
Workgroup: Network Working Group

Internet-Draft: draft-ietf-lake-edhoc-07

Published: 24 May 2021

Intended Status: Standards Track

Expires: 25 November 2021

Authors: G. Selander

Ericsson AB

J. Mattsson

Ericsson AB

F. Palombini

Ericsson AB

Ephemeral Diffie-Hellman Over COSE (EDHOC)

Abstract

This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC),

a very compact and lightweight authenticated Diffie-Hellman key

exchange with ephemeral keys. EDHOC provides mutual authentication,

perfect forward secrecy, and identity protection. EDHOC is intended

for usage in constrained scenarios and a main use case is to

establish an OSCORE security context. By reusing COSE for

cryptography, CBOR for encoding, and CoAP for transport, the

additional code size can be kept very low.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Motivation

1.2. Use of EDHOC

1.3. Message Size Examples

1.4. Document Structure

1.5. Terminology and Requirements Language

2. EDHOC Outline

3. Protocol Elements

3.1. General

3.2. Method and Correlation

3.2.1. Method

3.2.2. Connection Identifiers

3.2.3. Transport

3.2.4. Message Correlation

3.3. Authentication Parameters

3.3.1. Authentication Keys

3.3.2. Identities

3.3.3. Authentication Credentials

3.3.4. Identification of Credentials

3.4. Cipher Suites

3.5. Ephemeral Public Keys

3.6. External Authorization Data

3.7. Applicability Statement

4. Key Derivation

4.1. EDHOC-Exporter Interface

5. Message Formatting and Processing

5.1. Encoding of bstr_identifier

5.2. Message Processing Outline

5.3. EDHOC Message 1

5.3.1. Formatting of Message 1

5.3.2. Initiator Processing of Message 1

5.3.3. Responder Processing of Message 1

5.4. EDHOC Message 2

5.4.1. Formatting of Message 2

5.4.2. Responder Processing of Message 2

5.4.3. Initiator Processing of Message 2

5.5. EDHOC Message 3

5.5.1. Formatting of Message 3

5.5.2. Initiator Processing of Message 3

5.5.3. Responder Processing of Message 3

6. Error Handling

6.1. Success

6.2. Unspecified

¶

6.3. Wrong Selected Cipher Suite

6.3.1. Cipher Suite Negotiation

6.3.2. Examples

7. Transferring EDHOC and Deriving an OSCORE Context

7.1. EDHOC Message 4

7.1.1. Formatting of Message 4

7.1.2. Responder Processing of Message 4

7.1.3. Initiator Processing of Message 4

7.2. Transferring EDHOC in CoAP

8. Security Considerations

8.1. Security Properties

8.2. Cryptographic Considerations

8.3. Cipher Suites and Cryptographic Algorithms

8.4. Unprotected Data

8.5. Denial-of-Service

8.6. Implementation Considerations

9. IANA Considerations

9.1. EDHOC Exporter Label

9.2. EDHOC Cipher Suites Registry

9.3. EDHOC Method Type Registry

9.4. EDHOC Error Codes Registry

9.5. The Well-Known URI Registry

9.6. Media Types Registry

9.7. CoAP Content-Formats Registry

9.8. Expert Review Instructions

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Compact Representation

Appendix B. Use of CBOR, CDDL and COSE in EDHOC

B.1. CBOR and CDDL

B.2. CDDL Definitions

B.3. COSE

Appendix C. Test Vectors

C.1. Test Vectors for EDHOC Authenticated with Signature Keys

(x5t)

C.1.1. Message_1

C.1.2. Message_2

C.1.3. Message_3

C.1.4. OSCORE Security Context Derivation

C.2. Test Vectors for EDHOC Authenticated with Static Diffie-

Hellman Keys

C.2.1. Message_1

C.2.2. Message_2

C.2.3. Message_3

C.2.4. OSCORE Security Context Derivation

Appendix D. Applicability Template

Appendix E. EDHOC Message Deduplication

Appendix F. Change Log

Acknowledgments

Authors' Addresses

1. Introduction

1.1. Motivation

Many Internet of Things (IoT) deployments require technologies which

are highly performant in constrained environments [RFC7228]. IoT

devices may be constrained in various ways, including memory,

storage, processing capacity, and power. The connectivity for these

settings may also exhibit constraints such as unreliable and lossy

channels, highly restricted bandwidth, and dynamic topology. The

IETF has acknowledged this problem by standardizing a range of

lightweight protocols and enablers designed for the IoT, including

the Constrained Application Protocol (CoAP, [RFC7252]), Concise

Binary Object Representation (CBOR, [RFC8949]), and Static Context

Header Compression (SCHC, [RFC8724]).

The need for special protocols targeting constrained IoT deployments

extends also to the security domain [I-D.ietf-lake-reqs]. Important

characteristics in constrained environments are the number of round

trips and protocol message sizes, which if kept low can contribute

to good performance by enabling transport over a small number of

radio frames, reducing latency due to fragmentation or duty cycles,

etc. Another important criteria is code size, which may be

prohibitive for certain deployments due to device capabilities or

network load during firmware update. Some IoT deployments also need

to support a variety of underlying transport technologies,

potentially even with a single connection.

Some security solutions for such settings exist already. CBOR Object

Signing and Encryption (COSE, [I-D.ietf-cose-rfc8152bis-struct])

specifies basic application-layer security services efficiently

encoded in CBOR. Another example is Object Security for Constrained

RESTful Environments (OSCORE, [RFC8613]) which is a lightweight

communication security extension to CoAP using CBOR and COSE. In

order to establish good quality cryptographic keys for security

protocols such as COSE and OSCORE, the two endpoints may run an

authenticated Diffie-Hellman key exchange protocol, from which

shared secret key material can be derived. Such a key exchange

protocol should also be lightweight; to prevent bad performance in

case of repeated use, e.g., due to device rebooting or frequent

rekeying for security reasons; or to avoid latencies in a network

formation setting with many devices authenticating at the same time.

This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC),

a lightweight authenticated key exchange protocol providing good

security properties including perfect forward secrecy, identity

¶

¶

¶

protection, and cipher suite negotiation. Authentication can be

based on raw public keys (RPK) or public key certificates, and

requires the application to provide input on how to verify that

endpoints are trusted. This specification focuses on referencing

instead of transporting credentials to reduce message overhead.

EDHOC makes use of known protocol constructions, such as SIGMA

[SIGMA] and Extract-and-Expand [RFC5869]. COSE also provides crypto

agility and enables the use of future algorithms targeting IoT.

1.2. Use of EDHOC

EDHOC is designed for highly constrained settings making it

especially suitable for low-power wide area networks [RFC8376] such

as Cellular IoT, 6TiSCH, and LoRaWAN. A main objective for EDHOC is

to be a lightweight authenticated key exchange for OSCORE, i.e. to

provide authentication and session key establishment for IoT use

cases such as those built on CoAP [RFC7252]. CoAP is a specialized

web transfer protocol for use with constrained nodes and networks,

providing a request/response interaction model between application

endpoints. As such, EDHOC is targeting a large variety of use cases

involving 'things' with embedded microcontrollers, sensors, and

actuators.

A typical setting is when one of the endpoints is constrained or in

a constrained network, and the other endpoint is a node on the

Internet (such as a mobile phone) or at the edge of the constrained

network (such as a gateway). Thing-to-thing interactions over

constrained networks are also relevant since both endpoints would

then benefit from the lightweight properties of the protocol. EDHOC

could e.g. be run when a device connects for the first time, or to

establish fresh keys which are not revealed by a later compromise of

the long-term keys. Further security properties are described in

Section 8.1.

EDHOC enables the reuse of the same lightweight primitives as

OSCORE: CBOR for encoding, COSE for cryptography, and CoAP for

transport. By reusing existing libraries the additional code size

can be kept very low. Note that, while CBOR and COSE primitives are

built into the protocol messages, EDHOC is not bound to a particular

transport. However, it is recommended to transfer EDHOC messages in

CoAP payloads as is detailed in Section 7.2.

1.3. Message Size Examples

Compared to the DTLS 1.3 handshake [I-D.ietf-tls-dtls13] with ECDHE

and connection ID, the number of bytes in EDHOC + CoAP can be less

than 1/6 when RPK authentication is used, see [I-D.ietf-lwig-

security-protocol-comparison]. Figure 1 shows two examples of

¶

¶

¶

¶

¶

message sizes for EDHOC with different kinds of authentication keys

and different COSE header parameters for identification: static

Diffie-Hellman keys identified by 'kid' [I-D.ietf-cose-rfc8152bis-

struct], and X.509 signature certificates identified by a hash value

using 'x5t' [I-D.ietf-cose-x509].

Figure 1: Example of message sizes in bytes.

1.4. Document Structure

The remainder of the document is organized as follows: Section 2

outlines EDHOC authenticated with digital signatures, Section 3

describes the protocol elements of EDHOC, including message flow,

and formatting of the ephemeral public keys, Section 4 describes the

key derivation, Section 5 specifies EDHOC with authentication based

on signature keys or static Diffie-Hellman keys, Section 6 specifies

the EDHOC error message, and Section 7 describes how EDHOC can be

transferred in CoAP and used to establish an OSCORE security

context.

1.5. Terminology and Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Readers are expected to be familiar with the terms and concepts

described in CBOR [RFC8949], CBOR Sequences [RFC8742], COSE

structures and process [I-D.ietf-cose-rfc8152bis-struct], COSE

algorithms [I-D.ietf-cose-rfc8152bis-algs], and CDDL [RFC8610]. The

Concise Data Definition Language (CDDL) is used to express CBOR data

structures [RFC8949]. Examples of CBOR and CDDL are provided in

Appendix B.1. When referring to CBOR, this specification always

refer to Deterministically Encoded CBOR as specified in Sections

4.2.1 and 4.2.2 of [RFC8949].

¶

=================================

 kid x5t

message_1 37 37

message_2 46 117

message_3 20 91

Total 103 245

=================================

¶

¶

¶

The single output from authenticated encryption (including the

authentication tag) is called 'ciphertext', following [RFC5116].

2. EDHOC Outline

EDHOC specifies different authentication methods of the Diffie-

Hellman key exchange: digital signatures and static Diffie-Hellman

keys. This section outlines the digital signature based method.

Further details of protocol elements and other authentication

methods are provided in the remainder of this document.

SIGMA (SIGn-and-MAc) is a family of theoretical protocols with a

large number of variants [SIGMA]. Like IKEv2 [RFC7296] and (D)TLS

1.3 [RFC8446], EDHOC authenticated with digital signatures is built

on a variant of the SIGMA protocol which provides identity

protection of the initiator (SIGMA-I), and like IKEv2 [RFC7296],

EDHOC implements the SIGMA-I variant as MAC-then-Sign. The SIGMA-I

protocol using an authenticated encryption algorithm is shown in

Figure 2.

Figure 2: Authenticated encryption variant of the SIGMA-I protocol.

The parties exchanging messages are called Initiator (I) and

Responder (R). They exchange ephemeral public keys, compute a shared

secret, and derive symmetric application keys used to protect

application data.

G_X and G_Y are the ECDH ephemeral public keys of I and R,

respectively.

CRED_I and CRED_R are the credentials containing the public

authentication keys of I and R, respectively.

ID_CRED_I and ID_CRED_R are credential identifiers enabling the

recipient party to retrieve the credential of I and R,

respectively.

¶

¶

¶

Initiator Responder

 | G_X |

 +-->|

 | |

 | G_Y, AEAD(K_2; ID_CRED_R, Sig(R; CRED_R, G_X, G_Y)) |

 |<--+

 | |

 | AEAD(K_3; ID_CRED_I, Sig(I; CRED_I, G_Y, G_X)) |

 +-->|

 | |

¶

*

¶

*

¶

*

¶

Sig(I; .) and Sig(R; .) denote signatures made with the private

authentication key of I and R, respectively.

AEAD(K; .) denotes authenticated encryption with additional data

using a key K derived from the shared secret.

In order to create a "full-fledged" protocol some additional

protocol elements are needed. EDHOC adds:

Explicit connection identifiers C_I, C_R chosen by I and R,

respectively, enabling the recipient to find the protocol state.

Transcript hashes (hashes of message data) TH_2, TH_3, TH_4 used

for key derivation and as additional authenticated data.

Computationally independent keys derived from the ECDH shared

secret and used for authenticated encryption of different

messages.

An optional fourth message giving explicit key confirmation to I

in deployments where no protected application data is sent from R

to I.

A key material exporter and a key update function enabling

frequent forward secrecy.

Verification of a common preferred cipher suite:

The Initiator lists supported cipher suites in order of

preference

The Responder verifies that the selected cipher suite is the

first supported cipher suite (or else rejects and states

supported cipher suites).

Method types and error handling.

Transport of external authorization data.

EDHOC is designed to encrypt and integrity protect as much

information as possible, and all symmetric keys are derived using as

much previous information as possible. EDHOC is furthermore designed

to be as compact and lightweight as possible, in terms of message

sizes, processing, and the ability to reuse already existing CBOR,

COSE, and CoAP libraries.

To simplify for implementors, the use of CBOR and COSE in EDHOC is

summarized in Appendix B and test vectors including CBOR diagnostic

notation are given in Appendix C.

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

-

¶

-

¶

* ¶

* ¶

¶

¶

3. Protocol Elements

3.1. General

An EDHOC message flow consists of three mandatory messages

(message_1, message_2, message_3) between Initiator and Responder,

an optional fourth message (message_4), plus an EDHOC error message.

EDHOC messages are CBOR Sequences [RFC8742], see Figure 3. The

protocol elements in the figure are introduced in the following

sections. Message formatting and processing is specified in Section

5 and Section 6. An implementation may support only Initiator or

only Responder.

Application data is protected using the agreed application

algorithms (AEAD, hash) in the selected cipher suite (see Section

3.4) and the application can make use of the established connection

identifiers C_1, C_I, and C_R (see Section 3.2.4). EDHOC may be used

with the media type application/edhoc defined in Section 9.

The Initiator can derive symmetric application keys after creating

EDHOC message_3, see Section 4.1. Application protected data can

therefore be sent in parallel or together with EDHOC message_3.

Figure 3: EDHOC Message Flow

3.2. Method and Correlation

The data item METHOD_CORR in message_1 (see Section 5.3.1), is an

integer specifying the method and the correlation properties of the

transport, which are described in this section.

3.2.1. Method

EDHOC supports authentication with signature or static Diffie-

Hellman keys, as defined in the four authentication methods: 0, 1,

2, and 3, see Figure 4. (Method 0 corresponds to the case outlined

¶

¶

¶

Initiator Responder

| C_1, METHOD_CORR, SUITES_I, G_X, C_I, EAD_1 |

+-->|

| message_1 |

| |

| C_I, G_Y, C_R, Enc(ID_CRED_R, Signature_or_MAC_2, EAD_2) |

|<--+

| message_2 |

| |

| C_R, AEAD(K_3ae; ID_CRED_I, Signature_or_MAC_3, EAD_3) |

+-->|

| message_3 |

¶

in Section 2 where both Initiator and Responder authenticate with

signature keys.)

An implementation may support only a single method. The Initiator

and the Responder need to have agreed on a single method to be used

for EDHOC, see Section 3.7.

Figure 4: Method Types

3.2.2. Connection Identifiers

EDHOC includes optional connection identifiers (C_1, C_I, C_R). The

connection identifiers C_1, C_I, and C_R do not have any

cryptographic purpose in EDHOC. They contain information

facilitating retrieval of the protocol state and may therefore be

very short. C_1 is always set to null, while C_I and C_R are chosen

by I and R, respectively. One byte connection identifiers are

realistic in many scenarios as most constrained devices only have a

few connections. In cases where a node only has one connection, the

identifiers may even be the empty byte string.

The connection identifier MAY be used with an application protocol

(e.g. OSCORE) for which EDHOC establishes keys, in which case the

connection identifiers SHALL adhere to the requirements for that

protocol. Each party choses a connection identifier it desires the

other party to use in outgoing messages. (For OSCORE this results in

the endpoint selecting its Recipient ID, see Section 3.1 of

[RFC8613]).

3.2.3. Transport

Cryptographically, EDHOC does not put requirements on the lower

layers. EDHOC is not bound to a particular transport layer, and can

be used in environments without IP. The application using EDHOC is

responsible to handle message loss, reordering, message duplication,

fragmentation, demultiplex EDHOC messages from other types of

messages, and denial of service protection, where necessary.

¶

¶

+-------+-------------------+-------------------+-------------------+

| Value | Initiator | Responder | Reference |

+-------+-------------------+-------------------+-------------------+

| 0 | Signature Key | Signature Key | [[this document]] |

| 1 | Signature Key | Static DH Key | [[this document]] |

| 2 | Static DH Key | Signature Key | [[this document]] |

| 3 | Static DH Key | Static DH Key | [[this document]] |

+-------+-------------------+-------------------+-------------------+

¶

¶

¶

The Initiator and the Responder need to have agreed on a transport

to be used for EDHOC, see Section 3.7. It is recommended to

transport EDHOC in CoAP payloads, see Section 7.

3.2.4. Message Correlation

If the whole transport path provides a mechanism for correlating

messages received with messages previously sent, then some of the

connection identifiers may be omitted. There are four cases:

corr = 0, the transport does not provide a correlation mechanism.

corr = 1, the transport provides a correlation mechanism that

enables the Responder to correlate message_2 and message_1 as

well as message_4 and message_3.

corr = 2, the transport provides a correlation mechanism that

enables the Initiator to correlate message_3 and message_2.

corr = 3, the transport provides a correlation mechanism that

enables both parties to correlate all three messages.

For example, if the key exchange is transported over CoAP, the CoAP

Token can be used to correlate messages, see Section 7.2.

3.3. Authentication Parameters

3.3.1. Authentication Keys

The authentication key MUST be a signature key or static Diffie-

Hellman key. The Initiator and the Responder MAY use different types

of authentication keys, e.g. one uses a signature key and the other

uses a static Diffie-Hellman key. When using a signature key, the

authentication is provided by a signature. When using a static

Diffie-Hellman key the authentication is provided by a Message

Authentication Code (MAC) computed from an ephemeral-static ECDH

shared secret which enables significant reductions in message sizes.

The MAC is implemented with an AEAD algorithm. When using static

Diffie-Hellman keys the Initiator's and Responder's private

authentication keys are called I and R, respectively, and the public

authentication keys are called G_I and G_R, respectively. The

authentication key algorithm needs to specified with enough

parameters to make it completely determined. Note that for most

signature algorithms, the signature is determined by the signature

algorithm and the authentication key algorithm together. For

example, the curve used in the signature is typically determined by

the authentication key parameters.

Only the Responder SHALL have access to the Responder's private

authentication key.

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

*

¶

Only the Initiator SHALL have access to the Initiator's private

authentication key.

3.3.2. Identities

EDHOC assumes the existence of mechanisms (certification authority,

trusted third party, manual distribution, etc.) for specifying and

distributing authentication keys and identities. Policies are set

based on the identity of the other party, and parties typically only

allow connections from a specific identity or a small restricted set

of identities. For example, in the case of a device connecting to a

network, the network may only allow connections from devices which

authenticate with certificates having a particular range of serial

numbers in the subject field and signed by a particular CA. On the

other side, the device may only be allowed to connect to a network

which authenticates with a particular public key (information of

which may be provisioned, e.g., out of band or in the external

authorization data, see Section 3.6).

The EDHOC implementation must be able to receive and enforce

information from the application about what is the intended

endpoint, and in particular whether it is a specific identity or a

set of identities.

When a Public Key Infrastructure (PKI) is used, the trust anchor

is a Certification Authority (CA) certificate, and the identity

is the subject whose unique name (e.g. a domain name, NAI, or

EUI) is included in the endpoint's certificate. Before running

EDHOC each party needs at least one CA public key certificate, or

just the public key, and a specific identity or set of identities

it is allowed to communicate with. Only validated public-key

certificates with an allowed subject name, as specified by the

application, are to be accepted. EDHOC provides proof that the

other party possesses the private authentication key

corresponding to the public authentication key in its

certificate. The certification path provides proof that the

subject of the certificate owns the public key in the

certificate.

When public keys are used but not with a PKI (RPK, self-signed

certificate), the trust anchor is the public authentication key

of the other party. In this case, the identity is typically

directly associated to the public authentication key of the other

party. For example, the name of the subject may be a canonical

representation of the public key. Alternatively, if identities

can be expressed in the form of unique subject names assigned to

public keys, then a binding to identity can be achieved by

including both public key and associated subject name in the

protocol message computation: CRED_I or CRED_R may be a self-

*

¶

¶

¶

*

¶

*

signed certificate or COSE_Key containing the public

authentication key and the subject name, see Section 3.3.3.

Before running EDHOC, each endpoint needs a specific public

authentication key/unique associated subject name, or a set of

public authentication keys/unique associated subject names, which

it is allowed to communicate with. EDHOC provides proof that the

other party possesses the private authentication key

corresponding to the public authentication key.

3.3.3. Authentication Credentials

The authentication credentials, CRED_I and CRED_R, contain the

public authentication key of the Initiator and the Responder,

respectively. The Initiator and the Responder MAY use different

types of credentials, e.g. one uses an RPK and the other uses a

public key certificate.

The credentials CRED_I and CRED_R are signed or MAC:ed (depending on

method) by the Initiator and the Responder, respectively, see

Section 5.5 and Section 5.4.

When the credential is a certificate, CRED_x is an end-entity

certificate (i.e. not the certificate chain) encoded as a CBOR bstr.

In X.509 certificates, signature keys typically have key usage

"digitalSignature" and Diffie-Hellman keys typically have key usage

"keyAgreement".

To prevent misbinding attacks in systems where an attacker can

register public keys without proving knowledge of the private key,

SIGMA [SIGMA] enforces a MAC to be calculated over the "Identity",

which in case of a X.509 certificate would be the 'subject' and

'subjectAltName' fields. EDHOC follows SIGMA by calculating a MAC

over the whole certificate. While the SIGMA paper only focuses on

the identity, the same principle is true for any information such as

policies connected to the public key.

When the credential is a COSE_Key, CRED_x is a CBOR map only

containing specific fields from the COSE_Key identifying the public

key, and optionally the "Identity". CRED_x needs to be defined such

that it is identical when generated by Initiator or Responder. The

parameters SHALL be encoded in bytewise lexicographic order of their

deterministic encodings as specified in Section 4.2.1 of [RFC8949].

If the parties have agreed on an identity besides the public key,

the identity is included in the CBOR map with the label "subject

¶

¶

¶

¶

¶

¶

name", otherwise the subject name is the empty text string. The

public key parameters depend on key type.

For COSE_Keys of type OKP the CBOR map SHALL, except for subject

name, only include the parameters 1 (kty), -1 (crv), and -2 (x-

coordinate).

For COSE_Keys of type EC2 the CBOR map SHALL, except for subject

name, only include the parameters 1 (kty), -1 (crv), -2 (x-

coordinate), and -3 (y-coordinate).

An example of CRED_x when the RPK contains an X25519 static Diffie-

Hellman key and the parties have agreed on an EUI-64 identity is

shown below:

3.3.4. Identification of Credentials

ID_CRED_I and ID_CRED_R are used to identify and optionally

transport the public authentication keys of the Initiator and the

Responder, respectively. ID_CRED_I and ID_CRED_R do not have any

cryptographic purpose in EDHOC.

ID_CRED_R is intended to facilitate for the Initiator to retrieve

the Responder's public authentication key.

ID_CRED_I is intended to facilitate for the Responder to retrieve

the Initiator's public authentication key.

The identifiers ID_CRED_I and ID_CRED_R are COSE header_maps, i.e.

CBOR maps containing Common COSE Header Parameters, see Section 3.1

of [I-D.ietf-cose-rfc8152bis-struct]). In the following we give some

examples of COSE header_maps.

Raw public keys are most optimally stored as COSE_Key objects and

identified with a 'kid' parameter:

ID_CRED_x = { 4 : kid_x }, where kid_x : bstr, for x = I or R.

Public key certificates can be identified in different ways. Header

parameters for identifying C509 certificates and X.509 certificates

¶

*

¶

*

¶

¶

CRED_x = {

 1: 1,

 -1: 4,

 -2: h'b1a3e89460e88d3a8d54211dc95f0b90

 3ff205eb71912d6db8f4af980d2db83a',

 "subject name" : "42-50-31-FF-EF-37-32-39"

}

¶

¶

*

¶

*

¶

¶

¶

* ¶

are defined in [I-D.ietf-cose-cbor-encoded-cert] and [I-D.ietf-cose-

x509], for example:

by a hash value with the 'c5t' or 'x5t' parameters;

ID_CRED_x = { 34 : COSE_CertHash }, for x = I or R,

ID_CRED_x = { TDB3 : COSE_CertHash }, for x = I or R,

by a URI with the 'c5u' or 'x5u' parameters;

ID_CRED_x = { 35 : uri }, for x = I or R,

ID_CRED_x = { TBD4 : uri }, for x = I or R,

ID_CRED_x MAY contain the actual credential used for

authentication, CRED_x. For example, a certificate chain can be

transported in ID_CRED_x with COSE header parameter c5c or

x5chain, defined in [I-D.ietf-cose-cbor-encoded-cert] and [I-

D.ietf-cose-x509].

It is RECOMMENDED that ID_CRED_x uniquely identify the public

authentication key as the recipient may otherwise have to try

several keys. ID_CRED_I and ID_CRED_R are transported in the

'ciphertext', see Section 5.5 and Section 5.4.

When ID_CRED_x does not contain the actual credential it may be very

short. One byte credential identifiers are realistic in many

scenarios as most constrained devices only have a few keys. In cases

where a node only has one key, the identifier may even be the empty

byte string.

3.4. Cipher Suites

An EDHOC cipher suite consists of an ordered set of algorithms from

the "COSE Algorithms" and "COSE Elliptic Curves" registries.

Algorithms need to be specified with enough parameters to make them

completely determined. Currently, none of the algorithms require

parameters. EDHOC is only specified for use with key exchange

algorithms of type ECDH curves. Use with other types of key exchange

algorithms would likely require a specification updating EDHOC. Note

that for most signature algorithms, the signature is determined by

the signature algorithm and the authentication key algorithm

together, see Section 3.3.1.

EDHOC AEAD algorithm

EDHOC hash algorithm

EDHOC key exchange algorithm (ECDH curve)

¶

* ¶

- ¶

- ¶

* ¶

- ¶

- ¶

*

¶

¶

¶

¶

* ¶

* ¶

* ¶

EDHOC signature algorithm

Application AEAD algorithm

Application hash algorithm

Each cipher suite is identified with a pre-defined int label.

EDHOC can be used with all algorithms and curves defined for COSE.

Implementation can either use one of the pre-defined cipher suites

(Section 9.2) or use any combination of COSE algorithms and

parameters to define their own private cipher suite. Private cipher

suites can be identified with any of the four values -24, -23, -22,

-21.

The following cipher suites are for constrained IoT where message

overhead is a very important factor:

The following cipher suite is for general non-constrained

applications. It uses very high performance algorithms that also are

widely supported:

The following cipher suite is for high security application such as

government use and financial applications. It is compatible with the

CNSA suite [CNSA].

* ¶

* ¶

* ¶

¶

¶

¶

 0. (10, -16, 4, -8, 10, -16)

 (AES-CCM-16-64-128, SHA-256, X25519, EdDSA,

 AES-CCM-16-64-128, SHA-256)

 1. (30, -16, 4, -8, 10, -16)

 (AES-CCM-16-128-128, SHA-256, X25519, EdDSA,

 AES-CCM-16-64-128, SHA-256)

 2. (10, -16, 1, -7, 10, -16)

 (AES-CCM-16-64-128, SHA-256, P-256, ES256,

 AES-CCM-16-64-128, SHA-256)

 3. (30, -16, 1, -7, 10, -16)

 (AES-CCM-16-128-128, SHA-256, P-256, ES256,

 AES-CCM-16-64-128, SHA-256)

¶

¶

 4. (1, -16, 4, -7, 1, -16)

 (A128GCM, SHA-256, X25519, ES256,

 A128GCM, SHA-256)

¶

¶

 5. (3, -43, 2, -35, 3, -43)

 (A256GCM, SHA-384, P-384, ES384,

 A256GCM, SHA-384)

¶

The different methods use the same cipher suites, but some

algorithms are not used in some methods. The EDHOC signature

algorithm is not used in methods without signature authentication.

The Initiator needs to have a list of cipher suites it supports in

order of preference. The Responder needs to have a list of cipher

suites it supports. SUITES_I is a CBOR array containing cipher

suites that the Initiator supports. SUITES_I is formatted and

processed as detailed in Section 5.3.1 to secure the cipher suite

negotiation. Examples of cipher suite negotiation are given in

Section 6.3.2.

3.5. Ephemeral Public Keys

EDHOC always uses compact representation of elliptic curve points,

see Appendix A. In COSE compact representation is achieved by

formatting the ECDH ephemeral public keys as COSE_Keys of type EC2

or OKP according to Sections 7.1 and 7.2 of [I-D.ietf-cose-

rfc8152bis-algs], but only including the 'x' parameter in G_X and

G_Y. For Elliptic Curve Keys of type EC2, compact representation MAY

be used also in the COSE_Key. If the COSE implementation requires an

'y' parameter, the value y = false SHALL be used. COSE always use

compact output for Elliptic Curve Keys of type EC2.

3.6. External Authorization Data

In order to reduce round trips and number of messages or to simplify

processing, external security applications may be integrated into

EDHOC by transporting authorization related data together with the

messages. One example is the transport third-party identity and

authorization information protected out of scope of EDHOC [I-

D.selander-ace-ake-authz]. Another example is the embedding of a

certificate enrolment request or a newly issued certificate.

EDHOC allows opaque external authorization data (EAD) to be sent in

the EDHOC messages. External authorization data sent in message_1

(EAD_1) or message_2 (EAD_2) must be considered unprotected by

EDHOC, see Section 8.4. External authorization data sent in

message_3 (EAD_3) or message_4 (EAD_4) is protected between

Initiator and Responder.

External authorization data is a CBOR sequence (see Appendix B.1) as

defined below:

¶

¶

¶

¶

¶

¶

EAD = (

 type : int,

 1* ext_authz_data : any,

)

¶

where type is an int and is followed by one or more ext_authz_data

depending on type as defined in a separate specification.

The EAD fields of EDHOC are not intended for generic application

data. Since data carried in EAD_1 and EAD_2 fields may not be

protected, special considerations need to be made such that a) it

does not violate security, privacy etc. requirements of the service

which uses this data, and b) it does not violate the security

properties of EDHOC. Security applications making use of the EAD

fields must perform the necessary security analysis.

3.7. Applicability Statement

EDHOC requires certain parameters to be agreed upon between

Initiator and Responder. Some parameters can be agreed through the

protocol execution (specifically cipher suite negotiation, see

Section 3.4) but other parameters may need to be known out-of-band

(e.g., which authentication method is used, see Section 3.2.1).

The purpose of the applicability statement is describe the intended

use of EDHOC to allow for the relevant processing and verifications

to be made, including things like:

How the endpoint detects that an EDHOC message is received.

This includes how EDHOC messages are transported, for example

in the payload of a CoAP message with a certain Uri-Path or

Content-Format; see Section 7.2.

Method and correlation of underlying transport messages

(METHOD_CORR; see Section 3.2.1 and Section 3.2.4). This gives

information about the optional connection identifier fields.

How message_1 is identified, in particular if the optional

initial C_1 = null of message_1 is present; see Section 5.3.1

Profile for authentication credentials (CRED_I, CRED_R; see

Section 3.3.3), e.g., profile for certificate or COSE_key,

including supported authentication key algorithms (subject

public key algorithm in X.509 certificate).

Type used to identify authentication credentials (ID_CRED_I,

ID_CRED_R; see Section 3.3.4).

Use and type of external authorization data (EAD_1, EAD_2,

EAD_3, EAD_4; see Section 3.6).

Identifier used as identity of endpoint; see Section 3.3.2.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7. ¶

If message_4 shall be sent/expected, and if not, how to ensure

a protected application message is sent from the Responder to

the Initiator; see Section 7.1.

The applicability statement may also contain information about

supported cipher suites. The procedure for selecting and verifying

cipher suite is still performed as specified by the protocol, but it

may become simplified by this knowledge.

An example of an applicability statement is shown in Appendix D.

For some parameters, like METHOD_CORR, ID_CRED_x, type of EAD, the

receiver is able to verify compliance with applicability statement,

and if it needs to fail because of incompliance, to infer the reason

why the protocol failed.

For other parameters, like CRED_x in the case that it is not

transported, it may not be possible to verify that incompliance with

applicability statement was the reason for failure: Integrity

verification in message_2 or message_3 may fail not only because of

wrong authentication credential. For example, in case the Initiator

uses public key certificate by reference (i.e. not transported

within the protocol) then both endpoints need to use an identical

data structure as CRED_I or else the integrity verification will

fail.

Note that it is not necessary for the endpoints to specify a single

transport for the EDHOC messages. For example, a mix of CoAP and

HTTP may be used along the path, and this may still allow

correlation between messages.

The applicability statement may be dependent on the identity of the

other endpoint, but this applies only to the later phases of the

protocol when identities are known. (Initiator does not know

identity of Responder before having verified message_2, and

Responder does not know identity of Initiator before having verified

message_3.)

Other conditions may be part of the applicability statement, such as

target application or use (if there is more than one application/

use) to the extent that EDHOC can distinguish between them. In case

multiple applicability statements are used, the receiver needs to be

able to determine which is applicable for a given session, for

example based on URI or external authorization data type.

4. Key Derivation

EDHOC uses Extract-and-Expand [RFC5869] with the EDHOC hash

algorithm in the selected cipher suite to derive keys used in EDHOC

and in the application. Extract is used to derive fixed-length

8.

¶

¶

¶

¶

¶

¶

¶

¶

uniformly pseudorandom keys (PRK) from ECDH shared secrets. Expand

is used to derive additional output keying material (OKM) from the

PRKs. The PRKs are derived using Extract.

If the EDHOC hash algorithm is SHA-2, then Extract(salt, IKM) =

HKDF-Extract(salt, IKM) [RFC5869]. If the EDHOC hash algorithm is

SHAKE128, then Extract(salt, IKM) = KMAC128(salt, IKM, 256, "").

If the EDHOC hash algorithm is SHAKE256, then Extract(salt, IKM) =

KMAC256(salt, IKM, 512, "").

PRK_2e is used to derive a keystream to encrypt message_2. PRK_3e2m

is used to derive keys and IVs to produce a MAC in message_2 and to

encrypt message_3. PRK_4x3m is used to derive keys and IVs to

produce a MAC in message_3 and to derive application specific data.

PRK_2e is derived with the following input:

The salt SHALL be the empty byte string. Note that [RFC5869]

specifies that if the salt is not provided, it is set to a string

of zeros (see Section 2.2 of [RFC5869]). For implementation

purposes, not providing the salt is the same as setting the salt

to the empty byte string.

The input keying material (IKM) SHALL be the ECDH shared secret

G_XY (calculated from G_X and Y or G_Y and X) as defined in

Section 6.3.1 of [I-D.ietf-cose-rfc8152bis-algs].

Example: Assuming the use of SHA-256 the extract phase of HKDF

produces PRK_2e as follows:

where salt = 0x (the empty byte string).

The pseudorandom keys PRK_3e2m and PRK_4x3m are defined as follow:

If the Responder authenticates with a static Diffie-Hellman key,

then PRK_3e2m = Extract(PRK_2e, G_RX), where G_RX is the ECDH

shared secret calculated from G_R and X, or G_X and R, else

PRK_3e2m = PRK_2e.

If the Initiator authenticates with a static Diffie-Hellman key,

then PRK_4x3m = Extract(PRK_3e2m, G_IY), where G_IY is the ECDH

shared secret calculated from G_I and Y, or G_Y and I, else

PRK_4x3m = PRK_3e2m.

¶

 PRK = Extract(salt, IKM)¶

¶

¶

¶

*

¶

*

¶

¶

 PRK_2e = HMAC-SHA-256(salt, G_XY)¶

¶

¶

*

¶

*

¶

Example: Assuming the use of curve25519, the ECDH shared secrets

G_XY, G_RX, and G_IY are the outputs of the X25519 function

[RFC7748]:

The keys and IVs used in EDHOC are derived from PRKs using Expand

[RFC5869] where the EDHOC-KDF is instantiated with the EDHOC AEAD

algorithm in the selected cipher suite.

where info is the CBOR encoding of

where

edhoc_aead_id is an int or tstr containing the algorithm

identifier of the EDHOC AEAD algorithm in the selected cipher

suite encoded as defined in [I-D.ietf-cose-rfc8152bis-algs]. Note

that a single fixed edhoc_aead_id is used in all invocations of

EDHOC-KDF, including the derivation of KEYSTREAM_2 and

invocations of the EDHOC-Exporter.

transcript_hash is a bstr set to one of the transcript hashes

TH_2, TH_3, or TH_4 as defined in Sections 5.4.1, 5.5.1, and 4.1.

label is a tstr set to the name of the derived key or IV, i.e.

"K_2m", "IV_2m", "KEYSTREAM_2", "K_3m", "IV_3m", "K_3ae", or

"IV_3ae".

length is the length of output keying material (OKM) in bytes

If the EDHOC hash algorithm is SHA-2, then Expand(PRK, info, length

) = HKDF-Expand(PRK, info, length) [RFC5869]. If the EDHOC hash

algorithm is SHAKE128, then Expand(PRK, info, length) = KMAC128(

PRK, info, L, ""). If the EDHOC hash algorithm is SHAKE256, then

Expand(PRK, info, length) = KMAC256(PRK, info, L, "").

KEYSTREAM_2 are derived using the transcript hash TH_2 and the

pseudorandom key PRK_2e. K_2m and IV_2m are derived using the

transcript hash TH_2 and the pseudorandom key PRK_3e2m. K_3ae and

IV_3ae are derived using the transcript hash TH_3 and the

¶

 G_XY = X25519(Y, G_X) = X25519(X, G_Y)¶

¶

 OKM = EDHOC-KDF(PRK, transcript_hash, label, length)

 = Expand(PRK, info, length)

¶

¶

info = [

 edhoc_aead_id : int / tstr,

 transcript_hash : bstr,

 label : tstr,

 length : uint

]

¶

¶

*

¶

*

¶

*

¶

* ¶

¶

pseudorandom key PRK_3e2m. K_3m and IV_3m are derived using the

transcript hash TH_3 and the pseudorandom key PRK_4x3m. IVs are only

used if the EDHOC AEAD algorithm uses IVs.

4.1. EDHOC-Exporter Interface

Application keys and other application specific data can be derived

using the EDHOC-Exporter interface defined as:

label_context is a CBOR sequence:

where label is a registered tstr from the EDHOC Exporter Label

registry (Section 9.1), context is a bstr defined by the

application, and length is a uint defined by the application. The

(label, context) pair must be unique, i.e. a (label, context) MUST

NOT be used for two different purposes. However an application can

re-derive the same key several times as long as it is done in a

secure way. For example, in most encryption algorithms the same

(key, nonce) pair must not be reused.

The transcript hash TH_4 is a CBOR encoded bstr and the input to the

hash function is a CBOR Sequence.

where H() is the hash function in the selected cipher suite.

Examples of use of the EDHOC-Exporter are given in Section 7.1.2 and

[I-D.ietf-core-oscore-edhoc].

To provide forward secrecy in an even more efficient way than re-

running EDHOC, EDHOC provides the function EDHOC-KeyUpdate. When

EDHOC-KeyUpdate is called the old PRK_4x3m is deleted and the new

PRK_4x3m is calculated as a "hash" of the old key using the Extract

function as illustrated by the following pseudocode:

5. Message Formatting and Processing

This section specifies formatting of the messages and processing

steps. Error messages are specified in Section 6.

¶

¶

 EDHOC-Exporter(label, context, length)

 = EDHOC-KDF(PRK_4x3m, TH_4, label_context, length)

¶

¶

label_context = (

 label : tstr,

 context : bstr,

)

¶

¶

¶

 TH_4 = H(TH_3, CIPHERTEXT_3)¶

¶

¶

 EDHOC-KeyUpdate(nonce):

 PRK_4x3m = Extract(nonce, PRK_4x3m)

¶

¶

An EDHOC message is encoded as a sequence of CBOR data (CBOR

Sequence, [RFC8742]). Additional optimizations are made to reduce

message overhead.

While EDHOC uses the COSE_Key, COSE_Sign1, and COSE_Encrypt0

structures, only a subset of the parameters is included in the EDHOC

messages. The unprotected COSE header in COSE_Sign1, and

COSE_Encrypt0 (not included in the EDHOC message) MAY contain

parameters (e.g. 'alg').

5.1. Encoding of bstr_identifier

Byte strings are encoded in CBOR as two or more bytes, whereas

integers in the interval -24 to 23 are encoded in CBOR as one byte.

bstr_identifier is a special encoding of byte strings, used

throughout the protocol to enable the encoding of the shortest byte

strings as integers that only require one byte of CBOR encoding.

The bstr_identifier encoding is defined as follows: Byte strings in

the interval h'00' to h'2f' are encoded as the corresponding integer

minus 24, which are all represented by one byte CBOR ints. Other

byte strings are encoded as CBOR byte strings.

For example, the byte string h'59e9' encoded as a bstr_identifier is

equal to h'59e9', while the byte string h'2a' is encoded as the

integer 18.

The CDDL definition of the bstr_identifier is given below:

Note that, despite what could be interpreted by the CDDL definition

only, bstr_identifier once decoded are always byte strings.

5.2. Message Processing Outline

This section outlines the message processing of EDHOC.

For each session, the endpoints are assumed to keep an associated

protocol state containing connection identifiers, keys, etc. used

for subsequent processing of protocol related data. The protocol

state is assumed to be associated to an applicability statement

(Section 3.7) which provides the context for how messages are

transported, identified and processed.

¶

¶

¶

¶

¶

¶

¶

bstr_identifier = bstr / int¶

¶

¶

¶

EDHOC messages SHALL be processed according to the current protocol

state. The following steps are expected to be performed at reception

of an EDHOC message:

Detect that an EDHOC message has been received, for example by

means of port number, URI, or media type (Section 3.7).

Retrieve the protocol state, e.g. using the received connection

identifier (Section 3.2.2) or with the help of message

correlation provided by the transport protocol (Section 3.2.4).

If there is no protocol state, in the case of message_1, a new

protocol state is created. An initial C_1 = null byte in

message_1 (Section 5.3.1) can be used to distinguish message_1

from other messages. The Responder endpoint needs to make use

of available Denial-of-Service mitigation (Section 8.5).

If the message received is an error message then process

according to Section 6, else process as the expected next

message according to the protocol state.

If the processing fails, then the protocol is discontinued, an error

message sent, and the protocol state erased. Further details are

provided in the following subsections.

Different instances of the same message MUST NOT be processed in one

session. Note that processing will fail if the same message appears

a second time for EDHOC processing because the state of the protocol

has moved on and now expects something else. This assumes that

message duplication due to re-transmissions is handled by the

transport protocol, see Section 3.2.3. The case when the transport

does not support message deduplication is addressed in Appendix E.

5.3. EDHOC Message 1

5.3.1. Formatting of Message 1

message_1 SHALL be a CBOR Sequence (see Appendix B.1) as defined

below

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

message_1 = (

 ? C_1 : null,

 METHOD_CORR : int,

 SUITES_I : [selected : suite, supported : 2* suite] / suite,

 G_X : bstr,

 C_I : bstr_identifier,

 ? EAD ; EAD_1

)

suite = int

¶

where:

C_1 - an initial CBOR simple value null (= 0xf6) MAY be used to

distinguish message_1 from other messages.

METHOD_CORR = 4 * method + corr, where method = 0, 1, 2, or 3

(see Figure 4) and the correlation parameter corr is chosen based

on the transport and determines which connection identifiers that

are omitted (see Section 3.2.4).

SUITES_I - cipher suites which the Initiator supports in order of

(decreasing) preference. The list of supported cipher suites can

be truncated at the end, as is detailed in the processing steps

below and Section 6.3. One of the supported cipher suites is

selected. The selected suite is the first suite in the SUITES_I

CBOR array. If a single supported cipher suite is conveyed then

that cipher suite is selected and SUITES_I is encoded as an int

instead of an array.

G_X - the ephemeral public key of the Initiator

C_I - variable length connection identifier, encoded as a

bstr_identifier (see Section 5.1).

EAD_1 - unprotected external authorization data, see Section 3.6.

5.3.2. Initiator Processing of Message 1

The Initiator SHALL compose message_1 as follows:

The supported cipher suites and the order of preference MUST NOT

be changed based on previous error messages. However, the list

SUITES_I sent to the Responder MAY be truncated such that cipher

suites which are the least preferred are omitted. The amount of

truncation MAY be changed between sessions, e.g. based on

previous error messages (see next bullet), but all cipher suites

which are more preferred than the least preferred cipher suite in

the list MUST be included in the list.

The Initiator MUST select its most preferred cipher suite,

conditioned on what it can assume to be supported by the

Responder. If the Initiator previously received from the

Responder an error message with error code 2 (see Section 6.3)

indicating cipher suites supported by the Responder which also

are supported by the Initiator, then the Initiator SHOULD select

the most preferred cipher suite of those (note that error

messages are not authenticated and may be forged).

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

Generate an ephemeral ECDH key pair using the curve in the

selected cipher suite and format it as a COSE_Key. Let G_X be the

'x' parameter of the COSE_Key.

Choose a connection identifier C_I and store it for the length of

the protocol.

Encode message_1 as a sequence of CBOR encoded data items as

specified in Section 5.3.1

5.3.3. Responder Processing of Message 1

The Responder SHALL process message_1 as follows:

Decode message_1 (see Appendix B.1).

Verify that the selected cipher suite is supported and that no

prior cipher suite in SUITES_I is supported.

Pass EAD_1 to the security application.

If any processing step fails, the Responder SHOULD send an EDHOC

error message back, formatted as defined in Section 6, and the

session MUST be discontinued. Sending error messages is essential

for debugging but MAY e.g. be skipped due to denial of service

reasons, see Section 8.

5.4. EDHOC Message 2

5.4.1. Formatting of Message 2

message_2 and data_2 SHALL be CBOR Sequences (see Appendix B.1) as

defined below

where:

G_Y - the ephemeral public key of the Responder

*

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

¶

¶

message_2 = (

 data_2,

 CIPHERTEXT_2 : bstr,

)

¶

data_2 = (

 ? C_I : bstr_identifier,

 G_Y : bstr,

 C_R : bstr_identifier,

)

¶

¶

* ¶

C_R - variable length connection identifier, encoded as a

bstr_identifier (see Section 5.1).

5.4.2. Responder Processing of Message 2

The Responder SHALL compose message_2 as follows:

If corr (METHOD_CORR mod 4) equals 1 or 3, C_I is omitted,

otherwise C_I is not omitted.

Generate an ephemeral ECDH key pair using the curve in the

selected cipher suite and format it as a COSE_Key. Let G_Y be the

'x' parameter of the COSE_Key.

Choose a connection identifier C_R and store it for the length of

the protocol.

Compute the transcript hash TH_2 = H(H(message_1), data_2)

where H() is the hash function in the selected cipher suite. The

transcript hash TH_2 is a CBOR encoded bstr and the input to the

hash function is a CBOR Sequence. Note that H(message_1) can be

computed and cached already in the processing of message_1.

Compute an inner COSE_Encrypt0 as defined in Section 5.3 of [I-

D.ietf-cose-rfc8152bis-struct], with the EDHOC AEAD algorithm in

the selected cipher suite, K_2m, IV_2m, and the following

parameters:

protected = << ID_CRED_R >>

ID_CRED_R - identifier to facilitate retrieval of CRED_R,

see Section 3.3.4

external_aad = << TH_2, CRED_R, ? EAD_2 >>

CRED_R - bstr containing the credential of the Responder,

see Section 3.3.4

EAD_2 = unprotected external authorization data, see

Section 3.6

plaintext = h''

COSE constructs the input to the AEAD [RFC5116] as follows:

Key K = EDHOC-KDF(PRK_3e2m, TH_2, "K_2m", length)

Nonce N = EDHOC-KDF(PRK_3e2m, TH_2, "IV_2m", length)

Plaintext P = 0x (the empty string)

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

- ¶

o

¶

- ¶

o

¶

o

¶

- ¶

¶

- ¶

- ¶

- ¶

Associated data A =

["Encrypt0", << ID_CRED_R >>, << TH_2, CRED_R, ? EAD_2 >>]

MAC_2 is the 'ciphertext' of the inner COSE_Encrypt0.

If the Responder authenticates with a static Diffie-Hellman key

(method equals 1 or 3), then Signature_or_MAC_2 is MAC_2. If the

Responder authenticates with a signature key (method equals 0 or

2), then Signature_or_MAC_2 is the 'signature' of a COSE_Sign1

object as defined in Section 4.4 of [I-D.ietf-cose-rfc8152bis-

struct] using the signature algorithm in the selected cipher

suite, the private authentication key of the Responder, and the

following parameters:

protected = << ID_CRED_R >>

external_aad = << TH_2, CRED_R, ? EAD_2 >>

payload = MAC_2

COSE constructs the input to the Signature Algorithm as:

The key is the private authentication key of the Responder.

The message M to be signed =

["Signature1", << ID_CRED_R >>, << TH_2, CRED_R, ? EAD_2 >>,

MAC_2]

CIPHERTEXT_2 is encrypted by using the Expand function as a

binary additive stream cipher.

plaintext = (ID_CRED_R / bstr_identifier, Signature_or_MAC_2,

? EAD_2)

Note that if ID_CRED_R contains a single 'kid' parameter,

i.e., ID_CRED_R = { 4 : kid_R }, only the byte string kid_R

is conveyed in the plaintext encoded as a bstr_identifier,

see Section 3.3.4 and Section 5.1.

CIPHERTEXT_2 = plaintext XOR KEYSTREAM_2

Encode message_2 as a sequence of CBOR encoded data items as

specified in Section 5.4.1.

- ¶

¶

¶

*

¶

- ¶

- ¶

- ¶

¶

- ¶

- ¶

¶

*

¶

-

¶

o

¶

- ¶

*

¶

5.4.3. Initiator Processing of Message 2

The Initiator SHALL process message_2 as follows:

Decode message_2 (see Appendix B.1).

Retrieve the protocol state using the connection identifier C_I

and/or other external information such as the CoAP Token and the

5-tuple.

Decrypt CIPHERTEXT_2, see Section 5.4.2.

Pass EAD_2 to the security application.

Verify that the identity of the Responder is an allowed identity

for this connection, see Section 3.3.

Verify Signature_or_MAC_2 using the algorithm in the selected

cipher suite. The verification process depends on the method, see

Section 5.4.2.

If any processing step fails, the Initiator SHOULD send an EDHOC

error message back, formatted as defined in Section 6. Sending error

messages is essential for debugging but MAY e.g.be skipped if a

session cannot be found or due to denial of service reasons, see

Section 8. If an error message is sent, the session MUST be

discontinued.

5.5. EDHOC Message 3

5.5.1. Formatting of Message 3

message_3 and data_3 SHALL be CBOR Sequences (see Appendix B.1) as

defined below

5.5.2. Initiator Processing of Message 3

The Initiator SHALL compose message_3 as follows:

If corr (METHOD_CORR mod 4) equals 2 or 3, C_R is omitted,

otherwise C_R is not omitted.

¶

* ¶

*

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

message_3 = (

 data_3,

 CIPHERTEXT_3 : bstr,

)

¶

data_3 = (

 ? C_R : bstr_identifier,

)

¶

¶

*

¶

Compute the transcript hash TH_3 = H(H(TH_2, CIPHERTEXT_2),

data_3) where H() is the hash function in the selected cipher

suite. The transcript hash TH_3 is a CBOR encoded bstr and the

input to the hash function is a CBOR Sequence. Note that H(TH_2,

CIPHERTEXT_2) can be computed and cached already in the

processing of message_2.

Compute an inner COSE_Encrypt0 as defined in Section 5.3 of [I-

D.ietf-cose-rfc8152bis-struct], with the EDHOC AEAD algorithm in

the selected cipher suite, K_3m, IV_3m, and the following

parameters:

protected = << ID_CRED_I >>

ID_CRED_I - identifier to facilitate retrieval of CRED_I,

see Section 3.3.4

external_aad = << TH_3, CRED_I, ? EAD_3 >>

CRED_I - bstr containing the credential of the Initiator,

see Section 3.3.4.

EAD_3 = protected external authorization data, see Section

3.6

plaintext = h''

COSE constructs the input to the AEAD [RFC5116] as follows:

Key K = EDHOC-KDF(PRK_4x3m, TH_3, "K_3m", length)

Nonce N = EDHOC-KDF(PRK_4x3m, TH_3, "IV_3m", length)

Plaintext P = 0x (the empty string)

Associated data A =

["Encrypt0", << ID_CRED_I >>, << TH_3, CRED_I, ? EAD_3 >>]

MAC_3 is the 'ciphertext' of the inner COSE_Encrypt0.

If the Initiator authenticates with a static Diffie-Hellman key

(method equals 2 or 3), then Signature_or_MAC_3 is MAC_3. If the

Initiator authenticates with a signature key (method equals 0 or

1), then Signature_or_MAC_3 is the 'signature' of a COSE_Sign1

object as defined in Section 4.4 of [I-D.ietf-cose-rfc8152bis-

struct] using the signature algorithm in the selected cipher

*

¶

*

¶

- ¶

o

¶

- ¶

o

¶

o

¶

- ¶

¶

- ¶

- ¶

- ¶

- ¶

¶

¶

*

suite, the private authentication key of the Initiator, and the

following parameters:

protected = << ID_CRED_I >>

external_aad = << TH_3, CRED_I, ? EAD_3 >>

payload = MAC_3

COSE constructs the input to the Signature Algorithm as:

The key is the private authentication key of the Initiator.

The message M to be signed =

["Signature1", << ID_CRED_I >>, << TH_3, CRED_I, ? EAD_3 >>,

MAC_3]

Compute an outer COSE_Encrypt0 as defined in Section 5.3 of [I-

D.ietf-cose-rfc8152bis-struct], with the EDHOC AEAD algorithm in

the selected cipher suite, K_3ae, IV_3ae, and the following

parameters. The protected header SHALL be empty.

external_aad = TH_3

plaintext = (ID_CRED_I / bstr_identifier, Signature_or_MAC_3,

? EAD_3)

Note that if ID_CRED_I contains a single 'kid' parameter,

i.e., ID_CRED_I = { 4 : kid_I }, only the byte string kid_I

is conveyed in the plaintext encoded as a bstr_identifier,

see Section 3.3.4 and Section 5.1.

COSE constructs the input to the AEAD [RFC5116] as follows:

Key K = EDHOC-KDF(PRK_3e2m, TH_3, "K_3ae", length)

Nonce N = EDHOC-KDF(PRK_3e2m, TH_3, "IV_3ae", length)

Plaintext P = (ID_CRED_I / bstr_identifier,

Signature_or_MAC_3, ? EAD_3)

Associated data A = ["Encrypt0", h'', TH_3]

CIPHERTEXT_3 is the 'ciphertext' of the outer COSE_Encrypt0.

Encode message_3 as a sequence of CBOR encoded data items as

specified in Section 5.5.1.

¶

- ¶

- ¶

- ¶

¶

- ¶

- ¶

¶

*

¶

- ¶

-

¶

o

¶

¶

- ¶

- ¶

-

¶

- ¶

¶

*

¶

Pass the connection identifiers (C_I, C_R) and the application

algorithms in the selected cipher suite to the application. The

application can now derive application keys using the EDHOC-Exporter

interface.

After sending message_3, the Initiator is assured that no other

party than the Responder can compute the key PRK_4x3m (implicit key

authentication). The Initiator can securely derive application keys

and send protected application data. However, the Initiator does not

know that the Responder has actually computed the key PRK_4x3m and

therefore the Initiator SHOULD NOT permanently store the keying

material PRK_4x3m and TH_4, or derived application keys, until the

Initiator is assured that the Responder has actually computed the

key PRK_4x3m (explicit key confirmation). This is similar to waiting

for acknowledgement (ACK) in a transport protocol. Explicit key

confirmation is e.g. assured when the Initiator has verified an

OSCORE message or message_4 from the Responder.

5.5.3. Responder Processing of Message 3

The Responder SHALL process message_3 as follows:

Decode message_3 (see Appendix B.1).

Retrieve the protocol state using the connection identifier C_R

and/or other external information such as the CoAP Token and the

5-tuple.

Decrypt and verify the outer COSE_Encrypt0 as defined in Section

5.3 of [I-D.ietf-cose-rfc8152bis-struct], with the EDHOC AEAD

algorithm in the selected cipher suite, K_3ae, and IV_3ae.

Pass EAD_3 to the security application.

Verify that the identity of the Initiator is an allowed identity

for this connection, see Section 3.3.

Verify Signature_or_MAC_3 using the algorithm in the selected

cipher suite. The verification process depends on the method, see

Section 5.5.2.

Pass the connection identifiers (C_I, C_R), and the application

algorithms in the selected cipher suite to the security

application. The application can now derive application keys

using the EDHOC-Exporter interface.

If any processing step fails, the Responder SHOULD send an EDHOC

error message back, formatted as defined in Section 6. Sending error

messages is essential for debugging but MAY e.g.be skipped if a

session cannot be found or due to denial of service reasons, see

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

Section 8. If an error message is sent, the session MUST be

discontinued.

After verifying message_3, the Responder is assured that the

Initiator has calculated the key PRK_4x3m (explicit key

confirmation) and that no other party than the Responder can compute

the key. The Responder can securely send protected application data

and store the keying material PRK_4x3m and TH_4.

6. Error Handling

This section defines the format for error messages.

An EDHOC error message can be sent by either endpoint as a reply to

any non-error EDHOC message. How errors at the EDHOC layer are

transported depends on lower layers, which need to enable error

messages to be sent and processed as intended.

Errors in EDHOC are fatal. After sending an error message, the

sender MUST discontinue the protocol. The receiver SHOULD treat an

error message as an indication that the other party likely has

discontinued the protocol. But as the error message is not

authenticated, a received error message might also have been sent by

an attacker and the receiver MAY therefore try to continue the

protocol.

error SHALL be a CBOR Sequence (see Appendix B.1) as defined below

Figure 5: EDHOC Error Message

where:

C_x - (optional) variable length connection identifier, encoded

as a bstr_identifier (see Section 5.1). If error is sent by the

Responder and corr (METHOD_CORR mod 4) equals 0 or 2 then C_x is

set to C_I, else if error is sent by the Initiator and corr

(METHOD_CORR mod 4) equals 0 or 1 then C_x is set to C_R, else

C_x is omitted.

ERR_CODE - error code encoded as an integer. The value 0 is used

for success, all other values (negative or positive) indicate

errors.

¶

¶

¶

¶

¶

¶

error = (

 ? C_x : bstr_identifier,

 ERR_CODE : int,

 ERR_INFO : any

)

¶

*

¶

*

¶

ERR_INFO - error information. Content and encoding depend on

error code.

The remainder of this section specifies the currently defined error

codes, see Figure 6. Error codes 1 and 2 MUST be supported.

Additional error codes and corresponding error information may be

specified.

Figure 6: Error Codes and Error Information

6.1. Success

Error code 0 MAY be used internally in an application to indicate

success, e.g. in log files. ERR_INFO can contain any type of CBOR

item. Error code 0 MUST NOT be used as part of the EDHOC message

exchange flow.

6.2. Unspecified

Error code 1 is used for errors that do not have a specific error

code defined. ERR_INFO MUST be a text string containing a human-

readable diagnostic message written in English. The diagnostic text

message is mainly intended for software engineers that during

debugging need to interpret it in the context of the EDHOC

specification. The diagnostic message SHOULD be provided to the

calling application where it SHOULD be logged.

6.3. Wrong Selected Cipher Suite

Error code 2 MUST only be used in a response to message_1 in case

the cipher suite selected by the Initiator is not supported by the

Responder, or if the Responder supports a cipher suite more

preferred by the Initiator than the selected cipher suite, see

Section 5.3.3. ERR_INFO is of type SUITES_R:

If the Responder does not support the selected cipher suite, then

SUITES_R MUST include one or more supported cipher suites. If the

*

¶

¶

+----------+---------------+--+

| ERR_CODE | ERR_INFO Type | Description |

+==========+===============+==+

| 0 | any | Success |

+----------+---------------+--+

| 1 | tstr | Unspecified |

+----------+---------------+--+

| 2 | SUITES_R | Wrong selected cipher suite |

+----------+---------------+--+

¶

¶

¶

SUITES_R : [supported : 2* suite] / suite¶

Responder does not support the selected cipher suite, but supports

another cipher suite in SUITES_I, then SUITES_R MUST include the

first supported cipher suite in SUITES_I.

6.3.1. Cipher Suite Negotiation

After receiving SUITES_R, the Initiator can determine which cipher

suite to select for the next EDHOC run with the Responder.

If the Initiator intends to contact the Responder in the future, the

Initiator SHOULD remember which selected cipher suite to use until

the next message_1 has been sent, otherwise the Initiator and

Responder will likely run into an infinite loop. After a successful

run of EDHOC, the Initiator MAY remember the selected cipher suite

to use in future EDHOC runs. Note that if the Initiator or Responder

is updated with new cipher suite policies, any cached information

may be outdated.

6.3.2. Examples

Assume that the Initiator supports the five cipher suites 5, 6, 7,

8, and 9 in decreasing order of preference. Figures 7 and 8 show

examples of how the Initiator can truncate SUITES_I and how SUITES_R

is used by Responders to give the Initiator information about the

cipher suites that the Responder supports.

In the first example (Figure 7), the Responder supports cipher suite

6 but not the initially selected cipher suite 5.

Figure 7: Example of Responder supporting suite 6 but not suite 5.

In the second example (Figure 8), the Responder supports cipher

suites 8 and 9 but not the more preferred (by the Initiator) cipher

suites 5, 6 or 7. To illustrate the negotiation mechanics we let the

Initiator first make a guess that the Responder supports suite 6 but

not suite 5. Since the Responder supports neither 5 nor 6, it

¶

¶

¶

¶

¶

Initiator Responder

| METHOD_CORR, SUITES_I = 5, G_X, C_I, EAD_1 |

+-->|

| message_1 |

| |

| C_I, DIAG_MSG, SUITES_R = 6 |

|<--+

| error |

| |

| METHOD_CORR, SUITES_I = [6, 5, 6], G_X, C_I, EAD_1 |

+-->|

| message_1 |

responds with an error and SUITES_R, after which the Initiator

selects its most preferred supported suite. The order of cipher

suites in SUITES_R does not matter. (If the Responder had supported

suite 5, it would include it in SUITES_R of the response, and it

would in that case have become the selected suite in the second

message_1.)

Figure 8: Example of Responder supporting suites 8 and 9 but not 5, 6

or 7.

Note that the Initiator's list of supported cipher suites and order

of preference is fixed (see Section 5.3.1 and Section 5.3.2).

Furthermore, the Responder shall only accept message_1 if the

selected cipher suite is the first cipher suite in SUITES_I that the

Responder supports (see Section 5.3.3). Following this procedure

ensures that the selected cipher suite is the most preferred (by the

Initiator) cipher suite supported by both parties.

If the selected cipher suite is not the first cipher suite which the

Responder supports in SUITES_I received in message_1, then Responder

MUST discontinue the protocol, see Section 5.3.3. If SUITES_I in

message_1 is manipulated then the integrity verification of

message_2 containing the transcript hash TH_2 will fail and the

Initiator will discontinue the protocol.

7. Transferring EDHOC and Deriving an OSCORE Context

7.1. EDHOC Message 4

This section specifies message_4 which is OPTIONAL to support. Key

confirmation is normally provided by sending an application message

from the Responder to the Initiator protected with a key derived

with the EDHOC-Exporter, e.g., using OSCORE (see [I-D.ietf-core-

oscore-edhoc]). In deployments where no protected application

¶

Initiator Responder

| METHOD_CORR, SUITES_I = [6, 5, 6], G_X, C_I, EAD_1 |

+-->|

| message_1 |

| |

| C_I, DIAG_MSG, SUITES_R = [9, 8] |

|<--+

| error |

| |

| METHOD_CORR, SUITES_I = [8, 5, 6, 7, 8], G_X, C_I, EAD_1 |

+-->|

| message_1 |

¶

¶

message is sent from the Responder to the Initiator, the Responder

MUST send message_4. Two examples of such deployments:

When EDHOC is only used for authentication and no application

data is sent.

When application data is only sent from the Initiator to the

Responder.

Further considerations are provided in Section 3.7.

7.1.1. Formatting of Message 4

message_4 and data_4 SHALL be CBOR Sequences (see Appendix B.1) as

defined below

7.1.2. Responder Processing of Message 4

The Responder SHALL compose message_4 as follows:

If corr (METHOD_CORR mod 4) equals 1 or 3, C_I is omitted,

otherwise C_I is not omitted.

Compute a COSE_Encrypt0 as defined in Section 5.3 of [I-D.ietf-

cose-rfc8152bis-struct], with the EDHOC AEAD algorithm in the

selected cipher suite, and the following parameters. The

protected header SHALL be empty.

protected = h''

external_aad = TH_4

plaintext = (? EAD_4)

where EAD_4 is protected external authorization data, see Section

3.6. COSE constructs the input to the AEAD [RFC5116] as follows:

Key K = EDHOC-Exporter("EDHOC_message_4_Key", length)

Nonce N = EDHOC-Exporter("EDHOC_message_4_Nonce", length)

¶

1.

¶

2.

¶

¶

¶

message_4 = (

 data_4,

 CIPHERTEXT_4 : bstr,

)

¶

data_4 = (

 ? C_I : bstr_identifier,

)

¶

¶

*

¶

*

¶

- ¶

- ¶

- ¶

¶

- ¶

- ¶

Plaintext P = (? EAD_4)

Associated data A = ["Encrypt0", h'', TH_4]

CIPHERTEXT_4 is the 'ciphertext' of the COSE_Encrypt0.

Encode message_4 as a sequence of CBOR encoded data items as

specified in Section 7.1.1.

7.1.3. Initiator Processing of Message 4

The Initiator SHALL process message_4 as follows:

Decode message_4 (see Appendix B.1).

Retrieve the protocol state using the connection identifier C_I

and/or other external information such as the CoAP Token and the

5-tuple.

Decrypt and verify the outer COSE_Encrypt0 as defined in Section

5.3 of [I-D.ietf-cose-rfc8152bis-struct], with the EDHOC AEAD

algorithm in the selected cipher suite, and the parameters

defined in Section 7.1.2.

Pass EAD_4 to the security application.

If any verification step fails the Initiator MUST send an EDHOC

error message back, formatted as defined in Section 6, and the

session MUST be discontinued.

7.2. Transferring EDHOC in CoAP

It is recommended to transport EDHOC as an exchange of CoAP

[RFC7252] messages. CoAP is a reliable transport that can preserve

packet ordering and handle message duplication. CoAP can also

perform fragmentation and protect against denial of service attacks.

It is recommended to carry the EDHOC messages in Confirmable

messages, especially if fragmentation is used.

By default, the CoAP client is the Initiator and the CoAP server is

the Responder, but the roles SHOULD be chosen to protect the most

sensitive identity, see Section 8. By default, EDHOC is transferred

in POST requests and 2.04 (Changed) responses to the Uri-Path:

"/.well-known/edhoc", but an application may define its own path

that can be discovered e.g. using resource directory [I-D.ietf-core-

resource-directory].

By default, the message flow is as follows: EDHOC message_1 is sent

in the payload of a POST request from the client to the server's

resource for EDHOC. EDHOC message_2 or the EDHOC error message is

- ¶

- ¶

¶

*

¶

¶

* ¶

*

¶

*

¶

* ¶

¶

¶

¶

sent from the server to the client in the payload of a 2.04

(Changed) response. EDHOC message_3 or the EDHOC error message is

sent from the client to the server's resource in the payload of a

POST request. If needed, an EDHOC error message is sent from the

server to the client in the payload of a 2.04 (Changed) response.

Alternatively, if EDHOC message_4 is used, it is sent from the

server to the client in the payload of a 2.04 (Changed) response

analogously to message_2.

An example of a successful EDHOC exchange using CoAP is shown in

Figure 9. In this case the CoAP Token enables the Initiator to

correlate message_1 and message_2 so the correlation parameter corr

= 1.

Figure 9: Transferring EDHOC in CoAP when the Initiator is CoAP Client

The exchange in Figure 9 protects the client identity against active

attackers and the server identity against passive attackers. An

alternative exchange that protects the server identity against

active attackers and the client identity against passive attackers

is shown in Figure 10. In this case the CoAP Token enables the

Responder to correlate message_2 and message_3 so the correlation

parameter corr = 2. If EDHOC message_4 is used, it is transported

with CoAP in the payload of a POST request with a 2.04 (Changed)

response.

¶

¶

Client Server

 | |

 +--------->| Header: POST (Code=0.02)

 | POST | Uri-Path: "/.well-known/edhoc"

 | | Content-Format: application/edhoc

 | | Payload: EDHOC message_1

 | |

 |<---------+ Header: 2.04 Changed

 | 2.04 | Content-Format: application/edhoc

 | | Payload: EDHOC message_2

 | |

 +--------->| Header: POST (Code=0.02)

 | POST | Uri-Path: "/.well-known/edhoc"

 | | Content-Format: application/edhoc

 | | Payload: EDHOC message_3

 | |

 |<---------+ Header: 2.04 Changed

 | 2.04 |

 | |

¶

Figure 10: Transferring EDHOC in CoAP when the Initiator is CoAP Server

To protect against denial-of-service attacks, the CoAP server MAY

respond to the first POST request with a 4.01 (Unauthorized)

containing an Echo option [I-D.ietf-core-echo-request-tag]. This

forces the initiator to demonstrate its reachability at its apparent

network address. If message fragmentation is needed, the EDHOC

messages may be fragmented using the CoAP Block-Wise Transfer

mechanism [RFC7959]. EDHOC does not restrict how error messages are

transported with CoAP, as long as the appropriate error message can

to be transported in response to a message that failed (see Section

6). The use of EDHOC with OSCORE is specified in [I-D.ietf-core-

oscore-edhoc].

8. Security Considerations

8.1. Security Properties

EDHOC inherits its security properties from the theoretical SIGMA-I

protocol [SIGMA]. Using the terminology from [SIGMA], EDHOC provides

perfect forward secrecy, mutual authentication with aliveness,

consistency, and peer awareness. As described in [SIGMA], peer

awareness is provided to the Responder, but not to the Initiator.

EDHOC protects the credential identifier of the Initiator against

active attacks and the credential identifier of the Responder

against passive attacks. The roles should be assigned to protect the

most sensitive identity/identifier, typically that which is not

possible to infer from routing information in the lower layers.

Client Server

 | |

 +--------->| Header: POST (Code=0.02)

 | POST | Uri-Path: "/.well-known/edhoc"

 | |

 |<---------+ Header: 2.04 Changed

 | 2.04 | Content-Format: application/edhoc

 | | Payload: EDHOC message_1

 | |

 +--------->| Header: POST (Code=0.02)

 | POST | Uri-Path: "/.well-known/edhoc"

 | | Content-Format: application/edhoc

 | | Payload: EDHOC message_2

 | |

 |<---------+ Header: 2.04 Changed

 | 2.04 | Content-Format: application/edhoc

 | | Payload: EDHOC message_3

 | |

¶

¶

¶

Compared to [SIGMA], EDHOC adds an explicit method type and expands

the message authentication coverage to additional elements such as

algorithms, external authorization data, and previous messages. This

protects against an attacker replaying messages or injecting

messages from another session.

EDHOC also adds negotiation of connection identifiers and downgrade

protected negotiation of cryptographic parameters, i.e. an attacker

cannot affect the negotiated parameters. A single session of EDHOC

does not include negotiation of cipher suites, but it enables the

Responder to verify that the selected cipher suite is the most

preferred cipher suite by the Initiator which is supported by both

the Initiator and the Responder.

As required by [RFC7258], IETF protocols need to mitigate pervasive

monitoring when possible. One way to mitigate pervasive monitoring

is to use a key exchange that provides perfect forward secrecy.

EDHOC therefore only supports methods with perfect forward secrecy.

To limit the effect of breaches, it is important to limit the use of

symmetrical group keys for bootstrapping. EDHOC therefore strives to

make the additional cost of using raw public keys and self-signed

certificates as small as possible. Raw public keys and self-signed

certificates are not a replacement for a public key infrastructure,

but SHOULD be used instead of symmetrical group keys for

bootstrapping.

Compromise of the long-term keys (private signature or static DH

keys) does not compromise the security of completed EDHOC exchanges.

Compromising the private authentication keys of one party lets an

active attacker impersonate that compromised party in EDHOC

exchanges with other parties, but does not let the attacker

impersonate other parties in EDHOC exchanges with the compromised

party. Compromise of the long-term keys does not enable a passive

attacker to compromise future session keys. Compromise of the HDKF

input parameters (ECDH shared secret) leads to compromise of all

session keys derived from that compromised shared secret. Compromise

of one session key does not compromise other session keys.

Compromise of PRK_4x3m leads to compromise of all exported keying

material derived after the last invocation of the EDHOC-KeyUpdate

function.

EDHOC provides a minimum of 64-bit security against online brute

force attacks and a minimum of 128-bit security against offline

brute force attacks. This is in line with IPsec, TLS, and COSE. To

break 64-bit security against online brute force an attacker would

on average have to send 4.3 billion messages per second for 68

years, which is infeasible in constrained IoT radio technologies.

¶

¶

¶

¶

¶

After sending message_3, the Initiator is assured that no other

party than the Responder can compute the key PRK_4x3m (implicit key

authentication). The Initiator does however not know that the

Responder has actually computed the key PRK_4x3m. While the

Initiator can securely send protected application data, the

Initiator SHOULD NOT permanently store the keying material PRK_4x3m

and TH_4 until the Initiator is assured that the Responder has

actually computed the key PRK_4x3m (explicit key confirmation).

Explicit key confirmation is e.g. assured when the Initiator has

verified an OSCORE message or message_4 from the Responder. After

verifying message_3, the Responder is assured that the Initiator has

calculated the key PRK_4x3m (explicit key confirmation) and that no

other party than the Responder can compute the key. The Responder

can securely send protected application data and store the keying

material PRK_4x3m and TH_4.

Key compromise impersonation (KCI): In EDHOC authenticated with

signature keys, EDHOC provides KCI protection against an attacker

having access to the long term key or the ephemeral secret key. With

static Diffie-Hellman key authentication, KCI protection would be

provided against an attacker having access to the long-term Diffie-

Hellman key, but not to an attacker having access to the ephemeral

secret key. Note that the term KCI has typically been used for

compromise of long-term keys, and that an attacker with access to

the ephemeral secret key can only attack that specific protocol run.

Repudiation: In EDHOC authenticated with signature keys, the

Initiator could theoretically prove that the Responder performed a

run of the protocol by presenting the private ephemeral key, and

vice versa. Note that storing the private ephemeral keys violates

the protocol requirements. With static Diffie-Hellman key

authentication, both parties can always deny having participated in

the protocol.

Two earlier versions of EDHOC have been formally analyzed

[Norrman20] [Bruni18] and the specification has been updated based

on the analysis.

8.2. Cryptographic Considerations

The security of the SIGMA protocol requires the MAC to be bound to

the identity of the signer. Hence the message authenticating

functionality of the authenticated encryption in EDHOC is critical:

authenticated encryption MUST NOT be replaced by plain encryption

only, even if authentication is provided at another level or through

a different mechanism. EDHOC implements SIGMA-I using a MAC-then-

Sign approach.

¶

¶

¶

¶

¶

To reduce message overhead EDHOC does not use explicit nonces and

instead rely on the ephemeral public keys to provide randomness to

each session. A good amount of randomness is important for the key

generation, to provide liveness, and to protect against interleaving

attacks. For this reason, the ephemeral keys MUST NOT be reused, and

both parties SHALL generate fresh random ephemeral key pairs.

As discussed the [SIGMA], the encryption of message_2 does only need

to protect against passive attacker as active attackers can always

get the Responders identity by sending their own message_1. EDHOC

uses the Expand function (typically HKDF-Expand) as a binary

additive stream cipher. HKDF-Expand provides better confidentiality

than AES-CTR but is not often used as it is slow on long messages,

and most applications require both IND-CCA confidentiality as well

as integrity protection. For the encryption of message_2, any speed

difference is negligible, IND-CCA does not increase security, and

integrity is provided by the inner MAC (and signature depending on

method).

The data rates in many IoT deployments are very limited. Given that

the application keys are protected as well as the long-term

authentication keys they can often be used for years or even decades

before the cryptographic limits are reached. If the application keys

established through EDHOC need to be renewed, the communicating

parties can derive application keys with other labels or run EDHOC

again.

Requirement for how to securely generate, validate, and process the

ephermeral public keys depend on the elliptic curve. For X25519 and

X448, the requirements are defined in [RFC7748]. For secp256r1,

secp384r1, and secp521r1, the requirements are defined in Section 5

of [SP-800-56A]. For secp256r1, secp384r1, and secp521r1, at least

partial public-key validation MUST be done.

8.3. Cipher Suites and Cryptographic Algorithms

For many constrained IoT devices it is problematic to support more

than one cipher suite. Existing devices can be expected to support

either ECDSA or EdDSA. To enable as much interoperability as we can

reasonably achieve, less constrained devices SHOULD implement both

cipher suite 0 (AES-CCM-16-64-128, SHA-256, X25519, EdDSA, AES-

CCM-16-64-128, SHA-256) and cipher suite 2 (AES-CCM-16-64-128,

SHA-256, P-256, ES256, AES-CCM-16-64-128, SHA-256). Constrained

endpoints SHOULD implement cipher suite 0 or cipher suite 2.

Implementations only need to implement the algorithms needed for

their supported methods.

When using private cipher suite or registering new cipher suites,

the choice of key length used in the different algorithms needs to

¶

¶

¶

¶

¶

be harmonized, so that a sufficient security level is maintained for

certificates, EDHOC, and the protection of application data. The

Initiator and the Responder should enforce a minimum security level.

The hash algorithms SHA-1 and SHA-256/64 (256-bit Hash truncated to

64-bits) SHALL NOT be supported for use in EDHOC except for

certificate identification with x5u and c5u. Note that secp256k1 is

only defined for use with ECDSA and not for ECDH.

8.4. Unprotected Data

The Initiator and the Responder must make sure that unprotected data

and metadata do not reveal any sensitive information. This also

applies for encrypted data sent to an unauthenticated party. In

particular, it applies to EAD_1, ID_CRED_R, EAD_2, and error

messages. Using the same EAD_1 in several EDHOC sessions allows

passive eavesdroppers to correlate the different sessions. Another

consideration is that the list of supported cipher suites may

potentially be used to identify the application.

The Initiator and the Responder must also make sure that

unauthenticated data does not trigger any harmful actions. In

particular, this applies to EAD_1 and error messages.

8.5. Denial-of-Service

EDHOC itself does not provide countermeasures against Denial-of-

Service attacks. By sending a number of new or replayed message_1 an

attacker may cause the Responder to allocate state, perform

cryptographic operations, and amplify messages. To mitigate such

attacks, an implementation SHOULD rely on lower layer mechanisms

such as the Echo option in CoAP [I-D.ietf-core-echo-request-tag]

that forces the initiator to demonstrate reachability at its

apparent network address.

An attacker can also send faked message_2, message_3, message_4, or

error in an attempt to trick the receiving party to send an error

message and discontinue the session. EDHOC implementations MAY

evaluate if a received message is likely to have be forged by and

attacker and ignore it without sending an error message or

discontinuing the session.

8.6. Implementation Considerations

The availability of a secure random number generator is essential

for the security of EDHOC. If no true random number generator is

available, a truly random seed MUST be provided from an external

source and used with a cryptographically secure pseudorandom number

generator. As each pseudorandom number must only be used once, an

implementation need to get a new truly random seed after reboot, or

¶

¶

¶

¶

¶

¶

continuously store state in nonvolatile memory, see ([RFC8613],

Appendix B.1.1) for issues and solution approaches for writing to

nonvolatile memory. Intentionally or unintentionally weak or

predictable pseudorandom number generators can be abused or

exploited for malicious purposes. [RFC8937] describes a way for

security protocol implementations to augment their (pseudo)random

number generators using a long-term private keys and a deterministic

signature function. This improves randomness from broken or

otherwise subverted random number generators. The same idea can be

used with other secrets and functions such as a Diffie-Hellman

function or a symmetric secret and a PRF like HMAC or KMAC. It is

RECOMMENDED to not trust a single source of randomness and to not

put unaugmented random numbers on the wire.

If ECDSA is supported, "deterministic ECDSA" as specified in

[RFC6979] MAY be used. Pure deterministic elliptic-curve signatures

such as deterministic ECDSA and EdDSA have gained popularity over

randomized ECDSA as their security do not depend on a source of

high-quality randomness. Recent research has however found that

implementations of these signature algorithms may be vulnerable to

certain side-channel and fault injection attacks due to their

determinism. See e.g. Section 1 of [I-D.mattsson-cfrg-det-sigs-with-

noise] for a list of attack papers. As suggested in Section 6.1.2 of

[I-D.ietf-cose-rfc8152bis-algs] this can be addressed by combining

randomness and determinism.

All private keys, symmetric keys, and IVs MUST be secret.

Implementations should provide countermeasures to side-channel

attacks such as timing attacks. Intermediate computed values such as

ephemeral ECDH keys and ECDH shared secrets MUST be deleted after

key derivation is completed.

The Initiator and the Responder are responsible for verifying the

integrity of certificates. The selection of trusted CAs should be

done very carefully and certificate revocation should be supported.

The private authentication keys MUST be kept secret.

The Initiator and the Responder are allowed to select the connection

identifiers C_I and C_R, respectively, for the other party to use in

the ongoing EDHOC protocol as well as in a subsequent application

protocol (e.g. OSCORE [RFC8613]). The choice of connection

identifier is not security critical in EDHOC but intended to

simplify the retrieval of the right security context in combination

with using short identifiers. If the wrong connection identifier of

the other party is used in a protocol message it will result in the

receiving party not being able to retrieve a security context (which

will terminate the protocol) or retrieve the wrong security context

(which also terminates the protocol as the message cannot be

verified).

¶

¶

¶

¶

¶

If two nodes unintentionally initiate two simultaneous EDHOC message

exchanges with each other even if they only want to complete a

single EDHOC message exchange, they MAY terminate the exchange with

the lexicographically smallest G_X. If the two G_X values are equal,

the received message_1 MUST be discarded to mitigate reflection

attacks. Note that in the case of two simultaneous EDHOC exchanges

where the nodes only complete one and where the nodes have different

preferred cipher suites, an attacker can affect which of the two

nodes' preferred cipher suites will be used by blocking the other

exchange.

If supported by the device, it is RECOMMENDED that at least the

long-term private keys are stored in a Trusted Execution Environment

(TEE) and that sensitive operations using these keys are performed

inside the TEE. To achieve even higher security it is RECOMMENDED

that in additional operations such as ephemeral key generation, all

computations of shared secrets, and storage of the pseudorandom keys

(PRK) can be done inside the TEE. The use of a TEE enforces that

code within that environment cannot be tampered with, and that any

data used by such code cannot be read or tampered with by code

outside that environment. Note that non-EDHOC code inside the TEE

might still be able to read EDHOC data and tamper with EDHOC code,

to protect against such attacks EDHOC needs to be in its own zone.

To provide better protection against some forms of physical attacks,

sensitive EDHOC data should be stored inside the SoC or encrypted

and integrity protected when sent on a data bus (e.g. between the

CPU and RAM or Flash). Secure boot can be used to increase the

security of code and data in the Rich Execution Environment (REE) by

validating the REE image.

9. IANA Considerations

9.1. EDHOC Exporter Label

IANA has created a new registry titled "EDHOC Exporter Label" under

the new heading "EDHOC". The registration procedure is "Expert

Review". The columns of the registry are Label, Description, and

Reference. All columns are text strings. The initial contents of the

registry are:

¶

¶

¶

Label: EDHOC_message_4_Key

Description: Key used to protect EDHOC message_4

Reference: [[this document]]

¶

Label: EDHOC_message_4_Nonce

Description: Nonce used to protect EDHOC message_4

Reference: [[this document]]

¶

9.2. EDHOC Cipher Suites Registry

IANA has created a new registry titled "EDHOC Cipher Suites" under

the new heading "EDHOC". The registration procedure is "Expert

Review". The columns of the registry are Value, Array, Description,

and Reference, where Value is an integer and the other columns are

text strings. The initial contents of the registry are:¶

Value: -24

Algorithms: N/A

Desc: Reserved for Private Use

Reference: [[this document]]

¶

Value: -23

Algorithms: N/A

Desc: Reserved for Private Use

Reference: [[this document]]

¶

Value: -22

Algorithms: N/A

Desc: Reserved for Private Use

Reference: [[this document]]

¶

Value: -21

Algorithms: N/A

Desc: Reserved for Private Use

Reference: [[this document]]

¶

Value: 0

Array: 10, -16, 4, -8, 10, -16

Desc: AES-CCM-16-64-128, SHA-256, X25519, EdDSA,

 AES-CCM-16-64-128, SHA-256

Reference: [[this document]]

¶

Value: 1

Array: 30, -16, 4, -8, 10, -16

Desc: AES-CCM-16-128-128, SHA-256, X25519, EdDSA,

 AES-CCM-16-64-128, SHA-256

Reference: [[this document]]

¶

Value: 2

Array: 10, -16, 1, -7, 10, -16

Desc: AES-CCM-16-64-128, SHA-256, P-256, ES256,

 AES-CCM-16-64-128, SHA-256

Reference: [[this document]]

¶

9.3. EDHOC Method Type Registry

IANA has created a new registry entitled "EDHOC Method Type" under

the new heading "EDHOC". The registration procedure is "Expert

Review". The columns of the registry are Value, Description, and

Reference, where Value is an integer and the other columns are text

strings. The initial contents of the registry is shown in Figure 4.

9.4. EDHOC Error Codes Registry

IANA has created a new registry entitled "EDHOC Error Codes" under

the new heading "EDHOC". The registration procedure is

"Specification Required". The columns of the registry are ERR_CODE,

ERR_INFO Type and Description, where ERR_CODE is an integer,

ERR_INFO is a CDDL defined type, and Description is a text string.

The initial contents of the registry is shown in Figure 6.

9.5. The Well-Known URI Registry

IANA has added the well-known URI 'edhoc' to the Well-Known URIs

registry.

URI suffix: edhoc

Change controller: IETF

Specification document(s): [[this document]]

Related information: None

Value: 3

Array: 30, -16, 1, -7, 10, -16

Desc: AES-CCM-16-128-128, SHA-256, P-256, ES256,

 AES-CCM-16-64-128, SHA-256

Reference: [[this document]]

¶

Value: 4

Array: 1, -16, 4, -7, 1, -16

Desc: A128GCM, SHA-256, X25519, ES256,

 A128GCM, SHA-256

Reference: [[this document]]

¶

Value: 5

Array: 3, -43, 2, -35, 3, -43

Desc: A256GCM, SHA-384, P-384, ES384,

 A256GCM, SHA-384

Reference: [[this document]]

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

9.6. Media Types Registry

IANA has added the media type 'application/edhoc' to the Media Types

registry.

Type name: application

Subtype name: edhoc

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: binary

Security considerations: See Section 7 of this document.

Interoperability considerations: N/A

Published specification: [[this document]] (this document)

Applications that use this media type: To be identified

Fragment identifier considerations: N/A

Additional information:

Magic number(s): N/A

File extension(s): N/A

Macintosh file type code(s): N/A

Person & email address to contact for further information: See

"Authors' Addresses" section.

Intended usage: COMMON

Restrictions on usage: N/A

Author: See "Authors' Addresses" section.

Change Controller: IESG

9.7. CoAP Content-Formats Registry

IANA has added the media type 'application/edhoc' to the CoAP

Content-Formats registry.

Media Type: application/edhoc

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

- ¶

- ¶

- ¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

[RFC2119]

[RFC5116]

Encoding:

ID: TBD42

Reference: [[this document]]

9.8. Expert Review Instructions

The IANA Registries established in this document is defined as

"Expert Review". This section gives some general guidelines for what

the experts should be looking for, but they are being designated as

experts for a reason so they should be given substantial latitude.

Expert reviewers should take into consideration the following

points:

Clarity and correctness of registrations. Experts are expected to

check the clarity of purpose and use of the requested entries.

Expert needs to make sure the values of algorithms are taken from

the right registry, when that's required. Expert should consider

requesting an opinion on the correctness of registered parameters

from relevant IETF working groups. Encodings that do not meet

these objective of clarity and completeness should not be

registered.

Experts should take into account the expected usage of fields

when approving point assignment. The length of the encoded value

should be weighed against how many code points of that length are

left, the size of device it will be used on, and the number of

code points left that encode to that size.

Specifications are recommended. When specifications are not

provided, the description provided needs to have sufficient

information to verify the points above.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

* ¶

* ¶

* ¶

¶

¶

*

¶

*

¶

*

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5869]

[RFC6090]

[RFC6979]

[RFC7252]

[RFC7748]

[RFC8949]

[RFC7959]

[RFC8174]

[RFC8376]

[RFC8610]

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

McGrew, D., Igoe, K., and M. Salter, "Fundamental

Elliptic Curve Cryptography Algorithms", RFC 6090, DOI

10.17487/RFC6090, February 2011, <https://www.rfc-

editor.org/info/rfc6090>.

Pornin, T., "Deterministic Usage of the Digital Signature

Algorithm (DSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979,

August 2013, <https://www.rfc-editor.org/info/rfc6979>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in

the Constrained Application Protocol (CoAP)", RFC 7959,

DOI 10.17487/RFC7959, August 2016, <https://www.rfc-

editor.org/info/rfc7959>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)

Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,

<https://www.rfc-editor.org/info/rfc8376>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8376
https://www.rfc-editor.org/info/rfc8610

[RFC8613]

[RFC8724]

[RFC8742]

[I-D.ietf-cose-rfc8152bis-struct]

[I-D.ietf-cose-rfc8152bis-algs]

[I-D.ietf-cose-x509]

[I-D.ietf-core-echo-request-tag]

[I-D.ietf-lake-reqs]

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and

JC. Zúñiga, "SCHC: Generic Framework for Static Context

Header Compression and Fragmentation", RFC 8724, DOI

10.17487/RFC8724, April 2020, <https://www.rfc-

editor.org/info/rfc8724>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Sequences", RFC 8742, DOI 10.17487/RFC8742, February

2020, <https://www.rfc-editor.org/info/rfc8742>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Structures and Process", Work in Progress, Internet-

Draft, draft-ietf-cose-rfc8152bis-struct-15, 1 February

2021, <https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-struct-15.txt>.

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Initial Algorithms", Work in Progress, Internet-Draft,

draft-ietf-cose-rfc8152bis-algs-12, 24 September 2020,

<https://www.ietf.org/archive/id/draft-ietf-cose-

rfc8152bis-algs-12.txt>.

Schaad, J., "CBOR Object Signing and Encryption

(COSE): Header parameters for carrying and referencing X.

509 certificates", Work in Progress, Internet-Draft,

draft-ietf-cose-x509-08, 14 December 2020, <https://

www.ietf.org/internet-drafts/draft-ietf-cose-

x509-08.txt>.

Amsüss, C., Mattsson, J. P., and G.

Selander, "CoAP: Echo, Request-Tag, and Token

Processing", Work in Progress, Internet-Draft, draft-

ietf-core-echo-request-tag-12, 1 February 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-echo-request-

tag-12.txt>.

Vucinic, M., Selander, G., Mattsson, J. P.,

and D. Garcia-Carrillo, "Requirements for a Lightweight

AKE for OSCORE", Work in Progress, Internet-Draft, draft-

ietf-lake-reqs-04, 8 June 2020, <https://www.ietf.org/

archive/id/draft-ietf-lake-reqs-04.txt>.

https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8742
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-15.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-struct-15.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-algs-12.txt
https://www.ietf.org/archive/id/draft-ietf-cose-rfc8152bis-algs-12.txt
https://www.ietf.org/internet-drafts/draft-ietf-cose-x509-08.txt
https://www.ietf.org/internet-drafts/draft-ietf-cose-x509-08.txt
https://www.ietf.org/internet-drafts/draft-ietf-cose-x509-08.txt
https://www.ietf.org/archive/id/draft-ietf-core-echo-request-tag-12.txt
https://www.ietf.org/archive/id/draft-ietf-core-echo-request-tag-12.txt
https://www.ietf.org/archive/id/draft-ietf-core-echo-request-tag-12.txt
https://www.ietf.org/archive/id/draft-ietf-lake-reqs-04.txt
https://www.ietf.org/archive/id/draft-ietf-lake-reqs-04.txt

[RFC7228]

[RFC7258]

[RFC7296]

[RFC8446]

[RFC8937]

[I-D.ietf-core-resource-directory]

[I-D.ietf-lwig-security-protocol-comparison]

[I-D.ietf-tls-dtls13]

[I-D.selander-ace-ake-authz]

10.2. Informative References

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is

an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

2014, <https://www.rfc-editor.org/info/rfc7258>.

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,

and C. Wood, "Randomness Improvements for Security

Protocols", RFC 8937, DOI 10.17487/RFC8937, October 2020,

<https://www.rfc-editor.org/info/rfc8937>.

Amsüss, C., Shelby, Z., Koster,

M., Bormann, C., and P. V. D. Stok, "CoRE Resource

Directory", Work in Progress, Internet-Draft, draft-ietf-

core-resource-directory-28, 7 March 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-resource-

directory-28.txt>.

Mattsson, J. P.,

Palombini, F., and M. Vucinic, "Comparison of CoAP

Security Protocols", Work in Progress, Internet-Draft,

draft-ietf-lwig-security-protocol-comparison-05, 2

November 2020, <https://www.ietf.org/archive/id/draft-

ietf-lwig-security-protocol-comparison-05.txt>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://www.ietf.org/

internet-drafts/draft-ietf-tls-dtls13-43.txt>.

Selander, G., Mattsson, J. P., Vucinic, M., Richardson,

M., and A. Schellenbaum, "Lightweight Authorization for

Authenticated Key Exchange.", Work in Progress, Internet-

Draft, draft-selander-ace-ake-authz-02, 2 November 2020,

https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8937
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt
https://www.ietf.org/archive/id/draft-ietf-lwig-security-protocol-comparison-05.txt
https://www.ietf.org/archive/id/draft-ietf-lwig-security-protocol-comparison-05.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt
https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-43.txt

[I-D.ietf-core-oscore-edhoc]

[I-D.ietf-cose-cbor-encoded-cert]

[I-D.mattsson-cfrg-det-sigs-with-noise]

[SP-800-56A]

[SECG]

[SIGMA]

[CNSA]

[Norrman20]

[Bruni18]

<https://www.ietf.org/archive/id/draft-selander-ace-ake-

authz-02.txt>.

Palombini, F., Tiloca, M., Hoeglund, R., Hristozov, S.,

and G. Selander, "Combining EDHOC and OSCORE", Work in

Progress, Internet-Draft, draft-ietf-core-oscore-

edhoc-00, 1 April 2021, <https://www.ietf.org/internet-

drafts/draft-ietf-core-oscore-edhoc-00.txt>.

Raza, S., Höglund, J., Selander, G., Mattsson, J. P.,

and M. Furuhed, "CBOR Encoded X.509 Certificates (C509

Certificates)", Work in Progress, Internet-Draft, draft-

ietf-cose-cbor-encoded-cert-00, 28 April 2021, <https://

www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-

cert-00.txt>.

Mattsson, J. P., Thormarker,

E., and S. Ruohomaa, "Deterministic ECDSA and EdDSA

Signatures with Additional Randomness", Work in Progress,

Internet-Draft, draft-mattsson-cfrg-det-sigs-with-

noise-02, 11 March 2020, <https://www.ietf.org/archive/

id/draft-mattsson-cfrg-det-sigs-with-noise-02.txt>.

Barker, E., Chen, L., Roginsky, A., Vassilev, A., and

R. Davis, "Recommendation for Pair-Wise Key-Establishment

Schemes Using Discrete Logarithm Cryptography", NIST

Special Publication 800-56A Revision 3, April 2018,

<https://doi.org/10.6028/NIST.SP.800-56Ar3>.

"Standards for Efficient Cryptography 1 (SEC 1)", May

2009, <https://www.secg.org/sec1-v2.pdf>.

Krawczyk, H., "SIGMA - The 'SIGn-and-MAc' Approach to

Authenticated Diffie-Hellman and Its Use in the IKE-

Protocols (Long version)", June 2003, <http://

webee.technion.ac.il/~hugo/sigma-pdf.pdf>.

(Placeholder), ., "Commercial National Security Algorithm

Suite", August 2015, <https://apps.nsa.gov/iaarchive/

programs/iad-initiatives/cnsa-suite.cfm>.

Norrman, K., Sundararajan, V., and A. Bruni, "Formal

Analysis of EDHOC Key Establishment for Constrained IoT

Devices", September 2020, <https://arxiv.org/abs/

2007.11427>.

Bruni, A., Sahl Jørgensen, T., Grønbech Petersen, T.,

and C. Schürmann, "Formal Verification of Ephemeral

https://www.ietf.org/archive/id/draft-selander-ace-ake-authz-02.txt
https://www.ietf.org/archive/id/draft-selander-ace-ake-authz-02.txt
https://www.ietf.org/internet-drafts/draft-ietf-core-oscore-edhoc-00.txt
https://www.ietf.org/internet-drafts/draft-ietf-core-oscore-edhoc-00.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-00.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-00.txt
https://www.ietf.org/archive/id/draft-ietf-cose-cbor-encoded-cert-00.txt
https://www.ietf.org/archive/id/draft-mattsson-cfrg-det-sigs-with-noise-02.txt
https://www.ietf.org/archive/id/draft-mattsson-cfrg-det-sigs-with-noise-02.txt
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://www.secg.org/sec1-v2.pdf
http://webee.technion.ac.il/~hugo/sigma-pdf.pdf
http://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://arxiv.org/abs/2007.11427
https://arxiv.org/abs/2007.11427

[CborMe]

Diffie-Hellman Over COSE (EDHOC)", November 2018,

<https://www.springerprofessional.de/en/formal-

verification-of-ephemeral-diffie-hellman-over-cose-edhoc/

16284348>.

Bormann, C., "CBOR Playground", May 2018, <http://

cbor.me/>.

Appendix A. Compact Representation

As described in Section 4.2 of [RFC6090] the x-coordinate of an

elliptic curve public key is a suitable representative for the

entire point whenever scalar multiplication is used as a one-way

function. One example is ECDH with compact output, where only the x-

coordinate of the computed value is used as the shared secret.

This section defines a format for compact representation based on

the Elliptic-Curve-Point-to-Octet-String Conversion defined in

Section 2.3.3 of [SECG]. Using the notation from [SECG], the output

is an octet string of length ceil((log2 q) / 8). See [SECG] for a

definition of q, M, X, xp, and ~yp. The steps in Section 2.3.3 of

[SECG] are replaced by:

Convert the field element xp to an octet string X of length

ceil((log2 q) / 8) octets using the conversion routine

specified in Section 2.3.5 of [SECG].

Output M = X

The encoding of the point at infinity is not supported. Compact

representation does not change any requirements on validation. If a

y-coordinate is required for validation or compatibily with APIs the

value ~yp SHALL be set to zero. For such use, the compact

representation can be transformed into the SECG point compressed

format by prepending it with the single byte 0x02 (i.e. M = 0x02 ||

X).

Using compact representation have some security benefits. An

implementation does not need to check that the point is not the

point at infinity (the identity element). Similarly, as not even the

sign of the y-coordinate is encoded, compact representation

trivially avoids so called "benign malleability" attacks where an

attacker changes the sign, see [SECG].

Appendix B. Use of CBOR, CDDL and COSE in EDHOC

This Appendix is intended to simplify for implementors not familiar

with CBOR [RFC8949], CDDL [RFC8610], COSE [I-D.ietf-cose-rfc8152bis-

struct], and HKDF [RFC5869].

¶

¶

1.

¶

2. ¶

¶

¶

¶

https://www.springerprofessional.de/en/formal-verification-of-ephemeral-diffie-hellman-over-cose-edhoc/16284348
https://www.springerprofessional.de/en/formal-verification-of-ephemeral-diffie-hellman-over-cose-edhoc/16284348
https://www.springerprofessional.de/en/formal-verification-of-ephemeral-diffie-hellman-over-cose-edhoc/16284348
http://cbor.me/
http://cbor.me/

B.1. CBOR and CDDL

The Concise Binary Object Representation (CBOR) [RFC8949] is a data

format designed for small code size and small message size. CBOR

builds on the JSON data model but extends it by e.g. encoding binary

data directly without base64 conversion. In addition to the binary

CBOR encoding, CBOR also has a diagnostic notation that is readable

and editable by humans. The Concise Data Definition Language (CDDL)

[RFC8610] provides a way to express structures for protocol messages

and APIs that use CBOR. [RFC8610] also extends the diagnostic

notation.

CBOR data items are encoded to or decoded from byte strings using a

type-length-value encoding scheme, where the three highest order

bits of the initial byte contain information about the major type.

CBOR supports several different types of data items, in addition to

integers (int, uint), simple values (e.g. null), byte strings

(bstr), and text strings (tstr), CBOR also supports arrays [] of

data items, maps {} of pairs of data items, and sequences [RFC8742]

of data items. Some examples are given below. For a complete

specification and more examples, see [RFC8949] and [RFC8610]. We

recommend implementors to get used to CBOR by using the CBOR

playground [CborMe].

B.2. CDDL Definitions

This sections compiles the CDDL definitions for ease of reference.

¶

¶

Diagnostic Encoded Type

--

1 0x01 unsigned integer

24 0x1818 unsigned integer

-24 0x37 negative integer

-25 0x3818 negative integer

null 0xf6 simple value

h'12cd' 0x4212cd byte string

'12cd' 0x4431326364 byte string

"12cd" 0x6431326364 text string

{ 4 : h'cd' } 0xa10441cd map

<< 1, 2, null >> 0x430102f6 byte string

[1, 2, null] 0x830102f6 array

(1, 2, null) 0x0102f6 sequence

1, 2, null 0x0102f6 sequence

--

¶

¶

bstr_identifier = bstr / int

suite = int

SUITES_R : [supported : 2* suite] / suite

message_1 = (

 ? C_1 : null,

 METHOD_CORR : int,

 SUITES_I : [selected : suite, supported : 2* suite] / suite,

 G_X : bstr,

 C_I : bstr_identifier,

 ? EAD ; EAD_1

)

message_2 = (

 data_2,

 CIPHERTEXT_2 : bstr,

)

data_2 = (

 ? C_I : bstr_identifier,

 G_Y : bstr,

 C_R : bstr_identifier,

)

message_3 = (

 data_3,

 CIPHERTEXT_3 : bstr,

)

data_3 = (

 ? C_R : bstr_identifier,

)

message_4 = (

 data_4,

 CIPHERTEXT_4 : bstr,

)

data_4 = (

 ? C_I : bstr_identifier,

)

error = (

 ? C_x : bstr_identifier,

 ERR_CODE : int,

 ERR_INFO : any

)

info = [

 edhoc_aead_id : int / tstr,

 transcript_hash : bstr,

 label : tstr,

 length : uint

]

¶

B.3. COSE

CBOR Object Signing and Encryption (COSE) [I-D.ietf-cose-rfc8152bis-

struct] describes how to create and process signatures, message

authentication codes, and encryption using CBOR. COSE builds on

JOSE, but is adapted to allow more efficient processing in

constrained devices. EDHOC makes use of COSE_Key, COSE_Encrypt0, and

COSE_Sign1 objects.

Appendix C. Test Vectors

Note: The test vectors are not updated to version -07 of the draft.

More changes affecting the test vectors are anticipated for -08.

This appendix provides detailed test vectors to ease implementation

and ensure interoperability. The test vectors in this version are

compatible with versions -05 and -06 of the specification. In

addition to hexadecimal, all CBOR data items and sequences are given

in CBOR diagnostic notation. The test vectors use the default

mapping to CoAP where the Initiator acts as CoAP client (this means

that corr = 1).

A more extensive test vector suite covering more combinations of

authentication method used between Initiator and Responder and

related code to generate them can be found at https://github.com/

lake-wg/edhoc/tree/master/test-vectors-05.

NOTE 1. In the previous and current test vectors the same name is

used for certain byte strings and their CBOR bstr encodings. For

example the transcript hash TH_2 is used to denote both the output

of the hash function and the input into the key derivation function,

whereas the latter is a CBOR bstr encoding of the former. Some

attempts are made to clarify that in this Appendix (e.g. using "CBOR

encoded"/"CBOR unencoded").

NOTE 2. If not clear from the context, remember that CBOR sequences

and CBOR arrays assume CBOR encoded data items as elements.

C.1. Test Vectors for EDHOC Authenticated with Signature Keys (x5t)

EDHOC with signature authentication and X.509 certificates is used.

In this test vector, the hash value 'x5t' is used to identify the

certificate. The optional C_1 in message_1 is omitted. No external

authorization data is sent in the message exchange.

CoAP is used as transport and the Initiator acts as CoAP client:

¶

¶

¶

¶

¶

¶

¶

method (Signature Authentication)

0

¶

¶

From there, METHOD_CORR has the following value:

The Initiator indicates only one cipher suite in the (potentially

truncated) list of cipher suites.

The Initiator selected the indicated cipher suite.

Cipher suite 0 is supported by both the Initiator and the Responder,

see Section 3.4.

C.1.1. Message_1

The Initiator generates its ephemeral key pair.

The Initiator chooses a connection identifier C_I:

Note that since C_I is a byte string in the interval h'00' to h'2f',

it is encoded as the corresponding integer subtracted by 24 (see

bstr_identifier in Section 5.1). Thus 0x09 = 09, 9 - 24 = -15, and

-15 in CBOR encoding is equal to 0x2e.

Since no external authorization data is sent:

corr (the Initiator can correlate message_1 and message_2)

1

¶

¶

METHOD_CORR (4 * method + corr) (int)

1

¶

¶

Supported Cipher Suites (1 byte)

00

¶

¶

Selected Cipher Suite (int)

0

¶

¶

¶

X (Initiator's ephemeral private key) (32 bytes)

8f 78 1a 09 53 72 f8 5b 6d 9f 61 09 ae 42 26 11 73 4d 7d bf a0 06 9a 2d

f2 93 5b b2 e0 53 bf 35

¶

G_X (Initiator's ephemeral public key, CBOR unencoded) (32 bytes)

89 8f f7 9a 02 06 7a 16 ea 1e cc b9 0f a5 22 46 f5 aa 4d d6 ec 07 6b ba

02 59 d9 04 b7 ec 8b 0c

¶

¶

Connection identifier chosen by Initiator (1 byte)

09

¶

¶

C_I (1 byte)

2e

¶

¶

EAD_1 (0 bytes)¶

The list of supported cipher suites needs to contain the selected

cipher suite. The initiator truncates the list of supported cipher

suites to one cipher suite only. In this case there is only one

supported cipher suite indicated, 00.

Because one single selected cipher suite is conveyed, it is encoded

as an int instead of an array:

message_1 is constructed as the CBOR Sequence of the data items

above encoded as CBOR. In CBOR diagnostic notation:

Which as a CBOR encoded data item is:

C.1.2. Message_2

Since METHOD_CORR mod 4 equals 1, C_I is omitted from data_2.

The Responder generates the following ephemeral key pair.

From G_X and Y or from G_Y and X the ECDH shared secret is computed:

The key and nonce for calculating the 'ciphertext' are calculated as

follows, as specified in Section 4.

¶

¶

SUITES_I (int)

0

¶

¶

message_1 =

(

 1,

 0,

 h'898FF79A02067A16EA1ECCB90FA52246F5AA4DD6EC076BBA0259D904B7EC8B0C',

 -15

)

¶

¶

message_1 (CBOR Sequence) (37 bytes)

01 00 58 20 89 8f f7 9a 02 06 7a 16 ea 1e cc b9 0f a5 22 46 f5 aa 4d d6

ec 07 6b ba 02 59 d9 04 b7 ec 8b 0c 2e

¶

¶

¶

Y (Responder's ephemeral private key) (32 bytes)

fd 8c d8 77 c9 ea 38 6e 6a f3 4f f7 e6 06 c4 b6 4c a8 31 c8 ba 33 13 4f

d4 cd 71 67 ca ba ec da

¶

G_Y (Responder's ephemeral public key, CBOR unencoded) (32 bytes)

71 a3 d5 99 c2 1d a1 89 02 a1 ae a8 10 b2 b6 38 2c cd 8d 5f 9b f0 19 52

81 75 4c 5e bc af 30 1e

¶

¶

G_XY (ECDH shared secret) (32 bytes)

2b b7 fa 6e 13 5b c3 35 d0 22 d6 34 cb fb 14 b3 f5 82 f3 e2 e3 af b2 b3

15 04 91 49 5c 61 78 2b

¶

¶

HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

PRK_2e = HMAC-SHA-256(salt, G_XY)

Salt is the empty byte string.

From there, PRK_2e is computed:

The Responder's sign/verify key pair is the following:

Since neither the Initiator nor the Responder authenticates with a

static Diffie-Hellman key, PRK_3e2m = PRK_2e

The Responder chooses a connection identifier C_R.

Note that since C_R is a byte string in the interval h'00' to h'2f',

it is encoded as the corresponding integer subtracted by 24 (see

bstr_identifier in Section 5.1). Thus 0x00 = 0, 0 - 24 = -24, and

-24 in CBOR encoding is equal to 0x37.

Data_2 is constructed as the CBOR Sequence of G_Y and C_R, encoded

as CBOR byte strings. The CBOR diagnostic notation is:

¶

¶

¶

salt (0 bytes)¶

¶

PRK_2e (32 bytes)

ec 62 92 a0 67 f1 37 fc 7f 59 62 9d 22 6f bf c4 e0 68 89 49 f6 62 a9 7f

d8 2f be b7 99 71 39 4a

¶

¶

SK_R (Responder's private authentication key) (32 bytes)

df 69 27 4d 71 32 96 e2 46 30 63 65 37 2b 46 83 ce d5 38 1b fc ad cd 44

0a 24 c3 91 d2 fe db 94

¶

PK_R (Responder's public authentication key) (32 bytes)

db d9 dc 8c d0 3f b7 c3 91 35 11 46 2b b2 38 16 47 7c 6b d8 d6 6e f5 a1

a0 70 ac 85 4e d7 3f d2

¶

¶

PRK_3e2m (32 bytes)

ec 62 92 a0 67 f1 37 fc 7f 59 62 9d 22 6f bf c4 e0 68 89 49 f6 62 a9 7f

d8 2f be b7 99 71 39 4a

¶

¶

Connection identifier chosen by Responder (1 byte)

00

¶

¶

C_R (1 byte)

37

¶

¶

Which as a CBOR encoded data item is:

From data_2 and message_1, compute the input to the transcript hash

TH_2 = H(H(message_1), data_2), as a CBOR Sequence of these 2 data

items.

And from there, compute the transcript hash TH_2 = SHA-256(

H(message_1), data_2)

The Responder's subject name is the empty string:

In this version of the test vectors CRED_R is not a DER encoded X.

509 certificate, but a string of random bytes.

CRED_R is defined to be the CBOR bstr containing the credential of

the Responder.

data_2 =

(

 h'71a3d599c21da18902a1aea810b2b6382ccd8d5f9bf0195281754c5ebcaf301e',

 -24

)

¶

¶

data_2 (CBOR Sequence) (35 bytes)

58 20 71 a3 d5 99 c2 1d a1 89 02 a1 ae a8 10 b2 b6 38 2c cd 8d 5f 9b f0

19 52 81 75 4c 5e bc af 30 1e 37

¶

¶

Input to calculate TH_2 (CBOR Sequence) (72 bytes)

01 00 58 20 89 8f f7 9a 02 06 7a 16 ea 1e cc b9 0f a5 22 46 f5 aa 4d d6

ec 07 6b ba 02 59 d9 04 b7 ec 8b 0c 2e 58 20 71 a3 d5 99 c2 1d a1 89 02

a1 ae a8 10 b2 b6 38 2c cd 8d 5f 9b f0 19 52 81 75 4c 5e bc af 30 1e 37

¶

¶

TH_2 (CBOR unencoded) (32 bytes)

86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a ce 99 72 d3 76 d2 c2

c1 53 c1 7f 8e 96 29 ff

¶

¶

Responder's subject name (text string)

""

¶

¶

CRED_R (CBOR unencoded) (100 bytes)

c7 88 37 00 16 b8 96 5b db 20 74 bf f8 2e 5a 20 e0 9b ec 21 f8 40 6e 86

44 2b 87 ec 3f f2 45 b7 0a 47 62 4d c9 cd c6 82 4b 2a 4c 52 e9 5e c9 d6

b0 53 4b 71 c2 b4 9e 4b f9 03 15 00 ce e6 86 99 79 c2 97 bb 5a 8b 38 1e

98 db 71 41 08 41 5e 5c 50 db 78 97 4c 27 15 79 b0 16 33 a3 ef 62 71 be

5c 22 5e b2

¶

¶

And because certificates are identified by a hash value with the

'x5t' parameter, ID_CRED_R is the following:

ID_CRED_R = { 34 : COSE_CertHash }. In this example, the hash

algorithm used is SHA-2 256-bit with hash truncated to 64-bits

(value -15). The hash value is calculated over the CBOR unencoded

CRED_R. The CBOR diagnostic notation is:

which when encoded as a CBOR map becomes:

Since no external authorization data is sent:

The plaintext is defined as the empty string:

The Enc_structure is defined as follows: ["Encrypt0",

<< ID_CRED_R >>, << TH_2, CRED_R >>], indicating that ID_CRED_R is

encoded as a CBOR byte string, and that the concatenation of the

CBOR byte strings TH_2 and CRED_R is wrapped as a CBOR bstr. The

CBOR diagnostic notation is the following:

CRED_R (102 bytes)

58 64 c7 88 37 00 16 b8 96 5b db 20 74 bf f8 2e 5a 20 e0 9b ec 21 f8 40

6e 86 44 2b 87 ec 3f f2 45 b7 0a 47 62 4d c9 cd c6 82 4b 2a 4c 52 e9 5e

c9 d6 b0 53 4b 71 c2 b4 9e 4b f9 03 15 00 ce e6 86 99 79 c2 97 bb 5a 8b

38 1e 98 db 71 41 08 41 5e 5c 50 db 78 97 4c 27 15 79 b0 16 33 a3 ef 62

71 be 5c 22 5e b2

¶

¶

¶

ID_CRED_R =

{

 34: [-15, h'6844078A53F312F5']

}

¶

¶

ID_CRED_R (14 bytes)

a1 18 22 82 2e 48 68 44 07 8a 53 f3 12 f5

¶

¶

EAD_2 (0 bytes)¶

¶

P_2m (0 bytes)¶

¶

A_2m =

[

 "Encrypt0",

 h'A11822822E486844078A53F312F5',

 h'5820864E32B36A7B5F21F19E99F0C66D911E0ACE9972D376D2C2C153C17F8E9629FF

 5864C788370016B8965BDB2074BFF82E5A20E09BEC21F8406E86442B87EC3FF245B70A

 47624DC9CDC6824B2A4C52E95EC9D6B0534B71C2B49E4BF9031500CEE6869979C297BB

 5A8B381E98DB714108415E5C50DB78974C271579B01633A3EF6271BE5C225EB2'

]

¶

Which encodes to the following byte string to be used as Additional

Authenticated Data:

info for K_2m is defined as follows in CBOR diagnostic notation:

Which as a CBOR encoded data item is:

From these parameters, K_2m is computed. Key K_2m is the output of

HKDF-Expand(PRK_3e2m, info, L), where L is the length of K_2m, so 16

bytes.

info for IV_2m is defined as follows, in CBOR diagnostic notation

(10 is the COSE algorithm no. of the AEAD algorithm in the selected

cipher suite 0):

Which as a CBOR encoded data item is:

¶

A_2m (CBOR-encoded) (163 bytes)

83 68 45 6e 63 72 79 70 74 30 4e a1 18 22 82 2e 48 68 44 07 8a 53 f3 12

f5 58 88 58 20 86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a ce 99

72 d3 76 d2 c2 c1 53 c1 7f 8e 96 29 ff 58 64 c7 88 37 00 16 b8 96 5b db

20 74 bf f8 2e 5a 20 e0 9b ec 21 f8 40 6e 86 44 2b 87 ec 3f f2 45 b7 0a

47 62 4d c9 cd c6 82 4b 2a 4c 52 e9 5e c9 d6 b0 53 4b 71 c2 b4 9e 4b f9

03 15 00 ce e6 86 99 79 c2 97 bb 5a 8b 38 1e 98 db 71 41 08 41 5e 5c 50

db 78 97 4c 27 15 79 b0 16 33 a3 ef 62 71 be 5c 22 5e b2

¶

¶

info for K_2m =

[

 10,

 h'864E32B36A7B5F21F19E99F0C66D911E0ACE9972D376D2C2C153C17F8E9629FF',

 "K_2m",

 16

]

¶

¶

info for K_2m (CBOR-encoded) (42 bytes)

84 0a 58 20 86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a ce 99 72

d3 76 d2 c2 c1 53 c1 7f 8e 96 29 ff 64 4b 5f 32 6d 10

¶

¶

K_2m (16 bytes)

80 cc a7 49 ab 58 f5 69 ca 35 da ee 05 be d1 94

¶

¶

info for IV_2m =

[

 10,

 h'864E32B36A7B5F21F19E99F0C66D911E0ACE9972D376D2C2C153C17F8E9629FF',

 "IV_2m",

 13

]

¶

¶

From these parameters, IV_2m is computed. IV_2m is the output of

HKDF-Expand(PRK_3e2m, info, L), where L is the length of IV_2m, so

13 bytes.

Finally, COSE_Encrypt0 is computed from the parameters above.

protected header = CBOR-encoded ID_CRED_R

external_aad = A_2m

empty plaintext = P_2m

To compute the Signature_or_MAC_2, the key is the private

authentication key of the Responder and the message M_2 to be signed

= ["Signature1", << ID_CRED_R >>, << TH_2, CRED_R, ? EAD_2 >>,

MAC_2]. ID_CRED_R is encoded as a CBOR byte string, the

concatenation of the CBOR byte strings TH_2 and CRED_R is wrapped as

a CBOR bstr, and MAC_2 is encoded as a CBOR bstr.

Which as a CBOR encoded data item is:

info for IV_2m (CBOR-encoded) (43 bytes)

84 0a 58 20 86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a ce 99 72

d3 76 d2 c2 c1 53 c1 7f 8e 96 29 ff 65 49 56 5f 32 6d 0d

¶

¶

IV_2m (13 bytes)

c8 1e 1a 95 cc 93 b3 36 69 6e d5 02 55

¶

¶

* ¶

* ¶

* ¶

MAC_2 (CBOR unencoded) (8 bytes)

fa bb a4 7e 56 71 a1 82

¶

¶

M_2 =

[

 "Signature1",

 h'A11822822E486844078A53F312F5',

 h'5820864E32B36A7B5F21F19E99F0C66D911E0ACE9972D376D2C2C153C17F8E9629F

 F5864C788370016B8965BDB2074BFF82E5A20E09BEC21F8406E86442B87EC3FF245B7

 0A47624DC9CDC6824B2A4C52E95EC9D6B0534B71C2B49E4BF9031500CEE6869979C29

 7BB5A8B381E98DB714108415E5C50DB78974C271579B01633A3EF6271BE5C225EB2',

 h'FABBA47E5671A182'

]

¶

¶

Since the method = 0, Signature_or_MAC_2 is a signature. The

algorithm with selected cipher suite 0 is Ed25519 and the output is

64 bytes.

CIPHERTEXT_2 is the ciphertext resulting from XOR between plaintext

and KEYSTREAM_2 which is derived from TH_2 and the pseudorandom key

PRK_2e.

plaintext = CBOR Sequence of the items ID_CRED_R and

Signature_or_MAC_2 encoded as CBOR byte strings, in this order

(EAD_2 is empty).

The plaintext is the following:

KEYSTREAM_2 = HKDF-Expand(PRK_2e, info, length), where length is

the length of the plaintext, so 80.

Which as a CBOR encoded data item is:

M_2 (174 bytes)

84 6a 53 69 67 6e 61 74 75 72 65 31 4e a1 18 22 82 2e 48 68 44 07 8a 53

f3 12 f5 58 88 58 20 86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a

ce 99 72 d3 76 d2 c2 c1 53 c1 7f 8e 96 29 ff 58 64 c7 88 37 00 16 b8 96

5b db 20 74 bf f8 2e 5a 20 e0 9b ec 21 f8 40 6e 86 44 2b 87 ec 3f f2 45

b7 0a 47 62 4d c9 cd c6 82 4b 2a 4c 52 e9 5e c9 d6 b0 53 4b 71 c2 b4 9e

4b f9 03 15 00 ce e6 86 99 79 c2 97 bb 5a 8b 38 1e 98 db 71 41 08 41 5e

5c 50 db 78 97 4c 27 15 79 b0 16 33 a3 ef 62 71 be 5c 22 5e b2 48 fa bb

a4 7e 56 71 a1 82

¶

¶

Signature_or_MAC_2 (CBOR unencoded) (64 bytes)

1f 17 00 6a 98 48 c9 77 cb bd ca a7 57 b6 fd 46 82 c8 17 39 e1 5c 99 37

c2 1c f5 e9 a0 e6 03 9f 54 fd 2a 6c 3a 11 18 f2 b9 d8 eb cd 48 23 48 b9

9c 3e d7 ed 1b d9 80 6c 93 c8 90 68 e8 36 b4 0f

¶

¶

*

¶

¶

P_2e (CBOR Sequence) (80 bytes)

a1 18 22 82 2e 48 68 44 07 8a 53 f3 12 f5 58 40 1f 17 00 6a 98 48 c9 77

cb bd ca a7 57 b6 fd 46 82 c8 17 39 e1 5c 99 37 c2 1c f5 e9 a0 e6 03 9f

54 fd 2a 6c 3a 11 18 f2 b9 d8 eb cd 48 23 48 b9 9c 3e d7 ed 1b d9 80 6c

93 c8 90 68 e8 36 b4 0f

¶

¶

info for KEYSTREAM_2 =

[

 10,

 h'864E32B36A7B5F21F19E99F0C66D911E0ACE9972D376D2C2C153C17F8E9629FF',

 "KEYSTREAM_2",

 80

]

¶

¶

From there, KEYSTREAM_2 is computed:

Using the parameters above, the ciphertext CIPHERTEXT_2 can be

computed:

message_2 is the CBOR Sequence of data_2 and CIPHERTEXT_2, in this

order:

Which as a CBOR encoded data item is:

C.1.3. Message_3

Since corr equals 1, C_R is not omitted from data_3.

The Initiator's sign/verify key pair is the following:

info for KEYSTREAM_2 (CBOR-encoded) (50 bytes)

84 0a 58 20 86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a ce 99 72

d3 76 d2 c2 c1 53 c1 7f 8e 96 29 ff 6b 4b 45 59 53 54 52 45 41 4d 5f 32

18 50

¶

¶

KEYSTREAM_2 (80 bytes)

ae ea 8e af 50 cf c6 70 09 da e8 2d 8d 85 b0 e7 60 91 bf 0f 07 0b 79 53

6c 83 23 dc 3d 9d 61 13 10 35 94 63 f4 4b 12 4b ea b3 a1 9d 09 93 82 d7

30 80 17 f4 92 62 06 e4 f5 44 9b 9f c9 24 bc b6 bd 78 ec 45 0a 66 83 fb

8a 2f 5f 92 4f c4 40 4f

¶

¶

CIPHERTEXT_2 (CBOR unencoded) (80 bytes)

0f f2 ac 2d 7e 87 ae 34 0e 50 bb de 9f 70 e8 a7 7f 86 bf 65 9f 43 b0 24

a7 3e e9 7b 6a 2b 9c 55 92 fd 83 5a 15 17 8b 7c 28 af 54 74 a9 75 81 48

64 7d 3d 98 a8 73 1e 16 4c 9c 70 52 81 07 f4 0f 21 46 3b a8 11 bf 03 97

19 e7 cf fa a7 f2 f4 40

¶

¶

message_2 =

(

 data_2,

 h'0FF2AC2D7E87AE340E50BBDE9F70E8A77F86BF659F43B024A73EE97B6A2B9C5592FD

 835A15178B7C28AF5474A9758148647D3D98A8731E164C9C70528107F40F21463BA811

 BF039719E7CFFAA7F2F440'

)

¶

¶

message_2 (CBOR Sequence) (117 bytes)

58 20 71 a3 d5 99 c2 1d a1 89 02 a1 ae a8 10 b2 b6 38 2c cd 8d 5f 9b f0

19 52 81 75 4c 5e bc af 30 1e 37 58 50 0f f2 ac 2d 7e 87 ae 34 0e 50 bb

de 9f 70 e8 a7 7f 86 bf 65 9f 43 b0 24 a7 3e e9 7b 6a 2b 9c 55 92 fd 83

5a 15 17 8b 7c 28 af 54 74 a9 75 81 48 64 7d 3d 98 a8 73 1e 16 4c 9c 70

52 81 07 f4 0f 21 46 3b a8 11 bf 03 97 19 e7 cf fa a7 f2 f4 40

¶

¶

¶

HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

PRK_4x3m = HMAC-SHA-256 (PRK_3e2m, G_IY)

data 3 is equal to C_R.

From data_3, CIPHERTEXT_2, and TH_2, compute the input to the

transcript hash TH_3 = H(H(TH_2 , CIPHERTEXT_2), data_3), as a CBOR

Sequence of 2 data items.

And from there, compute the transcript hash TH_3 = SHA-256(H(TH_2 ,

CIPHERTEXT_2), data_3)

The Initiator's subject name is the empty string:

In this version of the test vectors CRED_I is not a DER encoded X.

509 certificate, but a string of random bytes.

SK_I (Initiator's private authentication key) (32 bytes)

2f fc e7 a0 b2 b8 25 d3 97 d0 cb 54 f7 46 e3 da 3f 27 59 6e e0 6b 53 71

48 1d c0 e0 12 bc 34 d7

¶

PK_I (Responder's public authentication key) (32 bytes)

38 e5 d5 45 63 c2 b6 a4 ba 26 f3 01 5f 61 bb 70 6e 5c 2e fd b5 56 d2 e1

69 0b 97 fc 3c 6d e1 49

¶

¶

¶

PRK_4x3m (32 bytes)

ec 62 92 a0 67 f1 37 fc 7f 59 62 9d 22 6f bf c4 e0 68 89 49 f6 62 a9 7f

d8 2f be b7 99 71 39 4a

¶

¶

data_3 (CBOR Sequence) (1 byte)

37

¶

¶

Input to calculate TH_3 (CBOR Sequence) (117 bytes)

58 20 86 4e 32 b3 6a 7b 5f 21 f1 9e 99 f0 c6 6d 91 1e 0a ce 99 72 d3 76

d2 c2 c1 53 c1 7f 8e 96 29 ff 58 50 0f f2 ac 2d 7e 87 ae 34 0e 50 bb de

9f 70 e8 a7 7f 86 bf 65 9f 43 b0 24 a7 3e e9 7b 6a 2b 9c 55 92 fd 83 5a

15 17 8b 7c 28 af 54 74 a9 75 81 48 64 7d 3d 98 a8 73 1e 16 4c 9c 70 52

81 07 f4 0f 21 46 3b a8 11 bf 03 97 19 e7 cf fa a7 f2 f4 40 37

¶

¶

TH_3 (CBOR unencoded) (32 bytes)

f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c 0f 65 0c 30 70

b6 f5 1e 68 e2 ae bb 60

¶

¶

Initiator's subject name (text string)

""

¶

¶

CRED_I is defined to be the CBOR bstr containing the credential of

the Initiator.

And because certificates are identified by a hash value with the

'x5t' parameter, ID_CRED_I is the following:

ID_CRED_I = { 34 : COSE_CertHash }. In this example, the hash

algorithm used is SHA-2 256-bit with hash truncated to 64-bits

(value -15). The hash value is calculated over the CBOR unencoded

CRED_I.

which when encoded as a CBOR map becomes:

Since no external authorization data is exchanged:

The plaintext of the COSE_Encrypt is the empty string:

The associated data is the following: ["Encrypt0", << ID_CRED_I >>,

<< TH_3, CRED_I, ? EAD_3 >>].

CRED_I (CBOR unencoded) (101 bytes)

54 13 20 4c 3e bc 34 28 a6 cf 57 e2 4c 9d ef 59 65 17 70 44 9b ce 7e c6

56 1e 52 43 3a a5 5e 71 f1 fa 34 b2 2a 9c a4 a1 e1 29 24 ea e1 d1 76 60

88 09 84 49 cb 84 8f fc 79 5f 88 af c4 9c be 8a fd d1 ba 00 9f 21 67 5e

8f 6c 77 a4 a2 c3 01 95 60 1f 6f 0a 08 52 97 8b d4 3d 28 20 7d 44 48 65

02 ff 7b dd a6

¶

¶

CRED_I (103 bytes)

58 65 54 13 20 4c 3e bc 34 28 a6 cf 57 e2 4c 9d ef 59 65 17 70 44 9b ce

7e c6 56 1e 52 43 3a a5 5e 71 f1 fa 34 b2 2a 9c a4 a1 e1 29 24 ea e1 d1

76 60 88 09 84 49 cb 84 8f fc 79 5f 88 af c4 9c be 8a fd d1 ba 00 9f 21

67 5e 8f 6c 77 a4 a2 c3 01 95 60 1f 6f 0a 08 52 97 8b d4 3d 28 20 7d 44

48 65 02 ff 7b dd a6

¶

¶

¶

ID_CRED_I =

{

 34: [-15, h'705D5845F36FC6A6']

}

¶

¶

ID_CRED_I (14 bytes)

a1 18 22 82 2e 48 70 5d 58 45 f3 6f c6 a6

¶

¶

EAD_3 (0 bytes)¶

¶

P_3m (0 bytes)¶

¶

Info for K_3m is computed as follows:

Which as a CBOR encoded data item is:

From these parameters, K_3m is computed. Key K_3m is the output of

HKDF-Expand(PRK_4x3m, info, L), where L is the length of K_2m, so 16

bytes.

Nonce IV_3m is the output of HKDF-Expand(PRK_4x3m, info, L), where L

= 13 bytes.

Info for IV_3m is defined as follows:

Which as a CBOR encoded data item is:

A_3m (CBOR-encoded) (164 bytes)

83 68 45 6e 63 72 79 70 74 30 4e a1 18 22 82 2e 48 70 5d 58 45 f3 6f c6

a6 58 89 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c

0f 65 0c 30 70 b6 f5 1e 68 e2 ae bb 60 58 65 54 13 20 4c 3e bc 34 28 a6

cf 57 e2 4c 9d ef 59 65 17 70 44 9b ce 7e c6 56 1e 52 43 3a a5 5e 71 f1

fa 34 b2 2a 9c a4 a1 e1 29 24 ea e1 d1 76 60 88 09 84 49 cb 84 8f fc 79

5f 88 af c4 9c be 8a fd d1 ba 00 9f 21 67 5e 8f 6c 77 a4 a2 c3 01 95 60

1f 6f 0a 08 52 97 8b d4 3d 28 20 7d 44 48 65 02 ff 7b dd a6

¶

¶

info for K_3m =

[

 10,

 h'F24D18CAFCE374D4E3736329C152AB3AEA9C7C0F650C3070B6F51E68E2AEBB60',

 "K_3m",

 16

]

¶

¶

info for K_3m (CBOR-encoded) (42 bytes)

84 0a 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c 0f

65 0c 30 70 b6 f5 1e 68 e2 ae bb 60 64 4b 5f 33 6d 10

¶

¶

K_3m (16 bytes)

83 a9 c3 88 02 91 2e 7f 8f 0d 2b 84 14 d1 e5 2c

¶

¶

¶

info for IV_3m =

[

 10,

 h'F24D18CAFCE374D4E3736329C152AB3AEA9C7C0F650C3070B6F51E68E2AEBB60',

 "IV_3m",

 13

]

¶

¶

info for IV_3m (CBOR-encoded) (43 bytes)

84 0a 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c 0f

65 0c 30 70 b6 f5 1e 68 e2 ae bb 60 65 49 56 5f 33 6d 0d

¶

From these parameters, IV_3m is computed:

MAC_3 is the 'ciphertext' of the COSE_Encrypt0:

Since the method = 0, Signature_or_MAC_3 is a signature. The

algorithm with selected cipher suite 0 is Ed25519.

The message M_3 to be signed = ["Signature1", << ID_CRED_I >>,

<< TH_3, CRED_I >>, MAC_3], i.e. ID_CRED_I encoded as CBOR bstr,

the concatenation of the CBOR byte strings TH_3 and CRED_I

wrapped as a CBOR bstr, and MAC_3 encoded as a CBOR bstr.

The signing key is the private authentication key of the

Initiator.

Which as a CBOR encoded data item is:

From there, the 64 byte signature can be computed:

¶

IV_3m (13 bytes)

9c 83 9c 0e e8 36 42 50 5a 8e 1c 9f b2

¶

¶

MAC_3 (CBOR unencoded) (8 bytes)

2f a1 e3 9e ae 7d 5f 8d

¶

¶

*

¶

*

¶

M_3 =

[

 "Signature1",

 h'A11822822E48705D5845F36FC6A6',

 h'5820F24D18CAFCE374D4E3736329C152AB3AEA9C7C0F650C3070B6F51E68E2AEBB6

 058655413204C3EBC3428A6CF57E24C9DEF59651770449BCE7EC6561E52433AA55E71

 F1FA34B22A9CA4A1E12924EAE1D1766088098449CB848FFC795F88AFC49CBE8AFDD1B

 A009F21675E8F6C77A4A2C30195601F6F0A0852978BD43D28207D44486502FF7BDD

 A6',

 h'2FA1E39EAE7D5F8D']

¶

¶

M_3 (175 bytes)

84 6a 53 69 67 6e 61 74 75 72 65 31 4e a1 18 22 82 2e 48 70 5d 58 45 f3

6f c6 a6 58 89 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea

9c 7c 0f 65 0c 30 70 b6 f5 1e 68 e2 ae bb 60 58 65 54 13 20 4c 3e bc 34

28 a6 cf 57 e2 4c 9d ef 59 65 17 70 44 9b ce 7e c6 56 1e 52 43 3a a5 5e

71 f1 fa 34 b2 2a 9c a4 a1 e1 29 24 ea e1 d1 76 60 88 09 84 49 cb 84 8f

fc 79 5f 88 af c4 9c be 8a fd d1 ba 00 9f 21 67 5e 8f 6c 77 a4 a2 c3 01

95 60 1f 6f 0a 08 52 97 8b d4 3d 28 20 7d 44 48 65 02 ff 7b dd a6 48 2f

a1 e3 9e ae 7d 5f 8d

¶

¶

Signature_or_MAC_3 (CBOR unencoded) (64 bytes)

ab 9f 7b bd eb c4 eb f8 a3 d3 04 17 9b cc a3 9d 9c 8a 76 73 65 76 fb 3c

32 d2 fa c7 e2 59 34 e5 33 dc c7 02 2e 4d 68 61 c8 f5 fe cb e9 2d 17 4e

b2 be af 0a 59 a4 15 84 37 2f 43 2e 6b f4 7b 04

¶

Finally, the outer COSE_Encrypt0 is computed.

The plaintext is the CBOR Sequence of the items ID_CRED_I and the

CBOR encoded Signature_or_MAC_3, in this order (EAD_3 is empty).

The Associated data A is the following: Associated data A = [

"Encrypt0", h'', TH_3]

Key K_3ae is the output of HKDF-Expand(PRK_3e2m, info, L).

info is defined as follows:

Which as a CBOR encoded data item is:

L is the length of K_3ae, so 16 bytes.

From these parameters, K_3ae is computed:

Nonce IV_3ae is the output of HKDF-Expand(PRK_3e2m, info, L).

info is defined as follows:

¶

¶

P_3ae (CBOR Sequence) (80 bytes)

a1 18 22 82 2e 48 70 5d 58 45 f3 6f c6 a6 58 40 ab 9f 7b bd eb c4 eb f8

a3 d3 04 17 9b cc a3 9d 9c 8a 76 73 65 76 fb 3c 32 d2 fa c7 e2 59 34 e5

33 dc c7 02 2e 4d 68 61 c8 f5 fe cb e9 2d 17 4e b2 be af 0a 59 a4 15 84

37 2f 43 2e 6b f4 7b 04

¶

¶

A_3ae (CBOR-encoded) (45 bytes)

83 68 45 6e 63 72 79 70 74 30 40 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63

29 c1 52 ab 3a ea 9c 7c 0f 65 0c 30 70 b6 f5 1e 68 e2 ae bb 60

¶

¶

¶

info for K_3ae =

[

 10,

 h'F24D18CAFCE374D4E3736329C152AB3AEA9C7C0F650C3070B6F51E68E2AEBB60',

 "K_3ae",

 16

]

¶

¶

info for K_3ae (CBOR-encoded) (43 bytes)

84 0a 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c 0f

65 0c 30 70 b6 f5 1e 68 e2 ae bb 60 65 4b 5f 33 61 65 10

¶

¶

¶

K_3ae (16 bytes)

b8 79 9f e3 d1 50 4f d8 eb 22 c4 72 62 cd bb 05

¶

¶

¶

Which as a CBOR encoded data item is:

L is the length of IV_3ae, so 13 bytes.

From these parameters, IV_3ae is computed:

Using the parameters above, the 'ciphertext' CIPHERTEXT_3 can be

computed:

From the parameter above, message_3 is computed, as the CBOR

Sequence of the following CBOR encoded data items: (C_R,

CIPHERTEXT_3).

Which encodes to the following byte string:

info for IV_3ae =

[

 10,

 h'F24D18CAFCE374D4E3736329C152AB3AEA9C7C0F650C3070B6F51E68E2AEBB60',

 "IV_3ae",

 13

]

¶

¶

info for IV_3ae (CBOR-encoded) (44 bytes)

84 0a 58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c 0f

65 0c 30 70 b6 f5 1e 68 e2 ae bb 60 66 49 56 5f 33 61 65 0d

¶

¶

¶

IV_3ae (13 bytes)

74 c7 de 41 b8 4a 5b b7 19 0a 85 98 dc

¶

¶

CIPHERTEXT_3 (CBOR unencoded) (88 bytes)

f5 f6 de bd 82 14 05 1c d5 83 c8 40 96 c4 80 1d eb f3 5b 15 36 3d d1 6e

bd 85 30 df dc fb 34 fc d2 eb 6c ad 1d ac 66 a4 79 fb 38 de aa f1 d3 0a

7e 68 17 a2 2a b0 4f 3d 5b 1e 97 2a 0d 13 ea 86 c6 6b 60 51 4c 96 57 ea

89 c5 7b 04 01 ed c5 aa 8b bc ab 81 3c c5 d6 e7

¶

¶

message_3 =

(

 -24,

 h'F5F6DEBD8214051CD583C84096C4801DEBF35B15363DD16EBD8530DFDCFB34FCD2EB

 6CAD1DAC66A479FB38DEAAF1D30A7E6817A22AB04F3D5B1E972A0D13EA86C66B60514C

 9657EA89C57B0401EDC5AA8BBCAB813CC5D6E7'

)

¶

¶

message_3 (CBOR Sequence) (91 bytes)

37 58 58 f5 f6 de bd 82 14 05 1c d5 83 c8 40 96 c4 80 1d eb f3 5b 15 36

3d d1 6e bd 85 30 df dc fb 34 fc d2 eb 6c ad 1d ac 66 a4 79 fb 38 de aa

f1 d3 0a 7e 68 17 a2 2a b0 4f 3d 5b 1e 97 2a 0d 13 ea 86 c6 6b 60 51 4c

96 57 ea 89 c5 7b 04 01 ed c5 aa 8b bc ab 81 3c c5 d6 e7

¶

C.1.4. OSCORE Security Context Derivation

From here, the Initiator and the Responder can derive an OSCORE

Security Context, using the EDHOC-Exporter interface.

From TH_3 and CIPHERTEXT_3, compute the input to the transcript hash

TH_4 = H(TH_3, CIPHERTEXT_3), as a CBOR Sequence of these 2 data

items.

And from there, compute the transcript hash TH_4 = SHA-256(TH_3 ,

CIPHERTEXT_4)

The Master Secret and Master Salt are derived as follows:

Master Secret = EDHOC-Exporter("OSCORE Master Secret", 16) =

EDHOC-KDF(PRK_4x3m, TH_4, "OSCORE Master Secret", 16) = HKDF-Expand(

PRK_4x3m, info_ms, 16)

Master Salt = EDHOC-Exporter("OSCORE Master Salt", 8) = EDHOC-

KDF(PRK_4x3m, TH_4, "OSCORE Master Salt", 8) = HKDF-Expand(

PRK_4x3m, info_salt, 8)

info_ms for OSCORE Master Secret is defined as follows:

Which as a CBOR encoded data item is:

¶

¶

Input to calculate TH_4 (CBOR Sequence) (124 bytes)

58 20 f2 4d 18 ca fc e3 74 d4 e3 73 63 29 c1 52 ab 3a ea 9c 7c 0f 65 0c

30 70 b6 f5 1e 68 e2 ae bb 60 58 58 f5 f6 de bd 82 14 05 1c d5 83 c8 40

96 c4 80 1d eb f3 5b 15 36 3d d1 6e bd 85 30 df dc fb 34 fc d2 eb 6c ad

1d ac 66 a4 79 fb 38 de aa f1 d3 0a 7e 68 17 a2 2a b0 4f 3d 5b 1e 97 2a

0d 13 ea 86 c6 6b 60 51 4c 96 57 ea 89 c5 7b 04 01 ed c5 aa 8b bc ab 81

3c c5 d6 e7

¶

¶

TH_4 (CBOR unencoded) (32 bytes)

3b 69 a6 7f ec 7e 73 6c c1 a9 52 6c da 00 02 d4 09 f5 b9 ea 0a 2b e9 60

51 a6 e3 0d 93 05 fd 51

¶

¶

¶

¶

¶

info_ms = [

 10,

 h'3B69A67FEC7E736CC1A9526CDA0002D409F5B9EA0A2BE96051A6E30D9305FD51',

 "OSCORE Master Secret",

 16

]

¶

¶

info_ms for OSCORE Master Secret (CBOR-encoded) (58 bytes)

84 0a 58 20 3b 69 a6 7f ec 7e 73 6c c1 a9 52 6c da 00 02 d4 09 f5 b9 ea

0a 2b e9 60 51 a6 e3 0d 93 05 fd 51 74 4f 53 43 4f 52 45 20 4d 61 73 74

65 72 20 53 65 63 72 65 74 10

¶

info_salt for OSCORE Master Salt is defined as follows:

Which as a CBOR encoded data item is:

From these parameters, OSCORE Master Secret and OSCORE Master Salt

are computed:

The client's OSCORE Sender ID is C_R and the server's OSCORE Sender

ID is C_I.

The AEAD Algorithm and the hash algorithm are the application AEAD

and hash algorithms in the selected cipher suite.

C.2. Test Vectors for EDHOC Authenticated with Static Diffie-Hellman

Keys

EDHOC with static Diffie-Hellman keys and raw public keys is used.

In this test vector, a key identifier is used to identify the raw

public key. The optional C_1 in message_1 is omitted. No external

authorization data is sent in the message exchange.

¶

info_salt = [

 10,

 h'3B69A67FEC7E736CC1A9526CDA0002D409F5B9EA0A2BE96051A6E30D9305FD51',

 "OSCORE Master Salt",

 8

]

¶

¶

info for OSCORE Master Salt (CBOR-encoded) (56 Bytes)

84 0a 58 20 3b 69 a6 7f ec 7e 73 6c c1 a9 52 6c da 00 02 d4 09 f5 b9 ea

0a 2b e9 60 51 a6 e3 0d 93 05 fd 51 72 4f 53 43 4f 52 45 20 4d 61 73 74

65 72 20 53 61 6c 74 08

¶

¶

OSCORE Master Secret (16 bytes)

96 aa 88 ce 86 5e ba 1f fa f3 89 64 13 2c c4 42

¶

OSCORE Master Salt (8 bytes)

5e c3 ee 41 7c fb ba e9

¶

¶

Client's OSCORE Sender ID (1 byte)

00

¶

Server's OSCORE Sender ID (1 byte)

09

¶

¶

OSCORE AEAD Algorithm (int)

10

¶

OSCORE Hash Algorithm (int)

-16

¶

¶

CoAP is used as transport and the Initiator acts as CoAP client:

From there, METHOD_CORR has the following value:

The Initiator indicates only one cipher suite in the (potentially

truncated) list of cipher suites.

The Initiator selected the indicated cipher suite.

Cipher suite 0 is supported by both the Initiator and the Responder,

see Section 3.4.

C.2.1. Message_1

The Initiator generates its ephemeral key pair.

The Initiator chooses a connection identifier C_I:

Note that since C_I is a byte string in the interval h'00' to h'2f',

it is encoded as the corresponding integer - 24 (see bstr_identifier

in Section 5.1), i.e. 0x16 = 22, 22 - 24 = -2, and -2 in CBOR

encoding is equal to 0x21.

method (Static DH Based Authentication)

3

¶

¶

corr (the Initiator can correlate message_1 and message_2)

1

¶

¶

METHOD_CORR (4 * method + corr) (int)

13

¶

¶

Supported Cipher Suites (1 byte)

00

¶

¶

Selected Cipher Suite (int)

0

¶

¶

¶

X (Initiator's ephemeral private key) (32 bytes)

ae 11 a0 db 86 3c 02 27 e5 39 92 fe b8 f5 92 4c 50 d0 a7 ba 6e ea b4 ad

1f f2 45 72 f4 f5 7c fa

¶

G_X (Initiator's ephemeral public key, CBOR unencoded) (32 bytes)

8d 3e f5 6d 1b 75 0a 43 51 d6 8a c2 50 a0 e8 83 79 0e fc 80 a5 38 a4 44

ee 9e 2b 57 e2 44 1a 7c

¶

¶

Connection identifier chosen by Initiator (1 byte)

16

¶

¶

Since no external authorization data is sent:

Since the list of supported cipher suites needs to contain the

selected cipher suite, the initiator truncates the list of supported

cipher suites to one cipher suite only, 00.

Because one single selected cipher suite is conveyed, it is encoded

as an int instead of an array:

message_1 is constructed as the CBOR Sequence of the data items

above encoded as CBOR. In CBOR diagnostic notation:

Which as a CBOR encoded data item is:

C.2.2. Message_2

Since METHOD_CORR mod 4 equals 1, C_I is omitted from data_2.

The Responder generates the following ephemeral key pair.

From G_X and Y or from G_Y and X the ECDH shared secret is computed:

C_I (1 byte)

21

¶

¶

EAD_1 (0 bytes)¶

¶

¶

SUITES_I (int)

0

¶

¶

message_1 =

(

 13,

 0,

 h'8D3EF56D1B750A4351D68AC250A0E883790EFC80A538A444EE9E2B57E2441A7C',

 -2

)

¶

¶

message_1 (CBOR Sequence) (37 bytes)

0d 00 58 20 8d 3e f5 6d 1b 75 0a 43 51 d6 8a c2 50 a0 e8 83 79 0e fc 80

a5 38 a4 44 ee 9e 2b 57 e2 44 1a 7c 21

¶

¶

¶

Y (Responder's ephemeral private key) (32 bytes)

c6 46 cd dc 58 12 6e 18 10 5f 01 ce 35 05 6e 5e bc 35 f4 d4 cc 51 07 49

a3 a5 e0 69 c1 16 16 9a

¶

G_Y (Responder's ephemeral public key, CBOR unencoded) (32 bytes)

52 fb a0 bd c8 d9 53 dd 86 ce 1a b2 fd 7c 05 a4 65 8c 7c 30 af db fc 33

01 04 70 69 45 1b af 35

¶

¶

The key and nonce for calculating the 'ciphertext' are calculated as

follows, as specified in Section 4.

HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

PRK_2e = HMAC-SHA-256(salt, G_XY)

Salt is the empty byte string.

From there, PRK_2e is computed:

The Responder's static Diffie-Hellman key pair is the following:

Since the Responder authenticates with a static Diffie-Hellman key,

PRK_3e2m = HKDF-Extract(PRK_2e, G_RX), where G_RX is the ECDH

shared secret calculated from G_R and X, or G_X and R.

From the Responder's authentication key and the Initiator's

ephemeral key (see Appendix C.2.1), the ECDH shared secret G_RX is

calculated.

The Responder chooses a connection identifier C_R.

G_XY (ECDH shared secret) (32 bytes)

de fc 2f 35 69 10 9b 3d 1f a4 a7 3d c5 e2 fe b9 e1 15 0d 90 c2 5e e2 f0

66 c2 d8 85 f4 f8 ac 4e

¶

¶

¶

¶

¶

salt (0 bytes)¶

¶

PRK_2e (32 bytes)

93 9f cb 05 6d 2e 41 4f 1b ec 61 04 61 99 c2 c7 63 d2 7f 0c 3d 15 fa 16

71 fa 13 4e 0d c5 a0 4d

¶

¶

R (Responder's private authentication key) (32 bytes)

bb 50 1a ac 67 b9 a9 5f 97 e0 ed ed 6b 82 a6 62 93 4f bb fc 7a d1 b7 4c

1f ca d6 6a 07 94 22 d0

¶

G_R (Responder's public authentication key) (32 bytes)

a3 ff 26 35 95 be b3 77 d1 a0 ce 1d 04 da d2 d4 09 66 ac 6b cb 62 20 51

b8 46 59 18 4d 5d 9a 32

¶

¶

¶

G_RX (ECDH shared secret) (32 bytes)

21 c7 ef f4 fb 69 fa 4b 67 97 d0 58 84 31 5d 84 11 a3 fd a5 4f 6d ad a6

1d 4f cd 85 e7 90 66 68

¶

PRK_3e2m (32 bytes)

75 07 7c 69 1e 35 01 2d 48 bc 24 c8 4f 2b ab 89 f5 2f ac 03 fe dd 81 3e

43 8c 93 b1 0b 39 93 07

¶

¶

Note that since C_R is a byte string in the interval h'00' to h'2f',

it is encoded as the corresponding integer - 24 (see bstr_identifier

in Section 5.1), i.e. 0x00 = 0, 0 - 24 = -24, and -24 in CBOR

encoding is equal to 0x37.

Data_2 is constructed as the CBOR Sequence of G_Y and C_R.

Which as a CBOR encoded data item is:

From data_2 and message_1, compute the input to the transcript hash

TH_2 = H(H(message_1), data_2), as a CBOR Sequence of these 2 data

items.

And from there, compute the transcript hash TH_2 = SHA-256(

H(message_1), data_2)

The Responder's subject name is the empty string:

ID_CRED_R is the following:

Connection identifier chosen by Responder (1 byte)

00

¶

¶

C_R (1 byte)

37

¶

¶

data_2 =

(

 h'52FBA0BDC8D953DD86CE1AB2FD7C05A4658C7C30AFDBFC3301047069451BAF35',

 -24

)

¶

¶

data_2 (CBOR Sequence) (35 bytes)

58 20 52 fb a0 bd c8 d9 53 dd 86 ce 1a b2 fd 7c 05 a4 65 8c 7c 30 af db

fc 33 01 04 70 69 45 1b af 35 37

¶

¶

Input to calculate TH_2 (CBOR Sequence) (72 bytes)

0d 00 58 20 8d 3e f5 6d 1b 75 0a 43 51 d6 8a c2 50 a0 e8 83 79 0e fc 80

a5 38 a4 44 ee 9e 2b 57 e2 44 1a 7c 21 58 20 52 fb a0 bd c8 d9 53 dd 86

ce 1a b2 fd 7c 05 a4 65 8c 7c 30 af db fc 33 01 04 70 69 45 1b af 35 37

¶

¶

TH_2 (CBOR unencoded) (32 bytes)

de cf d6 4a 36 67 64 0a 02 33 b0 4a a8 aa 91 f6 89 56 b8 a5 36 d0 cf 8c

73 a6 e8 a7 c3 62 1e 26

¶

¶

Responder's subject name (text string)

""

¶

¶

CRED_R is the following COSE_Key:

Which encodes to the following byte string:

Since no external authorization data is sent:

The plaintext is defined as the empty string:

The Enc_structure is defined as follows: ["Encrypt0",

<< ID_CRED_R >>, << TH_2, CRED_R >>], so ID_CRED_R is encoded as a

CBOR bstr, and the concatenation of the CBOR byte strings TH_2 and

CRED_R is wrapped in a CBOR bstr.

Which encodes to the following byte string to be used as Additional

Authenticated Data:

ID_CRED_R =

{

 4: h'05'

}

¶

ID_CRED_R (4 bytes)

a1 04 41 05

¶

¶

{

 1: 1,

 -1: 4,

 -2: h'A3FF263595BEB377D1A0CE1D04DAD2D40966AC6BCB622051B84659184D5D9A32,

 "subject name": ""

}

¶

¶

CRED_R (54 bytes)

a4 01 01 20 04 21 58 20 a3 ff 26 35 95 be b3 77 d1 a0 ce 1d 04 da d2 d4

09 66 ac 6b cb 62 20 51 b8 46 59 18 4d 5d 9a 32 6c 73 75 62 6a 65 63 74

20 6e 61 6d 65 60

¶

¶

EAD_2 (0 bytes)¶

¶

P_2m (0 bytes)¶

¶

A_2m =

[

 "Encrypt0",

 h'A1044105',

 h'5820DECFD64A3667640A0233B04AA8AA91F68956B8A536D0CF8C73A6E8A7C3621E2

 6A401012004215820A3FF263595BEB377D1A0CE1D04DAD2D40966AC6BCB622051B846

 59184D5D9A326C7375626A656374206E616D6560'

]

¶

¶

info for K_2m is defined as follows:

Which as a CBOR encoded data item is:

From these parameters, K_2m is computed. Key K_2m is the output of

HKDF-Expand(PRK_3e2m, info, L), where L is the length of K_2m, so 16

bytes.

info for IV_2m is defined as follows:

Which as a CBOR encoded data item is:

From these parameters, IV_2m is computed. IV_2m is the output of

HKDF-Expand(PRK_3e2m, info, L), where L is the length of IV_2m, so

13 bytes.

A_2m (CBOR-encoded) (105 bytes)

83 68 45 6e 63 72 79 70 74 30 44 a1 04 41 05 58 58 58 20 de cf d6 4a 36

67 64 0a 02 33 b0 4a a8 aa 91 f6 89 56 b8 a5 36 d0 cf 8c 73 a6 e8 a7 c3

62 1e 26 a4 01 01 20 04 21 58 20 a3 ff 26 35 95 be b3 77 d1 a0 ce 1d 04

da d2 d4 09 66 ac 6b cb 62 20 51 b8 46 59 18 4d 5d 9a 32 6c 73 75 62 6a

65 63 74 20 6e 61 6d 65 60

¶

¶

info for K_2m =

[

 10,

 h'DECFD64A3667640A0233B04AA8AA91F68956B8A536D0CF8C73A6E8A7C3621E26',

 "K_2m",

 16

]

¶

¶

info for K_2m (CBOR-encoded) (42 bytes)

84 0a 58 20 de cf d6 4a 36 67 64 0a 02 33 b0 4a a8 aa 91 f6 89 56 b8 a5

36 d0 cf 8c 73 a6 e8 a7 c3 62 1e 26 64 4b 5f 32 6d 10

¶

¶

K_2m (16 bytes)

4e cd ef ba d8 06 81 8b 62 51 b9 d7 86 78 bc 76

¶

¶

info for IV_2m =

[

 10,

 h'A51C76463E8AE58FD3B8DC5EDE1E27143CC92D223EACD9E5FF6E3FAC876658A5',

 "IV_2m",

 13

]

¶

¶

info for IV_2m (CBOR-encoded) (43 bytes)

84 0a 58 20 de cf d6 4a 36 67 64 0a 02 33 b0 4a a8 aa 91 f6 89 56 b8 a5

36 d0 cf 8c 73 a6 e8 a7 c3 62 1e 26 65 49 56 5f 32 6d 0d

¶

¶

Finally, COSE_Encrypt0 is computed from the parameters above.

protected header = CBOR-encoded ID_CRED_R

external_aad = A_2m

empty plaintext = P_2m

MAC_2 is the 'ciphertext' of the COSE_Encrypt0 with empty plaintext.

In case of cipher suite 0 the AEAD is AES-CCM truncated to 8 bytes:

Since method = 2, Signature_or_MAC_2 is MAC_2:

CIPHERTEXT_2 is the ciphertext resulting from XOR between plaintext

and KEYSTREAM_2 which is derived from TH_2 and the pseudorandom key

PRK_2e.

The plaintext is the CBOR Sequence of the items ID_CRED_R and the

CBOR encoded Signature_or_MAC_2, in this order (EAD_2 is empty).

Note that since ID_CRED_R contains a single 'kid' parameter, i.e.,

ID_CRED_R = { 4 : kid_R }, only the byte string kid_R is conveyed in

the plaintext encoded as a bstr_identifier. kid_R is encoded as the

corresponding integer - 24 (see bstr_identifier in Section 5.1),

i.e. 0x05 = 5, 5 - 24 = -19, and -19 in CBOR encoding is equal to

0x32.

The plaintext is the following:

KEYSTREAM_2 = HKDF-Expand(PRK_2e, info, length), where length is

the length of the plaintext, so 10.

IV_2m (13 bytes)

e9 b8 e4 b1 bd 02 f4 9a 82 0d d3 53 4f

¶

¶

* ¶

* ¶

* ¶

¶

MAC_2 (CBOR unencoded) (8 bytes)

42 e7 99 78 43 1e 6b 8f

¶

¶

Signature_or_MAC_2 (CBOR unencoded) (8 bytes)

42 e7 99 78 43 1e 6b 8f

¶

¶

¶

¶

¶

P_2e (CBOR Sequence) (10 bytes)

32 48 42 e7 99 78 43 1e 6b 8f

¶

¶

Which as a CBOR encoded data item is:

From there, KEYSTREAM_2 is computed:

Using the parameters above, the ciphertext CIPHERTEXT_2 can be

computed:

message_2 is the CBOR Sequence of data_2 and CIPHERTEXT_2, in this

order:

Which as a CBOR encoded data item is:

C.2.3. Message_3

Since corr equals 1, C_R is not omitted from data_3.

The Initiator's static Diffie-Hellman key pair is the following:

info for KEYSTREAM_2 =

[

 10,

 h'DECFD64A3667640A0233B04AA8AA91F68956B8A536D0CF8C73A6E8A7C3621E26',

 "KEYSTREAM_2",

 10

]

¶

¶

info for KEYSTREAM_2 (CBOR-encoded) (49 bytes)

84 0a 58 20 de cf d6 4a 36 67 64 0a 02 33 b0 4a a8 aa 91 f6 89 56 b8 a5

36 d0 cf 8c 73 a6 e8 a7 c3 62 1e 26 6b 4b 45 59 53 54 52 45 41 4d 5f 32

0a

¶

¶

KEYSTREAM_2 (10 bytes)

91 b9 ff ba 9b f5 5a d1 57 16

¶

¶

CIPHERTEXT_2 (CBOR unencoded) (10 bytes)

a3 f1 bd 5d 02 8d 19 cf 3c 99

¶

¶

message_2 =

(

 data_2,

 h'A3F1BD5D028D19CF3C99'

)

¶

¶

message_2 (CBOR Sequence) (46 bytes)

58 20 52 fb a0 bd c8 d9 53 dd 86 ce 1a b2 fd 7c 05 a4 65 8c 7c 30 af db

fc 33 01 04 70 69 45 1b af 35 37 4a a3 f1 bd 5d 02 8d 19 cf 3c 99

¶

¶

¶

I (Initiator's private authentication key) (32 bytes)

2b be a6 55 c2 33 71 c3 29 cf bd 3b 1f 02 c6 c0 62 03 38 37 b8 b5 90 99

a4 43 6f 66 60 81 b0 8e

¶

HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

From the Initiator's authentication key and the Responder's

ephemeral key (see Appendix C.2.2), the ECDH shared secret G_IY is

calculated.

PRK_4x3m = HMAC-SHA-256 (PRK_3e2m, G_IY).

data 3 is equal to C_R.

From data_3, CIPHERTEXT_2, and TH_2, compute the input to the

transcript hash TH_3 = H(H(TH_2 , CIPHERTEXT_2), data_3), as a CBOR

Sequence of these 2 data items.

And from there, compute the transcript hash TH_3 = SHA-256(H(TH_2 ,

CIPHERTEXT_2), data_3)

The initiator's subject name is the empty string:

And its credential is:

G_I (Initiator's public authentication key, CBOR unencoded) (32 bytes)

2c 44 0c c1 21 f8 d7 f2 4c 3b 0e 41 ae da fe 9c aa 4f 4e 7a bb 83 5e c3

0f 1d e8 8a db 96 ff 71

¶

¶

¶

G_IY (ECDH shared secret) (32 bytes)

cb ff 8c d3 4a 81 df ec 4c b6 5d 9a 57 2e bd 09 64 45 0c 78 56 3d a4 98

1d 80 d3 6c 8b 1a 75 2a

¶

¶

PRK_4x3m (32 bytes)

02 56 2f 1f 01 78 5c 0a a5 f5 94 64 0c 49 cb f6 9f 72 2e 9e 6c 57 83 7d

8e 15 79 ec 45 fe 64 7a

¶

¶

data_3 (CBOR Sequence) (1 byte)

37

¶

¶

Input to calculate TH_3 (CBOR Sequence) (46 bytes)

58 20 de cf d6 4a 36 67 64 0a 02 33 b0 4a a8 aa 91 f6 89 56 b8 a5 36 d0

cf 8c 73 a6 e8 a7 c3 62 1e 26 4a a3 f1 bd 5d 02 8d 19 cf 3c 99 37

¶

¶

TH_3 (CBOR unencoded) (32 bytes)

b6 cd 80 4f c4 b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82 d7 cb 8b 84

db 03 ff a5 83 a3 5f cb

¶

¶

Initiator's subject name (text string)

""

¶

¶

CRED_I is the following COSE_Key:

Which encodes to the following byte string:

Since no external authorization data is exchanged:

The plaintext of the COSE_Encrypt is the empty string:

The associated data is the following: ["Encrypt0", << ID_CRED_I >>,

<< TH_3, CRED_I, ? EAD_3 >>].

Info for K_3m is computed as follows:

ID_CRED_I =

{

 4: h'23'

}

¶

ID_CRED_I (4 bytes)

a1 04 41 23

¶

¶

{

 1: 1,

 -1: 4,

 -2: h'2C440CC121F8D7F24C3B0E41AEDAFE9CAA4F4E7ABB835EC30F1DE88ADB96FF71',

 "subject name": ""

 }

¶

¶

CRED_I (54 bytes)

a4 01 01 20 04 21 58 20 2c 44 0c c1 21 f8 d7 f2 4c 3b 0e 41 ae da fe 9c

aa 4f 4e 7a bb 83 5e c3 0f 1d e8 8a db 96 ff 71 6c 73 75 62 6a 65 63 74

20 6e 61 6d 65 60

¶

¶

EAD_3 (0 bytes)¶

¶

P_3m (0 bytes)¶

¶

A_3m (CBOR-encoded) (105 bytes)

83 68 45 6e 63 72 79 70 74 30 44 a1 04 41 23 58 58 58 20 b6 cd 80 4f c4

b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82 d7 cb 8b 84 db 03 ff a5 83

a3 5f cb a4 01 01 20 04 21 58 20 2c 44 0c c1 21 f8 d7 f2 4c 3b 0e 41 ae

da fe 9c aa 4f 4e 7a bb 83 5e c3 0f 1d e8 8a db 96 ff 71 6c 73 75 62 6a

65 63 74 20 6e 61 6d 65 60

¶

¶

Which as a CBOR encoded data item is:

From these parameters, K_3m is computed. Key K_3m is the output of

HKDF-Expand(PRK_4x3m, info, L), where L is the length of K_2m, so 16

bytes.

Nonce IV_3m is the output of HKDF-Expand(PRK_4x3m, info, L), where L

= 13 bytes.

Info for IV_3m is defined as follows:

Which as a CBOR encoded data item is:

From these parameters, IV_3m is computed:

MAC_3 is the 'ciphertext' of the COSE_Encrypt0 with empty plaintext.

In case of cipher suite 0 the AEAD is AES-CCM truncated to 8 bytes:

info for K_3m =

[

 10,

 h'B6CD804FC4B9D7CAC502ABD77CDA74E41CB01182D7CB8B84DB03FFA583A35FCB',

 "K_3m",

 16

]

¶

¶

info for K_3m (CBOR-encoded) (42 bytes)

84 0a 58 20 b6 cd 80 4f c4 b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82

d7 cb 8b 84 db 03 ff a5 83 a3 5f cb 64 4b 5f 33 6d 10

¶

¶

K_3m (16 bytes)

02 c7 e7 93 89 9d 90 d1 28 28 10 26 96 94 c9 58

¶

¶

¶

info for IV_3m =

[

 10,

 h'B6CD804FC4B9D7CAC502ABD77CDA74E41CB01182D7CB8B84DB03FFA583A35FCB',

 "IV_3m",

 13

]

¶

¶

info for IV_3m (CBOR-encoded) (43 bytes)

84 0a 58 20 b6 cd 80 4f c4 b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82

d7 cb 8b 84 db 03 ff a5 83 a3 5f cb 65 49 56 5f 33 6d 0d

¶

¶

IV_3m (13 bytes)

0d a7 cc 3a 6f 9a b2 48 52 ce 8b 37 a6

¶

¶

MAC_3 (CBOR unencoded) (8 bytes)

ee 59 8e a6 61 17 dc c3

¶

Since method = 3, Signature_or_MAC_3 is MAC_3:

Finally, the outer COSE_Encrypt0 is computed.

The plaintext is the CBOR Sequence of the items ID_CRED_I and the

CBOR encoded Signature_or_MAC_3, in this order (EAD_3 is empty).

Note that since ID_CRED_I contains a single 'kid' parameter, i.e.,

ID_CRED_I = { 4 : kid_I }, only the byte string kid_I is conveyed in

the plaintext encoded as a bstr_identifier. kid_I is encoded as the

corresponding integer - 24 (see bstr_identifier in Section 5.1),

i.e. 0x23 = 35, 35 - 24 = 11, and 11 in CBOR encoding is equal to

0x0b.

The Associated data A is the following: Associated data A = [

"Encrypt0", h'', TH_3]

Key K_3ae is the output of HKDF-Expand(PRK_3e2m, info, L).

info is defined as follows:

Which as a CBOR encoded data item is:

L is the length of K_3ae, so 16 bytes.

From these parameters, K_3ae is computed:

¶

Signature_or_MAC_3 (CBOR unencoded) (8 bytes)

ee 59 8e a6 61 17 dc c3

¶

¶

¶

¶

P_3ae (CBOR Sequence) (10 bytes)

0b 48 ee 59 8e a6 61 17 dc c3

¶

¶

A_3ae (CBOR-encoded) (45 bytes)

83 68 45 6e 63 72 79 70 74 30 40 58 20 b6 cd 80 4f c4 b9 d7 ca c5 02 ab

d7 7c da 74 e4 1c b0 11 82 d7 cb 8b 84 db 03 ff a5 83 a3 5f cb

¶

¶

¶

info for K_3ae =

[

 10,

 h'B6CD804FC4B9D7CAC502ABD77CDA74E41CB01182D7CB8B84DB03FFA583A35FCB',

 "K_3ae",

 16

]

¶

¶

info for K_3ae (CBOR-encoded) (43 bytes)

84 0a 58 20 b6 cd 80 4f c4 b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82

d7 cb 8b 84 db 03 ff a5 83 a3 5f cb 65 4b 5f 33 61 65 10

¶

¶

¶

Nonce IV_3ae is the output of HKDF-Expand(PRK_3e2m, info, L).

info is defined as follows:

Which as a CBOR encoded data item is:

L is the length of IV_3ae, so 13 bytes.

From these parameters, IV_3ae is computed:

Using the parameters above, the 'ciphertext' CIPHERTEXT_3 can be

computed:

From the parameter above, message_3 is computed, as the CBOR

Sequence of the following items: (C_R, CIPHERTEXT_3).

Which encodes to the following byte string:

K_3ae (16 bytes)

6b a4 c8 83 1d e3 ae 23 e9 8e f7 35 08 d0 95 86

¶

¶

¶

info for IV_3ae =

[

 10,

 h'97D8AD42334833EB25B960A5EB0704505F89671A0168AA1115FAF92D9E67EF04',

 "IV_3ae",

 13

]

¶

¶

info for IV_3ae (CBOR-encoded) (44 bytes)

84 0a 58 20 b6 cd 80 4f c4 b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82

d7 cb 8b 84 db 03 ff a5 83 a3 5f cb 66 49 56 5f 33 61 65 0d

¶

¶

¶

IV_3ae (13 bytes)

6c 6d 0f e1 1e 9a 1a f3 7b 87 84 55 10

¶

¶

CIPHERTEXT_3 (CBOR unencoded) (18 bytes)

d5 53 5f 31 47 e8 5f 1c fa cd 9e 78 ab f9 e0 a8 1b bf

¶

¶

message_3 =

(

 -24,

 h'D5535F3147E85F1CFACD9E78ABF9E0A81BBF'

)

¶

¶

message_3 (CBOR Sequence) (20 bytes)

37 52 d5 53 5f 31 47 e8 5f 1c fa cd 9e 78 ab f9 e0 a8 1b bf

¶

C.2.4. OSCORE Security Context Derivation

From here, the Initiator and the Responder can derive an OSCORE

Security Context, using the EDHOC-Exporter interface.

From TH_3 and CIPHERTEXT_3, compute the input to the transcript hash

TH_4 = H(TH_3, CIPHERTEXT_3), as a CBOR Sequence of these 2 data

items.

And from there, compute the transcript hash TH_4 = SHA-256(TH_3 ,

CIPHERTEXT_4)

The Master Secret and Master Salt are derived as follows:

Master Secret = EDHOC-Exporter("OSCORE Master Secret", 16) =

EDHOC-KDF(PRK_4x3m, TH_4, "OSCORE Master Secret", 16) = HKDF-Expand(

PRK_4x3m, info_ms, 16)

Master Salt = EDHOC-Exporter("OSCORE Master Salt", 8) = EDHOC-

KDF(PRK_4x3m, TH_4, "OSCORE Master Salt", 8) = HKDF-Expand(

PRK_4x3m, info_salt, 8)

info_ms for OSCORE Master Secret is defined as follows:

Which as a CBOR encoded data item is:

info_salt for OSCORE Master Salt is defined as follows:

¶

¶

Input to calculate TH_4 (CBOR Sequence) (53 bytes)

58 20 b6 cd 80 4f c4 b9 d7 ca c5 02 ab d7 7c da 74 e4 1c b0 11 82 d7 cb

8b 84 db 03 ff a5 83 a3 5f cb 52 d5 53 5f 31 47 e8 5f 1c fa cd 9e 78 ab

f9 e0 a8 1b bf

¶

¶

TH_4 (CBOR unencoded) (32 bytes)

7c cf de dc 2c 10 ca 03 56 e9 57 b9 f6 a5 92 e0 fa 74 db 2a b5 4f 59 24

40 96 f9 a2 ac 56 d2 07

¶

¶

¶

¶

¶

info_ms = [

 10,

 h'7CCFDEDC2C10CA0356E957B9F6A592E0FA74DB2AB54F59244096F9A2AC56D207',

 "OSCORE Master Secret",

 16

]

¶

¶

info_ms for OSCORE Master Secret (CBOR-encoded) (58 bytes)

84 0a 58 20 7c cf de dc 2c 10 ca 03 56 e9 57 b9 f6 a5 92 e0 fa 74 db 2a

b5 4f 59 24 40 96 f9 a2 ac 56 d2 07 74 4f 53 43 4f 52 45 20 4d 61 73 74

65 72 20 53 65 63 72 65 74 10

¶

¶

Which as a CBOR encoded data item is:

From these parameters, OSCORE Master Secret and OSCORE Master Salt

are computed:

The client's OSCORE Sender ID is C_R and the server's OSCORE Sender

ID is C_I.

The AEAD Algorithm and the hash algorithm are the application AEAD

and hash algorithms in the selected cipher suite.

Appendix D. Applicability Template

This appendix contains an example of an applicability statement, see

Section 3.7.

info_salt = [

 10,

 h'7CCFDEDC2C10CA0356E957B9F6A592E0FA74DB2AB54F59244096F9A2AC56D207',

 "OSCORE Master Salt",

 8

]

¶

¶

info for OSCORE Master Salt (CBOR-encoded) (56 Bytes)

84 0a 58 20 7c cf de dc 2c 10 ca 03 56 e9 57 b9 f6 a5 92 e0 fa 74 db 2a

b5 4f 59 24 40 96 f9 a2 ac 56 d2 07 72 4f 53 43 4f 52 45 20 4d 61 73 74

65 72 20 53 61 6c 74 08

¶

¶

OSCORE Master Secret (16 bytes)

c3 4a 50 6d 0e bf bd 17 03 04 86 13 5f 9c b3 50

¶

OSCORE Master Salt (8 bytes)

c2 24 34 9d 9b 34 ca 8c

¶

¶

Client's OSCORE Sender ID (1 byte)

00

¶

Server's OSCORE Sender ID (1 byte)

16

¶

¶

OSCORE AEAD Algorithm (int)

10

¶

OSCORE Hash Algorithm (int)

-16

¶

¶

For use of EDHOC in the XX protocol, the following assumptions are

made on the parameters:

METHOD_CORR = 5

method = 1 (I uses signature key, R uses static DH key.)

corr = 1 (CoAP Token or other transport data enables

correlation between message_1 and message_2.)

EDHOC requests are expected by the server at /app1-edh, no

Content-Format needed.

C_1 = null is present to identify message_1

CRED_I is an 802.1AR IDevID encoded as a C509 Certificate of type

0 [I-D.ietf-cose-cbor-encoded-cert].

R acquires CRED_I out-of-band, indicated in EAD_1

ID_CRED_I = {4: h''} is a kid with value empty byte string

CRED_R is a COSE_Key of type OKP as specified in Section 3.3.4.

The CBOR map has parameters 1 (kty), -1 (crv), and -2 (x-

coordinate).

ID_CRED_R = CRED_R

No use of message_4: the application sends protected messages

from R to I.

External authorization data is defined and processed as specified

in [I-D.selander-ace-ake-authz].

Appendix E. EDHOC Message Deduplication

EDHOC by default assumes that message duplication is handled by the

transport, in this section exemplified with CoAP.

Deduplication of CoAP messages is described in Section 4.5 of

[RFC7252]. This handles the case when the same Confirmable (CON)

message is received multiple times due to missing acknowledgement on

CoAP messaging layer. The recommended processing in [RFC7252] is

that the duplicate message is acknowledged (ACK), but the received

message is only processed once by the CoAP stack.

Message deduplication is resource demanding and therefore not

supported in all CoAP implementations. Since EDHOC is targeting

constrained environments, it is desirable that EDHOC can optionally

¶

* ¶

- ¶

-

¶

*

¶

* ¶

*

¶

- ¶

- ¶

* ¶

-

¶

* ¶

*

¶

*

¶

¶

¶

support transport layers which does not handle message duplication.

Special care is needed to avoid issues with duplicate messages, see

Section 5.2.

The guiding principle here is similar to the deduplication

processing on CoAP messaging layer: a received duplicate EDHOC

message SHALL NOT result in a response consisting of another

instance of the next EDHOC message. The result MAY be that a

duplicate EDHOC response is sent, provided it is still relevant with

respect the current protocol state. In any case, the received

message MUST NOT be processed more than once in the same EDHOC

session. This is called "EDHOC message deduplication".

An EDHOC implementation MAY store the previously sent EDHOC message

to be able to resend it. An EDHOC implementation MAY keep the

protocol state to be able to recreate the previously sent EDHOC

message and resend it. The previous message or protocol state MUST

NOT be kept longer than what is required for retransmission, for

example, in the case of CoAP transport, no longer than the

EXCHANGE_LIFETIME (see Section 4.8.2 of [RFC7252]).

Note that the requirements in Section 5.2 still apply because

duplicate messages are not processed by the EDHOC state machine:

EDHOC messages SHALL be processed according to the current

protocol state.

Different instances of the same message MUST NOT be processed in

one session.

Appendix F. Change Log

Main changes:

From -06 to -07:

Changed transcript hash definition for TH_2 and TH_3

Removed "EDHOC signature algorithm curve" from cipher suite

New IANA registry "EDHOC Exporter Label"

New application defined parameter "context" in EDHOC-Exporter

Changed normative language for failure from MUST to SHOULD

send error

Made error codes non-negative and 0 for success

Added detail on success error code

¶

¶

¶

¶

*

¶

*

¶

¶

* ¶

- ¶

- ¶

- ¶

- ¶

-

¶

- ¶

- ¶

Aligned terminology "protocol instance" -> "session"

New appendix on compact EC point representation

Added detail on use of ephemeral public keys

Moved key derivation for OSCORE to draft-ietf-core-oscore-

edhoc

Additional security considerations

Renamed "Auxililary Data" as "External Authorization Data"

Added encrypted EAD_4 to message_4

From -05 to -06:

New section 5.2 "Message Processing Outline"

Optional inital byte C_1 = null in message_1

New format of error messages, table of error codes, IANA

registry

Change of recommendation transport of error in CoAP

Merge of content in 3.7 and appendix C into new section 3.7

"Applicability Statement"

Requiring use of deterministic CBOR

New section on message deduplication

New appendix containin all CDDL definitions

New appendix with change log

Removed section "Other Documents Referencing EDHOC"

Clarifications based on review comments

From -04 to -05:

EDHOC-Rekey-FS -> EDHOC-KeyUpdate

Clarification of cipher suite negotiation

Updated security considerations

Updated test vectors

- ¶

- ¶

- ¶

-

¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

-

¶

- ¶

-

¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

Updated applicability statement template

From -03 to -04:

Restructure of section 1

Added references to C509 Certificates

Change in CIPHERTEXT_2 -> plaintext XOR KEYSTREAM_2 (test

vector not updated)

"K_2e", "IV_2e" -> KEYSTREAM_2

Specified optional message 4

EDHOC-Exporter-FS -> EDHOC-Rekey-FS

Less constrained devices SHOULD implement both suite 0 and 2

Clarification of error message

Added exporter interface test vector

From -02 to -03:

Rearrangements of section 3 and beginning of section 4

Key derivation new section 4

Cipher suites 4 and 5 added

EDHOC-EXPORTER-FS - generate a new PRK_4x3m from an old one

Change in CIPHERTEXT_2 -> COSE_Encrypt0 without tag (no change

to test vector)

Clarification of error message

New appendix C applicability statement

From -01 to -02:

New section 1.2 Use of EDHOC

Clarification of identities

New section 4.3 clarifying bstr_identifier

Updated security considerations

Updated text on cipher suite negotiation and key confirmation

- ¶

* ¶

- ¶

- ¶

-

¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

-

¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

Test vector for static DH

From -00 to -01:

Removed PSK method

Removed references to certificate by value

Acknowledgments

The authors want to thank Alessandro Bruni, Karthikeyan Bhargavan,

Timothy Claeys, Martin Disch, Theis Groenbech Petersen, Dan Harkins,

Klaus Hartke, Russ Housley, Stefan Hristozov, Alexandros Krontiris,

Ilari Liusvaara, Karl Norrman, Salvador Perez, Eric Rescorla,

Michael Richardson, Thorvald Sahl Joergensen, Jim Schaad, Carsten

Schuermann, Ludwig Seitz, Stanislav Smyshlyaev, Valery Smyslov,

Peter van der Stok, Rene Struik, Vaishnavi Sundararajan, Erik

Thormarker, Marco Tiloca, Michel Veillette, and Malisa Vucinic for

reviewing and commenting on intermediate versions of the draft. We

are especially indebted to Jim Schaad for his continuous reviewing

and implementation of different versions of the draft.

Work on this document has in part been supported by the H2020

project SIFIS-Home (grant agreement 952652).

Authors' Addresses

Göran Selander

Ericsson AB

Email: goran.selander@ericsson.com

John Preuß Mattsson

Ericsson AB

Email: john.mattsson@ericsson.com

Francesca Palombini

Ericsson AB

Email: francesca.palombini@ericsson.com

- ¶

* ¶

- ¶

- ¶

¶

¶

mailto:goran.selander@ericsson.com
mailto:john.mattsson@ericsson.com
mailto:francesca.palombini@ericsson.com

	Ephemeral Diffie-Hellman Over COSE (EDHOC)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. Use of EDHOC
	1.3. Message Size Examples
	1.4. Document Structure
	1.5. Terminology and Requirements Language

	2. EDHOC Outline
	3. Protocol Elements
	3.1. General
	3.2. Method and Correlation
	3.2.1. Method
	3.2.2. Connection Identifiers
	3.2.3. Transport
	3.2.4. Message Correlation

	3.3. Authentication Parameters
	3.3.1. Authentication Keys
	3.3.2. Identities
	3.3.3. Authentication Credentials
	3.3.4. Identification of Credentials

	3.4. Cipher Suites
	3.5. Ephemeral Public Keys
	3.6. External Authorization Data
	3.7. Applicability Statement

	4. Key Derivation
	4.1. EDHOC-Exporter Interface

	5. Message Formatting and Processing
	5.1. Encoding of bstr_identifier
	5.2. Message Processing Outline
	5.3. EDHOC Message 1
	5.3.1. Formatting of Message 1
	5.3.2. Initiator Processing of Message 1
	5.3.3. Responder Processing of Message 1

	5.4. EDHOC Message 2
	5.4.1. Formatting of Message 2
	5.4.2. Responder Processing of Message 2
	5.4.3. Initiator Processing of Message 2

	5.5. EDHOC Message 3
	5.5.1. Formatting of Message 3
	5.5.2. Initiator Processing of Message 3
	5.5.3. Responder Processing of Message 3

	6. Error Handling
	6.1. Success
	6.2. Unspecified
	6.3. Wrong Selected Cipher Suite
	6.3.1. Cipher Suite Negotiation
	6.3.2. Examples

	7. Transferring EDHOC and Deriving an OSCORE Context
	7.1. EDHOC Message 4
	7.1.1. Formatting of Message 4
	7.1.2. Responder Processing of Message 4
	7.1.3. Initiator Processing of Message 4

	7.2. Transferring EDHOC in CoAP

	8. Security Considerations
	8.1. Security Properties
	8.2. Cryptographic Considerations
	8.3. Cipher Suites and Cryptographic Algorithms
	8.4. Unprotected Data
	8.5. Denial-of-Service
	8.6. Implementation Considerations

	9. IANA Considerations
	9.1. EDHOC Exporter Label
	9.2. EDHOC Cipher Suites Registry
	9.3. EDHOC Method Type Registry
	9.4. EDHOC Error Codes Registry
	9.5. The Well-Known URI Registry
	9.6. Media Types Registry
	9.7. CoAP Content-Formats Registry
	9.8. Expert Review Instructions

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Compact Representation
	Appendix B. Use of CBOR, CDDL and COSE in EDHOC
	B.1. CBOR and CDDL
	B.2. CDDL Definitions
	B.3. COSE
	Appendix C. Test Vectors
	C.1. Test Vectors for EDHOC Authenticated with Signature Keys (x5t)
	C.1.1. Message_1
	C.1.2. Message_2
	C.1.3. Message_3
	C.1.4. OSCORE Security Context Derivation

	C.2. Test Vectors for EDHOC Authenticated with Static Diffie-Hellman Keys
	C.2.1. Message_1
	C.2.2. Message_2
	C.2.3. Message_3
	C.2.4. OSCORE Security Context Derivation

	Appendix D. Applicability Template
	Appendix E. EDHOC Message Deduplication
	Appendix F. Change Log
	Acknowledgments
	Authors' Addresses

