp-vendor field of the PA-OTP-REQUEST MUST be set to the same
 value. If no otp-vendor field was provided by the KDC then the field
 SHOULD be set to the vendor identifier of the token if known to the
 client.

 The generated Client Key is used by the client to encrypt data to be
 included in the encData of the PA-OTP-REQUEST to allow the KDC to
 authenticate the user. The key usage for this encryption is
 KEY_USAGE_OTP_REQUEST.

 o If the PA-OTP-REQUEST is being generated in response to a PA-OTP-
 CHALLENGE returned by the KDC then the client SHALL encrypt a PA-
 OTP-ENC-REQUEST containing the value of nonce from the PA-OTP-
 CHALLENGE using the same encryption type as the Armor Key.

 o If the PA-OTP-REQUEST is not in response to a PA-OTP-CHALLENGE
 then the client SHALL encrypt a PA-ENC-TS-ENC containing the
 current time as in the encrypted timestamp pre-authentication
 mechanism [RFC4120].

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4120

Richards Expires May 26, 2012 [Page 13]

Internet-Draft OTP Pre-authentication November 2011

 If the client is working in 2-pass mode and so is not responding to
 an initial KDC challenge then the values of the iteration count and
 hash algorithms cannot be obtained from that challenge. The client
 SHOULD use any values obtained from a previous PA-OTP-CHALLENGE or,
 if no values are available, it MAY use initial configured values.

3.4. Verifying the pre-auth Data

 The KDC validates the pre-authentication data by generating the
 Client Key and Reply Key in the same way as the client and using the
 generated Client Key to decrypt the value of encData from the PA-OTP-
 REQUEST. The generated Reply Key is used to encrypt data in the AS-
 REP.

 If the otp-value field is included in the PA-OTP-REQUEST then the KDC
 MUST use that value unless the OTP method is required to support KDC-
 authentication (see Section 3.2). If the otp-value is not included
 in the PA-OTP-REQUEST then the KDC will need to generate or obtain
 the OTP value.

 If the otp-pin field is present in the PA-OTP-REQUEST then the PIN
 value has be value provided by the client. The KDC SHOULD SASLPrep
 [RFC4013] the value in lookup mode before comparison.

 It should be noted that it is anticipated that, as improved string
 comparison technologies are standardized, the processing done by the
 KDC will change but efforts will be made to maintain as much
 compatibility with SASLprep as possible.

 If the otp-challenge field is present, then the OTP was calculated
 using that challenge. If the "combine" flag is also set, then the
 OTP was calculated using the challenge and the token's current state.

 It is RECOMMENDED that the KDC acts upon the values of otp-time, otp-
 counter, otp-format, otp-algID and otp-tokenID if they are present in
 the PA-OTP-REQUEST. If the KDC receives a request containing these
 values but cannot act upon them then they MAY be ignored.

 The KDC generates the Client Key and Reply Key as described in
Section 3.6 from the OTP value using the nonce, hash algorithm and

 iteration count if present in the PA-OTP-REQUEST. The KDC MUST fail
 the request with KDC_ERR_INVALID_HASH_ALG if the KDC requires hashed
 OTP values and the hashAlg field was not present in the PA-OTP-
 REQUEST or if the value of this field does not conform to local KDC
 policy. Similarly, the KDC MUST fail the request with
 KDC_ERR_INVALID_ITERATION_COUNT if the value of the iterationCount
 included in the PA-OTP-REQUEST does not conform to local KDC policy
 or is less than that specified in the PA-OTP-CHALLENGE. In addition,

https://datatracker.ietf.org/doc/html/rfc4013

Richards Expires May 26, 2012 [Page 14]

Internet-Draft OTP Pre-authentication November 2011

 the KDC MUST fail the authentication request with
 KDC_ERR_PIN_REQUIRED if it requires a separate PIN to the OTP value
 and an otp-pin was not included in the PA-OTP-REQUEST

 KDC_ERR_INVALID_HASH_ALG 94
 KDC_ERR_INVALID_ITERATION_COUNT 95
 KDC_ERR_PIN_REQUIRED 97

 The generated Client Key is then used to decrypt the encData from the
 PA-OTP-REQUEST. If the client response was sent as a result of a PA-
 OTP-CHALLENGE then the decrypted data will be a PA-OTP-ENC-REQUEST
 and the client authentication MUST fail with KDC_ERR_PREAUTH_FAILED
 if the nonce value from the PA-OTP-ENC-REQUEST is not the same as the
 nonce value sent in the PA-OTP-CHALLENGE. If the response was not
 sent as a result of a PA-OTP-CHALLENGE then the decrypted value will
 be a PA-ENC-TS-ENC and the authentication process will be the same as
 with classic encrypted timestamp pre-authentication [RFC4120]

 The KDC MUST fail the request with KDC_ERR_ETYPE_NOSUPP if the
 encryption type used by the client in the encData does not conform to
 KDC policy.

 If authentication fails due to the hash algorithm, iteration count or
 encryption type used by the client then the KDC SHOULD return a PA-
 OTP-CHALLENGE with the required values in the error response. If the
 authentication fails due to the token state on the server no longer
 being synchronized with the token used then the KDC MAY return a PA-
 OTP-CHALLENGE with the "nextOTP" flag set as described in

Section 2.4.

 If, during the authentication process, the KDC determines that the
 user's PIN has been changed then it SHOULD include a PA-OTP-PIN-
 CHANGE in the response as described in Section 2.3 containing the new
 PIN value. The KDC MAY also include the new PIN's expiration time
 and the expiration time of the OTP account within the last-req field
 of the PA-OTP-PIN-CHANGE. (These fields can be used by the KDC to
 handle cases where the account related to the user's OTP token has a
 different expiration time to the user's Kerberos account.) If the
 KDC determines that the user's PIN or OTP account are about to
 expire, it MAY return a PA-OTP-PIN-CHANGE with that information.
 Finally, if the KDC determines that the user's PIN has expired then
 it SHOULD return a KRB-ERROR of type KDC_ERR_PIN_EXPIRED as described
 in Section 2.3

3.5. Confirming the Reply Key Change

 If the pre-authentication data was successfully verified, then, in
 order to support mutual authentication, the KDC SHALL respond to the

https://datatracker.ietf.org/doc/html/rfc4120

Richards Expires May 26, 2012 [Page 15]

Internet-Draft OTP Pre-authentication November 2011

 client's PA-OTP-REQUEST by using the generated Reply Key to encrypt
 the data in the AS-REP.

 The client then uses its generated Reply Key to decrypt the encrypted
 data and MUST NOT continue with the authentication process if
 decryption is not successful.

3.6. Reply Key Generation

 In order to authenticate the user, the client and KDC need to
 generate two encryption keys:

 o The Client Key to be used by the client to encrypt and by the KDC
 to decrypt the encData in the PA-OTP-REQUEST.

 o The Reply Key to be used in the standard manner by the KDC to
 encrypt data in the AS-REP.

 The method used to generate the two keys will depend on the OTP
 algorithm.

 o If the OTP value is included in the otp-value of the PA-OTP-
 REQUEST then the two keys SHALL be the same as the Armor Key
 (defined in [RFC6113]).

 o If the OTP value is not included in the otp-value of the PA-OTP-
 REQUEST then the two keys SHALL be derived from the Armor Key and
 the OTP value as described below.

 If the OTP value is not included in the PA-OTP-REQUEST, then the
 Reply Key and Client Key SHALL be generated using the KRB-FX-CF2
 algorithm from [RFC6113] as follows:

 Client Key = KRB-FX-CF2(K1, K2, O1, O2)
 Reply Key = KRB-FX-CF2(K1, K2, O3, O4)

 The octet string parameters, O1, O2, O3 and O4, shall be the ASCII
 string "OTPComb1", "OTPComb2", "OTPComb3" and "OTPComb4" as shown
 below:

 {0x4f, 0x54, 0x50, 0x43, 0x6f, 0x6d, 0x62, 0x31}
 {0x4f, 0x54, 0x50, 0x43, 0x6f, 0x6d, 0x62, 0x32}
 {0x4f, 0x54, 0x50, 0x43, 0x6f, 0x6d, 0x62, 0x33}
 {0x4f, 0x54, 0x50, 0x43, 0x6f, 0x6d, 0x62, 0x34}

 The first input key, K1, SHALL be the Armor Key and so, as described
 in section 5.1 of [RFC6113], the enctypes of the generated Client Key
 and Reply Key will be the same as the enctype of Armor Key. The

https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/rfc6113#section-5.1

Richards Expires May 26, 2012 [Page 16]

Internet-Draft OTP Pre-authentication November 2011

 second input key, K2, shall be derived from the OTP value using
 string-to-key (defined in [RFC3961]) as follows.

 If the hash of the OTP value is to be used then K2 SHALL be derived
 as follows:

 o An initial hash value, H, is generated:

 H = hash(realm|nonce|OTP)

 Where:
 * "|" denotes concatenation
 * hash is the hash algorithm selected by the client.
 * realm is the name of the server's realm as carried in the realm
 field of the AS-REQ. (Not including the tag and length from
 the DER encoding.)
 * nonce is the value of the random nonce value generated by the
 client and carried in the nonce field of the PA-OTP-REQUEST.
 (Not including the tag and length from the DER encoding.)
 * If the OTP format is decimal, hexadecimal or alphanumeric, then
 OTP is the value of the OTP generated as described in

Section 3.3 with SASLprep [RFC4013] applied in lookup mode,
 otherwise it is the unnormalized OTP value.

 o The initial hash value is then hashed iterationCount-1 times to
 produce a final hash value, H'. (Where iterationCount is the
 value from the PA-OTP-REQUEST.)

 H' = hash(hash(...(iterationCount-1 times)...(H)))

 o The value of K2 is then derived from the Base64 [RFC2045] encoding
 of this final hash value.

 K2 = string-to-key(Base64(H')|"Krb-preAuth")

 If the hash value is not used, then K2 SHALL be derived from the
 base64 encoding of the OTP value.

 K2 = string-to-key(Base64(OTP)|"Krb-preAuth")

 The enctype used for string-to-key SHALL be that of the Armor Key and
 the salt and any additional parameters for string-to-key MAY be
 provided by the KDC in the PA-OTP-CHALLENGE. If the salt and string-
 to-key parameters are not provided then the default values defined
 for the particular enctype SHALL be used.

 If the strengthen-key is present in KrbFastResponse, then it is
 combined with the Reply Key to generate the final AS-REQ as described

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc2045

Richards Expires May 26, 2012 [Page 17]

Internet-Draft OTP Pre-authentication November 2011

 in [RFC6113]. The strengthen-key does not influence the Client Key.

4. OTP Kerberos Message Types

4.1. PA-OTP-CHALLENGE

 The padata-type PA-OTP-CHALLENGE is returned by the KDC to the client
 in the enc-fast-rep of a PA-FX-FAST-REPLY in the PA-DATA of a KRB-
 ERROR when OTP pre-authentication is required. The corresponding
 padata-value field contains the Distinguished Encoding Rules (DER)
 [X.680] [X.690] encoding of a PA-OTP-CHALLENGE containing a server
 generated nonce and information for the client on how to generate the
 OTP.

https://datatracker.ietf.org/doc/html/rfc6113

Richards Expires May 26, 2012 [Page 18]

Internet-Draft OTP Pre-authentication November 2011

 PA-OTP-CHALLENGE 141

 PA-OTP-CHALLENGE ::= SEQUENCE {
 nonce [0] OCTET STRING,
 otp-service [1] UTF8String OPTIONAL,
 otp-tokenInfo [2] SEQUENCE (SIZE(1..MAX)) OF
 OTP-TOKENINFO,
 salt [3] KerberosString OPTIONAL,
 s2kparams [4] OCTET STRING OPTIONAL,
 ...
 }

 OTP-TOKENINFO ::= SEQUENCE {
 flags [0] OTPFlags,
 otp-vendor [1] UTF8String OPTIONAL,
 otp-challenge [2] OCTET STRING (SIZE(1..MAX))
 OPTIONAL,
 otp-length [3] Int32 OPTIONAL,
 otp-format [4] OTPFormat OPTIONAL,
 otp-tokenID [5] OCTET STRING OPTIONAL,
 otp-algID [6] AnyURI OPTIONAL,
 supportedHashAlg [7] SEQUENCE OF AlgorithmIdentifier
 OPTIONAL,
 iterationCount [8] Int32 OPTIONAL,
 ...
 }

 OTPFormat ::= INTEGER {
 decimal(0),
 hexadecimal(1),
 alphanumeric(2),
 binary(3),
 base64(4)
 }

 OTPFlags ::= KerberosFlags
 -- reserved(0),
 -- nextOTP(1),
 -- combine(2),
 -- collect-pin(3),
 -- do-not-collect-pin(4),
 -- must-encrypt-nonce (5),
 -- separate-pin-required (6),
 -- check-digit (7)

Richards Expires May 26, 2012 [Page 19]

Internet-Draft OTP Pre-authentication November 2011

 nonce
 A KDC-supplied nonce value to be encrypted by the client in the
 PA-OTP-REQUEST. This nonce string MUST contain a randomly chosen
 component at least as long as the armor key length.

 otp-service
 Use of this field is OPTIONAL, but MAY be used by the KDC to
 assist the client to locate the appropriate OTP tokens to be used.
 For example, this field could be used when a user has multiple OTP
 tokens for different purposes.

 otp-tokenInfo
 This element MUST be included and it is a sequence of one or more
 OTP-TOKENINFO objects containing information on the token or
 tokens that the user can use for the authentication and how the
 OTP value is to be generated using those tokens. If a single OTP-
 TOKENINFO object is included then only a single token is
 acceptable by the KDC and any OTP value generated by the client
 MUST be generated according to the information contained within
 that element. If more than one OTP-TOKENINFO object is included
 then the OTP value MUST be generated according to the information
 contained within one of those objects.

 flags
 If the "nextOTP" flag is set then the OTP SHALL be based on the
 next token "state" rather than the one used in the previous
 authentication. As an example, for a time-based token, this
 means the next time slot and for an event-based token, this
 could mean the next counter value. If the "nextOTP" flag is
 set then there MUST only be a single otp-tokenInfo element in
 the PA-OTP-CHALLENGE.

 The "combine" flag controls how the challenge included in otp-
 challenge shall be used. If the flag is set then OTP SHALL be
 calculated using the challenge from otp-challenge and the
 internal token state (e.g. time or counter). If the "combine"
 flag is not set then the OTP SHALL be calculated based only on
 the challenge. If the flag is set and otp-challenge is not
 present then the request SHALL be regarded as invalid.

 If the "do-not-collect-pin" flag is set then the token
 represented by the current otp-tokenInfo does not require a PIN
 to be collected as part of the OTP. If the "collect-pin" flag
 is set then the token requires a PIN. If neither flag is set
 then whether or not a PIN is required is unspecified. The
 flags are mutually exclusive and so both flags MUST NOT be set,
 or the client MUST regard the request as invalid.

Richards Expires May 26, 2012 [Page 20]

Internet-Draft OTP Pre-authentication November 2011

 If the "must-encrypt-nonce" flag is set then the OTP value MUST
 NOT be included in the otp-value field of the PA-OTP-REQUEST
 but instead MUST be used in the generation of the Reply Key and
 Client Key as described in Section 3.6.

 If the "separate-pin-required" flag is set then the PIN
 collected by the client SHOULD NOT be used in the generation of
 the OTP value and SHOULD be returned in the otp-pin field of
 the PA-OTP-REQUEST.

 The "check-digit" flag controls whether or not the OTP values
 generated by the token need to include a Luhn check digit
 [ISOIEC7812]. If the token is disconnected then the Client MAY
 ignore this flag but if this flag is set and the token is
 connected then the OTP MUST be decimal with a check digit
 appended.

 otp-vendor
 Use of this field is OPTIONAL, but MAY be used by the KDC to
 identify the vendor of the OTP token to be used.

 otp-challenge
 The otp-challenge is used by the KDC to send a challenge value
 for use in the OTP calculation. The challenge is an OPTIONAL
 octet string that SHOULD be uniquely generated for each request
 in which it is present. When the challenge is not present, the
 OTP will be calculated on the current token state only. The
 client MAY ignore a provided challenge if and only if the OTP
 token the client is interacting with is not capable of
 including a challenge in the OTP calculation. In this case,
 KDC policies will determine whether to accept a provided OTP
 value or not.

 otp-length
 Use of this field is OPTIONAL, but MAY be used by the KDC to
 specify the desired length of the generated OTP. For example,
 this field could be used when a token is capable of producing
 OTP values of different lengths. If the format of the OTP is
 'decimal', 'hexidecimal' or 'alphanumeric' then this value
 indicates the desired length in digits/characters, if the OTP
 format is 'binary' then this value indicates the desired length
 in octets and if the OTP format is 'base64' then this value
 indicates the desired length of the unencoded OTP value in
 octets.

Richards Expires May 26, 2012 [Page 21]

Internet-Draft OTP Pre-authentication November 2011

 otp-format
 Use of this field is OPTIONAL, but MAY be used by the KDC to
 specify the desired format of the generated OTP value. For
 example, this field could be used when a token is capable of
 producing OTP values of different formats.

 otp-tokenID
 Use of this field is OPTIONAL, but MAY be used by the KDC to
 identify which token key should be used for the authentication.
 For example, this field could be used when a user has been
 issued multiple token keys by the same server.

 otp-algID
 Use of this field is OPTIONAL, but MAY be used by the KDC to
 identify the algorithm to use when generating the OTP. The
 value of this field MUST be a URI [RFC3986] and SHOULD be
 obtained from the PSKC algorithm registry [RFC6030].

 supportedHashAlg
 If present then a hash of the OTP value MUST be used in the key
 derivation rather than the plain text value. Each
 AlgorithmIdentifier identifies a hash algorithm that is
 supported by the KDC in decreasing order of preference. The
 client MUST select the first algorithm from the list that it
 supports. Support for SHA-256 by both the client and KDC is
 REQUIRED. The AlgorithmIdentifier selected by the client MUST
 be placed in the hashAlg element of the PA-OTP-REQUEST.

 iterationCount
 The minimum value of the iteration count to be used by the
 client when hashing the OTP value. This value MUST be present
 if supportedHashAlg is present and otherwise MUST NOT be
 present. If the value of this element does not conform to
 local policy on the client then the client MAY use a larger
 value but MUST NOT use a lower value. The value of the
 iteration count used by the client MUST be returned in the PA-
 OTP-REQUEST sent to the KDC.

 salt
 The salt value to be used in string-to-key when used to calculate
 the keys as described in Section 3.6.

 s2kparams
 Any additional parameters required by string-to-key as described
 in Section 3.6.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6030

Richards Expires May 26, 2012 [Page 22]

Internet-Draft OTP Pre-authentication November 2011

4.2. PA-OTP-REQUEST

 The padata-type PA-OTP-REQUEST is sent by the client to the KDC in
 the KrbFastReq padata of a PA-FX-FAST-REQUEST that is included in the
 PA-DATA of an AS-REQ. The corresponding padata-value field contains
 the DER encoding of a PA-OTP-REQUEST.

 The message contains pre-authentication data encrypted by the client
 using the generated Client Key and optional information on how the
 OTP was generated. It may also, optionally, contain the generated
 OTP value.

 PA-OTP-REQUEST 142

 PA-OTP-REQUEST ::= SEQUENCE {
 flags [0] OTPFlags,
 nonce [1] OCTET STRING OPTIONAL,
 encData [2] EncryptedData,
 -- PA-OTP-ENC-REQUEST or PA-ENC-TS-ENC
 -- Key usage of KEY_USAGE_OTP_REQUEST
 hashAlg [3] AlgorithmIdentifier OPTIONAL,
 iterationCount [4] Int32 OPTIONAL,
 otp-value [5] OCTET STRING OPTIONAL,
 otp-pin [6] UTF8String OPTIONAL,
 otp-challenge [7] OCTET STRING (SIZE(1..MAX)) OPTIONAL,
 otp-time [8] KerberosTime OPTIONAL,
 otp-counter [9] OCTET STRING OPTIONAL,
 otp-format [10] OTPFormat OPTIONAL,
 otp-tokenID [11] OCTET STRING OPTIONAL,
 otp-algID [12] AnyURI OPTIONAL,
 otp-vendor [13] UTF8String OPTIONAL,
 ...
 }

 KEY_USAGE_OTP_REQUEST 45

 PA-OTP-ENC-REQUEST ::= SEQUENCE {
 nonce [0] OCTET STRING,
 ...
 }

 flags
 This field MUST be present.

Richards Expires May 26, 2012 [Page 23]

Internet-Draft OTP Pre-authentication November 2011

 If the "nextOTP" flag is set then the OTP was calculated based on
 the next token "state" rather than the current one. This flag
 MUST be set if and only if it was set in a corresponding PA-OTP-
 CHALLENGE.

 If the "combine" flag is set then the OTP was calculated based on
 a challenge and the token state.

 No other OTPFlag bits are applicable and MUST be ignored by the
 KDC.

 nonce
 This field MUST be present if a hashed OTP value was used as input
 to string-to-key (see Section 3.6) and MUST NOT be present
 otherwise. If present, it MUST contain the nonce value generated
 by the client and used in the generation of hashed OTP values as
 described in Section 3.6. This nonce string MUST be as long as
 the longest key length of the symmetric key types that the client
 supports and MUST be chosen randomly.

 encData
 This field MUST be present and MUST contain the pre-authentication
 data encrypted under the Client Key with a key usage of
 KEY_USAGE_OTP_REQUEST. If the PA-OTP-REQUEST is sent as a result
 of a PA-OTP-CHALLENGE then this MUST contain a PA-OTP-ENC-REQUEST
 with the nonce from the PA-OTP-CHALLENGE. If no challenge was
 received then this MUST contain a PA-ENC-TS-ENC.

 hashAlg
 This field MUST be present if a hashed OTP value was used as input
 to string-to-key (see Section 3.6) and MUST NOT be present
 otherwise. If present, it MUST contain the AlgorithmIdentifier of
 the hash algorithm used. If the PA-OTP-REQUEST is sent as a
 result of a PA-OTP-CHALLENGE then the AlgorithmIdentifer MUST be
 the first one supported by the client from the supportedHashAlg of
 the PA-OTP-CHALLENGE.

 iterationCount
 This field MUST be present if a hashed OTP value was used as input
 to string-to-key (see Section 3.6) and MUST NOT be present
 otherwise. If present, it MUST contain the iteration count used
 when hashing the OTP value. If the PA-OTP-REQUEST is sent as a
 result of a PA-OTP-CHALLENGE then the value MUST NOT be less that
 that specified in the PA-OTP-CHALLENGE.

Richards Expires May 26, 2012 [Page 24]

Internet-Draft OTP Pre-authentication November 2011

 otp-value
 The generated OTP value. This value MUST NOT be present if the
 "must-encrypt-nonce" flag was set in the PA-OTP-CHALLENGE.

 otp-pin
 The OTP PIN value entered by the user. This value MUST NOT be
 present unless the "separate-pin-required" flag was set in the PA-
 OTP-CHALLENGE.

 otp-challenge
 Value used by the client in the OTP calculation. It MUST be sent
 to the KDC if and only if the value would otherwise be unknown to
 the KDC. For example, the token or client modified or generated
 challenge.

 otp-time
 This field MAY be included by the client to carry the time value
 as reported by the OTP token. Use of this element is OPTIONAL but
 it MAY be used by a client to simplify the OTP calculations
 carried out by the KDC. It is RECOMMENDED that the KDC act upon
 this value if it is present in the request and it is capable of
 using it in the generation of the OTP value.

 otp-counter
 This field MAY be included by the client to carry the token
 counter value, as reported by the OTP token. Use of this element
 is OPTIONAL but it MAY be used by a client to simplify the OTP
 calculations carried out by the KDC. It is RECOMMENDED that the
 KDC act upon this value if it is present in the request and it is
 capable of using it in the generation of the OTP value.

 otp-format
 This field MAY be used by the client to send the format of the
 generated OTP as reported by the OTP token. Use of this element
 is OPTIONAL but it MAY be used by the client to simplify the OTP
 calculations carried out by the KDC. It is RECOMMENDED that the
 KDC act upon this value if it is present in the request and it is
 capable of using it in the generation of the OTP value.

 otp-tokenID
 This field MAY be used by the client to send the identifier of the
 token key used, as reported by the OTP token. Use of this field
 is OPTIONAL but MAY be used by the client to simplify the
 authentication process by identifying a particular token key
 associated with the user. It is RECOMMENDED that the KDC act upon
 this value if it is present in the request and it is capable of
 using it in the generation of the OTP value.

Richards Expires May 26, 2012 [Page 25]

Internet-Draft OTP Pre-authentication November 2011

 otp-algID
 This field MAY be used by the client to send the identifier of the
 OTP algorithm used, as reported by the OTP token. Use of this
 element is OPTIONAL but it MAY be used by the client to simplify
 the OTP calculations carried out by the KDC. It is RECOMMENDED
 that the KDC act upon this value if it is present in the request
 and it is capable of using it in the generation of the OTP value.
 The value of this field MUST be a URI [RFC3986] and SHOULD be
 obtained from the PSKC algorithm registry [RFC6030].

 otp-vendor
 If the PA-OTP-REQUEST is being sent in response to a PA-OTP-
 CHALLENGE that contained an otp-vendor field in the selected otp-
 tokenInfo then this field MUST be set to the same value,
 otherwise, this field SHOULD be set to the vendor identifier of
 the token if known to the client. It is RECOMMENDED that the KDC
 act upon this value if it is present in the request and it is
 capable of using it in the generation of the OTP value.

4.3. PA-OTP-PIN-CHANGE

 The padata-type PA-OTP-PIN-CHANGE is returned by the KDC in the enc-
 fast-rep of a PA-FX-FAST-REPLY in the AS-REP if the user must change
 their PIN, if the user's PIN has been changed or to notify the user
 of the PIN's expiry time.

 The corresponding padata-value field contains the DER encoding of a
 PA-OTP-PIN-CHANGE.

 PA-OTP-PIN-CHANGE 144

 PA-OTP-PIN-CHANGE ::= SEQUENCE {
 flags [0] PinFlags,
 pin [1] UTF8String OPTIONAL,
 minLength [2] INTEGER OPTIONAL,
 maxLength [3] INTEGER OPTIONAL,
 last-req [4] LastReq OPTIONAL,
 format [5] OTPFormat OPTIONAL,
 ...
 }

 PinFlags ::= KerberosFlags
 -- reserved(0),
 -- systemSetPin(1),
 -- mandatory(2)

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6030

Richards Expires May 26, 2012 [Page 26]

Internet-Draft OTP Pre-authentication November 2011

 flags
 The "systemSetPin" flag is used to indicate the type of PIN change
 that is taking place. If the flag is set then the user's PIN has
 been changed for the user by the system. If the flag is not set
 then the user's PIN needs to be changed by the user.

 If the "systemSetPin" flag is not set and the "mandatory" flag is
 set then user PIN change is required before the next
 authentication using the current OTP token. If the "mandatory"
 flag is not set then the user PIN change is optional. If the
 "systemSetPin" flag is set then the "mandatory" flag has no
 meaning and SHOULD be ignored by the client.

 pin
 The pin field is used to carry a new PIN value. If the
 "systemSetPin" flag is set then field is used to carry the new PIN
 value set for the user and MUST be present. If the "systemSetPin"
 flag is not set then use of this field OPTIONAL and MAY be used to
 carry a system generated PIN that MAY be used by the user when
 changing the PIN.

 minLength and maxLength
 Use of the minLength and maxLength fields is OPTIONAL. If the
 "systemSetPin" flag is not set then these fields MAY be included
 to pass restrictions on the size of the user selected PIN.

 last-req
 Use of the last-req field (as defined in section 5.4.2 of
 [RFC4120])) is OPTIONAL but MAY be included with an lr-type of 6
 to carry PIN expiration information.

 * If the "systemSetPin" flag is set then the expiration time MUST
 be that of the new system-set PIN.

 * If the "systemSetPin" flag is not set then the expiration time
 MUST be that of the current PIN of the token used in the
 authentication.

 The element MAY also be included with an lr-type of 7 to indicate
 when the OTP account will expire.

 format
 The format element MAY be included by the KDC to carry PIN format
 restrictions on the new PIN.

 * If the "systemSetPin" flag is set then the element MUST
 describe the format of the new system-generated PIN.

https://datatracker.ietf.org/doc/html/rfc4120#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc4120#section-5.4.2

Richards Expires May 26, 2012 [Page 27]

Internet-Draft OTP Pre-authentication November 2011

 * If the "systemSetPin" flag is not set then the element MUST
 describe restrictions on any new user generated PIN.

5. IANA Considerations

 The OTP algorithm identifier URIs used as otp-algID values in the PA-
 OTP-CHALLENGE described in Section 4.1 and the PA-OTP-REQUEST
 described in Section 4.2 SHOULD be registered in the PSKC algorithm
 registry [RFC6030].

 The following pre-authentication types are defined in this document:

 PA-OTP-CHALLENGE 141
 PA-OTP-REQUEST 142
 PA-OTP-PIN-CHANGE 144

 These values are currently registered in registry created by
 [RFC6113] but the entries will need to be updated to refer to this
 document.

 The following error codes and key usage values are defined in this
 document:

 KDC_ERR_INVALID_HASH_ALG 94
 KDC_ERR_INVALID_ITERATION_COUNT 95
 KDC_ERR_PIN_EXPIRED 96
 KDC_ERR_PIN_REQUIRED 97
 KEY_USAGE_OTP_REQUEST 45

 These values are currently not managed by IANA and have been
 accounted for. There is currently work in progress [LHA10] to define
 IANA registries and a registration process for these values.

 No other IANA actions are anticipated.

6. Security Considerations

6.1. Man-in-the-Middle

 In the system described in this document, the OTP pre-authentication
 protocol is tunneled within the FAST Armor channel provided by the
 pre-authentication framework. As described in [AsNiNy02], tunneled
 protocols are potentially vulnerable to man-in-the-middle attacks if
 the outer tunnel is compromised and it is generally considered good
 practice in such cases to bind the inner encryption to the outer
 tunnel.

https://datatracker.ietf.org/doc/html/rfc6030
https://datatracker.ietf.org/doc/html/rfc6113

Richards Expires May 26, 2012 [Page 28]

Internet-Draft OTP Pre-authentication November 2011

 In order to mitigate against such attacks, the proposed system uses
 the outer Armor Key in the derivation of the inner Client and Reply
 keys and so achieve crypto-binding to the outer channel.

 As described in section 5.4 of [RFC6113], FAST can use an anonymous
 TGT obtained using anonymous PKINIT [RFC6112] [RFC4556] as the Armor
 Key. However, the current anonymous PKINIT proposal is open to man-
 in-the-middle attacks since the attacker can choose a session key
 such that the session key between the MITM and the real KDC is the
 same as the session key between the client and the MITM.

 As described in Section 3.6, if the OTP value is not being sent to
 the KDC then the Armor Key is used along with the OTP value in the
 generation of the Client Key and Reply Key. If the Armor Key is known
 then the only entropy remaining in the key generation is provided by
 the OTP value. If the OTP algorithm requires that the OTP value be
 sent to the KDC then it is sent encrypted within the tunnel provided
 by the FAST armor and so is exposed to the attacker if the attacker
 has the Armor Key.

 Therefore, unless the identity of the KDC has been verified,
 anonymous PKINIT SHALL NOT be used with OTP algorithms that require
 the OTP value to be sent to the KDC. In addition, the security
 considerations should be carefully considered before anonymous PKINIT
 is used with other algorithms such as those with short OTP values.

 Careful consideration should also be made if host key armor is used
 to provide the KDC-authentication facility with OTP algorithms where
 the OTP value is sent within the otp-value field of the PA-OTP-
 REQUEST since compromised host keys would allow an attacker to
 impersonate the KDC.

6.2. Reflection

 The 4-pass system described above is a challenge-response protocol
 and such protocols are potentially vulnerable to reflection attacks.
 No such attacks are known at this point but to help mitigate against
 such attacks, the system uses different keys to encrypt the client
 and server nonces.

6.3. Denial of Service

 The protocol supports the use of an iteration count in the generation
 of the Client and Reply keys and the client can send the number of
 iterations used as part of the PA-OTP-REQUEST. This could open the
 KDC up to a denial of service attack if a large value for the
 iteration count was specified by the attacker. It is therefore
 particularly important that, as described in Section 3.4, the KDC

https://datatracker.ietf.org/doc/html/rfc6113#section-5.4
https://datatracker.ietf.org/doc/html/rfc6112
https://datatracker.ietf.org/doc/html/rfc4556

Richards Expires May 26, 2012 [Page 29]

Internet-Draft OTP Pre-authentication November 2011

 reject any authentication requests where the iteration count is above
 a maximum value specified by local policy.

6.4. Replay

 In the 4-pass version of this protocol, the client encrypts a KDC
 generated nonce and so replay can be detected by the KDC. The 2-pass
 version of the protocol does not involve a server nonce but the
 client instead encrypts a timestamp and so is not protected from
 replay in this way but will instead require some other mechanism such
 as an OTP-server based system or a timestamp-based replay cache on
 the KDC.

 As described in section 5.2 of [RFC6113], a client can not be certain
 that it will use the same KDC for all messages in a conversation.
 Therefore, the client cannot assume that the PA-OTP-REQUEST will be
 sent to the same KDC that issued the PA-OTP-CHALLENGE. In order to
 support this, a KDC implementing this protocol requires a means of
 sharing session state. However, doing this does introduce the
 possibility of a replay attack where the same response is sent to
 multiple KDCs.

 In the case of time or event-based tokens or server-generated
 challenges, protection against replay may be provided by the OTP
 server being used if that server is capable of keeping track of the
 last used value. This protection therefore relies upon the
 assumption that the OTP server being used in this protocol is either
 not redundant or involves a commit protocol to synchronize between
 replicas. If this does not hold for an OTP server being used then
 the system may be vulnerable to replay attack.

 However, OTP servers may not be able to detect replay of OTPs
 generated using only a client generated challenge and since the KDC
 would not be able to detect replay in 2-pass mode, it is recommended
 that the use of OTPs generated from only a client-generated challenge
 (that is, not in combination with some other factor such as time)
 should not be supported in 2-pass mode.

6.5. Brute Force Attack

 A compromised or hostile KDC may be able to obtain the OTP value used
 by the client via a brute force attack. If the OTP value is short
 then the KDC could iterate over the possible OTP values until a
 Client Key is generated that can decrypt the encData sent in the PA-
 OTP-REQUEST.

 As described in Section 3.6, an iteration count can be used in the
 generation of the Client Key and the value of the iteration count can

https://datatracker.ietf.org/doc/html/rfc6113#section-5.2

Richards Expires May 26, 2012 [Page 30]

Internet-Draft OTP Pre-authentication November 2011

 be controlled by local client policy. Use of this iteration count
 can make it computationally infeasible/unattractive for an attacker
 to brute-force search for the given OTP within the lifetime of that
 OTP.

 If PINs contain international characters, similar looking or similar
 functioning characters may be mapped together. For example, the
 combined and decomposed forms of accented characters will typically
 be treated the same. Users who attempt to exploit artifacts of
 international characters to improve the strength of their PINs may
 experience false positives in the sense that PINs they intended to be
 distinct are not actually distinct. This decision was made in order
 to improve usability across the widest variety of input methods.
 Users can choose other methods to add strength to PINs.

6.6. FAST Facilities

 The secret used to generate the OTP is known only to the client and
 the KDC and so successful decryption of the encrypted nonce by the
 KDC authenticates the user. If the OTP value is used in the Reply
 Key generation then successful decryption of the encrypted nonce by
 the client proves that the expected KDC replied. The Reply Key is
 replaced by either a key generated from the OTP and Armor Key or by
 the Armor Key. This FAST factor therefore provides the following
 facilities: client-authentication, replacing-reply-key and, depending
 on the OTP algorithm, KDC-authentication.

7. Acknowledgments

 Many significant contributions were made to this document by RSA
 employees but special thanks go to Magnus Nystrom, John Linn, Richard
 Zhang, Piers Bowness, Robert Philpott, Robert Polansky and Boris
 Khoutorski.

 Many valuable suggestions were also made by members of the Kerberos
 Working Group but special thanks go to Larry Zhu, Jeffrey Hutzelman,
 Tim Alsop, Henry Hotz, Nicolas Williams, Sam Hartman, Frank Cusak,
 Simon Josefsson, Greg Hudson and Linus Nordberg.

 I would also like to thank Tim Alsop and Srinivas Cheruku of
 CyberSafe for many valuable review comments.

8. References

Richards Expires May 26, 2012 [Page 31]

Internet-Draft OTP Pre-authentication November 2011

8.1. Normative References

 [ISOIEC7812]
 ISO, "ISO/IEC 7812-1:2006 Identification cards --
 Identification of issuers -- Part 1: Numbering system",
 October 2006, <http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=39698>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial
 Authentication in Kerberos (PKINIT)", RFC 4556, June 2006.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6112] Zhu, L., Leach, P., and S. Hartman, "Anonymity Support for
 Kerberos", RFC 6112, April 2011.

 [RFC6113] Hartman, S. and L. Zhu, "A Generalized Framework for
 Kerberos Pre-Authentication", RFC 6113, April 2011.

 [X.680] ITU-T, "Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,
 Information technology - Abstract Syntax Notation One

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39698
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39698
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6112
https://datatracker.ietf.org/doc/html/rfc6113

Richards Expires May 26, 2012 [Page 32]

Internet-Draft OTP Pre-authentication November 2011

 (ASN.1): Specification of basic notation.", July 2002.

 [X.690] ITU-T, "Recommendation X.690 (2002) | ISO/IEC 8825-1:2002,
 Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER).", December 2002.

8.2. Informative References

 [AsNiNy02]
 Asokan, N., Niemi, V., and K. Nyberg, "Man-in-the-Middle
 in Tunneled Authentication Protocols", Cryptology ePrint
 Archive Report 2002/163, November 2002.

 [HoReNeZo04]
 Horstein, K., Renard, K., Neuman, C., and G. Zorn,
 "Integrating Single-use Authentication Mechanisms with
 Kerberos", draft-ietf-krb-wg-kerberos-sam-03 (work in
 progress), July 2004.

 [LHA10] Hornquist Astrand, L., "Kerberos number registry to IANA",
draft-lha-krb-wg-some-numbers-to-iana-00 (work in

 progress), March 2010.

 [RFC2289] Haller, N., Metz, C., Nesser, P., and M. Straw, "A One-
 Time Password System", RFC 2289, February 1998.

 [RFC2808] Nystrom, M., "The SecurID(r) SASL Mechanism", RFC 2808,
 April 2000.

 [RFC4226] M'Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and
 O. Ranen, "HOTP: An HMAC-Based One-Time Password
 Algorithm", RFC 4226, December 2005.

 [RFC6030] Hoyer, P., Pei, M., and S. Machani, "Portable Symmetric
 Key Container (PSKC)", RFC 6030, October 2010.

Appendix A. ASN.1 Module

 OTPKerberos
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS

 KerberosTime, KerberosFlags, EncryptionKey, Int32,

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-sam-03
https://datatracker.ietf.org/doc/html/draft-lha-krb-wg-some-numbers-to-iana-00
https://datatracker.ietf.org/doc/html/rfc2289
https://datatracker.ietf.org/doc/html/rfc2808
https://datatracker.ietf.org/doc/html/rfc4226
https://datatracker.ietf.org/doc/html/rfc6030

Richards Expires May 26, 2012 [Page 33]

Internet-Draft OTP Pre-authentication November 2011

 EncryptedData, LastReq, KerberosString
 FROM KerberosV5Spec2 {iso(1) identified-organization(3)
 dod(6) internet(1) security(5)
 kerberosV5(2) modules(4) krb5spec2(2)}
 -- as defined in RFC 4120.
 AlgorithmIdentifier
 FROM PKIX1Explicit88 { iso (1) identified-organization (3)
 dod (6) internet (1)
 security (5) mechanisms (5) pkix (7)
 id-mod (0) id-pkix1-explicit (18) };
 -- As defined in RFC 5280.

 PA-OTP-CHALLENGE ::= SEQUENCE {
 nonce [0] OCTET STRING,
 otp-service [1] UTF8String OPTIONAL,
 otp-tokenInfo [2] SEQUENCE (SIZE(1..MAX)) OF
 OTP-TOKENINFO,
 salt [3] KerberosString OPTIONAL,
 s2kparams [4] OCTET STRING OPTIONAL,
 ...
 }

 OTP-TOKENINFO ::= SEQUENCE {
 flags [0] OTPFlags,
 otp-vendor [1] UTF8String OPTIONAL,
 otp-challenge [2] OCTET STRING (SIZE(1..MAX))
 OPTIONAL,
 otp-length [3] Int32 OPTIONAL,
 otp-format [4] OTPFormat OPTIONAL,
 otp-tokenID [5] OCTET STRING OPTIONAL,
 otp-algID [6] AnyURI OPTIONAL,
 supportedHashAlg [7] SEQUENCE OF AlgorithmIdentifier
 OPTIONAL,
 iterationCount [8] Int32 OPTIONAL,
 ...
 }

 OTPFormat ::= INTEGER {
 decimal(0),
 hexadecimal(1),
 alphanumeric(2),
 binary(3),
 base64(4)
 }

 OTPFlags ::= KerberosFlags
 -- reserved(0),
 -- nextOTP(1),

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc5280

Richards Expires May 26, 2012 [Page 34]

Internet-Draft OTP Pre-authentication November 2011

 -- combine(2),
 -- collect-pin(3),
 -- do-not-collect-pin(4),
 -- must-encrypt-nonce (5),
 -- separate-pin-required (6),
 -- check-digit (7)

 PA-OTP-REQUEST ::= SEQUENCE {
 flags [0] OTPFlags,
 nonce [1] OCTET STRING OPTIONAL,
 encData [2] EncryptedData,
 -- PA-OTP-ENC-REQUEST or PA-ENC-TS-ENC
 -- Key usage of KEY_USAGE_OTP_REQUEST
 hashAlg [3] AlgorithmIdentifier OPTIONAL,
 iterationCount [4] Int32 OPTIONAL,
 otp-value [5] OCTET STRING OPTIONAL,
 otp-pin [6] UTF8String OPTIONAL,
 otp-challenge [7] OCTET STRING (SIZE(1..MAX)) OPTIONAL,
 otp-time [8] KerberosTime OPTIONAL,
 otp-counter [9] OCTET STRING OPTIONAL,
 otp-format [10] OTPFormat OPTIONAL,
 otp-tokenID [11] OCTET STRING OPTIONAL,
 otp-algID [12] AnyURI OPTIONAL,
 otp-vendor [13] UTF8String OPTIONAL,
 ...
 }

 PA-OTP-ENC-REQUEST ::= SEQUENCE {
 nonce [0] OCTET STRING,
 ...
 }

 PA-OTP-PIN-CHANGE ::= SEQUENCE {
 flags [0] PinFlags,
 pin [1] UTF8String OPTIONAL,
 minLength [2] INTEGER OPTIONAL,
 maxLength [3] INTEGER OPTIONAL,
 last-req [4] LastReq OPTIONAL,
 format [5] OTPFormat OPTIONAL,
 ...
 }

 PinFlags ::= KerberosFlags
 -- reserved(0),
 -- systemSetPin(1),
 -- mandatory(2)

Richards Expires May 26, 2012 [Page 35]

Internet-Draft OTP Pre-authentication November 2011

 AnyURI ::= UTF8String
 (CONSTRAINED BY {
 -- MUST be a valid URI in accordance with IETF RFC 2396
 })

 END

Appendix B. Examples of OTP Pre-Authentication Exchanges

 This section is non-normative.

B.1. Four Pass Authentication

 In this mode, the client sends an initial AS-REQ to the KDC that does
 not contain a PA-OTP-REQUEST and the KDC responds with a KRB-ERROR
 containing a PA-OTP-CHALLENGE.

 In this example, the user has been issued with a connected, time-
 based token and the KDC requires hashed OTP values in the key
 generation with SHA-384 as the preferred hash algorithm and a minimum
 of 1024 iterations. The local policy on the client supports SHA-256
 and requires 100,000 iterations of the hash of the OTP value.

 The basic sequence of steps involved is as follows:

 1. The client obtains the user name of the user.

 2. The client sends an initial AS-REQ to the KDC that does not
 contain a PA-OTP-REQUEST.

 3. The KDC determines that the user identified by the AS-REQ
 requires OTP authentication.

 4. The KDC constructs a PA-OTP-CHALLENGE as follows:

 nonce
 A randomly generated value.

 otp-service
 A string that can be used by the client to assist the user in
 locating the correct token.

 otp-tokenInfo
 Information about how the OTP should be generated from the
 token.

https://datatracker.ietf.org/doc/html/rfc2396

Richards Expires May 26, 2012 [Page 36]

Internet-Draft OTP Pre-authentication November 2011

 flags
 must-encrypt-nonce and collect-pin bits set

 supportedHashAlg
 AlgorithmIdentifiers for SHA-384, SHA-256 and SHA-1

 iterationCount
 1024

 5. The KDC returns a KRB-ERROR with an error code of
 KDC_ERR_PREAUTH_REQUIRED and the PA-OTP-CHALLENGE in the e-data.

 6. The client displays the value of otp-service and prompts the
 user to connect the token.

 7. The client collects a PIN from the user.

 8. The client obtains the current OTP value from the token using
 the PIN and records the time as reported by the token.

 9. The client generates the Client Key and Reply Key as described
 in Section 3.6 using SHA-256 from the list of algorithms sent by
 the KDC, the iteration count of 100,000 as required by local
 policy and a randomly generated nonce.

 10. The client constructs a PA-OTP-REQUEST as follows:

 flags
 0

 nonce
 The randomly generated value.

 encData
 An EncryptedData containing a PA-OTP-ENC-REQUEST encrypted
 under the Client Key with a key usage of
 KEY_USAGE_OTP_REQUEST and the encryption type of the Armor
 Key. The PA-OTP-ENC-REQUEST contains the nonce from the PA-
 OTP-CHALLENGE.

 hashAlg
 SHA-256

 iterationCount
 100,000

Richards Expires May 26, 2012 [Page 37]

Internet-Draft OTP Pre-authentication November 2011

 otp-time
 The time used in the OTP calculation as reported by the OTP
 token.

 11. The client encrypts the PA-OTP-REQUEST within the enc-fast-req
 of a PA-FX-FAST-REQUEST.

 12. The client sends an AS-REQ to the KDC containing the PA-FX-FAST-
 REQUEST within the padata.

 13. The KDC validates the pre-authentication data in the PA-OTP-
 REQUEST:

 * Generates the Client Key and Reply Key from the OTP value for
 the user identified in the AS-REQ, using an iteration count
 of 100,000, a hash algorithm of SHA-256 and the nonce as
 specified in the PA-OTP-REQUEST.

 * Uses the generated Client Key to decrypt the PA-OTP-ENC-
 REQUEST in the encData of the PA-OTP-REQUEST.

 * Authenticates the user by comparing the nonce value from the
 decrypted PA-OTP-ENC-REQUEST to that sent in the
 corresponding PA-OTP-CHALLENGE.

 14. The KDC constructs a TGT for the user.

 15. The KDC returns an AS-REP to the client, encrypted using the
 Reply Key, containing the TGT and padata with the PA-FX-FAST-
 REPLY.

 16. The client authenticates the KDC and verifies the Reply Key
 change.

 * Uses the generated Reply Key to decrypt the encrypted data in
 the AS-REP.

B.2. Two Pass Authentication

 In this mode, the client includes a PA-OTP-REQUEST within a PA-FX-
 FAST-REQUEST pre-auth of the initial AS-REQ sent to the KDC.

 In this example, the user has been issued with a hand-held token and
 so none of the OTP generation parameters (otp-length etc) are
 included in the PA-OTP-REQUEST. The KDC does not require hashed OTP
 values in the key generation.

Richards Expires May 26, 2012 [Page 38]

Internet-Draft OTP Pre-authentication November 2011

 It is assumed that the client has been configured with the following
 information or has obtained it from a previous PA-OTP-CHALLENGE.
 o The fact that the OTP value must not be carried in the otp-value
 o The fact that hashed OTP values are not required.

 The basic sequence of steps involved is as follows:

 1. The client obtains the user name and OTP value from the user.

 2. The client generates the Client Key and Reply Key using unhashed
 OTP values as described in Section 3.6.

 3. The client constructs a PA-OTP-REQUEST as follows:

 flags
 0

 encData
 An EncryptedData containing a PA-ENC-TS-ENC encrypted under
 the Client Key with a key usage of KEY_USAGE_OTP_REQUEST and
 an encryption type of the Armor Key. The PA-ENC-TS-ENC
 contains the current client time.

 4. The client encrypts the PA-OTP-REQUEST within the enc-fast-req of
 a PA-FX-FAST-REQUEST.

 5. The client sends an AS-REQ to the KDC containing the PA-FX-FAST-
 REQUEST within the padata.

 6. The KDC validates the pre-authentication data:

 * Generates the Client Key and Reply Key from the unhashed OTP
 value for the user identified in the AS-REQ.

 * Uses the generated Client Key to decrypt the PA-ENC-TS-ENC in
 the encData of the PA-OTP-REQUEST.

 * Authenticates the user using the timestamp in the standard
 manner.

 7. The KDC constructs a TGT for the user.

 8. The KDC returns an AS-REP to the client, encrypted using the
 Reply Key, containing the TGT and padata with the PA-FX-FAST-
 REPLY.

Richards Expires May 26, 2012 [Page 39]

Internet-Draft OTP Pre-authentication November 2011

 9. The client authenticates the KDC and verifies the key change.

 * Uses the generated Reply Key to decrypt the encrypted data in
 the AS-REP.

B.3. PIN Change

 This exchange follows from the point where the KDC receives the PA-
 OTP-REQUEST from the client in the examples in Appendix B.1 and

Appendix B.2. During the validation of the pre-authentication data
 (whether encrypted nonce or encrypted timestamp), the KDC determines
 that the user's PIN has expired and so must be changed. The KDC
 therefore includes a PA-OTP-PIN-CHANGE in the AS-REP.

 In this example, the KDC does not generate PIN values for the user
 but requires that the user generate a new PIN that is between 4 and 8
 characters in length. The actual PIN change is handled by a PIN
 change service.

 The basic sequence of steps involved is as follows:

 1. The client constructs and sends a PA-OTP-REQUEST to the KDC as
 described in the previous examples.

 2. The KDC validates the pre-authentication data and authenticates
 the user as in the previous examples but determines that the
 user's PIN has expired.

 3. KDC constructs a ticket for a PIN change service with a one
 minute lifetime.

 4. KDC constructs a PA-OTP-PIN-CHANGE as follows:

 flags
 0

 minLength
 4

 maxLength
 8

 5. KDC encrypts the PA-OTP-PIN-CHANGE within the enc-fast-rep of a
 PA-FX-FAST-REPLY.

 6. KDC returns a KRB-ERROR to the client of type KDC_ERR_PIN_EXPIRED
 containing the ticket to the PIN change service and padata
 containing the PA-FX-FAST-REPLY.

Richards Expires May 26, 2012 [Page 40]

Internet-Draft OTP Pre-authentication November 2011

 7. The client uses the ticket requests a ticket for a PIN change
 service and changes the user's PIN.

 8. The client sends a second AS-REQ to the KDC containing a PA-OTP-
 REQUEST constructed using the new PIN.

 9. The KDC responds with an AS-REP containing a TGT.

B.4. Resynchronization

 This exchange follows from the point where the KDC receives the PA-
 OTP-REQUEST from the client. During the validation of the pre-
 authentication data (whether encrypted nonce or encrypted timestamp),
 the KDC determines that the local record of the token's state needs
 to be re-synchronized with the token. The KDC therefore includes a
 KRB-ERROR containing a PA-OTP-CHALLENGE with the "nextOTP" flag set.

 The sequence of steps below follows is a variation of the four pass
 examples shown in Appendix B.1 but the same process would also work
 in the two-pass case.

 1. The client constructs and sends a PA-OTP-REQUEST to the KDC as
 described in the previous examples.

 2. The KDC validates the pre-authentication data and authenticates
 the user as in the previous examples but determines that user's
 token requires re-synchronizing.

 3. KDC constructs a PA-OTP-CHALLENGE as follows:

 nonce
 A randomly generated value.

 otp-service
 Set to a string that can be used by the client to assist the
 user in locating the correct token.

 otp-tokenInfo
 Information about how the OTP should be generated from the
 token.

 flags
 must-encrypt-nonce, collect-pin and nextOTP bits set

Richards Expires May 26, 2012 [Page 41]

Internet-Draft OTP Pre-authentication November 2011

 supportedHashAlg
 AlgorithmIdentifiers for SHA-256 and SHA-1

 iterationCount
 1024

 4. KDC returns a KRB-ERROR with an error code of
 KDC_ERR_PREAUTH_REQUIRED and the PA-OTP-CHALLENGE in the e-data.

 5. The client obtains the next OTP value from the token and records
 the time as reported by the token.

 6. The client generates the Client Key and Reply Key as described
 in Section 3.6 using SHA-256 from the list of algorithms sent by
 the KDC, the iteration count of 100,000 as required by local
 policy and a randomly generated nonce.

 7. The client constructs a PA-OTP-REQUEST as follows:

 flags
 nextOTP bit set

 nonce
 The randomly generated value.

 encData
 An EncryptedData containing a PA-OTP-ENC-REQUEST encrypted
 under the Client Key with a key usage of
 KEY_USAGE_OTP_REQUEST and the encryption type of the Armor
 Key. The PA-OTP-ENC-REQUEST contains the nonce from the PA-
 OTP-CHALLENGE.

 hashAlg
 SHA-256

 iterationCount
 100,000

 otp-time
 The time used in the OTP calculation as reported by the OTP
 token.

 8. The client encrypts the PA-OTP-REQUEST within the enc-fast-req
 of a PA-FX-FAST-REQUEST.

 9. The client sends an AS-REQ to the KDC containing the PA-FX-FAST-
 REQUEST within the padata.

Richards Expires May 26, 2012 [Page 42]

Internet-Draft OTP Pre-authentication November 2011

 10. Authentication process now proceeds as with the classic
 sequence.

Author's Address

 Gareth Richards
 RSA, The Security Division of EMC
 RSA House
 Western Road
 Bracknell, Berkshire RG12 1RT
 UK

 Email: gareth.richards@rsa.com

Richards Expires May 26, 2012 [Page 43]

