
INTERNET-DRAFT Tom Yu
draft-ietf-krb-wg-rfc1510ter-02.txt MIT
Expires: 26 April 2006 23 October 2005

The Kerberos Network Authentication Service (Version 5)

Status of This Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Abstract

 This document describes version 5 of the Kerberos network
 authentication protocol. It describes a framework to allow for
 extensions to be made to the protocol without creating
 interoperability problems.

Key Words for Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document are
 to be interpreted as described in RFC 2119.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-rfc1510ter-02.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Yu Expires: Apr 2006 [Page 1]

Internet-Draft rfc1510ter-02 23 Oct 2005

Table of Contents

 Status of This Memo .. 1
 Copyright Notice ... 1
 Abstract ... 1
 Key Words for Requirements 1
 Table of Contents .. 2

1. Introduction ... 5
1.1. Kerberos Protocol Overview 5
1.2. Document Organization 6
2. Compatibility Considerations 6
2.1. Extensibility .. 6
2.2. Compatibility with RFC 1510 7
2.3. Backwards Compatibility 7
2.4. Sending Extensible Messages 8
2.5. Criticality .. 8
2.6. Authenticating Cleartext Portions of Messages 9
2.7. Capability Negotiation 10
3. Use of ASN.1 in Kerberos 10
3.1. Module Header .. 11
3.2. Top-Level Type ... 11
3.3. Previously Unused ASN.1 Notation (informative) 12
3.3.1. Parameterized Types 12
3.3.2. Constraints .. 12
3.4. New Types .. 12
4. Basic Types .. 12
4.1. Constrained Integer Types 12
4.2. KerberosTime ... 13
4.3. KerberosString ... 14
4.4. Language Tags .. 14
4.5. KerberosFlags .. 14
4.6. Typed Holes .. 15
4.7. HostAddress and HostAddresses 15
4.7.1. Internet (IPv4) Addresses 16
4.7.2. Internet (IPv6) Addresses 16
4.7.3. DECnet Phase IV addresses 17
4.7.4. Netbios addresses .. 17
4.7.5. Directional Addresses 17
5. Principals ... 17
5.1. Name Types ... 17
5.2. Principal Type Definition 18
5.3. Principal Name Reuse 19

 5.4. Best Common Practice Recommendations for the Processing
 of Principal Names Consisting of Internationalized
 Domain Names: ... 19

5.5. Realm Names .. 20
 5.6. Best Common Practice Recommendations for the Processing
 of Internationalized Domain-Style Realm Names: 20

5.7. Printable Representations of Principal Names 21

https://datatracker.ietf.org/doc/html/rfc1510

5.8. Ticket-Granting Service Principal 21
5.8.1. Cross-Realm TGS Principals 22

Yu Expires: Apr 2006 [Page 2]

Internet-Draft rfc1510ter-02 23 Oct 2005

6. Types Relating to Encryption 22
6.1. Assigned Numbers for Encryption 22
6.1.1. EType .. 22
6.1.2. Key Usages ... 23
6.2. Which Key to Use ... 24
6.3. EncryptionKey .. 25
6.4. EncryptedData .. 25
6.5. Checksums .. 26
6.5.1. ChecksumOf ... 27
6.5.2. Signed ... 28
7. Tickets .. 28
7.1. Timestamps ... 29
7.2. Ticket Flags ... 30
7.2.1. Flags Relating to Initial Ticket Acquisition 30
7.2.2. Invalid Tickets .. 31
7.2.3. OK as Delegate ... 31
7.2.4. Renewable Tickets .. 32
7.2.5. Postdated Tickets .. 32
7.2.6. Proxiable and Proxy Tickets 33
7.2.7. Forwarded and Forwardable Tickets 34
7.3. Transited Realms ... 35
7.4. Authorization Data ... 35
7.4.1. AD-IF-RELEVANT ... 36
7.4.2. AD-KDCIssued ... 37
7.4.3. AD-AND-OR .. 38
7.4.4. AD-MANDATORY-FOR-KDC 38
7.5. Encrypted Part of Ticket 39
7.6. Cleartext Part of Ticket 39
8. Credential Acquisition 41
8.1. KDC-REQ .. 41
8.2. PA-DATA .. 48
8.3. KDC-REQ Processing ... 48
8.3.1. Handling Replays ... 48
8.3.2. Request Validation 49
8.3.2.1. AS-REQ Authentication 49
8.3.2.2. TGS-REQ Authentication 49
8.3.2.3. Principal Validation 49
8.3.2.4. Checking For Revoked or Invalid Tickets 49
8.3.3. Timestamp Handling 50
8.3.3.1. AS-REQ Timestamp Processing 50
8.3.3.2. TGS-REQ Timestamp Processing 51
8.3.4. Handling Transited Realms 52
8.3.5. Address Processing 52
8.3.6. Ticket Flag Processing 52
8.3.7. Key Selection .. 54
8.3.7.1. Reply Key and Session Key Selection 54
8.3.7.2. Ticket Key Selection 54
8.4. KDC-REP .. 54
8.5. Reply Validation ... 58

8.6. IP Transports .. 58
8.6.1. UDP/IP transport ... 58

Yu Expires: Apr 2006 [Page 3]

Internet-Draft rfc1510ter-02 23 Oct 2005

8.6.2. TCP/IP transport ... 58
8.6.3. KDC Discovery on IP Networks 60
8.6.3.1. DNS vs. Kerberos - Case Sensitivity of Realm Names 60
8.6.3.2. DNS SRV records for KDC location 60

 8.6.3.3. KDC Discovery for Domain Style Realm Names on IP
 Networks .. 61

9. Errors ... 61
10. Session Key Exchange .. 63
10.1. AP-REQ .. 64
10.2. AP-REP .. 65
11. Session Key Use ... 67
11.1. KRB-SAFE .. 67
11.2. KRB-PRIV .. 67
11.3. KRB-CRED .. 68
12. Security Considerations 69
12.1. Time Synchronization 69
12.2. Replays ... 69
12.3. Principal Name Reuse 70
12.4. Password Guessing ... 70
12.5. Forward Secrecy ... 70
12.6. Authorization ... 70
12.7. Login Authentication 70
13. IANA Considerations ... 70
14. Acknowledgments ... 71

 Appendices ... 71
A. ASN.1 Module (Normative) 71
B. Kerberos and Character Encodings (Informative)103
C. Kerberos History (Informative)104
D. Notational Differences from [KCLAR]105

 Normative References ...106
 Informative References ...106
 Author's Address ...108
 Copyright Statement ..108
 Intellectual Property Statement108

Yu Expires: Apr 2006 [Page 4]

Internet-Draft rfc1510ter-02 23 Oct 2005

1. Introduction

 The Kerberos network authentication protocol is a trusted-third-party
 protocol utilizing symmetric-key cryptography. It assumes that all
 communications between parties in the protocol may be arbitrarily
 tampered with or monitored, and that the security of the overall
 system depends only on the effectiveness of the cryptographic
 techniques and the secrecy of the cryptographic keys used. The
 Kerberos protocol authenticates an application client's identity to
 an application server, and likewise authenticates the application
 server's identity to the application client. These assurances are
 made possible by the client and the server sharing secrets with the
 trusted third party: the Kerberos server, also known as the Key
 Distribution Center (KDC). In addition, the protocol establishes an
 ephemeral shared secret (the session key) between the client and the
 server, allowing the protection of further communications between
 them.

 The Kerberos protocol, as originally specified, provides insufficient
 means for extending the protocol in a backwards-compatible way. This
 deficiency has caused problems for interoperability. This document
 describes a framework which enables backwards-compatible extensions
 to the Kerberos protocol.

1.1. Kerberos Protocol Overview

 Kerberos comprises three main sub-protocols: credentials acquisition,
 session key exchange, and session key usage. A client acquires
 credentials by asking the KDC for a credential for a service; the KDC
 issues the credential, which contains a ticket and a session key.
 The ticket, containing the client's identity, timestamps, expiration
 time, and a session key, is a encrypted in a key known to the
 application server. The KDC encrypts the credential using a key
 known to the client, and transmits the credential to the client.

 There are two means of requesting credentials: the Authentication
 Service (AS) exchange, and the Ticket-Granting Service (TGS)
 exchange. In the typical AS exchange, a client uses a password-
 derived key to decrypt the response. In the TGS exchange, the KDC
 behaves as an application server; the client authenticates to the TGS
 by using a Ticket-Granting Ticket (TGT). The client usually obtains
 the TGT by using the AS exchange.

 Session key exchange consists of the client transmitting the ticket
 to the application server, accompanied by an authenticator. The
 authenticator contains a timestamp and additional data encrypted
 using the ticket's session key. The application server decrypts the
 ticket, extracting the session key. The application server then uses
 the session key to decrypt the authenticator. Upon successful

 decryption of the authenticator, the application server knows that
 the data in the authenticator were sent by the client named in the

Yu Expires: Apr 2006 [Page 5]

Internet-Draft rfc1510ter-02 23 Oct 2005

 associated ticket. Additionally, since authenticators expire more
 quickly than tickets, the application server has some assurance that
 the transaction is not a replay. The application server may send an
 encrypted acknowledgment to the client, verifying its identity to the
 client.

 Once session key exchange has occurred, the client and server may use
 the established session key to protect further traffic. This
 protection may consist of protection of integrity only, or of
 protection of confidentiality and integrity. Additional measures
 exist for a client to securely forward credentials to a server.

 The entire scheme depends on loosely synchronized clocks.
 Synchronization of the clock on the KDC with the application server
 clock allows the application server to accurately determine whether a
 credential is expired. Likewise, synchronization of the clock on the
 client with the application server clock prevents replay attacks
 utilizing the same credential. Careful design of the application
 protocol may allow replay prevention without requiring client-server
 clock synchronization.

 After establishing a session key, application client and the
 application server can exchange Kerberos protocol messages that use
 the session key to protect the integrity or confidentiality of
 communications between the client and the server. Additionally, the
 client may forward credentials to the application server.

 The credentials acquisition protocol takes place over specific,
 defined transports (UDP and TCP). Application protocols define which
 transport to use for the session key establishment protocol and for
 messages using the session key; the application may choose to perform
 its own encapsulation of the Kerberos messages, for example.

1.2. Document Organization

 The remainder of this document begins by describing the general
 frameworks for protocol extensibility, including whether to interpret
 unknown extensions as critical. It then defines the protocol
 messages and exchanges.

 The definition of the Kerberos protocol uses Abstract Syntax Notation
 One (ASN.1) [X680], which specifies notation for describing the
 abstract content of protocol messages. This document defines a
 number of base types using ASN.1; these base types subsequently
 appear in multiple types which define actual protocol messages.
 Definitions of principal names and of tickets, which are central to
 the protocol, also appear preceding the protocol message definitions.

2. Compatibility Considerations

Yu Expires: Apr 2006 [Page 6]

Internet-Draft rfc1510ter-02 23 Oct 2005

2.1. Extensibility

 In the past, significant interoperability problems have resulted from
 conflicting assumptions about how the Kerberos protocol can be
 extended. As the deployed base of Kerberos grows, the ability to
 extend the Kerberos protocol becomes more important. In order to
 ensure that vendors and the IETF can extend the protocol while
 maintaining backwards compatibility, this document outlines a
 framework for extending Kerberos.

 Kerberos provides two general mechanisms for protocol extensibility.
 Many protocol messages, including some defined in RFC 1510, contain
 typed holes--sub-messages containing an octet string along with an
 integer that identifies how to interpret the octet string. The
 integer identifiers are registered centrally, but can be used both
 for vendor extensions and for extensions standardized in the IETF.
 This document adds typed holes to a number of messages which
 previously lacked typed holes.

 Many new messages defined in this document also contain ASN.1
 extension markers. These markers allow future revisions of this
 document to add additional elements to messages, for cases where
 typed holes are inadequate for some reason. Because tag numbers and
 position in a sequence need to be coordinated in order to maintain
 interoperability, implementations MUST NOT include ASN.1 extensions
 except when those extensions are specified by IETF standards-track
 documents.

2.2. Compatibility with RFC 1510

 Implementations of RFC 1510 did not use extensible ASN.1 types.
 Sending additional fields not in RFC 1510 to these implementations
 results in undefined behavior. Examples of this behavior are known
 to include discarding messages with no error indications.

 Where messages have been changed since RFC 1510, ASN.1 CHOICE types
 are used; one alternative of the CHOICE provides a message which is
 wire-encoding compatible with RFC 1510, and the other alternative
 provides the new, extensible message.

 Implementations sending new messages MUST ensure that the recipient
 supports these new messages. Along with each extensible message is a
 guideline for when that message MAY be used. If that guideline is
 followed, then the recipient is guaranteed to understand the message.

2.3. Backwards Compatibility

 This document describes two sets (for the most part) of ASN.1 types.
 The first set of types is wire-encoding compatible with RFC 1510 and
 [KCLAR]. The second set of types is the set of types enabling

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

 extensibility. This second set may be referred to as "extensibility-

Yu Expires: Apr 2006 [Page 7]

Internet-Draft rfc1510ter-02 23 Oct 2005

 enabled types". [need to make this consistent throughout?]

 A major difference between the new extensibility-enabled types and
 the types for RFC 1510 compatibility is that the extensibility-
 enabled types allow for the use of UTF-8 encodings in various
 character strings in the protocol. Each party in the protocol must
 have some knowledge of the capabilities of the other parties in the
 protocol. There are methods for establishing this knowledge without
 necessarily requiring explicit configuration.

 An extensibility-enabled client can detect whether a KDC supports the
 extensibility-enabled types by requesting an extensibility-enabled
 reply. If the KDC replies with an extensibility-enabled reply, the
 client knows that the KDC supports extensibility. If the KDC issues
 an extensibility-enabled ticket, the client knows that the service
 named in the ticket is extensibility-enabled.

2.4. Sending Extensible Messages

 Care must be taken to make sure that old implementations can
 understand messages sent to them even if they do not understand an
 extension that is used. Unless the sender knows the extension is
 supported, the extension cannot change the semantics of the core
 message or previously defined extensions.

 For example, an extension including key information necessary to
 decrypt the encrypted part of a KDC-REP could only be used in
 situations where the recipient was known to support the extension.
 Thus when designing such extensions it is important to provide a way
 for the recipient to notify the sender of support for the extension.
 For example in the case of an extension that changes the KDC-REP
 reply key, the client could indicate support for the extension by
 including a padata element in the AS-REQ sequence. The KDC should
 only use the extension if this padata element is present in the AS-
 REQ. Even if policy requires the use of the extension, it is better
 to return an error indicating that the extension is required than to
 use the extension when the recipient may not support it; debugging
 why implementations do not interoperate is easier when errors are
 returned.

2.5. Criticality

 Recipients of unknown message extensions (including typed holes, new
 flags, and ASN.1 extension elements) should preserve the encoding of
 the extension but otherwise ignore the presence of the extension;
 i.e., unknown extensions SHOULD be treated as non-critical. If a
 copy of the message is used later--for example, when a Ticket
 received in a KDC-REP is later used in an AP-REQ--then the unknown
 extensions MUST be included.

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 8]

Internet-Draft rfc1510ter-02 23 Oct 2005

 An implementation SHOULD NOT reject a request merely because it does
 not understand some element of the request. As a related
 consequence, implementations SHOULD handle communicating with other
 implementations which do not implement some requested options. This
 may require designers of options to provide means to determine
 whether an option has been rejected, not understood, or (perhaps
 maliciously) deleted or modified in transit.

 There is one exception to non-criticality described above: if an
 unknown authorization data element is received by a server either in
 an AP-REQ or in a Ticket contained in an AP-REQ, then the
 authentication SHOULD fail. Authorization data is intended to
 restrict the use of a ticket. If the service cannot determine
 whether the restriction applies to that service then a security
 weakness may result if authentication succeeds. Authorization
 elements meant to be truly optional can be enclosed in the AD-IF-
 RELEVANT element.

 Many RFC 1510 implementations ignore unknown authorization data
 elements. Depending on these implementations to honor authorization
 data restrictions may create a security weakness.

2.6. Authenticating Cleartext Portions of Messages

 Various denial of service attacks and downgrade attacks against
 Kerberos are possible unless plaintexts are somehow protected against
 modification. An early design goal of Kerberos Version 5 was to
 avoid encrypting more of the authentication exchange that was
 required. (Version 4 doubly-encrypted the encrypted part of a ticket
 in a KDC reply, for example.) This minimization of encryption
 reduces the load on the KDC and busy servers. Also, during the
 initial design of Version 5, the existence of legal restrictions on
 the export of cryptography made it desirable to minimize of the
 number of uses of encryption in the protocol. Unfortunately,
 performing this minimization created numerous instances of
 unauthenticated security-relevant plaintext fields.

 The extensible variants of the messages described in this document
 wrap the actual message in an ASN.1 sequence containing a keyed
 checksum of the contents of the message. Guidelines in [XXX] section

3 specify when the checksum MUST be included and what key MUST be
 used. Guidelines on when to include a checksum are never ambiguous:
 a particular PDU is never correct both with and without a checksum.
 With the exception of the KRB-ERROR message, receiving
 implementations MUST reject messages where a checksum is included and
 not expected or where a checksum is expected but not included. The
 receiving implementation does not always have sufficient information
 to know whether a KRB-ERROR should contain a checksum. Even so, KRB-
 ERROR messages with invalid checksums MUST be rejected and

https://datatracker.ietf.org/doc/html/rfc1510

 implementations MAY consider the presence or absence of a checksum
 when evaluating whether to trust the error.

Yu Expires: Apr 2006 [Page 9]

Internet-Draft rfc1510ter-02 23 Oct 2005

 This authenticated cleartext protection is provided only in the
 extensible variants of the messages; it is never used when
 communicating with an RFC 1510 implementation.

2.7. Capability Negotiation

 Kerberos is a three-party protocol. Each of the three parties
 involved needs a means of detecting the capabilities supported by the
 others. Two of the parties, the KDC and the application server, do
 not communicate directly in the Kerberos protocol. Communicating
 capabilities from the KDC to the application server requires using a
 ticket as an intermediary.

 The main capability requiring negotiation is the support of the
 extensibility framework described in this document. Negotiation of
 this capability while remaining compatible with RFC 1510
 implementations is possible. The main complication is that the
 client needs to know whether the application server supports the
 extensibility framework prior to sending any message to the
 application server. This can be accomplished if the KDC has
 knowledge of whether an application server supports the extensibility
 framework.

 Client software advertizes its capabilities when requesting
 credentials from the KDC. If the KDC recognizes the capabilities, it
 acknowledges this fact to the client in its reply. In addition, if
 the KDC has knowledge that the application server supports certain
 capabilities, it also communicates this knowledge to the client in
 its reply. The KDC can encode its own capabilities in the ticket so
 that the application server may discover these capabilities. The
 client advertizes its capabilities to the application server when it
 initiates authentication to the application server.

3. Use of ASN.1 in Kerberos

 Kerberos uses the ASN.1 Distinguished Encoding Rules (DER) [X690].
 Even though ASN.1 theoretically allows the description of protocol
 messages to be independent of the encoding rules used to encode the
 messages, Kerberos messages MUST be encoded with DER. Subtleties in
 the semantics of the notation, such as whether tags carry any
 semantic content to the application, may cause the use of other ASN.1
 encoding rules to be problematic.

 Implementors not using existing ASN.1 tools (e.g., compilers or
 support libraries) are cautioned to thoroughly read and understand
 the actual ASN.1 specification to ensure correct implementation
 behavior. There is more complexity in the notation than is
 immediately obvious, and some tutorials and guides to ASN.1 are
 misleading or erroneous. Recommended tutorials and guides include

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

 [Dub00], [Lar99], though there is still no substitute for reading the
 actual ASN.1 specification.

Yu Expires: Apr 2006 [Page 10]

Internet-Draft rfc1510ter-02 23 Oct 2005

3.1. Module Header

 The type definitions in this document assume an ASN.1 module
 definition of the following form:

 KerberosV5Spec3 {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2) modules(4) krb5spec3(4)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- Rest of definitions here

 END

 This specifies that the tagging context for the module will be
 explicit and that automatic tagging is not done.

 Some other publications [RFC1510] [RFC1964] erroneously specify an
 object identifier (OID) having an incorrect value of "5" for the
 "dod" component of the OID. In the case of RFC 1964, use of the
 "correct" OID value would result in a change in the wire protocol;
 therefore, the RFC 1964 OID remains unchanged for now.

3.2. Top-Level Type

 The ASN.1 type "KRB-PDU" is a CHOICE over all the types (Protocol
 Data Units or PDUs) which an application may directly reference.
 Applications SHOULD NOT transmit any types other than those which are
 alternatives of the KRB-PDU CHOICE.

 -- top-level type
 --
 -- Applications should not directly reference any types
 -- other than KRB-PDU and its component types.
 --
 KRB-PDU ::= CHOICE {
 ticket Ticket,
 as-req AS-REQ,
 as-rep AS-REP,
 tgs-req TGS-REQ,
 tgs-rep TGS-REP,
 ap-req AP-REQ,
 ap-rep AP-REP,
 krb-safe KRB-SAFE,
 krb-priv KRB-PRIV,
 krb-cred KRB-CRED,
 tgt-req TGT-REQ,
 krb-error KRB-ERROR,
 ...
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964

Yu Expires: Apr 2006 [Page 11]

Internet-Draft rfc1510ter-02 23 Oct 2005

3.3. Previously Unused ASN.1 Notation (informative)

 Some aspects of ASN.1 notation used in this document were not used in
 [KCLAR], and may be unfamiliar to some readers. This subsection is
 informative; for normative definitions of the notation, see the
 actual ASN.1 specifications [X680], [X682], [X683].

3.3.1. Parameterized Types

 This document uses ASN.1 parameterized types [X683] to make
 definitions of types more readable. For some types, some or all of
 the parameters are advisory, i.e., they are not encoded in any form
 for transmission in a protocol message. These advisory parameters
 can describe implementation behavior associated with the type.

3.3.2. Constraints

 This document uses ASN.1 constraints, including the
 "UserDefinedConstraint" notation [X682]. Some constraints can be
 handled automatically by tools that can parse them. Uses of the
 "UserDefinedConstraint" notation (the "CONSTRAINED BY" notation) will
 typically need to have behavior manually coded; the notation provides
 a formalized way of conveying intended implementation behavior.

 The "WITH COMPONENTS" constraint notation allows constraints to apply
 to component types of a SEQUENCE type. This constraint notation
 effectively allows constraints to "reach into" a type to constrain
 its component types.

3.4. New Types

 This document defines a number of ASN.1 types which are new since
 [KCLAR]. The names of these types will typically have a suffix like
 "Ext", indicating that the types are intended to support
 extensibility. Types original to RFC 1510 and [KCLAR] have been
 renamed to have a suffix like "1510". The "Ext" and "1510" types
 often contain a number of common elements, but differ primarily in
 the way strings are encoded.

4. Basic Types

 These "basic" Kerberos ASN.1 types appear in multiple other Kerberos
 types.

4.1. Constrained Integer Types

 In RFC 1510, many types contained references to the unconstrained
 INTEGER type. Since an unconstrained INTEGER can contain almost any
 possible abstract integer value, most of the unconstrained references
 to INTEGER in RFC 1510 were constrained to 32 bits or smaller in

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

 [KCLAR].

Yu Expires: Apr 2006 [Page 12]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- signed values representable in 32 bits
 --
 -- These are often used as assigned numbers for various things.
 Int32 ::= INTEGER (-2147483648..2147483647)

 The "Int32" type often contains an assigned number identifying the
 contents of a typed hole. Unless otherwise stated, non-negative
 values are registered, and negative values are available for local
 use.

 -- unsigned 32 bit values
 UInt32 ::= INTEGER (0..4294967295)

 The "UInt32" type is used in some places where an unsigned 32-bit
 integer is needed.

 -- unsigned 64 bit values
 UInt64 ::= INTEGER (0..18446744073709551615)

 The "UInt64" type is used in places where 32 bits of precision may
 provide inadequate security.

 -- sequence numbers
 SeqNum ::= UInt64

 Sequence numbers were constrained to 32 bits in [KCLAR], but this
 document allows for 64-bit sequence numbers.

 -- nonces
 Nonce ::= UInt64

 Likewise, nonces were constrained to 32 bits in [KCLAR], but expanded
 to 64 bits here.

 -- microseconds
 Microseconds ::= INTEGER (0..999999)

 The "microseconds" type is intended to carry the microseconds part of
 a time value.

4.2. KerberosTime

 KerberosTime ::= GeneralizedTime (CONSTRAINED BY {
 -- MUST NOT include fractional seconds
 })

 The timestamps used in Kerberos are encoded as GeneralizedTimes. A
 KerberosTime value MUST NOT include any fractional portions of the
 seconds. As required by the DER, it further MUST NOT include any
 separators, and it specifies the UTC time zone (Z). Example: The

 only valid format for UTC time 6 minutes, 27 seconds after 9 pm on 6

Yu Expires: Apr 2006 [Page 13]

Internet-Draft rfc1510ter-02 23 Oct 2005

 November 1985 is "19851106210627Z".

4.3. KerberosString

 -- used for names and for error messages
 KerberosString ::= CHOICE {
 ia5 GeneralString (IA5String),
 utf8 UTF8String,
 ... -- no extension may be sent
 -- to an rfc1510 implementation --
 }

 The KerberosString type is used for character strings in various
 places in the Kerberos protocol. For compatibility with RFC 1510,
 GeneralString values constrained to IA5String (US-ASCII) are
 permitted in messages exchanged with RFC 1510 implementations. The
 new protocol messages contain strings encoded as UTF-8, and these
 strings MUST be normalized using [SASLPREP]. KerberosString values
 are present in principal names and in error messages. Control
 characters SHOULD NOT be used in principal names, and used with
 caution in error messages.

 -- IA5 choice only; useful for constraints
 KerberosStringIA5 ::= KerberosString
 (WITH COMPONENTS { ia5 PRESENT })

 -- IA5 excluded; useful for constraints
 KerberosStringExt ::= KerberosString
 (WITH COMPONENTS { ia5 ABSENT })

 KerberosStringIA5 requires the use of the "ia5" alternative, while
 KerberosStringExt forbids it. These types appear in ASN.1
 constraints on messages.

 For detailed background regarding the history of character string use
 in Kerberos, as well as discussion of some compatibility issues, see

Appendix B.

4.4. Language Tags

 -- used for language tags
 LangTag ::= PrintableString
 (FROM ("A".."Z" | "a".."z" | "0".."9" | "-"))

 The "LangTag" type is used to specify language tags for localization
 purposes, using the [RFC3066] format.

4.5. KerberosFlags

 For several message types, a specific constrained bit string type,

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc3066

 KerberosFlags, is used.

Yu Expires: Apr 2006 [Page 14]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KerberosFlags { NamedBits } ::= BIT STRING (SIZE (32..MAX))
 (CONSTRAINED BY {
 -- MUST be a valid value of -- NamedBits
 -- but if the value to be sent would be truncated to shorter
 -- than 32 bits according to DER, the value MUST be padded
 -- with trailing zero bits to 32 bits. Otherwise, no
 -- trailing zero bits may be present.

 })

 The actual bit string type encoded in Kerberos messages does not use
 named bits. The advisory parameter of the KerberosFlags type names a
 bit string type defined using named bits, whose value is encoded as
 if it were a bit string with unnamed bits. This practice is
 necessary because the DER require trailing zero bits to be removed
 when encoding bit strings defined using named bits. Existing
 implementations of Kerberos send exactly 32 bits rather than
 truncating, so the size constraint requires the transmission of at
 least 32 bits. Trailing zero bits beyond the first 32 bits are
 truncated.

4.6. Typed Holes

 -- Typed hole identifiers
 TH-id ::= CHOICE {
 int32 Int32,
 rel-oid RELATIVE-OID
 }

 The "TH-id" type is a generalized means to identify the contents of a
 typed hole. The "int32" alternative may be used for simple integer
 assignments, in the same manner as "Int32", while the "rel-oid"
 alternative may be used for hierarchical delegation.

4.7. HostAddress and HostAddresses

 AddrType ::= Int32

 HostAddress ::= SEQUENCE {
 addr-type [0] AddrType,
 address [1] OCTET STRING
 }

 -- NOTE: HostAddresses is always used as an OPTIONAL field and
 -- should not be a zero-length SEQUENCE OF.
 --
 -- The extensible messages explicitly constrain this to be
 -- non-empty.
 HostAddresses ::= SEQUENCE OF HostAddress

Yu Expires: Apr 2006 [Page 15]

Internet-Draft rfc1510ter-02 23 Oct 2005

 addr-type
 This field specifies the type of address that follows.

 address
 This field encodes a single address of the type identified by
 "addr-type".

 All negative values for the host address type are reserved for local
 use. All non-negative values are reserved for officially assigned
 type fields and interpretations.

 |
 addr-type | meaning
 -----------+--------------
 2 | IPv4
 3 | directional
 12 | DECnet
 20 | NetBIOS
 24 | IPv6

4.7.1. Internet (IPv4) Addresses

 Internet (IPv4) addresses are 32-bit (4-octet) quantities, encoded in
 MSB order (most significant byte first). The IPv4 loopback address
 SHOULD NOT appear in a Kerberos PDU. The type of IPv4 addresses is
 two (2).

4.7.2. Internet (IPv6) Addresses

 IPv6 addresses [RFC2373] are 128-bit (16-octet) quantities, encoded
 in MSB order (most significant byte first). The type of IPv6
 addresses is twenty-four (24). The following addresses MUST NOT
 appear in any Kerberos PDU:

 * the Unspecified Address

 * the Loopback Address

 * Link-Local addresses

 This restriction applies to the inclusion in the address fields of
 Kerberos PDUs, but not to the address fields of packets that might
 carry such PDUs. The restriction is necessary because the use of an
 address with non-global scope could allow the acceptance of a message
 sent from a node that may have the same address, but which is not the
 host intended by the entity that added the restriction. If the link-
 local address type needs to be used for communication, then the
 address restriction in tickets must not be used (i.e. addressless

https://datatracker.ietf.org/doc/html/rfc2373

Yu Expires: Apr 2006 [Page 16]

Internet-Draft rfc1510ter-02 23 Oct 2005

 tickets must be used).

 IPv4-mapped IPv6 addresses MUST be represented as addresses of type
 2.

4.7.3. DECnet Phase IV addresses

 DECnet Phase IV addresses are 16-bit addresses, encoded in LSB order.
 The type of DECnet Phase IV addresses is twelve (12).

4.7.4. Netbios addresses

 Netbios addresses are 16-octet addresses typically composed of 1 to
 15 alphanumeric characters and padded with the US-ASCII SPC character
 (code 32). The 16th octet MUST be the US-ASCII NUL character (code
 0). The type of Netbios addresses is twenty (20).

4.7.5. Directional Addresses

 In many environments, including the sender address in KRB-SAFE and
 KRB-PRIV messages is undesirable because the addresses may be changed
 in transport by network address translators. However, if these
 addresses are removed, the messages may be subject to a reflection
 attack in which a message is reflected back to its originator. The
 directional address type provides a way to avoid transport addresses
 and reflection attacks. Directional addresses are encoded as four
 byte unsigned integers in network byte order. If the message is
 originated by the party sending the original AP-REQ message, then an
 address of 0 SHOULD be used. If the message is originated by the
 party to whom that AP-REQ was sent, then the address 1 SHOULD be
 used. Applications involving multiple parties can specify the use of
 other addresses.

 Directional addresses MUST only be used for the sender address field
 in the KRB-SAFE or KRB-PRIV messages. They MUST NOT be used as a
 ticket address or in a AP-REQ message. This address type SHOULD only
 be used in situations where the sending party knows that the
 receiving party supports the address type. This generally means that
 directional addresses may only be used when the application protocol
 requires their support. Directional addresses are type (3).

5. Principals

 Principals are participants in the Kerberos protocol. A "realm"
 consists of principals in one administrative domain, served by one
 KDC (or one replicated set of KDCs). Each principal name has an
 arbitrary number of components, though typical principal names will
 only have one or two components. A principal name is meant to be
 readable by and meaningful to humans, especially in a realm lacking a
 centrally adminstered authorization infrastructure.

Yu Expires: Apr 2006 [Page 17]

Internet-Draft rfc1510ter-02 23 Oct 2005

5.1. Name Types

 Each PrincipalName has NameType indicating what sort of name it is.
 The name-type SHOULD be treated as a hint. Ignoring the name type,
 no two names can be the same (i.e., at least one of the components,
 or the realm, must be different).

 -- assigned numbers for name types (used in principal names)
 NameType ::= Int32

 -- Name type not known
 nt-unknown NameType ::= 0
 -- Just the name of the principal as in DCE, or for users
 nt-principal NameType ::= 1
 -- Service and other unique instance (krbtgt)
 nt-srv-inst NameType ::= 2
 -- Service with host name as instance (telnet, rcommands)
 nt-srv-hst NameType ::= 3
 -- Service with host as remaining components
 nt-srv-xhst NameType ::= 4
 -- Unique ID
 nt-uid NameType ::= 5
 -- Encoded X.509 Distingished name [RFC 2253]
 nt-x500-principal NameType ::= 6
 -- Name in form of SMTP email name (e.g. user@foo.com)
 nt-smtp-name NameType ::= 7
 -- Enterprise name - may be mapped to principal name
 nt-enterprise NameType ::= 10

5.2. Principal Type Definition

 The "PrincipalName" type takes a parameter to constrain which string
 type it contains.

 PrincipalName { StrType } ::= SEQUENCE {
 name-type [0] NameType,
 -- May have zero elements, or individual elements may be
 -- zero-length, but this is NOT RECOMMENDED.
 name-string [1] SEQUENCE OF KerberosString (StrType)
 }

 The constrained types have their own names.

 -- IA5 only
 PrincipalNameIA5 ::= PrincipalName { KerberosStringIA5 }
 -- IA5 excluded
 PrincipalNameExt ::= PrincipalName { KerberosStringExt }
 -- Either one?

https://datatracker.ietf.org/doc/html/rfc2253

 PrincipalNameEither ::= PrincipalName { KerberosString }

Yu Expires: Apr 2006 [Page 18]

Internet-Draft rfc1510ter-02 23 Oct 2005

 name-type
 hint of the type of name that follows

 name-string
 The "name-string" encodes a sequence of components that form a
 name, each component encoded as a KerberosString. Taken
 together, a PrincipalName and a Realm form a principal
 identifier. Most PrincipalNames will have only a few components
 (typically one or two).

5.3. Principal Name Reuse

 Realm administrators SHOULD use extreme caution when considering
 reusing a principal name. A service administrator might explicitly
 enter principal names into a local access control list (ACL) for the
 service. If such local ACLs exist independently of a centrally
 administered authorization infrastructure, realm administrators
 SHOULD NOT reuse principal names until confirming that all extant ACL
 entries referencing that principal name have been updated. Failure
 to perform this check can result in a security vulnerability, as a
 new principal can inadvertently inherit unauthorized privileges upon
 receiving a reused principal name. An organization whose Kerberos-
 authenticated services all use a centrally-adminstered authorization
 infrastructure may not need to take these precautions regarding
 principal name reuse.

5.4. Best Common Practice Recommendations for the Processing of
 Principal Names Consisting of Internationalized Domain Names:

 Kerberos principals are often created for the purpose of
 authenticating a service located on a machine identified by an domain
 name. Unfortunately, once a principal name is created it is
 impossible to know the source from which the resulting KerberosString
 was derived. It is therefore required that principal names
 containing internationalized domain names be processed via the
 following procedure:

 * ensure that the IDN component must be a valid domain name as per
 the rules of IDNA [RFC3490]

 * separate the IDN component into labels separated by any of the
 Full Stop characters

 * fold all Full Stop characters to Full Stop (0x002E)

 * for each label (perform all steps):

 o if the label begins with an ACE prefix as registered with IANA,
 the prefix will be removed and the rest of the label will be
 converted from the ACE representation to Unicode [need

https://datatracker.ietf.org/doc/html/rfc3490

 reference]

Yu Expires: Apr 2006 [Page 19]

Internet-Draft rfc1510ter-02 23 Oct 2005

 o if the label consists of one or more internationalized
 characters separately apply the NamePrep and then the SASLprep
 string preparation methods.

 o if the label consists of zero internalizationalized characters,
 the label is to be lower-cased

 o if the output of the two methods match, continue on to the next
 label; otherwise reject the principal name as invalid

 * the result of a valid principal name component derived from an IDN
 is the joining of the individual string prepared labels separated
 by the Full Stop (0x002E)

5.5. Realm Names

 Realm { StrType } ::= KerberosString (StrType)

 -- IA5 only
 RealmIA5 ::= Realm { KerberosStringIA5 }

 -- IA5 excluded
 RealmExt ::= Realm { KerberosStringExt }

 -- Either
 RealmEither ::= Realm { KerberosString }

 Kerberos realm names are KerberosStrings. Realms MUST NOT contain a
 character with the code 0 (the US-ASCII NUL). Most realms will
 usually consist of several components separated by periods (.), in
 the style of Internet Domain Names, or separated by slashes (/) in
 the style of X.500 names.

5.6. Best Common Practice Recommendations for the Processing of
 Internationalized Domain-Style Realm Names:

 Domain Style Realm names are defined as all realm names whose
 components are separated by Full Stop (0x002E) (aka periods, '.') and
 contain neither colons, name containing one or more internationalized
 characters (not included in US-ASCII), this procedure must be used:

 * the realm name must be a valid domain name as per the rules of
 IDNA [RFC3490]

 * the following string preparation routine must be followed:

 - separate the string into components separated by any of the
 Full Stop characters

https://datatracker.ietf.org/doc/html/rfc3490

Yu Expires: Apr 2006 [Page 20]

Internet-Draft rfc1510ter-02 23 Oct 2005

 - fold all Full Stop characters to Full Stop (0x002E)

 - for each component (perform all steps):

 o if the component begins with an ACE prefix as registered
 with IANA, the prefix will be removed and the rest of the
 component will be converted from the ACE representation to
 Unicode [need reference]

 o if the component consists of one or more internationalized
 characters separately apply the NamePrep and SASLprep string
 preparation methods.

 if the output of the two methods match, continue on to the
 next component; otherwise reject the realm name as invalid

 -
 the result of a valid realm name is the joining of the
 individual string prepared components separated by the Full
 Stop (0x002E)

 In [KCLAR], the recommendation is that all domain style realm names
 be represented in uppercase. This recommendation is modified in the
 following manner. All components of domain style realm names not
 including internationalized characters should be upper-cased. All
 components of domain style realm names including internationalized
 characters must be lower-cased. (The lower case representation of
 internationalized components is enforced by the requirement that the
 output of NamePrep and StringPrep string preparation must be
 equivalent.)

5.7. Printable Representations of Principal Names

 [perhaps non-normative?]

 The printable form of a principal name consists of the concatenation
 of components of the PrincipalName value using the slash character
 (/), followed by an at-sign (@), followed by the realm name. Any
 occurrence of a backslash (\), slash (/) or at-sign (@) in the
 PrincipalName value is quoted by a backslash.

5.8. Ticket-Granting Service Principal

 The PrincipalName value corresponding to a ticket-granting service
 has two components: the first component is the string "krbtgt", and
 the second component is the realm name of the TGS which will accept a
 ticket-granting ticket having this service principal name. The realm
 name of service always indicates which realm issued the ticket. A
 ticket-granting ticket issued by "A.EXAMPLE.COM" which is valid for
 obtaining tickets in the same realm would have the following ASN.1

 values for its "realm" and "sname" components, respectively:

Yu Expires: Apr 2006 [Page 21]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Example Realm and PrincipalName for a TGS

 tgtRealm1 Realm ::= ia5 : "A.EXAMPLE.COM"

 tgtPrinc1 PrincipalName ::= {
 name-type nt-srv-inst,
 name-string { ia5 : "krbtgt", ia5 : "A.EXAMPLE.COM" }
 }

 Its printable representation would be written as
 "krbtgt/A.EXAMPLE.COM@A.EXAMPLE.COM".

5.8.1. Cross-Realm TGS Principals

 It is possible for a principal in one realm to authenticate to a
 service in another realm. A KDC can issue a cross-realm ticket-
 granting ticket to allow one of its principals to authenticate to a
 service in a foreign realm. For example, the TGS principal
 "krbtgt/B.EXAMPLE.COM@A.EXAMPLE.COM" is a principal that permits a
 client principal in the realm A.EXAMPLE.COM to authenticate to a
 service in the realm B.EXAMPLE.COM. When the KDC for B.EXAMPLE.COM
 issues a ticket to a client originating in A.EXAMPLE.COM, the
 client's realm name remains "A.EXAMPLE.COM", even though the service
 principal will have the realm "B.EXAMPLE.COM".

6. Types Relating to Encryption

 Many Kerberos protocol messages contain encrypted encodings of
 various data types. Some Kerberos protocol messages also contain
 checksums (signatures) of encodings of various types.

6.1. Assigned Numbers for Encryption

 Encryption algorithm identifiers and key usages both have assigned
 numbers, described in [KCRYPTO].

6.1.1. EType

 EType is the integer type for assigned numbers for encryption
 algorithms. Defined in [KCRYPTO].

Yu Expires: Apr 2006 [Page 22]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Assigned numbers denoting encryption mechanisms.
 EType ::= Int32

 -- assigned numbers for encryption schemes
 et-des-cbc-crc EType ::= 1
 et-des-cbc-md4 EType ::= 2
 et-des-cbc-md5 EType ::= 3
 -- [reserved] 4
 et-des3-cbc-md5 EType ::= 5
 -- [reserved] 6
 et-des3-cbc-sha1 EType ::= 7
 et-dsaWithSHA1-CmsOID EType ::= 9
 et-md5WithRSAEncryption-CmsOID EType ::= 10
 et-sha1WithRSAEncryption-CmsOID EType ::= 11
 et-rc2CBC-EnvOID EType ::= 12
 et-rsaEncryption-EnvOID EType ::= 13
 et-rsaES-OAEP-ENV-OID EType ::= 14
 et-des-ede3-cbc-Env-OID EType ::= 15
 et-des3-cbc-sha1-kd EType ::= 16
 -- AES
 et-aes128-cts-hmac-sha1-96 EType ::= 17
 -- AES
 et-aes256-cts-hmac-sha1-96 EType ::= 18
 -- Microsoft
 et-rc4-hmac EType ::= 23
 -- Microsoft
 et-rc4-hmac-exp EType ::= 24
 -- opaque; PacketCable
 et-subkey-keymaterial EType ::= 65

6.1.2. Key Usages

 KeyUsage is the integer type for assigned numbers for key usages.
 Key usage values are inputs to the encryption and decryption
 functions described in [KCRYPTO].

Yu Expires: Apr 2006 [Page 23]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Assigned numbers denoting key usages.
 KeyUsage ::= UInt32

 --
 -- Actual identifier names are provisional and subject to
 -- change.
 --
 ku-pa-enc-ts KeyUsage ::= 1
 ku-Ticket KeyUsage ::= 2
 ku-EncASRepPart KeyUsage ::= 3
 ku-TGSReqAuthData-sesskey KeyUsage ::= 4
 ku-TGSReqAuthData-subkey KeyUsage ::= 5
 ku-pa-TGSReq-cksum KeyUsage ::= 6
 ku-pa-TGSReq-authenticator KeyUsage ::= 7
 ku-EncTGSRepPart-sesskey KeyUsage ::= 8
 ku-EncTGSRepPart-subkey KeyUsage ::= 9
 ku-Authenticator-cksum KeyUsage ::= 10
 ku-APReq-authenticator KeyUsage ::= 11
 ku-EncAPRepPart KeyUsage ::= 12
 ku-EncKrbPrivPart KeyUsage ::= 13
 ku-EncKrbCredPart KeyUsage ::= 14
 ku-KrbSafe-cksum KeyUsage ::= 15
 ku-ad-KDCIssued-cksum KeyUsage ::= 19

 -- The following numbers are provisional...
 -- conflicts may exist elsewhere.
 ku-Ticket-cksum KeyUsage ::= 25
 ku-ASReq-cksum KeyUsage ::= 26
 ku-TGSReq-cksum KeyUsage ::= 27
 ku-ASRep-cksum KeyUsage ::= 28
 ku-TGSRep-cksum KeyUsage ::= 29
 ku-APReq-cksum KeyUsage ::= 30
 ku-APRep-cksum KeyUsage ::= 31
 ku-KrbCred-cksum KeyUsage ::= 32
 ku-KrbError-cksum KeyUsage ::= 33
 ku-KDCRep-cksum KeyUsage ::= 34

6.2. Which Key to Use

Yu Expires: Apr 2006 [Page 24]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- KeyToUse identifies which key is to be used to encrypt or
 -- sign a given value.
 --
 -- Values of KeyToUse are never actually transmitted over the
 -- wire, or even used directly by the implementation in any
 -- way, as key usages are; it exists primarily to identify
 -- which key gets used for what purpose. Thus, the specific
 -- numeric values associated with this type are irrelevant.
 KeyToUse ::= ENUMERATED {
 -- unspecified
 key-unspecified,
 -- server long term key
 key-server,
 -- client long term key
 key-client,
 -- key selected by KDC for encryption of a KDC-REP
 key-kdc-rep,
 -- session key from ticket
 key-session,
 -- subsession key negotiated via AP-REQ/AP-REP
 key-subsession,
 ...
 }

6.3. EncryptionKey

 The "EncryptionKey" type holds an encryption key.

 EncryptionKey ::= SEQUENCE {
 keytype [0] EType,
 keyvalue [1] OCTET STRING
 }

 keytype
 This "EType" identifies the encryption algorithm, described in
 [KCRYPTO].

 keyvalue
 Contains the actual key.

6.4. EncryptedData

 The "EncryptedData" type contains the encryption of another data
 type. The recipient uses fields within EncryptedData to determine
 which key to use for decryption.

Yu Expires: Apr 2006 [Page 25]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- "Type" specifies which ASN.1 type is encrypted to the
 -- ciphertext in the EncryptedData. "Keys" specifies a set of
 -- keys of which one key may be used to encrypt the data.
 -- "KeyUsages" specifies a set of key usages, one of which may
 -- be used to encrypt.
 --
 -- None of the parameters is transmitted over the wire.
 EncryptedData {
 Type, KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= SEQUENCE {
 etype [0] EType,
 kvno [1] UInt32 OPTIONAL,
 cipher [2] OCTET STRING (CONSTRAINED BY {
 -- must be encryption of --
 OCTET STRING (CONTAINING Type),
 -- with one of the keys -- KeyToUse:Keys,
 -- with key usage being one of --
 KeyUsage:KeyUsages
 }),
 ...
 }

 KeyUsages
 Advisory parameter indicating which key usage to use when
 encrypting the ciphertext. If "KeyUsages" indicate multiple
 "KeyUsage" values, the detailed description of the containing
 message will indicate which key to use under which conditions.

 Type
 Advisory parameter indicating the ASN.1 type whose DER encoding
 is the plaintext encrypted into the EncryptedData.

 Keys
 Advisory parameter indicating which key to use to perform the
 encryption. If "Keys" indicate multiple "KeyToUse" values, the
 detailed description of the containing message will indicate
 which key to use under which conditions.

 KeyUsages
 Advisory parameter indicating which "KeyUsage" value is used to
 encrypt. If "KeyUsages" indicates multiple "KeyUsage" values,
 the detailed description of the containing message will indicate
 which key usage to use under which conditions.

6.5. Checksums

 Several types contain checksums (actually signatures) of data.

Yu Expires: Apr 2006 [Page 26]

Internet-Draft rfc1510ter-02 23 Oct 2005

 CksumType ::= Int32

 -- The parameters specify which key to use to produce the
 -- signature, as well as which key usage to use. The
 -- parameters are not actually sent over the wire.
 Checksum {
 KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= SEQUENCE {
 cksumtype [0] CksumType,
 checksum [1] OCTET STRING (CONSTRAINED BY {
 -- signed using one of the keys --
 KeyToUse:Keys,
 -- with key usage being one of --
 KeyUsage:KeyUsages
 })
 }

 CksumType
 Integer type for assigned numbers for signature algorithms.
 Defined in [KCRYPTO]

 Keys
 As in EncryptedData

 KeyUsages
 As in EncryptedData

 cksumtype
 Signature algorithm used to produce the signature.

 checksum
 The actual checksum.

6.5.1. ChecksumOf

 ChecksumOf is similar to "Checksum", but specifies which type is
 signed.

 -- a Checksum that must contain the checksum
 -- of a particular type
 ChecksumOf {
 Type, KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= Checksum { Keys, KeyUsages } (WITH COMPONENTS {
 ...,
 checksum (CONSTRAINED BY {
 -- must be checksum of --
 OCTET STRING (CONTAINING Type)
 })
 })

Yu Expires: Apr 2006 [Page 27]

Internet-Draft rfc1510ter-02 23 Oct 2005

 Type
 Indicates the ASN.1 type whose DER encoding is signed.

6.5.2. Signed

 Signed is similar to "ChecksumOf", but contains an actual instance of
 the type being signed in addition to the signature.

 -- parameterized type for wrapping authenticated plaintext
 Signed {
 InnerType, KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= SEQUENCE {
 cksum [0] ChecksumOf {
 InnerType, Keys, KeyUsages
 } OPTIONAL,
 inner [1] InnerType,
 ...
 }

7. Tickets

 [A large number of items described here are duplicated in the
 sections describing KDC-REQ processing. Should find a way to avoid
 this duplication.]

 A ticket binds a principal name to a session key. The important
 fields of a ticket are in the encrypted part.

 -- Encrypted part of ticket
 EncTicketPart ::= CHOICE {

rfc1510 EncTicketPart1510,
 ext EncTicketPartExt
 }

 EncTicketPart1510 ::= [APPLICATION 3] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] RealmIA5,
 cname [3] PrincipalNameIA5,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 28]

Internet-Draft rfc1510ter-02 23 Oct 2005

 EncTicketPartExt ::= [APPLICATION 5] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] RealmExt,
 cname [3] PrincipalNameExt,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL,
 ...,
 }

 crealm
 This field contains the client's realm.

 cname
 This field contains the client's name.

 caddr
 This field lists the network addresses (if absent, all addresses
 are permitted) from which the ticket is valid.

 Descriptions of the other fields appear in the following sections.

7.1. Timestamps

 Three of the ticket timestamps may be requested from the KDC. The
 timestamps may differ from those requested, depending on site policy.

 authtime
 The time at which the client authenticated, as recorded by the
 KDC.

 starttime
 The earliest time when the ticket is valid. If not present, the
 ticket is valid starting at the authtime. This is requested as
 the "from" field of KDC-REQ-BODY.

 endtime
 This time is requested in the "till" field of KDC-REQ-BODY.
 Contains the time after which the ticket will not be honored
 (its expiration time). Note that individual services MAY place
 their own limits on the life of a ticket and MAY reject tickets
 which have not yet expired. As such, this is really an upper
 bound on the expiration time for the ticket.

Yu Expires: Apr 2006 [Page 29]

Internet-Draft rfc1510ter-02 23 Oct 2005

 renew-till
 This time is requested in the "rtime" field of KDC-REQ-BODY. It
 is only present in tickets that have the "renewable" flag set in
 the flags field. It indicates the maximum endtime that may be
 included in a renewal. It can be thought of as the absolute
 expiration time for the ticket, including all renewals.

7.2. Ticket Flags

 A number of flags may be set in the ticket, further defining some of
 its capabilities. Some of these flags map to flags in a KDC request.

 TicketFlags ::= KerberosFlags { TicketFlagsBits }

 TicketFlagsBits ::= BIT STRING {
 reserved (0),
 forwardable (1),
 forwarded (2),
 proxiable (3),
 proxy (4),
 may-postdate (5),
 postdated (6),
 invalid (7),
 renewable (8),
 initial (9),
 pre-authent (10),
 hw-authent (11),
 transited-policy-checked (12),
 ok-as-delegate (13),
 anonymous (14),
 cksummed-ticket (15)
 }

7.2.1. Flags Relating to Initial Ticket Acquisition

 [adapted KCLAR 2.1.]

 Several flags indicate the details of how the initial ticket was
 acquired.

 initial
 The "initial" flag indicates that a ticket was issued using the
 AS protocol, rather than issued based on a ticket-granting
 ticket. Application servers (e.g., a password-changing program)
 requiring a client's definite knowledge of its secret key can
 insist that this flag be set in any tickets they accept, thus
 being assured that the client's key was recently presented to
 the application client.

Yu Expires: Apr 2006 [Page 30]

Internet-Draft rfc1510ter-02 23 Oct 2005

 pre-authent
 The "pre-authent" flag indicates that some sort of pre-
 authentication was used during the AS exchange.

 hw-authent
 The "hw-authent" flag indicates that some sort of hardware-based
 pre-authentication occurred during the AS exchange.

 Both the "pre-authent" and the "hw-authent" flags may be present with
 or without the "initial" flag; such tickets with the "initial" flag
 clear are ones which are derived from initial tickets with the "pre-
 authent" or "hw-authent" flags set.

7.2.2. Invalid Tickets

 [KCLAR 2.2.]

 The "invalid" flag indicates that a ticket is invalid. Application
 servers MUST reject tickets which have this flag set. A postdated
 ticket will be issued in this form. Invalid tickets MUST be
 validated by the KDC before use, by presenting them to the KDC in a
 TGS request with the "validate" option specified. The KDC will only
 validate tickets after their starttime has passed. The validation is
 required so that postdated tickets which have been stolen before
 their starttime can be rendered permanently invalid (through a hot-
 list mechanism -- see Section 8.3.2.4).

7.2.3. OK as Delegate

 [KCLAR 2.8.]

 The "ok-as-delegate" flag provides a way for a KDC to communicate
 local realm policy to a client regarding whether the service for
 which the ticket is issued is trusted to accept delegated
 credentials. For some applications, a client may need to delegate
 credentials to a service to act on its behalf in contacting other
 services. The ability of a client to obtain a service ticket for a
 service conveys no information to the client about whether the
 service should be trusted to accept delegated credentials.

 The copy of the ticket flags visible to the client may have the "ok-
 as-delegate" flag set to indicate to the client that the service
 specified in the ticket has been determined by policy of the realm to
 be a suitable recipient of delegation. A client can use the presence
 of this flag to help it make a decision whether to delegate
 credentials (either grant a proxy or a forwarded ticket-granting
 ticket) to this service. It is acceptable to ignore the value of
 this flag. When setting this flag, an administrator should consider
 the security and placement of the server on which the service will
 run, as well as whether the service requires the use of delegated

 credentials.

Yu Expires: Apr 2006 [Page 31]

Internet-Draft rfc1510ter-02 23 Oct 2005

7.2.4. Renewable Tickets

 [adapted KCLAR 2.3.]

 The "renewable" flag indicates whether the ticket may be renewed.

 Renewable tickets can be used to mitigate the consequences of ticket
 theft. Applications may desire to hold credentials which can be
 valid for long periods of time. However, this can expose the
 credentials to potential theft for equally long periods, and those
 stolen credentials would be valid until the expiration time of the
 ticket(s). Simply using short-lived tickets and obtaining new ones
 periodically would require the application to have long-term access
 to the client's secret key, which is an even greater risk.

 Renewable tickets have two "expiration times": the first is when the
 current instance of the ticket expires, and the second is the latest
 permissible value for an individual expiration time. An application
 client must periodically present an unexpired renewable ticket to the
 KDC, setting the "renew" option in the KDC request. The KDC will
 issue a new ticket with a new session key and a later expiration
 time. All other fields of the ticket are left unmodified by the
 renewal process. When the latest permissible expiration time
 arrives, the ticket expires permanently. At each renewal, the KDC
 MAY consult a hot-list to determine if the ticket had been reported
 stolen since its last renewal; it will refuse to renew such stolen
 tickets, and thus the usable lifetime of stolen tickets is reduced.

 The "renewable" flag in a ticket is normally only interpreted by the
 ticket-granting service. It can usually be ignored by application
 servers. However, some particularly careful application servers MAY
 disallow renewable tickets.

 If a renewable ticket is not renewed by its expiration time, the KDC
 will not renew the ticket. The "renewable" flag is clear by default,
 but a client can request it be set by setting the "renewable" option
 in the AS-REQ message. If it is set, then the "renew-till" field in
 the ticket contains the time after which the ticket may not be
 renewed.

7.2.5. Postdated Tickets

 postdated
 indicates a ticket which has been postdated

 may-postdate
 indicates that postdated tickets may be issued based on this
 ticket

 [KCLAR 2.4.]

Yu Expires: Apr 2006 [Page 32]

Internet-Draft rfc1510ter-02 23 Oct 2005

 Applications may occasionally need to obtain tickets for use much
 later, e.g., a batch submission system would need tickets to be valid
 at the time the batch job is serviced. However, it is dangerous to
 hold valid tickets in a batch queue, since they will be on-line
 longer and more prone to theft. Postdated tickets provide a way to
 obtain these tickets from the KDC at job submission time, but to
 leave them "dormant" until they are activated and validated by a
 further request of the KDC. If a ticket theft were reported in the
 interim, the KDC would refuse to validate the ticket, and the thief
 would be foiled.

 The "may-postdate" flag in a ticket is normally only interpreted by
 the TGS. It can be ignored by application servers. This flag MUST
 be set in a ticket-granting ticket in order for the KDC to issue a
 postdated ticket based on the presented ticket. It is reset by
 default; it MAY be requested by a client by setting the "allow-
 postdate" option in the AS-REQ [?also TGS-REQ?] message. This flag
 does not allow a client to obtain a postdated ticket-granting ticket;
 postdated ticket-granting tickets can only by obtained by requesting
 the postdating in the AS-REQ message. The life (endtime minus
 starttime) of a postdated ticket will be the remaining life of the
 ticket-granting ticket at the time of the request, unless the
 "renewable" option is also set, in which case it can be the full life
 (endtime minus starttime) of the ticket-granting ticket. The KDC MAY
 limit how far in the future a ticket may be postdated.

 The "postdated" flag indicates that a ticket has been postdated. The
 application server can check the authtime field in the ticket to see
 when the original authentication occurred. Some services MAY choose
 to reject postdated tickets, or they may only accept them within a
 certain period after the original authentication. When the KDC
 issues a "postdated" ticket, it will also be marked as "invalid", so
 that the application client MUST present the ticket to the KDC for
 validation before use.

7.2.6. Proxiable and Proxy Tickets

 proxy
 indicates a proxy ticket

 proxiable
 indicates that proxy tickets may be issued based on this ticket

 [KCLAR 2.5.]

 It may be necessary for a principal to allow a service to perform an
 operation on its behalf. The service must be able to take on the
 identity of the client, but only for a particular purpose. A
 principal can allow a service to take on the principal's identity for

 a particular purpose by granting it a proxy.

Yu Expires: Apr 2006 [Page 33]

Internet-Draft rfc1510ter-02 23 Oct 2005

 The process of granting a proxy using the "proxy" and "proxiable"
 flags is used to provide credentials for use with specific services.
 Though conceptually also a proxy, users wishing to delegate their
 identity in a form usable for all purposes MUST use the ticket
 forwarding mechanism described in the next section to forward a
 ticket-granting ticket.

 The "proxiable" flag in a ticket is normally only interpreted by the
 ticket-granting service. It can be ignored by application servers.
 When set, this flag tells the ticket-granting server that it is OK to
 issue a new ticket (but not a ticket-granting ticket) with a
 different network address based on this ticket. This flag is set if
 requested by the client on initial authentication. By default, the
 client will request that it be set when requesting a ticket-granting
 ticket, and reset when requesting any other ticket.

 This flag allows a client to pass a proxy to a server to perform a
 remote request on its behalf (e.g. a print service client can give
 the print server a proxy to access the client's files on a particular
 file server in order to satisfy a print request).

 In order to complicate the use of stolen credentials, Kerberos
 tickets may contain a set of network addresses from which they are
 valid. When granting a proxy, the client MUST specify the new
 network address from which the proxy is to be used, or indicate that
 the proxy is to be issued for use from any address.

 The "proxy" flag is set in a ticket by the TGS when it issues a proxy
 ticket. Application servers MAY check this flag and at their option
 they MAY require additional authentication from the agent presenting
 the proxy in order to provide an audit trail.

7.2.7. Forwarded and Forwardable Tickets

 forwarded
 indicates a forwarded ticket

 forwardable
 indicates that forwarded tickets may be issued based on this
 ticket

 [KCLAR 2.6.]

 Authentication forwarding is an instance of a proxy where the service
 that is granted is complete use of the client's identity. An example
 where it might be used is when a user logs in to a remote system and
 wants authentication to work from that system as if the login were
 local.

 The "forwardable" flag in a ticket is normally only interpreted by

 the ticket-granting service. It can be ignored by application

Yu Expires: Apr 2006 [Page 34]

Internet-Draft rfc1510ter-02 23 Oct 2005

 servers. The "forwardable" flag has an interpretation similar to
 that of the "proxiable" flag, except ticket-granting tickets may also
 be issued with different network addresses. This flag is reset by
 default, but users MAY request that it be set by setting the
 "forwardable" option in the AS request when they request their
 initial ticket-granting ticket.

 This flag allows for authentication forwarding without requiring the
 user to enter a password again. If the flag is not set, then
 authentication forwarding is not permitted, but the same result can
 still be achieved if the user engages in the AS exchange specifying
 the requested network addresses and supplies a password.

 The "forwarded" flag is set by the TGS when a client presents a
 ticket with the "forwardable" flag set and requests a forwarded
 ticket by specifying the "forwarded" KDC option and supplying a set
 of addresses for the new ticket. It is also set in all tickets
 issued based on tickets with the "forwarded" flag set. Application
 servers may choose to process "forwarded" tickets differently than
 non-forwarded tickets.

 If addressless tickets are forwarded from one system to another,
 clients SHOULD still use this option to obtain a new TGT in order to
 have different session keys on the different systems.

7.3. Transited Realms

 [KCLAR 2.7., plus new stuff]

7.4. Authorization Data

 [KCLAR 5.2.6.]

 ADType ::= TH-id

 AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type [0] ADType,
 ad-data [1] OCTET STRING
 }

 ad-type
 This field identifies the contents of the ad-data. All negative
 values are reserved for local use. Non-negative values are
 reserved for registered use.

 ad-data
 This field contains authorization data to be interpreted
 according to the value of the corresponding ad-type field.

Yu Expires: Apr 2006 [Page 35]

Internet-Draft rfc1510ter-02 23 Oct 2005

 Each sequence of ADType and OCTET STRING is referred to as an
 authorization element. Elements MAY be application specific,
 however, there is a common set of recursive elements that should be
 understood by all implementations. These elements contain other
 AuthorizationData, and the interpretation of the encapsulating
 element determines which enclosed elements must be interpreted, and
 which may be ignored.

 Depending on the meaning of the encapsulating element, the
 encapsulated AuthorizationData may be ignored, interpreted as issued
 directly by the KDC, or be stored in a separate plaintext part of the
 ticket. The types of the encapsulating elements are specified as
 part of the Kerberos protocol because behavior based on these
 container elements should be understood across implementations, while
 other elements need only be understood by the applications which they
 affect.

 Authorization data elements are considered critical if present in a
 ticket or authenticator. Unless encapsulated in a known
 authorization data element modifying the criticality of the elements
 it contains, an application server MUST reject the authentication of
 a client whose AP-REQ or ticket contains an unrecognized
 authorization data element. Authorization data is intended to
 restrict the use of a ticket. If the service cannot determine
 whether it is the target of a restriction, a security weakness may
 exist if the ticket can be used for that service. Authorization
 elements that are truly optional can be enclosed in AD-IF-RELEVANT
 element.

 |
 ad-type | contents of ad-data
 ---------+---------------------------------------
 1 | DER encoding of AD-IF-RELEVANT
 4 | DER encoding of AD-KDCIssued
 5 | DER encoding of AD-AND-OR
 8 | DER encoding of AD-MANDATORY-FOR-KDC

7.4.1. AD-IF-RELEVANT

 ad-if-relevant ADType ::= int32 : 1

 -- Encapsulates another AuthorizationData.
 -- Intended for application servers; receiving application servers
 -- MAY ignore.
 AD-IF-RELEVANT ::= AuthorizationData

 AD elements encapsulated within the if-relevant element are intended
 for interpretation only by application servers that understand the

Yu Expires: Apr 2006 [Page 36]

Internet-Draft rfc1510ter-02 23 Oct 2005

 particular ad-type of the embedded element. Application servers that
 do not understand the type of an element embedded within the if-
 relevant element MAY ignore the uninterpretable element. This element
 promotes interoperability across implementations which may have local
 extensions for authorization. The ad-type for AD-IF-RELEVANT is (1).

7.4.2. AD-KDCIssued

 -- KDC-issued privilege attributes
 ad-kdcissued ADType ::= int32 : 4

 AD-KDCIssued ::= SEQUENCE {
 ad-checksum [0] ChecksumOf {
 AuthorizationData, { key-session },
 { ku-ad-KDCIssued-cksum }},
 i-realm [1] Realm OPTIONAL,
 i-sname [2] PrincipalName OPTIONAL,
 elements [3] AuthorizationData
 }

 ad-checksum
 A cryptographic checksum computed over the DER encoding of the
 AuthorizationData in the "elements" field, keyed with the
 session key. Its checksumtype is the mandatory checksum type
 for the encryption type of the session key, and its key usage
 value is 19.

 i-realm, i-sname
 The name of the issuing principal if different from the KDC
 itself. This field would be used when the KDC can verify the
 authenticity of elements signed by the issuing principal and it
 allows this KDC to notify the application server of the validity
 of those elements.

 elements
 AuthorizationData issued by the KDC.

 The KDC-issued ad-data field is intended to provide a means for
 Kerberos credentials to embed within themselves privilege attributes
 and other mechanisms for positive authorization, amplifying the
 privileges of the principal beyond what it would have if using
 credentials without such an authorization-data element.

 This amplification of privileges cannot be provided without this
 element because the definition of the authorization-data field allows
 elements to be added at will by the bearer of a TGT at the time that
 they request service tickets and elements may also be added to a
 delegated ticket by inclusion in the authenticator.

Yu Expires: Apr 2006 [Page 37]

Internet-Draft rfc1510ter-02 23 Oct 2005

 For KDC-issued elements this is prevented because the elements are
 signed by the KDC by including a checksum encrypted using the
 server's key (the same key used to encrypt the ticket -- or a key
 derived from that key). AuthorizationData encapsulated with in the
 AD-KDCIssued element MUST be ignored by the application server if
 this "signature" is not present. Further, AuthorizationData
 encapsulated within this element from a ticket-granting ticket MAY be
 interpreted by the KDC, and used as a basis according to policy for
 including new signed elements within derivative tickets, but they
 will not be copied to a derivative ticket directly. If they are
 copied directly to a derivative ticket by a KDC that is not aware of
 this element, the signature will not be correct for the application
 ticket elements, and the field will be ignored by the application
 server.

 This element and the elements it encapsulates MAY be safely ignored
 by applications, application servers, and KDCs that do not implement
 this element.

 The ad-type for AD-KDC-ISSUED is (4).

7.4.3. AD-AND-OR

 ad-and-or ADType ::= int32 : 5

 AD-AND-OR ::= SEQUENCE {
 condition-count [0] Int32,
 elements [1] AuthorizationData
 }

 When restrictive AD elements are encapsulated within the and-or
 element, the and-or element is considered satisfied if and only if at
 least the number of encapsulated elements specified in condition-
 count are satisfied. Therefore, this element MAY be used to
 implement an "or" operation by setting the condition-count field to
 1, and it MAY specify an "and" operation by setting the condition
 count to the number of embedded elements. Application servers that do
 not implement this element MUST reject tickets that contain
 authorization data elements of this type.

 The ad-type for AD-AND-OR is (5).

7.4.4. AD-MANDATORY-FOR-KDC

 -- KDCs MUST interpret any AuthorizationData wrapped in this.
 ad-mandatory-for-kdc ADType ::= int32 : 8
 AD-MANDATORY-FOR-KDC ::= AuthorizationData

 AD elements encapsulated within the mandatory-for-kdc element are to

 be interpreted by the KDC. KDCs that do not understand the type of

Yu Expires: Apr 2006 [Page 38]

Internet-Draft rfc1510ter-02 23 Oct 2005

 an element embedded within the mandatory-for-kdc element MUST reject
 the request.

 The ad-type for AD-MANDATORY-FOR-KDC is (8).

7.5. Encrypted Part of Ticket

 The complete definition of the encrypted part is

 -- Encrypted part of ticket
 EncTicketPart ::= CHOICE {

rfc1510 EncTicketPart1510,
 ext EncTicketPartExt
 }

 The encrypted part of the backwards-compatibility form of a ticket
 is:

 EncTicketPart1510 ::= [APPLICATION 3] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] RealmIA5,
 cname [3] PrincipalNameIA5,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL
 }

 The encrypted part of the extensible form of a ticket is:

 EncTicketPartExt ::= [APPLICATION 5] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] RealmExt,
 cname [3] PrincipalNameExt,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL,
 ...,
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 39]

Internet-Draft rfc1510ter-02 23 Oct 2005

7.6. Cleartext Part of Ticket

 The complete definition of Ticket is:

 Ticket ::= CHOICE {
rfc1510 Ticket1510,

 ext TicketExt
 }

 The "sname" field provides the name of the target service principal
 in cleartext, as a hint to aid the server in choosing the correct
 decryption key.

 The backwards-compatibility form of Ticket is:

 Ticket1510 ::= [APPLICATION 1] SEQUENCE {
 tkt-vno [0] INTEGER (5),
 realm [1] RealmIA5,
 sname [2] PrincipalNameIA5,
 enc-part [3] EncryptedData {
 EncTicketPart1510, { key-server }, { ku-Ticket }
 }
 }

 The extensible form of Ticket is:

 TicketExt ::= [APPLICATION 4] Signed {
 [APPLICATION 4] SEQUENCE {
 tkt-vno [0] INTEGER (5),
 realm [1] RealmExt,
 sname [2] PrincipalNameExt,
 enc-part [3] EncryptedData {
 EncTicketPartExt, { key-server }, { ku-Ticket }
 },
 ...,
 extensions [4] TicketExtensions OPTIONAL,
 ...
 },
 { key-ticket }, { ku-Ticket-cksum }
 }

 TicketExtensions, which may only be present in the extensible form of
 Ticket, are a cleartext typed hole for extension use.
 AuthorizationData already provides an encrypted typed hole.

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 40]

Internet-Draft rfc1510ter-02 23 Oct 2005

 TEType ::= TH-id

 -- ticket extensions: for TicketExt only
 TicketExtensions ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
 te-type [0] TEType,
 te-data [1] OCTET STRING
 }

 A client will only receive an extensible Ticket if the application
 server supports extensibility.

8. Credential Acquisition

 There are two exchanges that can be used for acquiring credentials:
 the AS exchange and the TGS exchange. These exchanges have many
 similarities, and this document describes them in parallel, noting
 which behaviors are specific to one type of exchange. The AS request
 (AS-REQ) and TGS request (TGS-REQ) are both forms of KDC requests
 (KDC-REQ). Likewise, the AS reply (AS-REP) and TGS reply (TGS-REP)
 are forms of KDC replies (KDC-REP).

 The credentials acquisition protocol operates over specific
 transports. Additionally, specific methods exist to permit a client
 to discover the KDC host with which to communicate.

8.1. KDC-REQ

 The KDC-REQ has a large number of fields in common between the RFC
1510 and the extensible versions. The KDC-REQ type itself is never

 directly encoded; it is always a part of a AS-REQ or a TGS-REQ.

 KDC-REQ-1510 ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 pvno [1] INTEGER (5),
 msg-type [2] INTEGER (10 -- AS-REQ --
 | 12 -- TGS-REQ --),
 padata [3] SEQUENCE OF PA-DATA OPTIONAL,
 req-body [4] KDC-REQ-BODY-1510
 }

 KDC-REQ-EXT ::= SEQUENCE {
 pvno [1] INTEGER (5),
 msg-type [2] INTEGER (6 -- AS-REQ --
 | 8 -- TGS-REQ --),
 padata [3] SEQUENCE (SIZE (1..MAX)) OF PA-DATA OPTIONAL,
 req-body [4] KDC-REQ-BODY-EXT,
 ...
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 41]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REQ-BODY-1510 ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalNameIA5 OPTIONAL
 -- Used only in AS-REQ --,

 realm [2] RealmIA5
 -- Server's realm; also client's in AS-REQ --,

 sname [3] PrincipalNameIA5 OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime,
 rtime [6] KerberosTime OPTIONAL,
 nonce [7] Nonce32,
 etype [8] SEQUENCE OF EType
 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData {
 AuthorizationData, { key-session | key-subsession },
 { ku-TGSReqAuthData-subkey |
 ku-TGSReqAuthData-sesskey }
 } OPTIONAL,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty --
 }

Yu Expires: Apr 2006 [Page 42]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REQ-BODY-EXT ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalName OPTIONAL
 -- Used only in AS-REQ --,

 realm [2] Realm
 -- Server's realm; also client's in AS-REQ --,

 sname [3] PrincipalName OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime OPTIONAL
 -- was required in rfc1510;
 -- still required for compat versions
 -- of messages --,

 rtime [6] KerberosTime OPTIONAL,
 nonce [7] Nonce,
 etype [8] SEQUENCE OF EType
 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData {
 AuthorizationData, { key-session | key-subsession },
 { ku-TGSReqAuthData-subkey |
 ku-TGSReqAuthData-sesskey }
 } OPTIONAL,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty --,
 ...
 lang-tags [5] SEQUENCE (SIZE (1..MAX)) OF
 LangTag OPTIONAL,
 ...
 }

 Many fields of KDC-REQ-BODY correspond directly to fields of an
 EncTicketPart. The KDC copies most of them unchanged, provided that
 the requested values meet site policy.

 kdc-options
 These flags do not correspond directly to "flags" in
 EncTicketPart.

 cname
 This field is copied to the "cname" field in EncTicketPart. The
 "cname" field is required in an AS-REQ; the client places its
 own name here. In a TGS-REQ, the "cname" in the ticket in the
 AP-REQ takes precedence.

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 43]

Internet-Draft rfc1510ter-02 23 Oct 2005

 realm
 This field is the server's realm, and also holds the client's
 realm in an AS-REQ.

 sname
 The "sname" field indicates the server's name. It may be absent
 in a TGS-REQ which requests user-to-user authentication, in
 which case the "sname" of the issued ticket will be taken from
 the included additional ticket.

 The "from", "till", and "rtime" fields correspond to the "starttime",
 "endtime", and "renew-till" fields of EncTicketPart.

 addresses
 This field corresponds to the "caddr" field of EncTicketPart.

 enc-authorization-data
 For TGS-REQ, this field contains authorization data encrypted
 using either the TGT session key or the AP-REQ subsession key;
 the KDC may copy these into the "authorization-data" field of
 EncTicketPart if policy permits.

 lang-tags
 Only present in the extensible messages. Specifies the set of
 languages which the client is willing to accept in error
 messages.

 KDC options used in a KDC-REQ are:

Yu Expires: Apr 2006 [Page 44]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDCOptions ::= KerberosFlags { KDCOptionsBits }

 KDCOptionsBits ::= BIT STRING {
 reserved (0),
 forwardable (1),
 forwarded (2),
 proxiable (3),
 proxy (4),
 allow-postdate (5),
 postdated (6),
 unused7 (7),
 renewable (8),
 unused9 (9),
 unused10 (10),
 unused11 (11),
 unused12 (12),
 unused13 (13),
 requestanonymous (14),
 canonicalize (15),
 disable-transited-check (26),
 renewable-ok (27),
 enc-tkt-in-skey (28),
 renew (30),
 validate (31)
 -- XXX need "need ticket1" flag?
 }

 Different options apply to different phases of KDC-REQ processing.

 The backwards-compatibility form of a KDC-REQ is:

 KDC-REQ-1510 ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 pvno [1] INTEGER (5),
 msg-type [2] INTEGER (10 -- AS-REQ --
 | 12 -- TGS-REQ --),
 padata [3] SEQUENCE OF PA-DATA OPTIONAL,
 req-body [4] KDC-REQ-BODY-1510
 }

 The extensible form of a KDC-REQ is:

 KDC-REQ-EXT ::= SEQUENCE {
 pvno [1] INTEGER (5),
 msg-type [2] INTEGER (6 -- AS-REQ --
 | 8 -- TGS-REQ --),
 padata [3] SEQUENCE (SIZE (1..MAX)) OF PA-DATA OPTIONAL,
 req-body [4] KDC-REQ-BODY-EXT,
 ...

 }

Yu Expires: Apr 2006 [Page 45]

Internet-Draft rfc1510ter-02 23 Oct 2005

 The backwards-compatibility form of a KDC-REQ-BODY is:

 KDC-REQ-BODY-1510 ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalNameIA5 OPTIONAL
 -- Used only in AS-REQ --,

 realm [2] RealmIA5
 -- Server's realm; also client's in AS-REQ --,

 sname [3] PrincipalNameIA5 OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime,
 rtime [6] KerberosTime OPTIONAL,
 nonce [7] Nonce32,
 etype [8] SEQUENCE OF EType
 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData {
 AuthorizationData, { key-session | key-subsession },
 { ku-TGSReqAuthData-subkey |
 ku-TGSReqAuthData-sesskey }
 } OPTIONAL,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty --
 }

 The extensible form of a KDC-REQ-BODY is:

Yu Expires: Apr 2006 [Page 46]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REQ-BODY-EXT ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalName OPTIONAL
 -- Used only in AS-REQ --,

 realm [2] Realm
 -- Server's realm; also client's in AS-REQ --,

 sname [3] PrincipalName OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime OPTIONAL
 -- was required in rfc1510;
 -- still required for compat versions
 -- of messages --,

 rtime [6] KerberosTime OPTIONAL,
 nonce [7] Nonce,
 etype [8] SEQUENCE OF EType
 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData {
 AuthorizationData, { key-session | key-subsession },
 { ku-TGSReqAuthData-subkey |
 ku-TGSReqAuthData-sesskey }
 } OPTIONAL,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty --,
 ...
 lang-tags [5] SEQUENCE (SIZE (1..MAX)) OF
 LangTag OPTIONAL,
 ...
 }

 The AS-REQ is:

 AS-REQ ::= CHOICE {
rfc1510 AS-REQ-1510,

 ext AS-REQ-EXT
 }
 AS-REQ-1510 ::= [APPLICATION 10] KDC-REQ-1510
 -- AS-REQ must include client name

 AS-REQ-EXT ::= [APPLICATION 6] Signed {
 [APPLICATION 6] KDC-REQ-EXT, { key-client }, { ku-ASReq-cksum }
 }
 -- AS-REQ must include client name

 A client SHOULD NOT send the extensible AS-REQ alternative to a KDC

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

 if the client does not know that the KDC supports the extensibility

Yu Expires: Apr 2006 [Page 47]

Internet-Draft rfc1510ter-02 23 Oct 2005

 framework. A client SHOULD send the extensible AS-REQ alternative in
 a PA-AS-REQ PA-DATA. A KDC supporting extensibility will treat the
 AS-REQ contained within the PA-AS-REQ as the actual AS-REQ. [XXX
 what if their contents conflict?]

 The TGS-REQ is:

 TGS-REQ ::= CHOICE {
rfc1510 TGS-REQ-1510,

 ext TGS-REQ-EXT
 }

 TGS-REQ-1510 ::= [APPLICATION 12] KDC-REQ-1510

 TGS-REQ-EXT ::= [APPLICATION 8] Signed {
 [APPLICATION 8] KDC-REQ-EXT, { key-session }, { ku-TGSReq-cksum }
 }

8.2. PA-DATA

 PA-DATA have multiple uses in the Kerberos protocol. They may pre-
 authenticate an AS-REQ; they may also modify several of the
 encryption keys used in a KDC-REP. PA-DATA may also provide "hints"
 to the client about which long-term key (usually password-derived) to
 use. PA-DATA may also include "hints" about which pre-authentication
 mechanisms to use, or include data for input into a pre-
 authentication mechanism.

 [XXX enumerate standard padata here]

8.3. KDC-REQ Processing

 Processing of a KDC-REQ proceeds through several steps. An
 implementation need not perform these steps exactly as described, as
 long as it behaves as if the steps were performed as described. The
 KDC performs replay handling upon receiving the request; it then
 validates the request, adjusts timestamps, and selects the keys used
 in the reply. It copies data from the request into the issued
 ticket, adjusting the values to conform with its policies. The KDC
 then transmits the reply to the client.

8.3.1. Handling Replays

 Because Kerberos can run over unreliable transports such as UDP, the
 KDC MUST be prepared to retransmit responses in case they are lost.
 If a KDC receives a request identical to one it has recently
 successfully processed, the KDC MUST respond with a KDC-REP message
 rather than a replay error. In order to reduce the amount of
 ciphertext given to a potential attacker, KDCs MAY send the same

https://datatracker.ietf.org/doc/html/rfc1510

 response generated when the request was first handled. KDCs MUST

Yu Expires: Apr 2006 [Page 48]

Internet-Draft rfc1510ter-02 23 Oct 2005

 obey this replay behavior even if the actual transport in use is
 reliable. If the AP-REQ which authenticates a TGS-REQ is a replay,
 and the entire request is not identical to a recently successfully
 processed request, the KDC SHOULD return "krb-ap-err-repeat", as is
 appropriate for AP-REQ processing.

8.3.2. Request Validation

8.3.2.1. AS-REQ Authentication

 Site policy determines whether a given client principal is required
 to provide some pre-authentication prior to receiving an AS-REP.
 Since the default reply key is typically the client's long-term
 password-based key, an attacker may easily request known plaintext
 (in the form of an AS-REP) upon which to mount a dictionary attack.
 Pre-authentication can limit the possibility of such an attack.

 If site policy requires pre-authentication for a client principal,
 and no pre-authentication is provided, the KDC returns the error
 "kdc-err-preauth-required". Accompanying this error are "e-data"
 which include hints telling the client which pre-authentication
 mechanisms to use, or data for input to pre-authentication mechanisms
 (e.g., input to challenge-response systems). If pre-authentication
 fails, the KDC returns the error "kdc-err-preauth-failed".

 [may need additional changes based on Sam's preauth draft]

8.3.2.2. TGS-REQ Authentication

 A TGS-REQ has an accompanying AP-REQ, which is included in the "pa-
 tgs-req". The KDC MUST validate the checksum in the Authenticator of
 the AP-REQ, which is computed over the KDC-REQ-BODY-1510 or KDC-REQ-
 BODY-EXT (for TGS-REQ-1510 or TGS-REQ-EXT, respectively) of the
 request. [padata not signed by authenticator!] Any error from the
 AP-REQ validation process SHOULD be returned in a KRB-ERROR message.
 The service principal in the ticket of the AP-REQ may be a ticket-
 granting service principal, or a normal application service
 principal. A ticket which is not a ticket-granting ticket MUST NOT
 be used to issue a ticket for any service other than the one named in
 the ticket. In this case, the "renew", "validate", or "proxy" [?also
 forwarded?] option must be set in the request.

8.3.2.3. Principal Validation

 If the client principal in an AS-REQ is unknown, the KDC returns the
 error "kdc-err-c-principal-unknown". If the server principal in a
 KDC-REQ is unknown, the KDC returns the error "kdc-err-s-principal-
 unknown".

Yu Expires: Apr 2006 [Page 49]

Internet-Draft rfc1510ter-02 23 Oct 2005

8.3.2.4. Checking For Revoked or Invalid Tickets

 [KCLAR 3.3.3.1]

 Whenever a request is made to the ticket-granting server, the
 presented ticket(s) is(are) checked against a hot-list of tickets
 which have been canceled. This hot-list might be implemented by
 storing a range of issue timestamps for "suspect tickets"; if a
 presented ticket had an authtime in that range, it would be rejected.
 In this way, a stolen ticket-granting ticket or renewable ticket
 cannot be used to gain additional tickets (renewals or otherwise)
 once the theft has been reported to the KDC for the realm in which
 the server resides. Any normal ticket obtained before it was
 reported stolen will still be valid (because they require no
 interaction with the KDC), but only until their normal expiration
 time. If TGTs have been issued for cross-realm authentication, use
 of the cross-realm TGT will not be affected unless the hot-list is
 propagated to the KDCs for the realms for which such cross-realm
 tickets were issued.

 If a TGS-REQ ticket has its "invalid" flag set, the KDC MUST NOT
 issue any ticket unless the TGS-REQ requests the "validate" option.

8.3.3. Timestamp Handling

 [some aspects of timestamp handling, especially regarding postdating
 and renewal, are difficult to read in KCLAR... needs closer
 examination here]

 Processing of "starttime" (requested in the "from" field) differs
 depending on whether the "postdated" option is set in the request.
 If the "postdated" option is not set, and the requested "starttime"
 is in the future beyond the window of acceptable clock skew, the KDC
 returns the error "kdc-err-cannot-postdate". If the "postdated"
 option is not set, and the requested "starttime" is absent or does
 not indicate a time in the future beyond the acceptable clock skew,
 the KDC sets the "starttime" to the KDC's current time. The
 "postdated" option MUST NOT be honored if the ticket is being
 requested by TGS-REQ and the "may-postdate" is not set in the TGT.
 Otherwise, if the "postdated" option is set, and site policy permits,
 the KDC sets the "starttime" as requested, and sets the "invalid"
 flag in the new ticket.

 The "till" field is required in the RFC 1510 version of the KDC-REQ.
 If the "till" field is equal to "19700101000000Z" (midnight, January
 1, 1970), the KDC SHOULD behave as if the "till" field were absent.

 The KDC MUST NOT issue a ticket whose "starttime", "endtime", or
 "renew-till" time is later than the "renew-till" time of the ticket

https://datatracker.ietf.org/doc/html/rfc1510

 from which it is derived.

Yu Expires: Apr 2006 [Page 50]

Internet-Draft rfc1510ter-02 23 Oct 2005

8.3.3.1. AS-REQ Timestamp Processing

 In the AS exchange, the "authtime" of a ticket is set to the local
 time at the KDC.

 The "endtime" of the ticket will be set to the earlier of the
 requested "till" time and a time determined by local policy, possibly
 determined using factors specific to the realm or principal. For
 example, the expiration time MAY be set to the earliest of the
 following:

 * the expiration time ("till" value) requested

 * the ticket's start time plus the maximum allowable lifetime
 associated with the client principal from the authentication
 server's database

 * the ticket's start time plus the maximum allowable lifetime
 associated with the server principal

 * the ticket's start time plus the maximum lifetime set by the
 policy of the local realm

 If the requested expiration time minus the start time (as determined
 above) is less than a site-determined minimum lifetime, an error
 message with code "kdc-err-never-valid" is returned. If the
 requested expiration time for the ticket exceeds what was determined
 as above, and if the "renewable-ok" option was requested, then the
 "renewable" flag is set in the new ticket, and the "renew-till" value
 is set as if the "renewable" option were requested.

 If the "renewable" option has been requested or if the "renewable-ok"
 option has been set and a renewable ticket is to be issued, then the
 "renew-till" field MAY be set to the earliest of:

 * its requested value

 * the start time of the ticket plus the minimum of the two maximum
 renewable lifetimes associated with the principals' database
 entries

 * the start time of the ticket plus the maximum renewable lifetime
 set by the policy of the local realm

8.3.3.2. TGS-REQ Timestamp Processing

 In the TGS exchange, the KDC sets the "authtime" to that of the
 ticket in the AP-REQ authenticating the TGS-REQ. [?application
 server can print a ticket for itself with a spoofed authtime.
 security issues for hot-list?] [MIT implementation may change

 authtime of renewed tickets; needs check...]

Yu Expires: Apr 2006 [Page 51]

Internet-Draft rfc1510ter-02 23 Oct 2005

 If the TGS-REQ has a TGT as the ticket in its AP-REQ, and the TGS-REQ
 requests an "endtime" (in the "till" field), then the "endtime" of
 the new ticket is set to the minimum of

 * the requested "endtime" value,

 * the "endtime" in the TGT, and

 * an "endtime" determined by site policy on ticket lifetimes.

 If the new ticket is a renewal, the "endtime" of the new ticket is
 bounded by the minimum of

 * the requested "endtime" value,

 * the value of the "renew-till" value of the old,

 * the "starttime" of the new ticket plus the lifetime (endtime
 minus starttime) of the old ticket, i.e., the lifetime of the
 new ticket may not exceed that of the ticket being renewed [
 adapted from KCLAR 3.3.3.], and

 * an "endtime" determined by site policy on ticket lifetimes.

 When handling a TGS-REQ, a KDC MUST NOT issue a postdated ticket with
 a "starttime", "endtime", or "renew-till" time later than the "renew-
 till" time of the TGT.

8.3.4. Handling Transited Realms

 The KDC checks the ticket in a TGS-REQ against site policy, unless
 the "disable-transited-check" option is set in the TGS-REQ. If site
 policy permits the transit path in the TGS-REQ ticket, the KDC sets
 the "transited-policy-checked" flag in the issued ticket. If the
 "disable-transited-check" option is set, the issued ticket will have
 the "transited-policy-checked" flag cleared.

8.3.5. Address Processing The requested "addresses" in the KDC-REQ are
 copied into the issued ticket. If the "addresses" field is absent or
 empty in a TGS-REQ, the KDC copies addresses from the ticket in the
 TGS-REQ into the issued ticket, unless the either "forwarded" or
 "proxy" option is set. If the "forwarded" option is set, and the
 ticket in the TGS-REQ has its "forwardable" flag set, the KDC copies
 the addresses from the TGS-REQ, not the from TGS-REQ ticket, into the
 issued ticket. The KDC behaves similarly if the "proxy" option is
 set in the TGS-REQ and the "proxiable" flag is set in the ticket.
 The "proxy" option will not be honored on requests for additional
 ticket-granting tickets.

Yu Expires: Apr 2006 [Page 52]

Internet-Draft rfc1510ter-02 23 Oct 2005

8.3.6. Ticket Flag Processing

 Many kdc-options request that the KDC set a corresponding flag in the
 issued ticket. kdc-options marked with an asterisk (*) in the
 following table do not directly request the corresponding ticket flag
 and therefore require special handling.

 |
 kdc-option | ticket flag affected
 -------------------------+--------------------------
 forwardable | forwardable
 forwarded | forwarded
 proxiable | proxiable
 proxy | proxy
 allow-postdate | may-postdate
 postdated | postdated
 renewable | renewable
 requestanonymous | anonymous
 canonicalize | -
 disable-transited-check* | transited-policy-checked
 renewable-ok* | renewable
 enc-tkt-in-skey | -
 renew | -
 validate* | invalid

 forwarded
 The KDC sets the "forwarded" flag in the issued ticket if the
 "forwarded" option is set in the TGS-REQ and the "forwardable"
 flag is set in the TGS-REQ ticket.

 proxy
 The KDC sets the "proxy" flag in the issued ticket if the
 "proxy" option is set in the TGS-REQ and the "proxiable" flag is
 set in the TGS-REQ ticket.

 disable-transited-check
 The handling of the "disable-transited-check" kdc-option is
 described in Section 8.3.4.

 renewable-ok
 The handling of the "renewable-ok" kdc-option is described in

Section 8.3.3.1.

 enc-tkt-in-skey
 This flag modifies ticket key selection to use the session key
 of an additional ticket included in the TGS-REQ, for the purpose
 of user-to-user authentication.

Yu Expires: Apr 2006 [Page 53]

Internet-Draft rfc1510ter-02 23 Oct 2005

 validate
 If the "validate" kdc-option is set in a TGS-REQ, and the
 "starttime" has passed, the KDC will clear the "invalid" bit on
 the ticket before re-issuing it.

8.3.7. Key Selection

 Three keys are involved in creating a KDC-REP. The reply key
 encrypts the encrypted part of the KDC-REP. The session key is
 stored in the encrypted part of the ticket, and is also present in
 the encrypted part of the KDC-REP so that the client can retrieve it.
 The ticket key is used to encrypt the ticket. These keys all have
 initial values for a given exchange; pre-authentication and other
 extension mechanisms may change the value used for any of these keys.

 [again, may need changes based on Sam's preauth draft]

8.3.7.1. Reply Key and Session Key Selection

 The set of encryption types which the client will understand appears
 in the "etype" field of KDC-REQ-BODY. The KDC limits the set of
 possible reply keys and the set of session key encryption types based
 on the "etype" field.

 For the AS exchange, the reply key is initially a long-term key of
 the client, limited to those encryption types listed in the "etype"
 field. The KDC SHOULD use the first valid strong "etype" for which
 an encryption key is available. For the TGS exchange, the reply key
 is initially the subsession key of the Authenticator. If the
 Authenticator subsesion key is absent, the reply key is initially the
 session key of the ticket used to authenticate the TGS-REQ.

 The session key is initially randomly generated, and has an
 encryption type which both the client and the server will understand.
 Typically, the KDC has prior knowledge of which encryption types the
 server will understand. It selects the first valid strong "etype"
 listed the request which the server also will understand.

8.3.7.2. Ticket Key Selection

 The ticket key is initially the long-term key of the service. The
 "enc-tkt-in-skey" option requests user-to-user authentication, where
 the ticket encryption key of the issued ticket is set equal to the
 session key of the additional ticket in the request.

8.4. KDC-REP

 The important parts of the KDC-REP are encrypted.

Yu Expires: Apr 2006 [Page 54]

Internet-Draft rfc1510ter-02 23 Oct 2005

 EncASRepPart1510 ::= [APPLICATION 25] EncKDCRepPart1510
 EncTGSRepPart1510 ::= [APPLICATION 26] EncKDCRepPart1510

 EncASRepPartExt ::= [APPLICATION 32] EncKDCRepPartExt
 EncTGSRepPartExt ::= [APPLICATION 33] EncKDCRepPartExt

 EncKDCRepPart1510 ::= SEQUENCE {
 key [0] EncryptionKey,
 last-req [1] LastReq,
 nonce [2] Nonce32,
 key-expiration [3] KerberosTime OPTIONAL,
 flags [4] TicketFlags,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 srealm [9] RealmIA5,
 sname [10] PrincipalNameIA5,
 caddr [11] HostAddresses OPTIONAL
 }

 EncKDCRepPartExt ::= SEQUENCE {
 key [0] EncryptionKey,
 last-req [1] LastReq,
 nonce [2] Nonce,
 key-expiration [3] KerberosTime OPTIONAL,
 flags [4] TicketFlags,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 srealm [9] Realm,
 sname [10] PrincipalName,
 caddr [11] HostAddresses OPTIONAL,
 ...
 }

 Most of the fields of EncKDCRepPartCom are duplicates of the
 corresponding fields in the returned ticket.

Yu Expires: Apr 2006 [Page 55]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REP-1510 { EncPart } ::= SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (11 -- AS-REP.rfc1510 -- |
 13 -- TGS.rfc1510 --),
 padata [2] SEQUENCE OF PA-DATA OPTIONAL,
 crealm [3] RealmIA5,
 cname [4] PrincipalNameIA5,
 ticket [5] Ticket,

 enc-part [6] EncryptedData {
 EncPart,
 { key-reply },
 -- maybe reach into EncryptedData in AS-REP/TGS-REP
 -- definitions to apply constraints on key usages?
 { ku-EncASRepPart -- if AS-REP -- |
 ku-EncTGSRepPart-subkey -- if TGS-REP and
 -- using Authenticator
 -- session key -- |
 ku-EncTGSRepPart-sesskey -- if TGS-REP and using
 -- subsession key -- }
 }
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 56]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REP-EXT { EncPart } ::= SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (7 -- AS-REP.ext -- |
 9 -- TGS-REP.ext --),
 padata [2] SEQUENCE OF PA-DATA OPTIONAL,
 crealm [3] RealmExt,
 cname [4] PrincipalNameExt,
 ticket [5] Ticket,

 enc-part [6] EncryptedData {
 EncPart,
 { key-reply },
 -- maybe reach into EncryptedData in AS-REP/TGS-REP
 -- definitions to apply constraints on key usages?
 { ku-EncASRepPart -- if AS-REP -- |
 ku-EncTGSRepPart-subkey -- if TGS-REP and
 -- using Authenticator
 -- session key -- |
 ku-EncTGSRepPart-sesskey -- if TGS-REP and using
 -- subsession key -- }
 },

 ...,
 -- In extensible version, KDC signs original request
 -- to avoid replay attacks against client.
 req-cksum [7] ChecksumOf { CHOICE {
 as-req AS-REQ,
 tgs-req TGS-REQ
 }, { key-reply }, { ku-KDCRep-cksum }} OPTIONAL,
 lang-tag [8] LangTag OPTIONAL,
 ...
 }

 req-cksum
 Signature of the original request using the reply key, to avoid
 replay attacks against the client, among other things. Only
 present in the extensible version of KDC-REP.

 AS-REP ::= CHOICE {
rfc1510 AS-REP-1510,

 ext AS-REP-EXT
 }
 AS-REP-1510 ::= [APPLICATION 11] KDC-REP-1510
 AS-REP-EXT ::= [APPLICATION 7] Signed {
 [APPLICATION 7] KDC-REP-EXT,
 { key-reply }, { ku-ASRep-cksum }
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 57]

Internet-Draft rfc1510ter-02 23 Oct 2005

 TGS-REP ::= CHOICE {
rfc1510 TGS-REP-1510,

 ext TGS-REP-EXT
 }
 TGS-REP-1510 ::= [APPLICATION 13] KDC-REP-1510
{ EncTGSRepPart1510 }
 TGS-REP-EXT ::= [APPLICATION 9] Signed {
 [APPLICATION 9] KDC-REP-EXT { EncTGSRepPartExt },
 { key-reply }, { ku-TGSRep-cksum }
 }

 The extensible versions of AS-REQ and TGS-REQ are signed with the
 reply key, to prevent an attacker from performing a delayed denial-
 of-service attack by substituting the ticket.

8.5. Reply Validation

 [signature verification]

8.6. IP Transports

 [KCLAR 7.2]

 Kerberos defines two IP transport mechanisms for the credentials
 acquisition protocol: UDP/IP and TCP/IP.

8.6.1. UDP/IP transport

 Kerberos servers (KDCs) supporting IP transports MUST accept UDP
 requests and SHOULD listen for such requests on port 88 (decimal)
 unless specifically configured to listen on an alternative UDP port.
 Alternate ports MAY be used when running multiple KDCs for multiple
 realms on the same host.

 Kerberos clients supporting IP transports SHOULD support the sending
 of UDP requests. Clients SHOULD use KDC discovery (Section 8.6.3) to
 identify the IP address and port to which they will send their
 request.

 When contacting a KDC for a KRB_KDC_REQ request using UDP/IP
 transport, the client shall send a UDP datagram containing only an
 encoding of the request to the KDC. The KDC will respond with a reply
 datagram containing only an encoding of the reply message (either a
 KRB-ERROR or a KDC-REP) to the sending port at the sender's IP
 address. The response to a request made through UDP/IP transport MUST
 also use UDP/IP transport. If the response can not be handled using
 UDP (for example because it is too large), the KDC MUST return "krb-
 err-response-too-big", forcing the client to retry the request using
 the TCP transport.

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 58]

Internet-Draft rfc1510ter-02 23 Oct 2005

8.6.2. TCP/IP transport

 Kerberos servers (KDCs) supporting IP transports MUST accept TCP
 requests and SHOULD listen for such requests on port 88 (decimal)
 unless specifically configured to listen on an alternate TCP port.
 Alternate ports MAY be used when running multiple KDCs for multiple
 realms on the same host.

 Clients MUST support the sending of TCP requests, but MAY choose to
 initially try a request using the UDP transport. Clients SHOULD use
 KDC discovery (Section 8.6.3) to identify the IP address and port to
 which they will send their request.

 Implementation note: Some extensions to the Kerberos protocol will
 not succeed if any client or KDC not supporting the TCP transport is
 involved. Implementations of RFC 1510 were not required to support
 TCP/IP transports.

 When the KDC-REQ message is sent to the KDC over a TCP stream, the
 response (KDC-REP or KRB-ERROR message) MUST be returned to the
 client on the same TCP stream that was established for the request.
 The KDC MAY close the TCP stream after sending a response, but MAY
 leave the stream open for a reasonable period of time if it expects a
 followup. Care must be taken in managing TCP/IP connections on the
 KDC to prevent denial of service attacks based on the number of open
 TCP/IP connections.

 The client MUST be prepared to have the stream closed by the KDC at
 anytime after the receipt of a response. A stream closure SHOULD NOT
 be treated as a fatal error. Instead, if multiple exchanges are
 required (e.g., certain forms of pre-authentication) the client may
 need to establish a new connection when it is ready to send
 subsequent messages. A client MAY close the stream after receiving a
 response, and SHOULD close the stream if it does not expect to send
 followup messages.

 A client MAY send multiple requests before receiving responses,
 though it must be prepared to handle the connection being closed
 after the first response.

 Each request (KDC-REQ) and response (KDC-REP or KRB-ERROR) sent over
 the TCP stream is preceded by the length of the request as 4 octets
 in network byte order. The high bit of the length is reserved for
 future expansion and MUST currently be set to zero. If a KDC that
 does not understand how to interpret a set high bit of the length
 encoding receives a request with the high order bit of the length
 set, it MUST return a KRB-ERROR message with the error "krb-err-
 field-toolong" and MUST close the TCP stream.

https://datatracker.ietf.org/doc/html/rfc1510

 If multiple requests are sent over a single TCP connection, and the
 KDC sends multiple responses, the KDC is not required to send the

Yu Expires: Apr 2006 [Page 59]

Internet-Draft rfc1510ter-02 23 Oct 2005

 responses in the order of the corresponding requests. This may
 permit some implementations to send each response as soon as it is
 ready even if earlier requests are still being processed (for
 example, waiting for a response from an external device or database).

8.6.3. KDC Discovery on IP Networks

 Kerberos client implementations MUST provide a means for the client
 to determine the location of the Kerberos Key Distribution Centers
 (KDCs). Traditionally, Kerberos implementations have stored such
 configuration information in a file on each client machine.
 Experience has shown this method of storing configuration information
 presents problems with out-of-date information and scaling problems,
 especially when using cross-realm authentication. This section
 describes a method for using the Domain Name System [RFC 1035] for
 storing KDC location information.

8.6.3.1. DNS vs. Kerberos - Case Sensitivity of Realm Names

 In Kerberos, realm names are case sensitive. While it is strongly
 encouraged that all realm names be all upper case this recommendation
 has not been adopted by all sites. Some sites use all lower case
 names and other use mixed case. DNS, on the other hand, is case
 insensitive for queries. Since the realm names "MYREALM", "myrealm",
 and "MyRealm" are all different, but resolve the same in the domain
 name system, it is necessary that only one of the possible
 combinations of upper and lower case characters be used in realm
 names.

8.6.3.2. DNS SRV records for KDC location

 KDC location information is to be stored using the DNS SRV RR [RFC
 2782]. The format of this RR is as follows:

 _Service._Proto.Realm TTL Class SRV Priority Weight Port Target

 The Service name for Kerberos is always "kerberos".

 The Proto can be one of "udp", "tcp". If these SRV records are to be
 used, both "udp" and "tcp" records MUST be specified for all KDC
 deployments.

 The Realm is the Kerberos realm that this record corresponds to. The
 realm MUST be a domain style realm name.

 TTL, Class, SRV, Priority, Weight, and Target have the standard
 meaning as defined in RFC 2782.

 As per RFC 2782 the Port number used for "_udp" and "_tcp" SRV
 records SHOULD be the value assigned to "kerberos" by the Internet

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

 Assigned Number Authority: 88 (decimal) unless the KDC is configured

Yu Expires: Apr 2006 [Page 60]

Internet-Draft rfc1510ter-02 23 Oct 2005

 to listen on an alternate TCP port.

 Implementation note: Many existing client implementations do not
 support KDC Discovery and are configured to send requests to the IANA
 assigned port (88 decimal), so it is strongly recommended that KDCs
 be configured to listen on that port.

8.6.3.3. KDC Discovery for Domain Style Realm Names on IP Networks

 These are DNS records for a Kerberos realm EXAMPLE.COM. It has two
 Kerberos servers, kdc1.example.com and kdc2.example.com. Queries
 should be directed to kdc1.example.com first as per the specified
 priority. Weights are not used in these sample records.

 _kerberos._udp.EXAMPLE.COM. IN SRV 0 0 88 kdc1.example.com.
 _kerberos._udp.EXAMPLE.COM. IN SRV 1 0 88 kdc2.example.com.
 _kerberos._tcp.EXAMPLE.COM. IN SRV 0 0 88 kdc1.example.com.
 _kerberos._tcp.EXAMPLE.COM. IN SRV 1 0 88 kdc2.example.com.

9. Errors

 The KRB-ERROR message is returned by the KDC if an error occurs
 during credentials acquisition. It may also be returned by an
 application server if an error occurs during authentication.

 ErrCode ::= Int32

 KRB-ERROR ::= CHOICE {
rfc1510 KRB-ERROR-1510,

 ext KRB-ERROR-EXT
 }

 The extensible KRB-ERROR is only signed if there has been a key
 negotiated with its recipient. KRB-ERROR messages sent in response
 to AS-REQ messages will probably not be signed unless a
 preauthentication mechanism has negotiated a key. (Signing using a
 client's long-term key can expose ciphertext to dictionary attacks.)

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 61]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KRB-ERROR-1510 ::= [APPLICATION 30] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (30),
 ctime [2] KerberosTime OPTIONAL,
 cusec [3] Microseconds OPTIONAL,
 stime [4] KerberosTime,
 susec [5] Microseconds,
 error-code [6] ErrCode,
 crealm [7] RealmIA5 OPTIONAL,
 cname [8] PrincipalNameIA5 OPTIONAL,
 realm [9] RealmIA5 -- Correct realm --,
 sname [10] PrincipalNameIA5 -- Correct name --,
 e-text [11] KerberosString OPTIONAL,
 e-data [12] OCTET STRING OPTIONAL
 }

 KRB-ERROR-EXT ::= [APPLICATION 23] Signed {
 [APPLICATION 23] SEQUENCE{
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (23),
 ctime [2] KerberosTime OPTIONAL,
 cusec [3] Microseconds OPTIONAL,
 stime [4] KerberosTime,
 susec [5] Microseconds,
 error-code [6] ErrCode,
 crealm [7] Realm OPTIONAL,
 cname [8] PrincipalName OPTIONAL,
 realm [9] Realm -- Correct realm --,
 sname [10] PrincipalName -- Correct name --,
 e-text [11] KerberosString OPTIONAL,
 e-data [12] OCTET STRING OPTIONAL,
 ...,
 typed-data [13] TYPED-DATA OPTIONAL,
 nonce [14] Nonce OPTIONAL,
 lang-tag [15] LangTag OPTIONAL,
 ...
 }, { }, { ku-KrbError-cksum }
 }

 ctime, cusec
 Client's time, if known from a KDC-REQ or AP-REQ.

 stime, susec
 KDC or application server's current time.

 error-code
 Numeric error code designating the error.

Yu Expires: Apr 2006 [Page 62]

Internet-Draft rfc1510ter-02 23 Oct 2005

 crealm, cname
 Client's realm and name, if known.

 realm, sname
 server's realm and name. [XXX what if these aren't known?]

 e-text
 Human-readable text providing additional details for the error.

 e-data
 This field contains additional data about the error for use by
 the client to help it recover from or handle the error. If the
 "error-code" is "kdc-err-preauth-required", then the e-data
 field will contain an encoding of a sequence of padata fields,
 each corresponding to an acceptable pre-authentication method
 and optionally containing data for the method:

 METHOD-DATA ::= SEQUENCE OF PA-DATA

 For error codes defined in this document other than "kdc-err-
 preauth-required", the format and contents of the e-data field
 are implementation-defined. Similarly, for future error codes,
 the format and contents of the e-data field are implementation-
 defined unless specified.

 lang-tag
 Indicates the language of the message in the "e-text" field. It
 is only present in the extensible KRB-ERROR.

 nonce
 is the nonce from a KDC-REQ. It is only present in the
 extensible KRB-ERROR.

 typed-data
 TYPED-DATA is a typed hole allowing for additional data to be
 returned in error conditions, since "e-data" is insufficiently
 flexible for some purposes. TYPED-DATA is only present in the
 extensible KRB-ERROR.

 TDType ::= TH-id

 TYPED-DATA ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 data-type [0] TDType,
 data-value [1] OCTET STRING OPTIONAL
 }

10. Session Key Exchange

Yu Expires: Apr 2006 [Page 63]

Internet-Draft rfc1510ter-02 23 Oct 2005

 Session key exchange consists of the AP-REQ and AP-REP messages. The
 client sends the AP-REQ message, and the service responds with an AP-
 REP message if mutual authentication is desired. Following session
 key exchange, the client and service share a secret session key, or
 possibly a subsesion key, which can be used to protect further
 communications. Additionally, the session key exchange process can
 establish initial sequence numbers which the client and service can
 use to detect replayed messages.

10.1. AP-REQ

 An AP-REQ message contains a ticket and a authenticator. The
 authenticator is ciphertext encrypted with the session key contained
 in the ticket. The plaintext contents of the authenticator are:

 -- plaintext of authenticator
 Authenticator1510 ::= [APPLICATION 2] SEQUENCE {
 authenticator-vno [0] INTEGER (5),
 crealm [1] RealmIA5,
 cname [2] PrincipalNameIA5,
 cksum [3] Checksum {{ key-session },
 { ku-Authenticator-cksum |
 ku-pa-TGSReq-cksum }} OPTIONAL,
 cusec [4] Microseconds,
 ctime [5] KerberosTime,
 subkey [6] EncryptionKey OPTIONAL,
 seq-number [7] SeqNum32 OPTIONAL,
 authorization-data [8] AuthorizationData OPTIONAL
 }

 AuthenticatorExt ::= [APPLICATION 35] SEQUENCE {
 authenticator-vno [0] INTEGER (5),
 crealm [1] RealmExt,
 cname [2] PrincipalNameExt,
 cksum [3] Checksum {{ key-session },
 { ku-Authenticator-cksum |
 ku-pa-TGSReq-cksum }} OPTIONAL,
 cusec [4] Microseconds,
 ctime [5] KerberosTime,
 subkey [6] EncryptionKey OPTIONAL,
 seq-number [7] SeqNum OPTIONAL,
 authorization-data [8] AuthorizationData OPTIONAL,
 ...
 }

 The complete definition of AP-REQ is:

 AP-REQ ::= CHOICE {
rfc1510 AP-REQ-1510,

https://datatracker.ietf.org/doc/html/rfc1510

 ext AP-REQ-EXT
 }

Yu Expires: Apr 2006 [Page 64]

Internet-Draft rfc1510ter-02 23 Oct 2005

 AP-REQ-1510 ::= [APPLICATION 14] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (14),
 ap-options [2] APOptions,
 ticket [3] Ticket1510,
 authenticator [4] EncryptedData {
 Authenticator1510,
 { key-session },
 { ku-APReq-authenticator |
 ku-pa-TGSReq-authenticator }
 }
 }

 AP-REQ-EXT ::= [APPLICATION 18] Signed {
 [APPLICATION 18] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (18),
 ap-options [2] APOptions,
 ticket [3] Ticket,
 authenticator [4] EncryptedData {
 AuthenticatorExt,
 { key-session },
 { ku-APReq-authenticator |
 ku-pa-TGSReq-authenticator }
 },
 ...,
 extensions [5] ApReqExtensions OPTIONAL,
 lang-tag [6] SEQUENCE (SIZE (1..MAX))
 OF LangTag OPTIONAL,
 ...
 }, { key-session }, { ku-APReq-cksum }
 }

 APOptions ::= KerberosFlags { APOptionsBits }

 APOptionsBits ::= BIT STRING {
 reserved (0),
 use-session-key (1),
 mutual-required (2)
 }

10.2. AP-REP

 An AP-REP message provides mutual authentication of the service to
 the client.

Yu Expires: Apr 2006 [Page 65]

Internet-Draft rfc1510ter-02 23 Oct 2005

 EncAPRepPart ::= CHOICE {
rfc1510 EncAPRepPart1510,

 ext EncAPRepPartExt
 }

 EncAPRepPart1510 ::= [APPLICATION 27] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] Microseconds,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] SeqNum32 OPTIONAL
 }

 EncAPRepPartExt ::= [APPLICATION 31] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] Microseconds,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] SeqNum OPTIONAL,
 ...,
 authorization-data [4] AuthorizationData OPTIONAL,
 ...
 }

 AP-REP ::= CHOICE {
rfc1510 AP-REP-1510,

 ext AP-REP-EXT
 }

 AP-REP-1510 ::= [APPLICATION 15] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (15),
 enc-part [2] EncryptedData {
 EncApRepPart1510,
 { key-session | key-subsession }, { ku-EncAPRepPart }}
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 66]

Internet-Draft rfc1510ter-02 23 Oct 2005

 AP-REP-EXT ::= [APPLICATION 19] Signed {
 [APPLICATION 19] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (19),
 enc-part [2] EncryptedData {
 EncAPRepPartExt,
 { key-session | key-subsession }, { ku-EncAPRepPart }},
 ...,
 extensions [3] ApRepExtensions OPTIONAL,
 ...
 }, { key-session | key-subsession }, { ku-APRep-cksum }
 }

11. Session Key Use

 Once a session key has been established, the client and server can
 use several kinds of messages to securely transmit data. KRB-SAFE
 provides integrity protection for application data, while KRB-PRIV
 provides confidentiality along with integrity protection. The KRB-
 CRED message provides a means of securely forwarding credentials from
 the client host to the server host.

11.1. KRB-SAFE

 The KRB-SAFE message provides integrity protection for an included
 cleartext message.

 KRB-SAFE ::= CHOICE {
rfc1510 KRB-SAFE-1510,

 ext KRB-SAFE-EXT
 }

 KRB-SAFE-BODY ::= SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] SeqNum OPTIONAL,
 s-address [4] HostAddress,
 r-address [5] HostAddress OPTIONAL,
 ... -- ASN.1 extensions must be excluded
 -- when sending to rfc1510 implementations
 }

11.2. KRB-PRIV

 The KRB-PRIV message provides confidentiality and integrity
 protection.

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 67]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (21),
 enc-part [3] EncryptedData {
 EncKrbPrivPart,
 { key-session | key-subsession }, { ku-EncKrbPrivPart }},
 ...
 }

 EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] SeqNum OPTIONAL,
 s-address [4] HostAddress -- sender's addr --,
 r-address [5] HostAddress OPTIONAL -- recip's addr --,
 ... -- ASN.1 extensions must be excluded
 -- when sending to rfc1510 implementations
 }

11.3. KRB-CRED

 The KRB-CRED message provides a means of securely transferring
 credentials from the client to the service.

 KRB-CRED ::= CHOICE {
rfc1510 KRB-CRED-1510,

 ext KRB-CRED-EXT

 }

 KRB-CRED-1510 ::= [APPLICATION 22] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (22),
 tickets [2] SEQUENCE OF Ticket,
 enc-part [3] EncryptedData {
 EncKrbCredPart,
 { key-session | key-subsession }, { ku-EncKrbCredPart }}
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 68]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KRB-CRED-EXT ::= [APPLICATION 24] Signed {
 [APPLICATION 24] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (24),
 tickets [2] SEQUENCE OF Ticket,
 enc-part [3] EncryptedData {
 EncKrbCredPart,
 { key-session | key-subsession }, { ku-EncKrbCredPart }},
 ...
 }, { key-session | key-subsession }, { ku-KrbCred-cksum }
 }

 EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
 ticket-info [0] SEQUENCE OF KrbCredInfo,
 nonce [1] Nonce OPTIONAL,
 timestamp [2] KerberosTime OPTIONAL,
 usec [3] Microseconds OPTIONAL,
 s-address [4] HostAddress OPTIONAL,
 r-address [5] HostAddress OPTIONAL
 }

 KrbCredInfo ::= SEQUENCE {
 key [0] EncryptionKey,
 prealm [1] Realm OPTIONAL,
 pname [2] PrincipalName OPTIONAL,
 flags [3] TicketFlags OPTIONAL,
 authtime [4] KerberosTime OPTIONAL,
 starttime [5] KerberosTime OPTIONAL,
 endtime [6] KerberosTime OPTIONAL,
 renew-till [7] KerberosTime OPTIONAL,
 srealm [8] Realm OPTIONAL,
 sname [9] PrincipalName OPTIONAL,
 caddr [10] HostAddresses OPTIONAL
 }

12. Security Considerations

12.1. Time Synchronization

 Time synchronization between the KDC and application servers is
 necessary to prevent acceptance of expired tickets.

 Time synchronization is needed between application servers and
 clients to prevent replay attacks if a replay cache is being used.
 If negotiated subsession keys are used to encrypt application data,
 replay caches may not be necessary.

Yu Expires: Apr 2006 [Page 69]

Internet-Draft rfc1510ter-02 23 Oct 2005

12.2. Replays

12.3. Principal Name Reuse

 See Section 5.3.

12.4. Password Guessing

12.5. Forward Secrecy

 [from KCLAR 10.; needs some rewriting]

 The Kerberos protocol in its basic form does not provide perfect
 forward secrecy for communications. If traffic has been recorded by
 an eavesdropper, then messages encrypted using the KRB-PRIV message,
 or messages encrypted using application-specific encryption under
 keys exchanged using Kerberos can be decrypted if any of the user's,
 application server's, or KDC's key is subsequently discovered. This
 is because the session key used to encrypt such messages is
 transmitted over the network encrypted in the key of the application
 server, and also encrypted under the session key from the user's
 ticket-granting ticket when returned to the user in the TGS-REP
 message. The session key from the ticket-granting ticket was sent to
 the user in the AS-REP message encrypted in the user's secret key,
 and embedded in the ticket-granting ticket, which was encrypted in
 the key of the KDC. Application requiring perfect forward secrecy
 must exchange keys through mechanisms that provide such assurance,
 but may use Kerberos for authentication of the encrypted channel
 established through such other means.

12.6. Authorization

 As an authentication service, Kerberos provides a means of verifying
 the identity of principals on a network. Kerberos does not, by
 itself, provide authorization. Applications SHOULD NOT accept the
 mere issuance of a service ticket by the Kerberos server as granting
 authority to use the service.

12.7. Login Authentication

 Some applications, particularly those which provide login access when
 provided with a password, SHOULD NOT treat successful acquisition of
 credentials as sufficient proof of the user's identity. An attacker
 posing as a user could generate an illegitimate KDC-REP message which
 decrypts properly. To authenticate a user logging on to a local
 system, the credentials obtained SHOULD be used in a TGS exchange to
 obtain credentials for a local service. Successful use of those
 credentials to authenticate to the local service assures that the
 initially obtained credentials are from a valid KDC.

Yu Expires: Apr 2006 [Page 70]

Internet-Draft rfc1510ter-02 23 Oct 2005

13. IANA Considerations

 [needs more work]

 Each use of Int32 in this document defines a number space. [XXX
 enumerate these] Negative numbers are reserved for private use;
 local and experimental extensions should use these values. Zero is
 reserved and may not be assigned.

 Typed hole contents may be identified by either Int32 values or by
 RELATIVE-OID values. Since RELATIVE-OIDs define a hierarchical
 namespace, assignments to the top level of the RELATIVE-OID space may
 be made on a first-come, first-served basis.

14. Acknowledgments

 Much of the text here is adapted from draft-ietf-krb-wg-kerberos-
clarifications-07. The description of the general form of the

 extensibility framework was derived from text by Sam Hartman. Some
 text concerning internationalization of internationalized domain
 names in principal names and realm names was contributed by Jeffrey
 Altman and Jeffrey Hutzelman.

Appendices

A. ASN.1 Module (Normative)

 KerberosV5Spec3 {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2) modules(4) krb5spec3(4)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- OID arc for KerberosV5
 --
 -- This OID may be used to identify Kerberos protocol messages
 -- encapsulated in other protocols.
 --
 -- This OID also designates the OID arc for KerberosV5-related
 -- OIDs.
 --
 -- NOTE: RFC 1510 had an incorrect value (5) for "dod" in its
 -- OID.
 id-krb5 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) kerberosV5(2)
 }

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 71]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- top-level type
 --
 -- Applications should not directly reference any types
 -- other than KRB-PDU and its component types.
 --
 KRB-PDU ::= CHOICE {
 ticket Ticket,
 as-req AS-REQ,
 as-rep AS-REP,
 tgs-req TGS-REQ,
 tgs-rep TGS-REP,
 ap-req AP-REQ,
 ap-rep AP-REP,
 krb-safe KRB-SAFE,
 krb-priv KRB-PRIV,
 krb-cred KRB-CRED,
 tgt-req TGT-REQ,
 krb-error KRB-ERROR,
 ...
 }

 --
 -- *** basic types
 --

 -- signed values representable in 32 bits
 --
 -- These are often used as assigned numbers for various things.
 Int32 ::= INTEGER (-2147483648..2147483647)

 -- Typed hole identifiers
 TH-id ::= CHOICE {
 int32 Int32,
 rel-oid RELATIVE-OID
 }

 -- unsigned 32 bit values
 UInt32 ::= INTEGER (0..4294967295)

 -- unsigned 64 bit values
 UInt64 ::= INTEGER (0..18446744073709551615)

 -- sequence numbers
 SeqNum ::= UInt64

Yu Expires: Apr 2006 [Page 72]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- nonces
 Nonce ::= UInt64

 -- microseconds
 Microseconds ::= INTEGER (0..999999)

 KerberosTime ::= GeneralizedTime (CONSTRAINED BY {
 -- MUST NOT include fractional seconds
 })

 -- used for names and for error messages
 KerberosString ::= CHOICE {
 ia5 GeneralString (IA5String),
 utf8 UTF8String,
 ... -- no extension may be sent
 -- to an rfc1510 implementation --
 }

 -- IA5 choice only; useful for constraints
 KerberosStringIA5 ::= KerberosString
 (WITH COMPONENTS { ia5 PRESENT })

 -- IA5 excluded; useful for constraints
 KerberosStringExt ::= KerberosString
 (WITH COMPONENTS { ia5 ABSENT })

 -- used for language tags
 LangTag ::= PrintableString
 (FROM ("A".."Z" | "a".."z" | "0".."9" | "-"))

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 73]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- assigned numbers for name types (used in principal names)
 NameType ::= Int32

 -- Name type not known
 nt-unknown NameType ::= 0
 -- Just the name of the principal as in DCE, or for users
 nt-principal NameType ::= 1
 -- Service and other unique instance (krbtgt)
 nt-srv-inst NameType ::= 2
 -- Service with host name as instance (telnet, rcommands)
 nt-srv-hst NameType ::= 3
 -- Service with host as remaining components
 nt-srv-xhst NameType ::= 4
 -- Unique ID
 nt-uid NameType ::= 5
 -- Encoded X.509 Distingished name [RFC 2253]
 nt-x500-principal NameType ::= 6
 -- Name in form of SMTP email name (e.g. user@foo.com)
 nt-smtp-name NameType ::= 7
 -- Enterprise name - may be mapped to principal name
 nt-enterprise NameType ::= 10

 PrincipalName { StrType } ::= SEQUENCE {
 name-type [0] NameType,
 -- May have zero elements, or individual elements may be
 -- zero-length, but this is NOT RECOMMENDED.
 name-string [1] SEQUENCE OF KerberosString (StrType)
 }

 -- IA5 only
 PrincipalNameIA5 ::= PrincipalName { KerberosStringIA5 }
 -- IA5 excluded
 PrincipalNameExt ::= PrincipalName { KerberosStringExt }
 -- Either one?
 PrincipalNameEither ::= PrincipalName { KerberosString }

 Realm { StrType } ::= KerberosString (StrType)

 -- IA5 only
 RealmIA5 ::= Realm { KerberosStringIA5 }

 -- IA5 excluded
 RealmExt ::= Realm { KerberosStringExt }

 -- Either
 RealmEither ::= Realm { KerberosString }

https://datatracker.ietf.org/doc/html/rfc2253

Yu Expires: Apr 2006 [Page 74]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KerberosFlags { NamedBits } ::= BIT STRING (SIZE (32..MAX))
 (CONSTRAINED BY {
 -- MUST be a valid value of -- NamedBits
 -- but if the value to be sent would be truncated to shorter
 -- than 32 bits according to DER, the value MUST be padded
 -- with trailing zero bits to 32 bits. Otherwise, no
 -- trailing zero bits may be present.

 })

 AddrType ::= Int32

 HostAddress ::= SEQUENCE {
 addr-type [0] AddrType,
 address [1] OCTET STRING
 }

 -- NOTE: HostAddresses is always used as an OPTIONAL field and
 -- should not be a zero-length SEQUENCE OF.
 --
 -- The extensible messages explicitly constrain this to be
 -- non-empty.
 HostAddresses ::= SEQUENCE OF HostAddress

 --
 -- *** crypto-related types and assignments
 --

Yu Expires: Apr 2006 [Page 75]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Assigned numbers denoting encryption mechanisms.
 EType ::= Int32

 -- assigned numbers for encryption schemes
 et-des-cbc-crc EType ::= 1
 et-des-cbc-md4 EType ::= 2
 et-des-cbc-md5 EType ::= 3
 -- [reserved] 4
 et-des3-cbc-md5 EType ::= 5
 -- [reserved] 6
 et-des3-cbc-sha1 EType ::= 7
 et-dsaWithSHA1-CmsOID EType ::= 9
 et-md5WithRSAEncryption-CmsOID EType ::= 10
 et-sha1WithRSAEncryption-CmsOID EType ::= 11
 et-rc2CBC-EnvOID EType ::= 12
 et-rsaEncryption-EnvOID EType ::= 13
 et-rsaES-OAEP-ENV-OID EType ::= 14
 et-des-ede3-cbc-Env-OID EType ::= 15
 et-des3-cbc-sha1-kd EType ::= 16
 -- AES
 et-aes128-cts-hmac-sha1-96 EType ::= 17
 -- AES
 et-aes256-cts-hmac-sha1-96 EType ::= 18
 -- Microsoft
 et-rc4-hmac EType ::= 23
 -- Microsoft
 et-rc4-hmac-exp EType ::= 24
 -- opaque; PacketCable
 et-subkey-keymaterial EType ::= 65

Yu Expires: Apr 2006 [Page 76]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Assigned numbers denoting key usages.
 KeyUsage ::= UInt32

 --
 -- Actual identifier names are provisional and subject to
 -- change.
 --
 ku-pa-enc-ts KeyUsage ::= 1
 ku-Ticket KeyUsage ::= 2
 ku-EncASRepPart KeyUsage ::= 3
 ku-TGSReqAuthData-sesskey KeyUsage ::= 4
 ku-TGSReqAuthData-subkey KeyUsage ::= 5
 ku-pa-TGSReq-cksum KeyUsage ::= 6
 ku-pa-TGSReq-authenticator KeyUsage ::= 7
 ku-EncTGSRepPart-sesskey KeyUsage ::= 8
 ku-EncTGSRepPart-subkey KeyUsage ::= 9
 ku-Authenticator-cksum KeyUsage ::= 10
 ku-APReq-authenticator KeyUsage ::= 11
 ku-EncAPRepPart KeyUsage ::= 12
 ku-EncKrbPrivPart KeyUsage ::= 13
 ku-EncKrbCredPart KeyUsage ::= 14
 ku-KrbSafe-cksum KeyUsage ::= 15
 ku-ad-KDCIssued-cksum KeyUsage ::= 19

 -- The following numbers are provisional...
 -- conflicts may exist elsewhere.
 ku-Ticket-cksum KeyUsage ::= 25
 ku-ASReq-cksum KeyUsage ::= 26
 ku-TGSReq-cksum KeyUsage ::= 27
 ku-ASRep-cksum KeyUsage ::= 28
 ku-TGSRep-cksum KeyUsage ::= 29
 ku-APReq-cksum KeyUsage ::= 30
 ku-APRep-cksum KeyUsage ::= 31
 ku-KrbCred-cksum KeyUsage ::= 32
 ku-KrbError-cksum KeyUsage ::= 33
 ku-KDCRep-cksum KeyUsage ::= 34

Yu Expires: Apr 2006 [Page 77]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- KeyToUse identifies which key is to be used to encrypt or
 -- sign a given value.
 --
 -- Values of KeyToUse are never actually transmitted over the
 -- wire, or even used directly by the implementation in any
 -- way, as key usages are; it exists primarily to identify
 -- which key gets used for what purpose. Thus, the specific
 -- numeric values associated with this type are irrelevant.
 KeyToUse ::= ENUMERATED {
 -- unspecified
 key-unspecified,
 -- server long term key
 key-server,
 -- client long term key
 key-client,
 -- key selected by KDC for encryption of a KDC-REP
 key-kdc-rep,
 -- session key from ticket
 key-session,
 -- subsession key negotiated via AP-REQ/AP-REP
 key-subsession,
 ...
 }

 EncryptionKey ::= SEQUENCE {
 keytype [0] EType,
 keyvalue [1] OCTET STRING
 }

Yu Expires: Apr 2006 [Page 78]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- "Type" specifies which ASN.1 type is encrypted to the
 -- ciphertext in the EncryptedData. "Keys" specifies a set of
 -- keys of which one key may be used to encrypt the data.
 -- "KeyUsages" specifies a set of key usages, one of which may
 -- be used to encrypt.
 --
 -- None of the parameters is transmitted over the wire.
 EncryptedData {
 Type, KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= SEQUENCE {
 etype [0] EType,
 kvno [1] UInt32 OPTIONAL,
 cipher [2] OCTET STRING (CONSTRAINED BY {
 -- must be encryption of --
 OCTET STRING (CONTAINING Type),
 -- with one of the keys -- KeyToUse:Keys,
 -- with key usage being one of --
 KeyUsage:KeyUsages
 }),
 ...
 }

 CksumType ::= Int32

 -- The parameters specify which key to use to produce the
 -- signature, as well as which key usage to use. The
 -- parameters are not actually sent over the wire.
 Checksum {
 KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= SEQUENCE {
 cksumtype [0] CksumType,
 checksum [1] OCTET STRING (CONSTRAINED BY {
 -- signed using one of the keys --
 KeyToUse:Keys,
 -- with key usage being one of --
 KeyUsage:KeyUsages
 })
 }

Yu Expires: Apr 2006 [Page 79]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- a Checksum that must contain the checksum
 -- of a particular type
 ChecksumOf {
 Type, KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= Checksum { Keys, KeyUsages } (WITH COMPONENTS {
 ...,
 checksum (CONSTRAINED BY {
 -- must be checksum of --
 OCTET STRING (CONTAINING Type)
 })
 })

 -- parameterized type for wrapping authenticated plaintext
 Signed {
 InnerType, KeyToUse:Keys, KeyUsage:KeyUsages
 } ::= SEQUENCE {
 cksum [0] ChecksumOf {
 InnerType, Keys, KeyUsages
 } OPTIONAL,
 inner [1] InnerType,
 ...
 }

 --
 -- *** Tickets
 --

 Ticket ::= CHOICE {
rfc1510 Ticket1510,

 ext TicketExt
 }

 Ticket1510 ::= [APPLICATION 1] SEQUENCE {
 tkt-vno [0] INTEGER (5),
 realm [1] RealmIA5,
 sname [2] PrincipalNameIA5,
 enc-part [3] EncryptedData {
 EncTicketPart1510, { key-server }, { ku-Ticket }
 }
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 80]

Internet-Draft rfc1510ter-02 23 Oct 2005

 TicketExt ::= [APPLICATION 4] Signed {
 [APPLICATION 4] SEQUENCE {
 tkt-vno [0] INTEGER (5),
 realm [1] RealmExt,
 sname [2] PrincipalNameExt,
 enc-part [3] EncryptedData {
 EncTicketPartExt, { key-server }, { ku-Ticket }
 },
 ...,
 extensions [4] TicketExtensions OPTIONAL,
 ...
 },
 { key-ticket }, { ku-Ticket-cksum }
 }

 -- Encrypted part of ticket
 EncTicketPart ::= CHOICE {

rfc1510 EncTicketPart1510,
 ext EncTicketPartExt
 }

 EncTicketPart1510 ::= [APPLICATION 3] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] RealmIA5,
 cname [3] PrincipalNameIA5,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 81]

Internet-Draft rfc1510ter-02 23 Oct 2005

 EncTicketPartExt ::= [APPLICATION 5] SEQUENCE {
 flags [0] TicketFlags,
 key [1] EncryptionKey,
 crealm [2] RealmExt,
 cname [3] PrincipalNameExt,
 transited [4] TransitedEncoding,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 caddr [9] HostAddresses OPTIONAL,
 authorization-data [10] AuthorizationData OPTIONAL,
 ...,
 }

 --
 -- *** Authorization Data
 --

 ADType ::= TH-id

 AuthorizationData ::= SEQUENCE OF SEQUENCE {
 ad-type [0] ADType,
 ad-data [1] OCTET STRING
 }

 ad-if-relevant ADType ::= int32 : 1

 -- Encapsulates another AuthorizationData.
 -- Intended for application servers; receiving application servers
 -- MAY ignore.
 AD-IF-RELEVANT ::= AuthorizationData

 -- KDC-issued privilege attributes
 ad-kdcissued ADType ::= int32 : 4

 AD-KDCIssued ::= SEQUENCE {
 ad-checksum [0] ChecksumOf {
 AuthorizationData, { key-session },
 { ku-ad-KDCIssued-cksum }},
 i-realm [1] Realm OPTIONAL,
 i-sname [2] PrincipalName OPTIONAL,
 elements [3] AuthorizationData
 }

Yu Expires: Apr 2006 [Page 82]

Internet-Draft rfc1510ter-02 23 Oct 2005

 ad-and-or ADType ::= int32 : 5

 AD-AND-OR ::= SEQUENCE {
 condition-count [0] Int32,
 elements [1] AuthorizationData
 }

 -- KDCs MUST interpret any AuthorizationData wrapped in this.
 ad-mandatory-for-kdc ADType ::= int32 : 8
 AD-MANDATORY-FOR-KDC ::= AuthorizationData

 ad-initial-verified-cas ADType ::= int32 : 9

 TrType ::= TH-id -- must be registered

 -- encoded Transited field
 TransitedEncoding ::= SEQUENCE {
 tr-type [0] TrType,
 contents [1] OCTET STRING
 }

 TEType ::= TH-id

 -- ticket extensions: for TicketExt only
 TicketExtensions ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
 te-type [0] TEType,
 te-data [1] OCTET STRING
 }

Yu Expires: Apr 2006 [Page 83]

Internet-Draft rfc1510ter-02 23 Oct 2005

 TicketFlags ::= KerberosFlags { TicketFlagsBits }

 TicketFlagsBits ::= BIT STRING {
 reserved (0),
 forwardable (1),
 forwarded (2),
 proxiable (3),
 proxy (4),
 may-postdate (5),
 postdated (6),
 invalid (7),
 renewable (8),
 initial (9),
 pre-authent (10),
 hw-authent (11),
 transited-policy-checked (12),
 ok-as-delegate (13),
 anonymous (14),
 cksummed-ticket (15)
 }

 --
 -- *** KDC protocol
 --

 AS-REQ ::= CHOICE {
rfc1510 AS-REQ-1510,

 ext AS-REQ-EXT
 }
 AS-REQ-1510 ::= [APPLICATION 10] KDC-REQ-1510
 -- AS-REQ must include client name

 AS-REQ-EXT ::= [APPLICATION 6] Signed {
 [APPLICATION 6] KDC-REQ-EXT, { key-client }, { ku-ASReq-cksum }
 }
 -- AS-REQ must include client name

 TGS-REQ ::= CHOICE {
rfc1510 TGS-REQ-1510,

 ext TGS-REQ-EXT
 }

 TGS-REQ-1510 ::= [APPLICATION 12] KDC-REQ-1510

 TGS-REQ-EXT ::= [APPLICATION 8] Signed {
 [APPLICATION 8] KDC-REQ-EXT, { key-session }, { ku-TGSReq-cksum }
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 84]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REQ-1510 ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 pvno [1] INTEGER (5),
 msg-type [2] INTEGER (10 -- AS-REQ --
 | 12 -- TGS-REQ --),
 padata [3] SEQUENCE OF PA-DATA OPTIONAL,
 req-body [4] KDC-REQ-BODY-1510
 }

 KDC-REQ-EXT ::= SEQUENCE {
 pvno [1] INTEGER (5),
 msg-type [2] INTEGER (6 -- AS-REQ --
 | 8 -- TGS-REQ --),
 padata [3] SEQUENCE (SIZE (1..MAX)) OF PA-DATA OPTIONAL,
 req-body [4] KDC-REQ-BODY-EXT,
 ...
 }

 KDC-REQ-BODY-1510 ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalNameIA5 OPTIONAL
 -- Used only in AS-REQ --,

 realm [2] RealmIA5
 -- Server's realm; also client's in AS-REQ --,

 sname [3] PrincipalNameIA5 OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime,
 rtime [6] KerberosTime OPTIONAL,
 nonce [7] Nonce32,
 etype [8] SEQUENCE OF EType
 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData {
 AuthorizationData, { key-session | key-subsession },
 { ku-TGSReqAuthData-subkey |
 ku-TGSReqAuthData-sesskey }
 } OPTIONAL,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty --
 }

Yu Expires: Apr 2006 [Page 85]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REQ-BODY-EXT ::= SEQUENCE {
 kdc-options [0] KDCOptions,
 cname [1] PrincipalName OPTIONAL
 -- Used only in AS-REQ --,

 realm [2] Realm
 -- Server's realm; also client's in AS-REQ --,

 sname [3] PrincipalName OPTIONAL,
 from [4] KerberosTime OPTIONAL,
 till [5] KerberosTime OPTIONAL
 -- was required in rfc1510;
 -- still required for compat versions
 -- of messages --,

 rtime [6] KerberosTime OPTIONAL,
 nonce [7] Nonce,
 etype [8] SEQUENCE OF EType
 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,
 enc-authorization-data [10] EncryptedData {
 AuthorizationData, { key-session | key-subsession },
 { ku-TGSReqAuthData-subkey |
 ku-TGSReqAuthData-sesskey }
 } OPTIONAL,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
 -- NOTE: not empty --,
 ...
 lang-tags [5] SEQUENCE (SIZE (1..MAX)) OF
 LangTag OPTIONAL,
 ...
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 86]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDCOptions ::= KerberosFlags { KDCOptionsBits }

 KDCOptionsBits ::= BIT STRING {
 reserved (0),
 forwardable (1),
 forwarded (2),
 proxiable (3),
 proxy (4),
 allow-postdate (5),
 postdated (6),
 unused7 (7),
 renewable (8),
 unused9 (9),
 unused10 (10),
 unused11 (11),
 unused12 (12),
 unused13 (13),
 requestanonymous (14),
 canonicalize (15),
 disable-transited-check (26),
 renewable-ok (27),
 enc-tkt-in-skey (28),
 renew (30),
 validate (31)
 -- XXX need "need ticket1" flag?
 }

 AS-REP ::= CHOICE {
rfc1510 AS-REP-1510,

 ext AS-REP-EXT
 }
 AS-REP-1510 ::= [APPLICATION 11] KDC-REP-1510
 AS-REP-EXT ::= [APPLICATION 7] Signed {
 [APPLICATION 7] KDC-REP-EXT,
 { key-reply }, { ku-ASRep-cksum }
 }

 TGS-REP ::= CHOICE {
rfc1510 TGS-REP-1510,

 ext TGS-REP-EXT
 }
 TGS-REP-1510 ::= [APPLICATION 13] KDC-REP-1510 { EncTGSRepPart1510 }
 TGS-REP-EXT ::= [APPLICATION 9] Signed {
 [APPLICATION 9] KDC-REP-EXT { EncTGSRepPartExt },
 { key-reply }, { ku-TGSRep-cksum }
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 87]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REP-1510 { EncPart } ::= SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (11 -- AS-REP.rfc1510 -- |
 13 -- TGS.rfc1510 --),
 padata [2] SEQUENCE OF PA-DATA OPTIONAL,
 crealm [3] RealmIA5,
 cname [4] PrincipalNameIA5,
 ticket [5] Ticket,

 enc-part [6] EncryptedData {
 EncPart,
 { key-reply },
 -- maybe reach into EncryptedData in AS-REP/TGS-REP
 -- definitions to apply constraints on key usages?
 { ku-EncASRepPart -- if AS-REP -- |
 ku-EncTGSRepPart-subkey -- if TGS-REP and
 -- using Authenticator
 -- session key -- |
 ku-EncTGSRepPart-sesskey -- if TGS-REP and using
 -- subsession key -- }
 }
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 88]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KDC-REP-EXT { EncPart } ::= SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (7 -- AS-REP.ext -- |
 9 -- TGS-REP.ext --),
 padata [2] SEQUENCE OF PA-DATA OPTIONAL,
 crealm [3] RealmExt,
 cname [4] PrincipalNameExt,
 ticket [5] Ticket,

 enc-part [6] EncryptedData {
 EncPart,
 { key-reply },
 -- maybe reach into EncryptedData in AS-REP/TGS-REP
 -- definitions to apply constraints on key usages?
 { ku-EncASRepPart -- if AS-REP -- |
 ku-EncTGSRepPart-subkey -- if TGS-REP and
 -- using Authenticator
 -- session key -- |
 ku-EncTGSRepPart-sesskey -- if TGS-REP and using
 -- subsession key -- }
 },

 ...,
 -- In extensible version, KDC signs original request
 -- to avoid replay attacks against client.
 req-cksum [7] ChecksumOf { CHOICE {
 as-req AS-REQ,
 tgs-req TGS-REQ
 }, { key-reply }, { ku-KDCRep-cksum }} OPTIONAL,
 lang-tag [8] LangTag OPTIONAL,
 ...
 }

Yu Expires: Apr 2006 [Page 89]

Internet-Draft rfc1510ter-02 23 Oct 2005

 EncASRepPart1510 ::= [APPLICATION 25] EncKDCRepPart1510
 EncTGSRepPart1510 ::= [APPLICATION 26] EncKDCRepPart1510

 EncASRepPartExt ::= [APPLICATION 32] EncKDCRepPartExt
 EncTGSRepPartExt ::= [APPLICATION 33] EncKDCRepPartExt

 EncKDCRepPart1510 ::= SEQUENCE {
 key [0] EncryptionKey,
 last-req [1] LastReq,
 nonce [2] Nonce32,
 key-expiration [3] KerberosTime OPTIONAL,
 flags [4] TicketFlags,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 srealm [9] RealmIA5,
 sname [10] PrincipalNameIA5,
 caddr [11] HostAddresses OPTIONAL
 }

 EncKDCRepPartExt ::= SEQUENCE {
 key [0] EncryptionKey,
 last-req [1] LastReq,
 nonce [2] Nonce,
 key-expiration [3] KerberosTime OPTIONAL,
 flags [4] TicketFlags,
 authtime [5] KerberosTime,
 starttime [6] KerberosTime OPTIONAL,
 endtime [7] KerberosTime,
 renew-till [8] KerberosTime OPTIONAL,
 srealm [9] Realm,
 sname [10] PrincipalName,
 caddr [11] HostAddresses OPTIONAL,
 ...
 }

 LRType ::= TH-id
 LastReq ::= SEQUENCE OF SEQUENCE {
 lr-type [0] LRType,
 lr-value [1] KerberosTime
 }

 --
 -- *** preauth
 --

Yu Expires: Apr 2006 [Page 90]

Internet-Draft rfc1510ter-02 23 Oct 2005

 PaDataType ::= TH-id
 PaDataOID ::= RELATIVE-OID

 PA-DATA ::= SEQUENCE {
 -- NOTE: first tag is [1], not [0]
 padata-type [1] PaDataType,
 padata-value [2] OCTET STRING
 }

 -- AP-REQ authenticating a TGS-REQ
 pa-tgs-req PaDataType ::= int32 : 1
 PA-TGS-REQ ::= AP-REQ

 -- Encrypted timestamp preauth
 -- Encryption key used is client's long-term key.
 pa-enc-timestamp PaDataType ::= int32 : 2

 PA-ENC-TIMESTAMP ::= EncryptedData {
 PA-ENC-TS-ENC, { key-client }, { ku-pa-enc-ts }
 }

 PA-ENC-TS-ENC ::= SEQUENCE {
 patimestamp [0] KerberosTime -- client's time --,
 pausec [1] Microseconds OPTIONAL
 }

 -- Hints returned in AS-REP or KRB-ERROR to help client
 -- choose a password-derived key, either for preauthentication
 -- or for decryption of the reply.
 pa-etype-info PaDataType ::= int32 : 11

 ETYPE-INFO ::= SEQUENCE OF ETYPE-INFO-ENTRY

 ETYPE-INFO-ENTRY ::= SEQUENCE {
 etype [0] EType,
 salt [1] OCTET STRING OPTIONAL
 }

Yu Expires: Apr 2006 [Page 91]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Similar to etype-info, but with parameters provided for
 -- the string-to-key function.
 pa-etype-info2 PaDataType ::= int32 : 19

 ETYPE-INFO2 ::= SEQUENCE (SIZE (1..MAX))
 OF ETYPE-INFO-ENTRY

 ETYPE-INFO2-ENTRY ::= SEQUENCE {
 etype [0] EType,
 salt [1] KerberosString OPTIONAL,
 s2kparams [2] OCTET STRING OPTIONAL
 }

 -- Obsolescent. Salt for client long-term key
 -- Its character encoding is unspecified.
 pa-pw-salt PaDataType ::= int32 : 3

 -- The "padata-value" does not encode an ASN.1 type.
 -- Instead, "padata-value" must consist of the salt string to
 -- be used by the client, in an unspecified character
 -- encoding.

 -- An extensible AS-REQ may be sent as a padata in a
 -- non-extensible AS-REQ to allow for backwards compatibility.
 pa-as-req PaDataType ::= int32 : 42 -- provisional
 PA-AS-REQ ::= AS-REQ (WITH COMPONENTS ext)

 --
 -- *** Session key exchange
 --

 AP-REQ ::= CHOICE {
rfc1510 AP-REQ-1510,

 ext AP-REQ-EXT
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 92]

Internet-Draft rfc1510ter-02 23 Oct 2005

 AP-REQ-1510 ::= [APPLICATION 14] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (14),
 ap-options [2] APOptions,
 ticket [3] Ticket1510,
 authenticator [4] EncryptedData {
 Authenticator1510,
 { key-session },
 { ku-APReq-authenticator |
 ku-pa-TGSReq-authenticator }
 }
 }

 AP-REQ-EXT ::= [APPLICATION 18] Signed {
 [APPLICATION 18] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (18),
 ap-options [2] APOptions,
 ticket [3] Ticket,
 authenticator [4] EncryptedData {
 AuthenticatorExt,
 { key-session },
 { ku-APReq-authenticator |
 ku-pa-TGSReq-authenticator }
 },
 ...,
 extensions [5] ApReqExtensions OPTIONAL,
 lang-tag [6] SEQUENCE (SIZE (1..MAX))
 OF LangTag OPTIONAL,
 ...
 }, { key-session }, { ku-APReq-cksum }
 }

 ApReqExtType ::= TH-id

 ApReqExtensions ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
 apReqExt-Type [0] ApReqExtType,
 apReqExt-Data [1] OCTET STRING
 }

 APOptions ::= KerberosFlags { APOptionsBits }

 APOptionsBits ::= BIT STRING {
 reserved (0),
 use-session-key (1),
 mutual-required (2)

 }

Yu Expires: Apr 2006 [Page 93]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- plaintext of authenticator
 Authenticator1510 ::= [APPLICATION 2] SEQUENCE {
 authenticator-vno [0] INTEGER (5),
 crealm [1] RealmIA5,
 cname [2] PrincipalNameIA5,
 cksum [3] Checksum {{ key-session },
 { ku-Authenticator-cksum |
 ku-pa-TGSReq-cksum }} OPTIONAL,
 cusec [4] Microseconds,
 ctime [5] KerberosTime,
 subkey [6] EncryptionKey OPTIONAL,
 seq-number [7] SeqNum32 OPTIONAL,
 authorization-data [8] AuthorizationData OPTIONAL
 }

 AuthenticatorExt ::= [APPLICATION 35] SEQUENCE {
 authenticator-vno [0] INTEGER (5),
 crealm [1] RealmExt,
 cname [2] PrincipalNameExt,
 cksum [3] Checksum {{ key-session },
 { ku-Authenticator-cksum |
 ku-pa-TGSReq-cksum }} OPTIONAL,
 cusec [4] Microseconds,
 ctime [5] KerberosTime,
 subkey [6] EncryptionKey OPTIONAL,
 seq-number [7] SeqNum OPTIONAL,
 authorization-data [8] AuthorizationData OPTIONAL,
 ...
 }

 AP-REP ::= CHOICE {
rfc1510 AP-REP-1510,

 ext AP-REP-EXT
 }

 AP-REP-1510 ::= [APPLICATION 15] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (15),
 enc-part [2] EncryptedData {
 EncApRepPart1510,
 { key-session | key-subsession }, { ku-EncAPRepPart }}
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 94]

Internet-Draft rfc1510ter-02 23 Oct 2005

 AP-REP-EXT ::= [APPLICATION 19] Signed {
 [APPLICATION 19] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (19),
 enc-part [2] EncryptedData {
 EncAPRepPartExt,
 { key-session | key-subsession }, { ku-EncAPRepPart }},
 ...,
 extensions [3] ApRepExtensions OPTIONAL,
 ...
 }, { key-session | key-subsession }, { ku-APRep-cksum }
 }

 ApRepExtType ::= TH-id

 ApRepExtensions ::= SEQUENCE (SIZE (1..MAX)) OF SEQUENCE {
 apRepExt-Type [0] ApRepExtType,
 apRepExt-Data [1] OCTET STRING
 }

 EncAPRepPart ::= CHOICE {
rfc1510 EncAPRepPart1510,

 ext EncAPRepPartExt
 }

 EncAPRepPart1510 ::= [APPLICATION 27] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] Microseconds,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] SeqNum32 OPTIONAL
 }

 EncAPRepPartExt ::= [APPLICATION 31] SEQUENCE {
 ctime [0] KerberosTime,
 cusec [1] Microseconds,
 subkey [2] EncryptionKey OPTIONAL,
 seq-number [3] SeqNum OPTIONAL,
 ...,
 authorization-data [4] AuthorizationData OPTIONAL,
 ...
 }

 --
 -- *** Application messages
 --

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 95]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KRB-SAFE ::= CHOICE {
rfc1510 KRB-SAFE-1510,

 ext KRB-SAFE-EXT
 }

 KRB-SAFE-1510 ::= [APPLICATION 20] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (20),
 safe-body [2] KRB-SAFE-BODY,
 cksum [3] ChecksumOf {
 KRB-SAFE-BODY,
 { key-session | key-subsession }, { ku-KrbSafe-cksum }}
 }

 -- Has safe-body optional to allow for GSS-MIC type functionality
 KRB-SAFE-EXT ::= [APPLICATION 34] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (20),
 safe-body [2] KRB-SAFE-BODY OPTIONAL,
 cksum [3] ChecksumOf {
 KRB-SAFE-BODY,
 { key-session | key-subsession }, { ku-KrbSafe-cksum }},
 ...
 }

 KRB-SAFE-BODY ::= SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] SeqNum OPTIONAL,
 s-address [4] HostAddress,
 r-address [5] HostAddress OPTIONAL,
 ... -- ASN.1 extensions must be excluded
 -- when sending to rfc1510 implementations
 }

 KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (21),
 enc-part [3] EncryptedData {
 EncKrbPrivPart,
 { key-session | key-subsession }, { ku-EncKrbPrivPart }},
 ...
 }

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 96]

Internet-Draft rfc1510ter-02 23 Oct 2005

 EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
 user-data [0] OCTET STRING,
 timestamp [1] KerberosTime OPTIONAL,
 usec [2] Microseconds OPTIONAL,
 seq-number [3] SeqNum OPTIONAL,
 s-address [4] HostAddress -- sender's addr --,
 r-address [5] HostAddress OPTIONAL -- recip's addr --,
 ... -- ASN.1 extensions must be excluded
 -- when sending to rfc1510 implementations
 }

 KRB-CRED ::= CHOICE {
rfc1510 KRB-CRED-1510,

 ext KRB-CRED-EXT

 }

 KRB-CRED-1510 ::= [APPLICATION 22] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (22),
 tickets [2] SEQUENCE OF Ticket,
 enc-part [3] EncryptedData {
 EncKrbCredPart,
 { key-session | key-subsession }, { ku-EncKrbCredPart }}
 }

 KRB-CRED-EXT ::= [APPLICATION 24] Signed {
 [APPLICATION 24] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (24),
 tickets [2] SEQUENCE OF Ticket,
 enc-part [3] EncryptedData {
 EncKrbCredPart,
 { key-session | key-subsession }, { ku-EncKrbCredPart }},
 ...
 }, { key-session | key-subsession }, { ku-KrbCred-cksum }
 }

 EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
 ticket-info [0] SEQUENCE OF KrbCredInfo,
 nonce [1] Nonce OPTIONAL,
 timestamp [2] KerberosTime OPTIONAL,
 usec [3] Microseconds OPTIONAL,
 s-address [4] HostAddress OPTIONAL,
 r-address [5] HostAddress OPTIONAL

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

 }

Yu Expires: Apr 2006 [Page 97]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KrbCredInfo ::= SEQUENCE {
 key [0] EncryptionKey,
 prealm [1] Realm OPTIONAL,
 pname [2] PrincipalName OPTIONAL,
 flags [3] TicketFlags OPTIONAL,
 authtime [4] KerberosTime OPTIONAL,
 starttime [5] KerberosTime OPTIONAL,
 endtime [6] KerberosTime OPTIONAL,
 renew-till [7] KerberosTime OPTIONAL,
 srealm [8] Realm OPTIONAL,
 sname [9] PrincipalName OPTIONAL,
 caddr [10] HostAddresses OPTIONAL
 }

 TGT-REQ ::= [APPLICATION 16] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (16),
 sname [2] PrincipalName OPTIONAL,
 srealm [3] Realm OPTIONAL,
 ...
 }

 --
 -- *** Error messages
 --

 ErrCode ::= Int32

 KRB-ERROR ::= CHOICE {
rfc1510 KRB-ERROR-1510,

 ext KRB-ERROR-EXT
 }

https://datatracker.ietf.org/doc/html/rfc1510

Yu Expires: Apr 2006 [Page 98]

Internet-Draft rfc1510ter-02 23 Oct 2005

 KRB-ERROR-1510 ::= [APPLICATION 30] SEQUENCE {
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (30),
 ctime [2] KerberosTime OPTIONAL,
 cusec [3] Microseconds OPTIONAL,
 stime [4] KerberosTime,
 susec [5] Microseconds,
 error-code [6] ErrCode,
 crealm [7] RealmIA5 OPTIONAL,
 cname [8] PrincipalNameIA5 OPTIONAL,
 realm [9] RealmIA5 -- Correct realm --,
 sname [10] PrincipalNameIA5 -- Correct name --,
 e-text [11] KerberosString OPTIONAL,
 e-data [12] OCTET STRING OPTIONAL
 }

 KRB-ERROR-EXT ::= [APPLICATION 23] Signed {
 [APPLICATION 23] SEQUENCE{
 pvno [0] INTEGER (5),
 msg-type [1] INTEGER (23),
 ctime [2] KerberosTime OPTIONAL,
 cusec [3] Microseconds OPTIONAL,
 stime [4] KerberosTime,
 susec [5] Microseconds,
 error-code [6] ErrCode,
 crealm [7] Realm OPTIONAL,
 cname [8] PrincipalName OPTIONAL,
 realm [9] Realm -- Correct realm --,
 sname [10] PrincipalName -- Correct name --,
 e-text [11] KerberosString OPTIONAL,
 e-data [12] OCTET STRING OPTIONAL,
 ...,
 typed-data [13] TYPED-DATA OPTIONAL,
 nonce [14] Nonce OPTIONAL,
 lang-tag [15] LangTag OPTIONAL,
 ...
 }, { }, { ku-KrbError-cksum }
 }

 METHOD-DATA ::= SEQUENCE OF PA-DATA

 TDType ::= TH-id

 TYPED-DATA ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
 data-type [0] TDType,
 data-value [1] OCTET STRING OPTIONAL

 }

Yu Expires: Apr 2006 [Page 99]

Internet-Draft rfc1510ter-02 23 Oct 2005

 td-dh-parameters TDType ::= int32 : 109

 --
 -- *** Error codes
 --

 -- No error
 kdc-err-none ErrCode ::= 0
 -- Client's entry in database has expired
 kdc-err-name-exp ErrCode ::= 1
 -- Server's entry in database has expired
 kdc-err-service-exp ErrCode ::= 2
 -- Requested protocol version number not supported
 kdc-err-bad-pvno ErrCode ::= 3
 -- Client's key encrypted in old master key
 kdc-err-c-old-mast-kvno ErrCode ::= 4
 -- Server's key encrypted in old master key
 kdc-err-s-old-mast-kvno ErrCode ::= 5
 -- Client not found in Kerberos database
 kdc-err-c-principal-unknown ErrCode ::= 6
 -- Server not found in Kerberos database
 kdc-err-s-principal-unknown ErrCode ::= 7
 -- Multiple principal entries in database
 kdc-err-principal-not-unique ErrCode ::= 8
 -- The client or server has a null key
 kdc-err-null-key ErrCode ::= 9
 -- Ticket not eligible for postdating
 kdc-err-cannot-postdate ErrCode ::= 10
 -- Requested start time is later than end time
 kdc-err-never-valid ErrCode ::= 11
 -- KDC policy rejects request
 kdc-err-policy ErrCode ::= 12
 -- KDC cannot accommodate requested option
 kdc-err-badoption ErrCode ::= 13
 -- KDC has no support for encryption type
 kdc-err-etype-nosupp ErrCode ::= 14
 -- KDC has no support for checksum type
 kdc-err-sumtype-nosupp ErrCode ::= 15
 -- KDC has no support for padata type
 kdc-err-padata-type-nosupp ErrCode ::= 16
 -- KDC has no support for transited type
 kdc-err-trtype-nosupp ErrCode ::= 17
 -- Clients credentials have been revoked
 kdc-err-client-revoked ErrCode ::= 18
 -- Credentials for server have been revoked
 kdc-err-service-revoked ErrCode ::= 19
 -- TGT has been revoked
 kdc-err-tgt-revoked ErrCode ::= 20

Yu Expires: Apr 2006 [Page 100]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Client not yet valid - try again later
 kdc-err-client-notyet ErrCode ::= 21
 -- Server not yet valid - try again later
 kdc-err-service-notyet ErrCode ::= 22
 -- Password has expired - change password to reset
 kdc-err-key-expired ErrCode ::= 23
 -- Pre-authentication information was invalid
 kdc-err-preauth-failed ErrCode ::= 24
 -- Additional pre-authenticationrequired
 kdc-err-preauth-required ErrCode ::= 25
 -- Requested server and ticket don't match
 kdc-err-server-nomatch ErrCode ::= 26
 -- Server principal valid for user2user only
 kdc-err-must-use-user2user ErrCode ::= 27
 -- KDC Policy rejects transited path
 kdc-err-path-not-accpeted ErrCode ::= 28
 -- A service is not available
 kdc-err-svc-unavailable ErrCode ::= 29
 -- Integrity check on decrypted field failed
 krb-ap-err-bad-integrity ErrCode ::= 31
 -- Ticket expired
 krb-ap-err-tkt-expired ErrCode ::= 32
 -- Ticket not yet valid
 krb-ap-err-tkt-nyv ErrCode ::= 33
 -- Request is a replay
 krb-ap-err-repeat ErrCode ::= 34
 -- The ticket isn't for us
 krb-ap-err-not-us ErrCode ::= 35
 -- Ticket and authenticator don't match
 krb-ap-err-badmatch ErrCode ::= 36
 -- Clock skew too great
 krb-ap-err-skew ErrCode ::= 37
 -- Incorrect net address
 krb-ap-err-badaddr ErrCode ::= 38
 -- Protocol version mismatch
 krb-ap-err-badversion ErrCode ::= 39
 -- Invalid msg type
 krb-ap-err-msg-type ErrCode ::= 40

Yu Expires: Apr 2006 [Page 101]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Message stream modified
 krb-ap-err-modified ErrCode ::= 41
 -- Message out of order
 krb-ap-err-badorder ErrCode ::= 42
 -- Specified version of key is not available
 krb-ap-err-badkeyver ErrCode ::= 44
 -- Service key not available
 krb-ap-err-nokey ErrCode ::= 45
 -- Mutual authentication failed
 krb-ap-err-mut-fail ErrCode ::= 46
 -- Incorrect message direction
 krb-ap-err-baddirection ErrCode ::= 47
 -- Alternative authentication method required
 krb-ap-err-method ErrCode ::= 48
 -- Incorrect sequence number in message
 krb-ap-err-badseq ErrCode ::= 49
 -- Inappropriate type of checksum in message
 krb-ap-err-inapp-cksum ErrCode ::= 50
 -- Policy rejects transited path
 krb-ap-path-not-accepted ErrCode ::= 51
 -- Response too big for UDP, retry with TCP
 krb-err-response-too-big ErrCode ::= 52
 -- Generic error (description in e-text)
 krb-err-generic ErrCode ::= 60

Yu Expires: Apr 2006 [Page 102]

Internet-Draft rfc1510ter-02 23 Oct 2005

 -- Field is too long for this implementation
 krb-err-field-toolong ErrCode ::= 61
 -- Reserved for PKINIT
 kdc-error-client-not-trusted ErrCode ::= 62
 -- Reserved for PKINIT
 kdc-error-kdc-not-trusted ErrCode ::= 63
 -- Reserved for PKINIT
 kdc-error-invalid-sig ErrCode ::= 64
 -- Reserved for PKINIT
 kdc-err-key-too-weak ErrCode ::= 65
 -- Reserved for PKINIT
 kdc-err-certificate-mismatch ErrCode ::= 66
 -- No TGT available to validate USER-TO-USER
 krb-ap-err-no-tgt ErrCode ::= 67
 -- USER-TO-USER TGT issued different KDC
 kdc-err-wrong-realm ErrCode ::= 68
 -- Ticket must be for USER-TO-USER
 krb-ap-err-user-to-user-required ErrCode ::= 69
 -- Reserved for PKINIT
 kdc-err-cant-verify-certificate ErrCode ::= 70
 -- Reserved for PKINIT
 kdc-err-invalid-certificate ErrCode ::= 71
 -- Reserved for PKINIT
 kdc-err-revoked-certificate ErrCode ::= 72
 -- Reserved for PKINIT
 kdc-err-revocation-status-unknown ErrCode ::= 73
 -- Reserved for PKINIT
 kdc-err-revocation-status-unavailable ErrCode ::= 74

 END

B. Kerberos and Character Encodings (Informative)

 [adapted from KCLAR 5.2.1]

 The original specification of the Kerberos protocol in RFC 1510 uses
 GeneralString in numerous places for human-readable string data.
 Historical implementations of Kerberos cannot utilize the full power
 of GeneralString. This ASN.1 type requires the use of designation
 and invocation escape sequences as specified in ISO 2022 | ECMA-35
 [ISO2022] to switch character sets, and the default character set
 that is designated as G0 is the ISO 646 | ECMA-6 [ISO646]
 International Reference Version (IRV) (aka U.S. ASCII), which mostly
 works.

 ISO 2022 | ECMA-35 defines four character-set code elements (G0..G3)
 and two Control-function code elements (C0..C1). DER previously

https://datatracker.ietf.org/doc/html/rfc1510

 [X690-1997] prohibited the designation of character sets as any but
 the G0 and C0 sets. This had the side effect of prohibiting the use

Yu Expires: Apr 2006 [Page 103]

Internet-Draft rfc1510ter-02 23 Oct 2005

 of (ISO Latin) character-sets such as ISO 8859-1 [ISO8859-1] or any
 other character-sets that utilize a 96-character set, since it is
 prohibited by ISO 2022 | ECMA-35 to designate them as the G0 code
 element. Recent revisions to the ASN.1 standards resolve this
 contradiction.

 In practice, many implementations treat RFC 1510 GeneralStrings as if
 they were 8-bit strings of whichever character set the implementation
 defaults to, without regard for correct usage of character-set
 designation escape sequences. The default character set is often
 determined by the current user's operating system dependent locale.
 At least one major implementation places unescaped UTF-8 encoded
 Unicode characters in the GeneralString. This failure to conform to
 the GeneralString specifications results in interoperability issues
 when conflicting character encodings are utilized by the Kerberos
 clients, services, and KDC.

 This unfortunate situation is the result of improper documentation of
 the restrictions of the ASN.1 GeneralString type in prior Kerberos
 specifications.

 [the following should probably be rewritten and moved into the
 principal name section]

 For compatibility, implementations MAY choose to accept GeneralString
 values that contain characters other than those permitted by
 IA5String, but they should be aware that character set designation
 codes will likely be absent, and that the encoding should probably be
 treated as locale-specific in almost every way. Implementations MAY
 also choose to emit GeneralString values that are beyond those
 permitted by IA5String, but should be aware that doing so is
 extraordinarily risky from an interoperability perspective.

 Some existing implementations use GeneralString to encode unescaped
 locale-specific characters. This is a violation of the ASN.1
 standard. Most of these implementations encode US-ASCII in the left-
 hand half, so as long the implementation transmits only US-ASCII, the
 ASN.1 standard is not violated in this regard. As soon as such an
 implementation encodes unescaped locale-specific characters with the
 high bit set, it violates the ASN.1 standard.

 Other implementations have been known to use GeneralString to contain
 a UTF-8 encoding. This also violates the ASN.1 standard, since UTF-8
 is a different encoding, not a 94 or 96 character "G" set as defined
 by ISO 2022. It is believed that these implementations do not even
 use the ISO 2022 escape sequence to change the character encoding.
 Even if implementations were to announce the change of encoding by
 using that escape sequence, the ASN.1 standard prohibits the use of
 any escape sequences other than those used to designate/invoke "G" or

https://datatracker.ietf.org/doc/html/rfc1510

 "C" sets allowed by GeneralString.

Yu Expires: Apr 2006 [Page 104]

Internet-Draft rfc1510ter-02 23 Oct 2005

C. Kerberos History (Informative)

 [Adapted from KCLAR "BACKGROUND"]

 The Kerberos model is based in part on Needham and Schroeder's
 trusted third-party authentication protocol [NS78] and on
 modifications suggested by Denning and Sacco [DS81]. The original
 design and implementation of Kerberos Versions 1 through 4 was the
 work of two former Project Athena staff members, Steve Miller of
 Digital Equipment Corporation and Clifford Neuman (now at the
 Information Sciences Institute of the University of Southern
 California), along with Jerome Saltzer, Technical Director of Project
 Athena, and Jeffrey Schiller, MIT Campus Network Manager. Many other
 members of Project Athena have also contributed to the work on
 Kerberos.

 Version 5 of the Kerberos protocol (described in this document) has
 evolved from Version 4 based on new requirements and desires for
 features not available in Version 4. The design of Version 5 of the
 Kerberos protocol was led by Clifford Neuman and John Kohl with much
 input from the community. The development of the MIT reference
 implementation was led at MIT by John Kohl and Theodore Ts'o, with
 help and contributed code from many others. Since RFC1510 was
 issued, extensions and revisions to the protocol have been proposed
 by many individuals. Some of these proposals are reflected in this
 document. Where such changes involved significant effort, the
 document cites the contribution of the proposer.

 Reference implementations of both version 4 and version 5 of Kerberos
 are publicly available and commercial implementations have been
 developed and are widely used. Details on the differences between
 Kerberos Versions 4 and 5 can be found in [KNT94].

D. Notational Differences from [KCLAR]

 [possible point for discussion]

 [KCLAR] uses notational conventions slightly different from this
 document. As a derivative of RFC 1510, the text of [KCLAR] uses C-
 language style identifier names for defined values. In ASN.1
 notation, identifiers referencing defined values must begin with a
 lowercase letter and contain hyphen (-) characters rather than
 underscore (_) characters, while identifiers referencing types begin
 with an uppercase letter. [KCLAR] and RFC 1510 use all-uppercase
 identifiers with underscores to identify defined values. This has
 the potential to create confusion, but neither document defines
 values using actual ASN.1 value-assignment notation.

 It is debatable whether it is advantageous to write all identifier

https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1510

 names (regardless of their ASN.1 token type) in all-uppercase letters
 for the purpose of emphasis in running text. The alternative is to

Yu Expires: Apr 2006 [Page 105]

Internet-Draft rfc1510ter-02 23 Oct 2005

 use double-quote characters (") when ambiguity is possible.

Normative References

 [ISO646]
 "7-bit coded character set", ISO/IEC 646:1991 | ECMA-6:1991.

 [ISO2022]
 "Information technology -- Character code structure and
 extension techniques", ISO/IEC 2022:1994 | ECMA-35:1994.

 [KCRYPTO]
 K. Raeburn, "Encryption and Checksum Specifications for Kerberos
 5", draft-ietf-krb-wg-crypto-07.txt, work in progress.

 [RFC2119]
 S. Bradner, RFC2119: "Key words for use in RFC's to Indicate
 Requirement Levels", March 1997.

 [RFC3660]
 H. Alvestrand, "Tags for the Identification of Languages",

RFC 3660, January 2001.

 [SASLPREP]
 Kurt D. Zeilenga, "SASLprep: Stringprep profile for user names
 and passwords", draft-ietf-sasl-saslprep-10.txt, work in
 progress.

 [X680]
 "Information technology -- Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", ITU-T Recommendation X.680
 (2002) | ISO/IEC 8824-1:2002.

 [X682]
 "Information technology -- Abstract Syntax Notation One (ASN.1):
 Constraint specification", ITU-T Recommendation X.682 (2002) |
 ISO/IEC 8824-3:2002.

 [X683]
 "Information technology -- Abstract Syntax Notation One (ASN.1):
 Parameterization of ASN.1 specifications", ITU-T Recommendation
 X.683 (2002) | ISO/IEC 8824-4:2002.

 [X690]
 "Information technology -- ASN.1 encoding Rules: Specification
 of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
 and Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690 (2002) | ISO/IEC 8825-1:2002.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-crypto-07.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3660
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-saslprep-10.txt

Yu Expires: Apr 2006 [Page 106]

Internet-Draft rfc1510ter-02 23 Oct 2005

Informative References

 [DS81]
 Dorothy E. Denning and Giovanni Maria Sacco, "Time-stamps in Key
 Distribution Protocols," Communications of the ACM, Vol. 24(8),
 pp. 533-536 (August 1981).

 [Dub00]
 Olivier Dubuisson, "ASN.1 - Communication between Heterogeneous
 Systems", Elsevier-Morgan Kaufmann, 2000.
 <http://www.oss.com/asn1/dubuisson.html>

 [ISO8859-1]
 "Information technology -- 8-bit single-byte coded graphic
 character sets -- Part 1: Latin alphabet No. 1", ISO/IEC
 8859-1:1998.

 [KCLAR]
 Clifford Neuman, Tom Yu, Sam Hartman, Ken Raeburn, "The Kerberos
 Network Authentication Service (V5)", draft-ietf-krb-wg-

kerberos-clarifications-07.txt, work in progress.

 [KNT94]
 John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts'o, "The
 Evolution of the Kerberos Authentication System". In
 Distributed Open Systems, pages 78-94. IEEE Computer Society
 Press, 1994.

 [Lar96]
 John Larmouth, "Understanding OSI", International Thomson
 Computer Press, 1996.
 <http://www.isi.salford.ac.uk/books/osi.html>

 [Lar99]
 John Larmouth, "ASN.1 Complete", Elsevier-Morgan Kaufmann,
 1999. <http://www.oss.com/asn1/larmouth.html>

 [NS78]
 Roger M. Needham and Michael D. Schroeder, "Using Encryption for
 Authentication in Large Networks of Computers", Communications
 of the ACM, Vol. 21(12), pp. 993-999 (December, 1978).

 [RFC1510]
 J. Kohl and B. C. Neuman, "The Kerberos Network Authentication
 Service (v5)", RFC1510, September 1993, Status: Proposed
 Standard.

 [RFC1964]
 J. Linn, "The Kerberos Version 5 GSS-API Mechanism", RFC 1964,
 June 1996, Status: Proposed Standard.

http://www.oss.com/asn1/dubuisson.html
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-kerberos-clarifications-07.txt
http://www.isi.salford.ac.uk/books/osi.html
http://www.oss.com/asn1/larmouth.html
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1964

Yu Expires: Apr 2006 [Page 107]

Internet-Draft rfc1510ter-02 23 Oct 2005

 [X690-2002]
 "Information technology -- ASN.1 encoding rules: Specification
 of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
 and Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690 (2002) | ISO/IEC 8825-1:2002.

Author's Address

 Tom Yu
 77 Massachusetts Ave
 Cambridge, MA 02139
 USA
 tlyu@mit.edu

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

 ipr@ietf.org.

Yu Expires: Apr 2006 [Page 108]

