
Workgroup: LAMPS Working Group

Internet-Draft:

draft-ietf-lamps-cmp-algorithms-11

Updates: 4210 (if approved)

Published: 15 February 2022

Intended Status: Standards Track

Expires: 19 August 2022

Authors: H. Brockhaus, Ed.

Siemens

H. Aschauer

Siemens

M. Ounsworth

Entrust

J. Gray

Entrust

Certificate Management Protocol (CMP) Algorithms

Abstract

This document updates RFC 4210 describing the conventions for using

concrete cryptographic algorithms with the Certificate Management

Protocol (CMP). CMP is used to enroll and further manage the

lifecycle of X.509 certificates.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc4210
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Message Digest Algorithms

2.1. SHA2

2.2. SHAKE

3. Signature Algorithms

3.1. RSA

3.2. ECDSA

3.3. EdDSA

4. Key Management Algorithms

4.1. Key Agreement Algorithms

4.1.1. Diffie-Hellman

4.1.2. ECDH

4.2. Key Transport Algorithms

4.2.1. RSA

4.3. Symmetric Key-Encryption Algorithms

4.3.1. AES Key Wrap

4.4. Key Derivation Algorithms

4.4.1. PBKDF2

5. Content Encryption Algorithms

5.1. AES-CBC

6. Message Authentication Code Algorithms

6.1. Password-based MAC

6.1.1. PasswordBasedMac

6.1.2. PBMAC1

6.2. Symmetric key-based MAC

6.2.1. SHA2-based HMAC

6.2.2. AES-GMAC

6.2.3. SHAKE-based KMAC

7. Algorithm Use Profiles

7.1. Algorithm Profile for RFC 4210 PKI Management Message

Profiles

7.2. Algorithm Profile for Lightweight CMP Profile

8. IANA Considerations

9. Security Considerations

10. Acknowledgements

11. Normative References

12. Informative References

Appendix A. History of changes

Authors' Addresses

¶

1. Introduction

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Message Digest Algorithms

This section provides references to object identifiers and

conventions to be employed by CMP implementations that support SHA2

or SHAKE message digest algorithms.

Digest algorithm identifiers are located in:

hashAlg field of OOBCertHash and CertStatus

owf field of Challenge, PBMParameter, and DHBMParameter

digestAlgorithms field of SignedData

digestAlgorithm field of SignerInfo

Digest values are located in:

hashVal field of OOBCertHash

certHash field of CertStatus

witness field of Challenge

In addition, digest values are input to signature algorithms.

2.1. SHA2

The SHA2 algorithm family is defined in FIPS Pub 180-4 [NIST.FIPS.

180-4].

The message digest algorithms SHA-224, SHA-256, SHA-384, and SHA-512

are identified by the following OIDs:

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

 id-sha224 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)

 us(840) organization(1) gov(101) csor(3) nistalgorithm(4)

 hashalgs(2) 4 }

 id-sha256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)

 us(840) organization(1) gov(101) csor(3) nistalgorithm(4)

 hashalgs(2) 1 }

 id-sha384 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)

 us(840) organization(1) gov(101) csor(3) nistalgorithm(4)

 hashalgs(2) 2 }

 id-sha512 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)

 us(840) organization(1) gov(101) csor(3) nistalgorithm(4)

 hashalgs(2) 3 }

Specific conventions to be considered are specified in RFC 5754

Section 2 [RFC5754].

2.2. SHAKE

The SHA-3 family of hash functions is defined in FIPS Pub 202

[NIST.FIPS.202] and includes fixed output length variants SHA3-224,

SHA3-256, SHA3-384, and SHA3-512, as well as extendable-output

functions (SHAKEs) SHAKE128 and SHAKE256. Currently SHAKE128 and

SHAKE256 are the only members of the SHA3-family which are specified

for use in X.509 and PKIX [RFC8692], and CMS [RFC8702] as one-way

hash function for use with RSASSA-PSS and ECDSA as one-way hash

function for use with RSASSA-PSS and ECDSA.

SHAKE is an extendable-output function and FIPS Pub 202 [NIST.FIPS.

202] prohibits using SHAKE as general-purpose hash function. When

SHAKE is used in CMP as a message digest algorithm, the output

length MUST be 256 bits for SHAKE128 and 512 bits for SHAKE256.

The message digest algorithms SHAKE128 and SHAKE256 are identified

by the following OIDs:

 id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)

 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4)

 hashalgs(2) 11 }

 id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)

 us(840) organization(1) gov(101) csor(3) nistAlgorithm(4)

 hashalgs(2) 12 }

Specific conventions to be considered are specified in RFC 8702

Section 3.1 [RFC8702].

¶

¶

¶

¶

¶

¶

¶

3. Signature Algorithms

This section provides references to object identifiers and

conventions to be employed by CMP implementations that support RSA,

ECDSA, or EdDSA signature algorithms.

The signature algorithm is referred to as MSG_SIG_ALG in Section

7.2, RFC 4210 Appendix D and E [RFC4210], and in the Lightweight CMP

Profile [I-D.ietf-lamps-lightweight-cmp-profile].

Signature algorithm identifiers are located in:

protectionAlg field of PKIHeader

algorithmIdentifier field of POPOSigningKey

signatureAlgorithm field of CertificationRequest,

SignKeyPairTypes, and SignerInfo

Signature values are located in:

protection field of PKIMessage

signature field of POPOSigningKey

signature field of CertificationRequest and SignerInfo

3.1. RSA

The RSA (RSASSA-PSS and PKCS#1 version 1.5) signature algorithm is

defined in RFC 8017 [RFC8017].

The algorithm identifier for RSASAA-PSS signatures used with SHA2

message digest algorithms is identified by the following OID:

 id-RSASSA-PSS OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 }

Specific conventions to be considered are specified in RFC 4056

[RFC4056].

The signature algorithm RSASSA-PSS used with SHAKE message digest

algorithms are identified by the following OIDs:

 id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) 30 }

 id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) 31 }

¶

¶

¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

Specific conventions to be considered are specified in RFC 8702

Section 3.2.1 [RFC8702].

The signature algorithm PKCS#1 version 1.5 used with SHA2 message

digest algorithms is identified by the following OIDs:

 sha224WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)

 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 14 }

 sha256WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)

 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 }

 sha384WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)

 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 12 }

 sha512WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)

 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 13 }

Specific conventions to be considered are specified in RFC 5754

Section 3.2 [RFC5754].

3.2. ECDSA

The ECDSA signature algorithm is defined in FIPS Pub 186-4

[NIST.FIPS.186-4].

The signature algorithm ECDSA used with SHA2 message digest

algorithms is identified by the following OIDs:

 ecdsa-with-SHA224 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 1 }

 ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }

 ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }

 ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }

As specified in RFC 5480 [RFC5480] the NIST-recommended SECP curves

are identified by the following OIDs:

¶

¶

¶

¶

¶

¶

¶

¶

 secp192r1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) curves(3) prime(1) 1 }

 secp224r1 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) curve(0) 33 }

 secp256r1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) curves(3) prime(1) 7 }

 secp384r1 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) curve(0) 34 }

 secp521r1 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) curve(0) 35 }

Specific conventions to be considered are specified in RFC 5754

Section 3.3 [RFC5754].

The signature algorithm ECDSA used with SHAKE message digest

algorithms are identified by the following OIDs:

 id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) 32 }

 id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) 33 }

Specific conventions to be considered are specified in RFC 8702

Section 3.2.2 [RFC8702].

3.3. EdDSA

The EdDSA signature algorithm is defined in RFC 8032 Section 3.3

[RFC8032] and FIPS Pub 186-5 (Draft) [NIST.FIPS.186-5].

The signature algorithm Ed25519 that MUST be used with SHA-512

message digest algorithms is identified by the following OIDs:

 id-Ed25519 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) thawte(101) 112 }

The signature algorithm Ed448 that MUST be used with SHAKE256

message digest algorithms is identified by the following OIDs:

 id-Ed448 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) thawte(101) 113 }

¶

¶

¶

¶

¶

¶

¶

¶

¶

Specific conventions to be considered are specified in RFC 8419

[RFC8419].

Note: The hash algorithm used to calculate the certHash in certConf

messages MUST be SHA512 if the certificate to be confirmed has been

signed using Ed25519 and SHAKE256 with d=512 if signed using Ed448.

4. Key Management Algorithms

CMP utilizes the following general key management techniques: key

agreement, key transport, and passwords.

CRMF [RFC4211] and CMP Updates [I-D.ietf-lamps-cmp-updates] promotes

the use of CMS [RFC5652] EnvelopedData by deprecating the use of

EncryptedValue.

4.1. Key Agreement Algorithms

The key agreement algorithm is referred to as PROT_ENC_ALG in

RFC 4210 Appendix D and E [RFC4210] and as KM_KA_ALG in the

Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-profile], as

well as in Section 7.

Key agreement algorithms are only used in CMP when using CMS

[RFC5652] EnvelopedData together with the key agreement key

management technique. When a key agreement algorithm is used, a key-

encryption algorithm (Section 4.3) is needed next to the content-

encryption algorithm (Section 5).

Key agreement algorithm identifiers are located in:

keyEncryptionAlgorithm field of KeyAgreeRecipientInfo

Key wrap algorithm identifiers are located in:

KeyWrapAlgorithm parameters within keyEncryptionAlgorithm field

of KeyAgreeRecipientInfo

Wrapped content-encryption keys are located in:

encryptedKey field of RecipientEncryptedKeys

4.1.1. Diffie-Hellman

Diffie-Hellman key agreement is defined in RFC 2631 [RFC2631] and

SHALL be used in the ephemeral-static as specified in RFC 3370

[RFC3370]. Static-static variants SHALL NOT be used.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

*

¶

¶

* ¶

¶

The Diffie-Hellman key agreement algorithm is identified by the

following OID:

 id-alg-ESDH OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 5 }

Specific conventions to be considered are specified in RFC 3370

Section 4.1 [RFC3370].

4.1.2. ECDH

Elliptic Curve Diffie-Hellman (ECDH) key agreement is defined in

RFC 5753 [RFC5753] and SHALL be used in the ephemeral-static variant

as specified in RFC 5753 [RFC5753] or the 1-Pass ECMQV variant as

specified in RFC 5753 [RFC5753]. Static-static variants SHALL NOT be

used.

The ECDH key agreement algorithm used together with NIST-recommended

SECP curves are identified by the following OIDs:

¶

¶

¶

¶

¶

 dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 11(11) 0 }

 dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 11(11) 1 }

 dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 11(11) 2 }

 dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 11(11) 3 }

 dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) certicom(132) schemes(1)

 14(14) 0 }

 dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) certicom(132) schemes(1)

 14(14) 1 }

 dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) certicom(132) schemes(1)

 14(14) 2 }

 dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) certicom(132) schemes(1)

 14(14) 3 }

 mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 15(15) 0 }

 mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 15(15) 1 }

 mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 15(15) 2 }

 mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) schemes(1) 15(15) 3 }

As specified in RFC 5480 [RFC5480] the NIST-recommended SECP curves

are identified by the following OIDs:

 secp192r1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) curves(3) prime(1) 1 }

 secp224r1 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) curve(0) 33 }

 secp256r1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) ansi-X9-62(10045) curves(3) prime(1) 7 }

 secp384r1 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) curve(0) 34 }

 secp521r1 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) certicom(132) curve(0) 35 }

Specific conventions to be considered are specified in RFC 5753

[RFC5753].

¶

¶

¶

¶

The ECDH key agreement algorithm used together with curve25519 or

curve448 are identified by the following OIDs:

 id-X25519 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) thawte(101) 110 }

 id-X448 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) thawte(101) 111 }

Specific conventions to be considered are specified in RFC 8418

[RFC8418].

4.2. Key Transport Algorithms

The key transport algorithm is also referred to as PROT_ENC_ALG in

RFC 4210 Appendix D and E [RFC4210] and as KM_KL_ALG in the

Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-profile], as

well as in Section 7.

Key transport algorithms are only used in CMP when using CMS

[RFC5652] EnvelopedData together with the key transport key

management technique.

Key transport algorithm identifiers are located in:

keyEncryptionAlgorithm field of KeyTransRecipientInfo

Key transport encrypted content-encryption keys are located in:

encryptedKey field of KeyTransRecipientInfo

4.2.1. RSA

The RSA key transport algorithm is the RSA encryption scheme defined

in RFC 8017 [RFC8017].

The algorithm identifier for RSA (PKCS #1 v1.5) is:

 rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

The algorithm identifier for RSAES-OAEP is:

 id-RSAES-OAEP OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 7 }

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

Further conventions to be considered for PKCS #1 v1.5 are specified

in RFC 3370 Section 4.2.1 [RFC3370] and for RSAES-OAEP in RFC 3560

[RFC3560].

4.3. Symmetric Key-Encryption Algorithms

The symmetric key-encryption algorithm is also referred to as

KM_KW_ALG in Section 7.2 and in the Lightweight CMP Profile [I-

D.ietf-lamps-lightweight-cmp-profile].

As symmetric key-encryption key management technique is not used by

CMP, the symmetric key-encryption algorithm is only needed when

using the key agreement or password-based key management technique

with CMS [RFC5652] EnvelopedData.

Key wrap algorithm identifiers are located in:

parameters field of the KeyEncryptionAlgorithmIdentifier of

KeyAgreeRecipientInfo and PasswordRecipientInfo

Wrapped content-encryption keys are located in:

encryptedKey field of RecipientEncryptedKeys (for key agreement)

and PasswordRecipientInfo (for password-based key management)

4.3.1. AES Key Wrap

The AES encryption algorithm is defined in FIPS Pub 197 [NIST.FIPS.

197] and the key wrapping is defined in RFC 3394 [RFC3394].

AES key encryption has the algorithm identifier:

 id-aes128-wrap OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 5 }

 id-aes192-wrap OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 25 }

 id-aes256-wrap OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 45 }

The underlying encryption functions for the key wrap and content-

encryption algorithms (as specified in Section 5) and the key sizes

for the two algorithms MUST be the same (e.g., AES-128 key wrap

algorithm with AES-128 content-encryption algorithm), see also

RFC 8551 [RFC8551].

¶

¶

¶

¶

*

¶

¶

*

¶

¶

¶

¶

¶

Further conventions to be considered for AES key wrap are specified

in RFC 3394 Section 2.2 [RFC3394] and RFC 3565 Section 2.3.2

[RFC3565].

4.4. Key Derivation Algorithms

The key derivation algorithm is also referred to as KM_KD_ALG in

Section 7.2 and in the Lightweight CMP Profile [I-D.ietf-lamps-

lightweight-cmp-profile].

Key derivation algorithms are only used in CMP when using CMS

[RFC5652] EnvelopedData together with password-based key management

technique.

Key derivation algorithm identifiers are located in:

keyDerivationAlgorithm field of PasswordRecipientInfo

When using the password-based key management technique with

EnvelopedData as specified in CMP Updates together with MAC-based

PKIProtection, the salt for the password-based MAC and KDF must be

chosen independently to ensure usage of independent symmetric keys.

4.4.1. PBKDF2

The password-based key derivation function 2 (PBKDF2) is defined in

RFC 8018 [RFC8018].

Password-based key derivation function 2 has the algorithm

identifier:

 id-PBKDF2 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs-5(5) 12 }

Further conventions to be considered for PBKDF2 are specified in

RFC 3370 Section 4.4.1 [RFC3370] and RFC 8018 Section 5.2 [RFC8018].

5. Content Encryption Algorithms

The content encryption algorithm is also referred to as PROT_SYM_ALG

in Section 7, RFC 4210 Appendix D and E [RFC4210], and the

Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-profile].

Content encryption algorithms are only used in CMP when using CMS

[RFC5652] EnvelopedData to transport a signed private key package in

case of central key generation or key archiving, a certificate to

facilitate implicit proof-of-possession, or a revocation passphrase

in encrypted form.

¶

¶

¶

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

Content encryption algorithm identifiers are located in:

contentEncryptionAlgorithm field of EncryptedContentInfo

Encrypted content is located in:

encryptedContent field of EncryptedContentInfo

5.1. AES-CBC

The AES encryption algorithm is defined in FIPS Pub 197 [NIST.FIPS.

197].

AES-CBC content encryption has the algorithm identifier:

 id-aes128-CBC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 2 }

 id-aes192-CBC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1)22 }

 id-aes256-CBC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1)42 }

Specific conventions to be considered for AES-CBC content encryption

are specified in RFC 3565 [RFC3565].

6. Message Authentication Code Algorithms

The message authentication code is either used for shared secret-

based CMP message protection or together with the password-based key

derivation function (PBKDF2).

The message authentication code algorithm is also referred to as

MSG_MAC_ALG in Section 7, RFC 4210 Appendix D and E [RFC4210], and

the Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-

profile].

6.1. Password-based MAC

Password-based MAC algorithms combine the derivation of a symmetric

key from a password or other shared secret information and a

symmetric key-based MAC function as specified in Section 6.2 using

this derived key.

¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

Message authentication code algorithm identifiers are located in:

protectionAlg field of PKIHeader

Message authentication code values are located in:

PKIProtection field of PKIMessage

6.1.1. PasswordBasedMac

The PasswordBasedMac algorithm is defined in RFC 4210 Section

5.1.3.1 [RFC4210], RFC 4211 Section 4.4 [RFC4211], and Algorithm

Requirements Update to the Internet X.509 Public Key Infrastructure

Certificate Request Message Format (CRMF) [RFC9045].

The PasswordBasedMac algorithm is identified by the following OID:

 id-PasswordBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) nt(113533) nsn(7) algorithms(66) 13 }

Further conventions to be considered for password-based MAC are

specified in RFC 4210 Section 5.1.3.1 [RFC4210], RFC 4211 Section

4.4 [RFC4211], and Algorithm Requirements Update to the Internet X.

509 Public Key Infrastructure Certificate Request Message Format

(CRMF) [RFC9045].

6.1.2. PBMAC1

The Password-Based Message Authentication Code 1 (PBMAC1) is defined

in RFC 8018 [RFC8018]. PBMAC1 combines a password-based key

derivation function like PBKDF2 (Section 4.4.1) with an underlying

symmetric key-based message authentication scheme.

PBMAC1 has the following OID:

 id-PBMAC1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs-5(5) 14 }

Specific conventions to be considered for PBMAC1 are specified in

RFC 8018 Section 7.1 and A.5 [RFC8018].

6.2. Symmetric key-based MAC

Symmetric key-based MAC algorithms are used for deriving the

symmetric encryption key when using PBKDF2 as described in Section

¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

4.4.1 as well as with Password-based MAC as described in Section

6.1.

Message authentication code algorithm identifiers are located in:

protectionAlg field of PKIHeader

messageAuthScheme field of PBMAC1

mac field of PBMParameter

prf field of PBKDF2-params

Message authentication code values are located in:

PKIProtection field of PKIMessage

6.2.1. SHA2-based HMAC

The HMAC algorithm is defined in RFC 2104 [RFC2104] and

FIPS Pub 198-1 [NIST.FIPS.198-1].

The HMAC algorithm used with SHA2 message digest algorithms is

identified by the following OIDs:

 id-hmacWithSHA224 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) digestAlgorithm(2) 8 }

 id-hmacWithSHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) digestAlgorithm(2) 9 }

 id-hmacWithSHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) digestAlgorithm(2) 10 }

 id-hmacWithSHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) digestAlgorithm(2) 11 }

Specific conventions to be considered for SHA2-based HMAC are

specified in RFC 4231 Section 3.1 [RFC4231].

6.2.2. AES-GMAC

The AES-GMAC algorithm is defined in FIPS Pub 197 [NIST.FIPS.197]

and NIST SP 800-38d [NIST.SP.800-38d].

Note: AES-GMAC MUST NOT be used twice with the same parameter set,

especially the same nonce. Therefore, it MUST NOT be used together

with PBKDF2. When using it with PBMAC1 it MUST be ensured that AES-

GMAC is only used as message authentication scheme and not for the

key derivation function PBKDF2.

The AES-GMAC algorithm is identified by the following OIDs:

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

 id-aes128-GMAC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 9 }

 id-aes192-GMAC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 29 }

 id-aes256-GMAC OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) aes(1) 49 }

Specific conventions to be considered for AES-GMAC are specified in

RFC 9044 [RFC9044].

6.2.3. SHAKE-based KMAC

The KMAC algorithm is defined in RFC 8702 [RFC8702] and

FIPS SP 800-185 [NIST.SP.800-185].

The SHAKE-based KMAC algorithm is identified by the following OIDs:

 id-KmacWithSHAKE128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) 2 19 }

 id-KmacWithSHAKE256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)

 country(16) us(840) organization(1) gov(101) csor(3)

 nistAlgorithm(4) 2 20 }

Specific conventions to be considered for KMAC with SHAKE are

specified in RFC 8702 Section 3.4 [RFC8702].

7. Algorithm Use Profiles

This section provides profiles of algorithms and respective

conventions for different application use cases.

Recommendations like NIST SP 800-57 Recommendation for Key

Management Table2 [NIST.SP.800-57pt1r5] and ECRYPT Algorithms, Key

Size and Protocols Report (2018) Section 4.6 [ECRYPT.CSA.D5.4]

provide general information on current cryptographic algorithms.

The overall cryptographic strength of a CMP deployment will depend

on several factors, including:

Capabilities of the end entity: What kind of algorithms does the

end entity support. The cryptographic strength of the system

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

SHOULD be at least as strong as the algorithms and keys used for

the certificate being managed.

Algorithm profile: The overall strength of the profile will be

the strength of the weakest algorithm it contains.

Message protection: The overall strength of the CMC message

protection

MAC-based protection: The entropy of the shared secret

information or password when MAC-based message protection is

used (MSG_MAC_ALG).

Signature-based protection: The strength of the key pair and

signature algorithm when signature-based protection is used

(MSG_SIG_ALG).

Protection of centrally generated keys: The strength of the

algorithms used for the key management technique (Section 7.2:

PROT_ENC_ALG or Section 7.1: KM_KA_ALG, KM_KT_ALG, KM_KD_ALG)

and the encryption of the content-encryption key and private

key (Section 7.2: SYM_PENC_ALG, PROT_SYM_ALG or Section 7.1:

KM_KW_ALG, PROT_SYM_ALG).

The following table shows the algorithms listed in this document

sorted by their bits of security. If an implementation intends to

enroll and manage certificate for keys of a specific security, it

SHALL implement and use algorithms of at least that strength for the

respective PKI management operation. If one row does not provide a

suitable algorithm, the implementer MUST choose one offering more

bits of security.

Bits

of

secu-

rity

RSA or

DH

Elliptic

curve

Hash function or

XOF with specified

output length (d)

Symmetric

encryption

112
RSA2048,

DH(2048)

ECDSA/ECDH

(secp224r1)
SHA224

128
RSA3072,

DH(3072)

ECDSA/ECDH

(secp256r1),

Ed25519/

X25519

(Curve25519)

SHA256,

SHAKE128(d=256)
AES-128

192
ECDSA/ECDH

(secp384r1)
SHA384 AES-192

224
Ed448/X448

(Curve448)

256 AES-256

¶

*

¶

*

¶

-

¶

-

¶

-

¶

¶

Bits

of

secu-

rity

RSA or

DH

Elliptic

curve

Hash function or

XOF with specified

output length (d)

Symmetric

encryption

ECDSA/ECDH

(secp521r1)

SHA512,

SHAKE256(d=512)

Table 1: Cryptographic algorithms sorted by their bits of security

The following table shows the cryptographic algorithms sorted by

their usage in CMP and with more details.

Bits of

security

Key types

to be

certified

CMP

protection

Key

management

technique

Key-wrap and

symmetric

encryption

MSG_SIG_ALG,

MSG_MAC_ALG

PROT_ENC_ALG

or KM_KA_ALG,

KM_KT_ALG,

KM_KD_ALG

PROT_SYM_ALG,

SYM_PENC_ALG

or

KM_KW_ALG

112
RSA2048,

secp224r1

RSASSA-PSS

(2048, SHA224

or SHAKE128

(d=256)),

RSAEncryption

(2048,

SHA224),

ECDSA

(secp224r1,

SHA224 or

SHAKE128

(d=256)),

PBMAC1 (HMAC-

SHA224)

DH(2048),

RSAES-OAEP

(2048,

SHA224),

RSAEncryption

(2048,

SHA224),

ECDH

(secp224r1,

SHA224),

PBKDF2 (HMAC-

SHA224)

128

RSA3072,

secp256r1,

Curve25519

RSASSA-PSS

(3072, SHA256

or SHAKE128

(d=256)),

RSAEncryption

(3072,

SHA256),

ECDSA

(secp256r1,

SHA256 or

SHAKE128

(d=256)),

Ed25519

(SHA512),

PBMAC1 (HMAC-

SHA256)

DH(3072),

RSAES-OAEP

(3072,

SHA256),

RSAEncryption

(3072,

SHA256),

ECDH

(secp256r1,

SHA256),

X25519,

PBKDF2 (HMAC-

SHA256)

AES-128

¶

Bits of

security

Key types

to be

certified

CMP

protection

Key

management

technique

Key-wrap and

symmetric

encryption

192 secp384r1

ECDSA

(secp384r1,

SHA384),

PBMAC1 (HMAC-

SHA384)

ECDH

(secp384r1,

SHA384),

PBKDF2 (HMAC-

SHA384)

AES-192

224 Curve448
Ed448

(SHAKE256)
X448

256 secp521r1

ECDSA

(secp521r1,

SHA512 or

SHAKE256

(d=512)),

PBMAC1 (HMAC-

SHA512)

ECDH

(secp521r1,

SHA512),

PBKDF2 (HMAC-

SHA512)

AES-256

Table 2: Cryptographic algorithms sorted by their bits of security

and usage by CMP

To avoid consuming too much computational resources it is

recommended to choose a set of algorithms offering roughly the same

level of security. Below are provided several algorithm profiles

which are balanced, assuming the implementer chooses MAC secrets

and/or certificate profiles of at least equivalent strength.

7.1. Algorithm Profile for RFC 4210 PKI Management Message Profiles

The following table updates the definitions of algorithms used

within PKI Management Message Profiles as defined in CMP Appendix D.

2 [RFC4210].

The columns in the table are:

Name: An identifier used for message profiles

Use: Description of where and for what the algorithm is used

Mandatory: Algorithms which MUST be supported by conforming

implementations

Optional: Algorithms which are OPTIONAL to support

Deprecated: Algorithms from RFC 4210 [RFC4210] which SHOULD NOT be

used anymore

Name Use Mandatory Optional Deprecated

MSG_SIG_ALG RSA ECDSA, EdDSA

¶

¶

¶

¶

¶

¶

¶

¶

Name Use Mandatory Optional Deprecated

protection of

PKI messages

using

signature

DSA,

combinations

with MD5 and

SHA-1

MSG_MAC_ALG

protection of

PKI messages

using MACing

PBMAC1
PasswordBasedMac,

HMAC, KMAC
X9.9

SYM_PENC_ALG

symmetric

encryption of

an end

entity's

private key

where

symmetric key

is

distributed

out-of-band

AES-wrap

3-DES(3-key-

EDE, CBC

Mode), RC5,

CAST-128

PROT_ENC_ALG

asymmetric

algorithm

used for

encryption of

(symmetric

keys for

encryption

of) private

keys

transported

in

PKIMessages

DH ECDH, RSA

PROT_SYM_ALG

symmetric

encryption

algorithm

used for

encryption of

private key

bits (a key

of this type

is encrypted

using

PROT_ENC_ALG)

AES-CBC

3-DES(3-key-

EDE, CBC

Mode), RC5,

CAST-128

Table 3: Algorithms used within [RFC4210]

Mandatory Algorithm Identifiers and Specifications:

RSA: sha256WithRSAEncryption with 2048 bit, see Section 3.1

¶

¶

PasswordBasedMac: id-PasswordBasedMac, see Section 6.1 (with id-

sha256 as the owf parameter, see Section 2.1 and id-hmacWithSHA256

as the mac parameter, see Section 6.2.1)

PBMAC1: id-PBMAC1, see Section 6.1.2 (with id-PBKDF2 as the key

derivation function, see Section 4.4.1 and id-hmacWithSHA256 as

message authentication scheme, see Section 6.2.1). It is RECOMMENDED

to prefer the usage of PBMAC1 instead of PasswordBasedMac.

DH: id-alg-ESDH, see Section 4.1.1

AES-wrap: id-aes128-wrap, see Section 4.3.1

AES-CBC: id-aes128-CBC, see Section 5.1

7.2. Algorithm Profile for Lightweight CMP Profile

The following table contains definitions of algorithms which MAY be

supported by implementations of the Lightweight CMP Profile [I-

D.ietf-lamps-lightweight-cmp-profile].

As the set of algorithms to be used for implementations of the

Lightweight CMP Profile heavily depends on the PKI management

operations implemented, the certificates used for messages

protection, and the certificates to be managed, this document will

not specify a specific set that is mandatory to support for

conforming implementations.

The columns in the table are:

Name: An identifier used for message profiles

Use: Description of where and for what the algorithm is used

Examples: Lists the algorithms as described in this document. The

list of algorithms depends on the set of PKI management operations

to be implemented.

Note: It is RECOMMENDED to prefer the usage of PBMAC1 instead of

PasswordBasedMac.

Name Use Examples

MSG_SIG_ALG

protection of PKI messages

using signature and for

SignedData, e.g., a private key

transported in PKIMessages

RSA, ECDSA, EdDSA

MSG_MAC_ALG
protection of PKI messages

using MACing

PasswordBasedMac (see

Section 9), PBMAC1,

HMAC, KMAC

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Name Use Examples

KM_KA_ALG

asymmetric key agreement

algorithm used for agreement of

a symmetric key for use with

KM_KW_ALG

DH, ECDH

KM_KT_ALG

asymmetric key encryption

algorithm used for transport of

a symmetric key for

PROT_SYM_ALG

RSA

KM_KD_ALG

symmetric key derivation

algorithm used for derivation

of a symmetric key for use with

KM_KW_ALG

PBKDF2

KM_KW_ALG
algorithm to wrap a symmetric

key for PROT_SYM_ALG
AES-wrap

PROT_SYM_ALG

symmetric content encryption

algorithm used for encryption

of EnvelopedData, e.g., a

private key transported in

PKIMessages

AES-CBC

Table 4: Algorithms used within [I-D.ietf-lamps-lightweight-cmp-

profile]

8. IANA Considerations

This document does not request changes to the IANA registry.

9. Security Considerations

RFC 4210 Appendix D.2 [RFC4210] contains a set of algorithms,

mandatory to be supported by conforming implementations. Theses

algorithms were appropriate at the time CMP was released, but as

cryptographic algorithms weaken over time, some of them should not

be used anymore. In general, new attacks are emerging due to

research cryptoanalysis or increase in computing power. New

algorithms were introduced that are more resistant to today's

attacks.

This document lists many cryptographic algorithms usable with CMP to

offer implementer a more up to date choice. Finally, the algorithms

to be supported also heavily depend on the certificates and PKI

management operations utilized in the target environment. The

algorithm with the lowest security strength and the entropy of

shared secret information define the security of the overall

solution, see Section 7.

When using MAC-based message protection the use of PBMAC1 is

preferable to that of PasswordBasedMac. First, PBMAC1 is a well-

known scrutinized algorithm, which is not true for PasswordBasedMac.

¶

¶

¶

Second, the PasswordBasedMac algorithm as specified in RFC 4211

Section 4.4 [RFC4211] is essentially PBKDF1 (as defined in RFC 8018

Section 5.1 [RFC8018]) with an HMAC step at the end. Here we update

to use the PBKDF2-HMAC construct defined as PBMAC1 in [RFC8018].

PBKDF2 is superior to PBKDF1 in an improved internal construct for

iterated hashing, and in removing PBKDF1's limitation of only being

able to derive keys up to the size of the underlying hash function.

Additionally, PBKDF1 is not recommended for new applications as

stated in Section 5.1 of RFC 8018 [RFC8018] and no longer an

approved algorithm by most standards bodies, and therefore presents

difficulties to implementer who are submitting their CMP

implementations for certification, hence moving to a PBKDF2-based

mechanism. This change is in alignment with [RFC9045] which updates

[RFC4211] to allow the use of PBMAC1 in CRMF.

AES-GMAC MUST NOT be used as the pseudo random function in PBKDF2;

the use of AES-GMAC more than once with the same key and the same

nonce will break the security.

In Section 7 of this document there is also an update to the

Appendix D.2 of RFC 4210 [RFC4210] and a set of algorithms that MAY

be supported when implementing the Lightweight CMP Profile [I-

D.ietf-lamps-lightweight-cmp-profile].

It is recognized that there may be older CMP implementations in use

that conform to the algorithm use profile from Appendix D.2 of

RFC 4210 [RFC4210]. For example, the use of AES is now mandatory for

PROT_SYM_ALG but in RFC 4210 [RFC4210] 3-DES was mandatory.

Therefore, it is expected that many CMP systems may already support

the recommended algorithms in this specification. In such systems

the weakened algorithms should be disabled from further use. If

critical systems cannot be immediately updated to conform to the

recommended algorithm use profile, it is recommended a plan to

migrate the infrastructure to conforming profiles be adopted as soon

as possible.

Symmetric key-based MAC algorithms as described in Section 6.2 MAY

be used as MSG_MAC_ALG. The implementer MUST choose a suitable PRF

and ensure that the key has sufficient entropy to match the overall

security level of the algorithm profile. These considerations are

outside the scope of the profile.

10. Acknowledgements

Thanks to Russ Housley for supporting this draft with submitting

[RFC9044] and [RFC9045].

May thanks also to all reviewers like Serge Mister, Mark Ferreira,

Yuefei Lu, Tomas Gustavsson, Lijun Liao, David von Oheimb and

¶

¶

¶

¶

¶

¶

[I-D.ietf-lamps-cmp-updates]

[I-D.ietf-lamps-lightweight-cmp-profile]

[NIST.FIPS.180-4]

[NIST.FIPS.186-4]

[NIST.FIPS.186-5]

[NIST.FIPS.197]

[NIST.FIPS.198-1]

[NIST.FIPS.202]

Steffen Fries for their input and feedback to this document.

Apologies to all not mentioned reviewers and supporters.

11. Normative References

Brockhaus, H., Oheimb, D. V., and J.

Gray, "Certificate Management Protocol (CMP) Updates",

Work in Progress, Internet-Draft, draft-ietf-lamps-cmp-

updates-17, 12 January 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-

updates-17>.

Brockhaus, H., Oheimb, D.

V., and S. Fries, "Lightweight Certificate Management

Protocol (CMP) Profile", Work in Progress, Internet-

Draft, draft-ietf-lamps-lightweight-cmp-profile-10, 1

February 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-lamps-lightweight-cmp-profile-10>.

Dang, Quynh H., "Secure Hash Standard", NIST NIST

FIPS 180-4, DOI 10.6028/NIST.FIPS.180-4, July 2015,

<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

180-4.pdf>.

National Institute of Standards and Technology

(NIST), "Digital Signature Standard (DSS)", NIST NIST

FIPS 186-4, DOI 10.6028/NIST.FIPS.186-4, July 2013,

<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

186-4.pdf>.

National Institute of Standards and Technology

(NIST), "FIPS Pub 186-5 (Draft): Digital Signature

Standard (DSS)", October 2019, <https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf>.

National Institute of Standards and Technology

(NIST), "Advanced encryption standard (AES)", NIST NIST

FIPS 197, DOI 10.6028/NIST.FIPS.197, November 2001,

<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

197.pdf>.

National Institute of Standards and Technology

(NIST), "The Keyed-Hash Message Authentication Code

(HMAC)", NIST NIST FIPS 198-1, DOI 10.6028/NIST.FIPS.

198-1, July 2008, <https://nvlpubs.nist.gov/nistpubs/

FIPS/NIST.FIPS.198-1.pdf>.

Dworkin, Morris J., "SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions", NIST NIST

¶

https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-updates-17
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-updates-17
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-updates-17
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-lightweight-cmp-profile-10
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-lightweight-cmp-profile-10
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

[NIST.SP.800-185]

[NIST.SP.800-38d]

[RFC2104]

[RFC2119]

[RFC2631]

[RFC3370]

[RFC3394]

[RFC3560]

[RFC3565]

[RFC4056]

FIPS 202, DOI 10.6028/NIST.FIPS.202, July 2015, <https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf>.

Kelsey, John., Change, Shu-jen., and Ray. Perlner,

"SHA-3 derived functions: cSHAKE, KMAC, TupleHash and

ParallelHash", NIST NIST SP 800-185, DOI 10.6028/NIST.SP.

800-185, December 2016, <https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-185.pdf>.

Dworkin, M J., "Recommendation for block cipher

modes of operation :GaloisCounter Mode (GCM) and GMAC",

NIST NIST SP 800-38d, DOI 10.6028/NIST.SP.800-38d, 2007,

<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-38d.pdf>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC

2631, DOI 10.17487/RFC2631, June 1999, <https://www.rfc-

editor.org/info/rfc2631>.

Housley, R., "Cryptographic Message Syntax (CMS)

Algorithms", RFC 3370, DOI 10.17487/RFC3370, August 2002,

<https://www.rfc-editor.org/info/rfc3370>.

Schaad, J. and R. Housley, "Advanced Encryption Standard

(AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/

RFC3394, September 2002, <https://www.rfc-editor.org/

info/rfc3394>.

Housley, R., "Use of the RSAES-OAEP Key Transport

Algorithm in Cryptographic Message Syntax (CMS)", RFC

3560, DOI 10.17487/RFC3560, July 2003, <https://www.rfc-

editor.org/info/rfc3560>.

Schaad, J., "Use of the Advanced Encryption Standard

(AES) Encryption Algorithm in Cryptographic Message

Syntax (CMS)", RFC 3565, DOI 10.17487/RFC3565, July 2003,

<https://www.rfc-editor.org/info/rfc3565>.

Schaad, J., "Use of the RSASSA-PSS Signature Algorithm in

Cryptographic Message Syntax (CMS)", RFC 4056, DOI

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2631
https://www.rfc-editor.org/info/rfc2631
https://www.rfc-editor.org/info/rfc3370
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3560
https://www.rfc-editor.org/info/rfc3560
https://www.rfc-editor.org/info/rfc3565

[RFC4210]

[RFC4211]

[RFC4231]

[RFC5480]

[RFC5652]

[RFC5753]

[RFC5754]

[RFC8017]

[RFC8018]

[RFC8032]

10.17487/RFC4056, June 2005, <https://www.rfc-editor.org/

info/rfc4056>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Schaad, J., "Internet X.509 Public Key Infrastructure

Certificate Request Message Format (CRMF)", RFC 4211, DOI

10.17487/RFC4211, September 2005, <https://www.rfc-

editor.org/info/rfc4211>.

Nystrom, M., "Identifiers and Test Vectors for HMAC-

SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",

RFC 4231, DOI 10.17487/RFC4231, December 2005, <https://

www.rfc-editor.org/info/rfc4231>.

Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,

"Elliptic Curve Cryptography Subject Public Key

Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,

<https://www.rfc-editor.org/info/rfc5480>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Turner, S. and D. Brown, "Use of Elliptic Curve

Cryptography (ECC) Algorithms in Cryptographic Message

Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753, January

2010, <https://www.rfc-editor.org/info/rfc5753>.

Turner, S., "Using SHA2 Algorithms with Cryptographic

Message Syntax", RFC 5754, DOI 10.17487/RFC5754, January

2010, <https://www.rfc-editor.org/info/rfc5754>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:

Password-Based Cryptography Specification Version 2.1",

RFC 8018, DOI 10.17487/RFC8018, January 2017, <https://

www.rfc-editor.org/info/rfc8018>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

https://www.rfc-editor.org/info/rfc4056
https://www.rfc-editor.org/info/rfc4056
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5753
https://www.rfc-editor.org/info/rfc5754
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8018
https://www.rfc-editor.org/info/rfc8018

[RFC8174]

[RFC8418]

[RFC8419]

[RFC8702]

[RFC9044]

[RFC9045]

[ECRYPT.CSA.D5.4]

[NIST.SP.800-57pt1r5]

[RFC8551]

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Housley, R., "Use of the Elliptic Curve Diffie-Hellman

Key Agreement Algorithm with X25519 and X448 in the

Cryptographic Message Syntax (CMS)", RFC 8418, DOI

10.17487/RFC8418, August 2018, <https://www.rfc-

editor.org/info/rfc8418>.

Housley, R., "Use of Edwards-Curve Digital Signature

Algorithm (EdDSA) Signatures in the Cryptographic Message

Syntax (CMS)", RFC 8419, DOI 10.17487/RFC8419, August

2018, <https://www.rfc-editor.org/info/rfc8419>.

Kampanakis, P. and Q. Dang, "Use of the SHAKE One-Way

Hash Functions in the Cryptographic Message Syntax

(CMS)", RFC 8702, DOI 10.17487/RFC8702, January 2020,

<https://www.rfc-editor.org/info/rfc8702>.

Housley, R., "Using the AES-GMAC Algorithm with the

Cryptographic Message Syntax (CMS)", RFC 9044, DOI

10.17487/RFC9044, June 2021, <https://www.rfc-editor.org/

info/rfc9044>.

Housley, R., "Algorithm Requirements Update to the

Internet X.509 Public Key Infrastructure Certificate

Request Message Format (CRMF)", RFC 9045, DOI 10.17487/

RFC9045, June 2021, <https://www.rfc-editor.org/info/

rfc9045>.

12. Informative References

University of Bristol, "Algorithms, Key Size and

Protocols Report (2018)", March 2015, <https://

www.ecrypt.eu.org/csa/documents/D5.4-

FinalAlgKeySizeProt.pdf>.

Barker, Elaine., "Recommendation for key management:part

1 - general", NIST NIST SP 800-57pt1r5, DOI 10.6028/

NIST.SP.800-57pt1r5, May 2020, <https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8418
https://www.rfc-editor.org/info/rfc8418
https://www.rfc-editor.org/info/rfc8419
https://www.rfc-editor.org/info/rfc8702
https://www.rfc-editor.org/info/rfc9044
https://www.rfc-editor.org/info/rfc9044
https://www.rfc-editor.org/info/rfc9045
https://www.rfc-editor.org/info/rfc9045
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

[RFC8692]

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Kampanakis, P. and Q. Dang, "Internet X.509 Public Key

Infrastructure: Additional Algorithm Identifiers for

RSASSA-PSS and ECDSA Using SHAKEs", RFC 8692, DOI

10.17487/RFC8692, December 2019, <https://www.rfc-

editor.org/info/rfc8692>.

Appendix A. History of changes

Note: This appendix will be deleted in the final version of the

document.

From version 10 -> 11:

Changes on the tables in Section 7 after direct exchange with

Quynh

Removed the pre-RFC5378 work disclaimer after the RFC 4210

authors granted BCP78 rights to the IETF Trust

Implemented the changes proposed by Quynh, (see thread "Quynh

Action: draft-ietf-lamps-cmp-algorithms-08.txt") and removed

markers for ToDos regarding this review of SHAKE and KMAC usage

as well as on the tables in Section 7

From version 08 -> 09:

Updated IPR disclaimer

From version 07 -> 08:

Fixing issues from WG and AD review

Adding Note to Section 2.2, 3.3, and 6.2.3 regarding usage of

SHAKE and KMAC and added ToDo regarding checking respective notes

Added two tables showing algorithms sorted by their strength to

Section 7 and added ToDo regarding checking theses tables

Updates the algorithm use profile in Section 7.1

Updated and added security consideration on SHAKE,

PasswordBasedMac, KMAC, and symmetric key-based MAC functions and

added ToDo regarding checking the security consideration on SHAKE

From version 06 -> 07:

Fixing minor formatting nits

From version 05 -> 06:

Added text to Section 2 and Section 3.3 to clearly specify the

hash algorithm to use for certConf messages for certificates

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

¶

* ¶

*

¶

*

¶

* ¶

*

¶

¶

* ¶

¶

*

https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8692
https://www.rfc-editor.org/info/rfc8692

signed with EdDSA (see thread "[CMP Updates] Hash algorithm to us

for calculating certHash")

Updated new RFC numbers for I-D.ietf-lamps-cms-aes-gmac-alg and

I-D.ietf-lamps-crmf-update-algs

From version 04 -> 05:

Minor changes and corrections in wording

From version 03 -> 04:

Added John Gray to the list of authors due to his extensive

support and valuable feedback

Added some clarification of the use AES-GMAC to Section 6.2.1

Extended the guidance on how to select a set of algorithms in

Section 7 and deleted former Section 7.1

Deleted the algorithms mandatory to support in Section 7.2 as

discussed at IETF 110

Extended the Security considerations in Section 9

Minor changes in wording

From version 02 -> 03:

Moved former Appendix A to new Section 7 as suggested by Rich and

Russ (see thread "I-D Action: draft-ietf-lamps-cmp-

algorithms-02.txt")

Added a column to Table 1 in Section 7.2 to reflect the changes

to RFC 4210

Updated Table 2 in Section 7.3

Added a paragraph to Section 9 to discuss backward compatibility

with RFC 4210

Minor changes in wording

From version 01 -> 02:

Added Hans Aschauer, Mike Ounsworth, and Serge Mister as co-

author

Changed to XML V3

Added SHAKE digest algorithm to Section 2 as discussed at IETF

109

Deleted DSA from Section 3 as discussed at IETF 109

Added RSASSA-PSS with SHAKE to Section 3

Added SECP curves the section on ECDSA with SHA2, ECDSA with

SHAKE, and EdDSA to Section 3 as discussed at IETF 109

Deleted static-static D-H and ECDH from Section 4.1 based on the

discussion on the mailing list (see thread "[CMP Algorithms]

Section 4.1.1 and 4.1.2 drop static-static (EC)DH key agreement

algorithms for use in CMP")

Added ECDH OIDs and SECP curves, as well as ECDH with curve25519

and curve448 to Section 4.1 as discussed at IETF 109

¶

*

¶

¶

* ¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

Deleted RSA-OAEP from Section 4.2 first as discussed at IETF 109,

but re-added it after discussion on the mailing list (see thread

"Mail regarding draft-ietf-lamps-cmp-algorithms")

Added a paragraph to Section 4.3.1 to explain that the algorithms

and key length for content encryption and key wrapping must be

aligned as discussed on the mailing list (see thread "[CMP

Algorithms] Use Key-Wrap with or without padding in Section 4.3

and Section 5")

Deleted AES-CCM and AES-GMC from and added AES-CBC to Section 5

as discussed at IETF 109

Added Section 6.1.2 to offer PBMAC1 as discusses on the mailing

list (see thread "Mail regarding draft-ietf-lamps-crmf-update-

algs-02") and restructured text in Section 6 to be easier to

differentiate between password- and shared-key-based MAC

Deleted Diffie-Hellmann based MAC from Section 6 as is only

relevant when using enrolling Diffie-Hellmann certificates

Added AES-GMAC and SHAKE-based KMAC to Section 6 as discussed at

IETF 109

Extended Section 9 to mention Russ supporting with two additional

I-Ds and name further supporters of the draft

Added a first draft of a generic algorithm selection guideline to

Appendix A

Added a first proposal for mandatory algorithms for the

Lightweight CMP Profile to Appendix A

Minor changes in wording

From version 00 -> 01:

Changed sections Symmetric Key-Encryption Algorithms and Content

Encryption Algorithms based on the discussion on the mailing list

(see thread "[CMP Algorithms] Use Key-Wrap with or without

padding in Section 4.3 and Section 5")

Added Appendix A with updated algorithms profile for RDC4210

Appendix D.2 and first proposal for the Lightweight CMP Profile

Minor changes in wording

Authors' Addresses

Hendrik Brockhaus (editor)

Siemens AG

Email: hendrik.brockhaus@siemens.com

Hans Aschauer

Siemens AG

Email: hans.aschauer@siemens.com

Mike Ounsworth

Entrust

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

mailto:hendrik.brockhaus@siemens.com
mailto:hans.aschauer@siemens.com

Email: mike.ounsworth@entrust.com

John Gray

Entrust

Email: john.gray@entrust.com

mailto:mike.ounsworth@entrust.com
mailto:john.gray@entrust.com

	Certificate Management Protocol (CMP) Algorithms
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Message Digest Algorithms
	2.1. SHA2
	2.2. SHAKE

	3. Signature Algorithms
	3.1. RSA
	3.2. ECDSA
	3.3. EdDSA

	4. Key Management Algorithms
	4.1. Key Agreement Algorithms
	4.1.1. Diffie-Hellman
	4.1.2. ECDH

	4.2. Key Transport Algorithms
	4.2.1. RSA

	4.3. Symmetric Key-Encryption Algorithms
	4.3.1. AES Key Wrap

	4.4. Key Derivation Algorithms
	4.4.1. PBKDF2

	5. Content Encryption Algorithms
	5.1. AES-CBC

	6. Message Authentication Code Algorithms
	6.1. Password-based MAC
	6.1.1. PasswordBasedMac
	6.1.2. PBMAC1

	6.2. Symmetric key-based MAC
	6.2.1. SHA2-based HMAC
	6.2.2. AES-GMAC
	6.2.3. SHAKE-based KMAC

	7. Algorithm Use Profiles
	7.1. Algorithm Profile for RFC 4210 PKI Management Message Profiles
	7.2. Algorithm Profile for Lightweight CMP Profile

	8. IANA Considerations
	9. Security Considerations
	10. Acknowledgements
	11. Normative References
	12. Informative References
	Appendix A. History of changes
	Authors' Addresses

