
Workgroup: LAMPS Working Group

Internet-Draft: draft-ietf-lamps-cms-kemri-00

Published: 24 February 2023

Intended Status: Standards Track

Expires: 28 August 2023

Authors: R. Housley

Vigil Security

J. Gray

Entrust

T. Okubo

DigiCert

Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic

Message Syntax (CMS)

Abstract

The Cryptographic Message Syntax (CMS) supports key transport and

key agreement algorithms. In recent years, cryptographers have been

specifying Key Encapsulation Mechanism (KEM) algorithms, including

quantum-secure KEM algorithms. This document defines conventions for

the use of KEM algorithms by the originator and recipients to

encrypt CMS content.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Limited Additional

Mechanisms for PKIX and SMIME Working Group mailing list

(spasm@ietf.org), which is archived at https://mailarchive.ietf.org/

arch/browse/spasm/.

Source for this draft and an issue tracker can be found at https://

github.com/lamps-wg/cms-kemri.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 August 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/spasm/
https://mailarchive.ietf.org/arch/browse/spasm/
https://github.com/lamps-wg/cms-kemri
https://github.com/lamps-wg/cms-kemri
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. ASN.1

1.3. CMS Version Numbers

2. KEM Processing Overview

3. KEM Recipient Information

4. KEM Algorithm Identifier

5. Key Derivation

6. ASN.1 Modules

6.1. KEMAlgorithmInformation-2023 ASN.1 Module

6.2. CMS-KEMRecipientInfo ASN.1 Module

7. Security Considerations

8. IANA Considerations

Acknowledgements

References

Normative References

Informative References

Authors' Addresses

1. Introduction

The Cryptographic Message Syntax (CMS) enveloped-data content type

[RFC5652] and the CMS authenticated-enveloped-data content type

[RFC5083] support both key transport and key agreement algorithms to

establish the key used to encrypt the content. In recent years,

cryptographers have be specifying Key Encapsulation Mechanism (KEM)

algorithms, including quantum-secure KEM algorithms. This document

defines conventions for the use of KEM algorithms for the CMS

enveloped-data content type and the CMS authenticated-enveloped-data

content type.

¶

¶

¶

https://trustee.ietf.org/license-info

A KEM algorithm is a one-pass (store-and-forward) mechanism for

transporting random keying material to a recipient using the

recipient's public key. The recipient's private key is needed to

recover the random keying material, which is then treated as a

pairwise shared secret between the originator and recipient. A KEM

algorithm provides three functions:

KeyGen() -> (pk, sk):

Generate the public key (pk) and a private key (sk).

Encapsulate(pk) -> (ct, ss):

Given the recipient's public key (pk), produce a ciphertext (ct)

to be passed to the recipient and shared secret (ss) for the

originator.

Decapsulate(sk, ct) -> ss:

Given the private key (sk) and the ciphertext (ct), produce the

shared secret (ss) for the recipient.

To support a particular KEM algorithm, the CMS originator MUST

implement Encapsulate().

To support a particular KEM algorithm, the CMS recipient MUST

implement KeyGen() and Decapsulate(). The recipient's public key is

usually carried in a certificate [RFC5280].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. ASN.1

CMS values are generated using ASN.1 [X.680], which uses the Basic

Encoding Rules (BER) and the Distinguished Encoding Rules (DER)

[X.690].

1.3. CMS Version Numbers

The major data structures include a version number as the first item

in the data structure. The version number is intended to avoid ASN.1

decode errors. Some implementations do not check the version number

prior to attempting a decode, and then if a decode error occurs, the

version number is checked as part of the error handling routine.

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

This is a reasonable approach; it places error processing outside of

the fast path. This approach is also forgiving when an incorrect

version number is used by the sender.

Whenever the structure is updated, a higher version number will be

assigned. However, to ensure maximum interoperability, the higher

version number is only used when the new syntax feature is employed.

That is, the lowest version number that supports the generated

syntax is used.

2. KEM Processing Overview

KEM algorithms can be used with three CMS content types: the

enveloped-data content type [RFC5652], the authenticated-data

content type [RFC5652], or the authenticated-enveloped-data content

type [RFC5083]. For simplicity, the terminology associated with the

enveloped-data content type will be used in this overview. Thus, the

content-encryption key is used to protect the in CMS content.

The originator randomly generates the content-encryption key, and

then all recipients obtain that key. All recipients use the

originator-generated symmetric key to decrypt the CMS message.

A KEM algorithm and a key-derivation function are used to securely

establish a pairwise symmetric key-encryption key, which is used to

encrypt the originator-generated content-encryption key.

In advance, each recipient recipient uses KeyGen() to create a key

pair, and then obtains a certificate [RFC5280] that includes the

public key.

The originator establishes the content-encryption key using these

steps:

The content-encryption key, called CEK, is generated at random.

For each recipient:

The recipient's public key is used with the Encapsulate()

function to obtain a pairwise shared secret and the

ciphertext for the recipient.

The key-derivation function is used to derive a pairwise

key-encryption key, called KEK, from the pairwise shared

secret and other data that is send in the clear.

The KEK is used to encrypt the CEK for this recipient.

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

*

¶

*

¶

* ¶

The recipient obtains the content-encryption key using these steps:

The recipient's private key and the ciphertext are used with

the Decapsulate() function to obtain a pairwise shared secret.

The key-derivation function is used to derive a pairwise key-

encryption key, called KEK, from the pairwise shared secret and

other data that is send in the clear.

The KEK is used to decrypt the content-encryption key, called

CEK.

3. KEM Recipient Information

This document defines KEMRecipientInfo for use with KEM algorithms.

As specified in Section 6.2.5 of [RFC5652], recipient information

for additional key management techniques are represented in the

OtherRecipientInfo type, and they are each identified by a unique

ASN.1 object identifier.

The object identifier associated with KEMRecipientInfo is:

The KEMRecipientInfo type is:

The fields of the KEMRecipientInfo type have the following meanings:

version is the syntax version number. The version MUST be 0. The

CMSVersion type is described in Section 10.2.5 of [RFC5652].

rid specifies the recipient's certificate or key that was used by

the originator to with the Encapsulate() function. The

RecipientIdentifier provides two alternatives for specifying the

recipient's certificate [RFC5280], and thereby the recipient's

public key. The recipient's certificate MUST contain a KEM public

¶

1.

¶

2.

¶

3.

¶

¶

¶

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-kem OBJECT IDENTIFIER ::= { id-ori TBD1 }

¶

¶

 KEMRecipientInfo ::= SEQUENCE {

 version CMSVersion, -- always set to 0

 rid RecipientIdentifier,

 kem KEMAlgorithmIdentifier,

 kemct OCTET STRING,

 kdf KeyDerivationAlgorithmIdentifier,

 kekLength INTEGER (1..MAX),

 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,

 wrap KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey }

¶

¶

¶

key. Therefore, a recipient X.509 version 3 certificate that

contains a key usage extension MUST assert the keyEncipherment

bit. The issuerAndSerialNumber alternative identifies the

recipient's certificate by the issuer's distinguished name and

the certificate serial number; the subjectKeyIdentifier

identifies the recipient's certificate by a key identifier. When

an X.509 certificate is referenced, the key identifier matches

the X.509 subjectKeyIdentifier extension value. When other

certificate formats are referenced, the documents that specify

the certificate format and their use with the CMS must include

details on matching the key identifier to the appropriate

certificate field. For recipient processing, implementations MUST

support both of these alternatives for specifying the recipient's

certificate. For originator processing, implementations MUST

support at least one of these alternatives.

kem identifies the KEM algorithm, and any associated parameters,

used by the originator. The KEMAlgorithmIdentifier is described

in Section 4.

kemct is the ciphertext produced by the Encapsulate() function

for this recipient.

kdf identifies the key-derivation algorithm, and any associated

parameters, used by the originator to generate the key-encryption

key. The KeyDerivationAlgorithmIdentifier is described in Section

10.1.6 of [RFC5652].

kekLength is the size of the key-encryption key in octets. This

value is one of the inputs to the key-derivation function.

Implementations MUST confirm that the value provided is

consistent with the key-encryption algorithm identified in the

wrap field below.

ukm is optional. When the ukm value is provided, it is used as an

input to the key-derivation function as a context input. For

example, user key material could include a nonce, an IV, or other

data required by the key-derivation function. Implementations

MUST accept a KEMRecipientInfo SEQUENCE that includes a ukm

field. Note that this expands of the original purpose of the ukm

¶

¶

¶

¶

¶

described in Section 10.2.6 of [RFC5652]; it is not limited to

being used with key agreement algorithms.

wrap identifies a key-encryption algorithm used to encrypt the

content-encryption key. The KeyEncryptionAlgorithmIdentifier is

described in Section 10.1.3 of [RFC5652].

encryptedKey is the result of encrypting the content-encryption

key or the content-authenticated-encryption key with the key-

encryption key. EncryptedKey is an OCTET STRING.

4. KEM Algorithm Identifier

The KEMAlgorithmIdentifier type identifies a KEM algorithm used to

establish a pairwise shared secret. The details of establishment

depend on the KEM algorithm used. A Key derivation algorithm is used

to transform the pairwise shared secret value into a key-encryption

key.

5. Key Derivation

This section describes the conventions of using the KDF to compute

the key-encryption key for KEMRecipientInfo. For simplicity, the

terminology used in the HKDF specification [RFC5869] is used here.

Many KDFs internally employ a one-way hash function. When this is

the case, the hash function that is used is indirectly indicated by

the KeyDerivationAlgorithmIdentifier. Other KDFs internally employ

an encryption algorithm. When this is the case, the encryption that

is used is indirectly indicated by the

KeyDerivationAlgorithmIdentifier.

The KDF inputs are:

IKM is the input key material. It is a symmetric secret input to

the KDF which may use a hash function or an encryption algorithm

to generate a pseudorandom key. The algorithm used to derive the

IKM is dependent on the algorithm identified in the

KeyDerivationAlgorithmIdentifier.

L is the length of the output keying material in octets which is

identified in the keklength of the KEMRecipientInfo. The value is

dependent on the key-encryption algorithm that is used which is

identified in the KeyEncryptionAlgorithmIdentifier.

info is the context used as in additional input to the KDF; it is

the DER-encoded CMSORIforKEMOtherInfo structure defined as:

¶

¶

¶

¶

 KEMAlgorithmIdentifier ::= AlgorithmIdentifier¶

¶

¶

¶

¶

¶

¶

The CMSORIforKEMOtherInfo structure contains:

wrap identifies a key-encryption algorithm; the output of the

key-derivation function will be used as a key for this algorithm.

kekLength is the length of the key-encryption key in octets; the

output of the key-derivation function will be exactly this size.

ukm is optional user keying material, which may be useful for

some key-derivation functions. For example, user keying material

could include a nonce, an IV, or additional key binding

information.

The KDF output is:

OKM is the output keying material with the exact length of L

octets. The OKM is the key-encryption key that is used to encrypt

the content-encryption key or the content-authenticated-

encryption key.

An acceptable KDF MUST accept an IKM and L as inputs; an acceptable

KDF MAY also accept salt and other inputs identified in the

UserKeyingMaterial. All of these inputs MUST influence the output of

the KDF. If the KDF requires a salt or other inputs, then those

input MUST be provided as parameters of the

KeyDerivationAlgorithmIdentifier.

6. ASN.1 Modules

This section provides two ASN.1 modules [X.680]. The first ASN.1

module is an extension to the AlgorithmInformation-2009 module in

[RFC5912], and it defines the KEM-ALGORITHM CLASS. The second ASN.1

module defines the structures needed to use KEM Algorithms with CMS

[RFC5652].

The first ASN.1 module uses EXPLICIT tagging, and the second ASN.1

module uses IMPLICIT tagging.

Both ASN.1 modules follow the conventions established in [RFC5911],

[RFC5912], and [RFC6268].

 CMSORIforKEMOtherInfo ::= SEQUENCE {

 wrap KeyEncryptionAlgorithmIdentifier,

 kekLength INTEGER (1..MAX),

 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL

 }

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.1. KEMAlgorithmInformation-2023 ASN.1 Module

<CODE BEGINS>

 KEMAlgorithmInformation-2023

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-kemAlgorithmInformation-2023(TBD3) }

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL;

 IMPORTS

 ParamOptions, PUBLIC-KEY, SMIME-CAPS

 FROM AlgorithmInformation-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) } ;

 -- KEM-ALGORITHM

 --

 -- Describes the basic properties of a KEM algorithm

 --

 -- Suggested prefixes for KEM algorithm objects is: kema-

 --

 -- &id - contains the OID identifying the KEM algorithm

 -- &Value - if present, contains a type definition for the kemct;

 -- if absent, implies that no ASN.1 encoding is

 -- performed on the kemct value

 -- &Params - if present, contains the type for the algorithm

 -- parameters; if absent, implies no parameters

 -- ¶mPresence - parameter presence requirement

 -- &PublicKeySet - specifies which public keys are used with

 -- this algorithm

 -- &Ukm - if absent, type for user keying material

 -- &ukmPresence - specifies the requirements to define the UKM

 -- field

 -- &smimeCaps - contains the object describing how the S/MIME

 -- capabilities are presented.

 --

 -- Example:

 -- kema-kem-rsa KEM-ALGORITHM ::= {

 -- IDENTIFIER id-kem-rsa

 -- PARAMS TYPE RsaKemParameters ARE optional

 -- PUBLIC-KEYS { pk-rsa | pk-rsa-kem }

 -- UKM ARE optional

 -- SMIME-CAPS { TYPE GenericHybridParameters

 -- IDENTIFIED BY id-rsa-kem }

 -- }

 KEM-ALGORITHM ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Value OPTIONAL,

 &Params OPTIONAL,

 ¶mPresence ParamOptions DEFAULT absent,

 &PublicKeySet PUBLIC-KEY OPTIONAL,

 &Ukm OPTIONAL,

 &ukmPresence ParamOptions DEFAULT absent,

 &smimeCaps SMIME-CAPS OPTIONAL

 } WITH SYNTAX {

 IDENTIFIER &id

 [VALUE &Value]

 [PARAMS [TYPE &Params] ARE ¶mPresence]

 [PUBLIC-KEYS &PublicKeySet]

 [UKM [TYPE &Ukm] ARE &ukmPresence]

 [SMIME-CAPS &smimeCaps]

 }

 END

<CODE ENDS>

¶

6.2. CMS-KEMRecipientInfo ASN.1 Module

RFC Editor: Please replace "[THISRFC]" with the the number assigned

to this document.¶

<CODE BEGINS>

 CMS-KEMRecipientInfo-2023

 { iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs-9(9) smime(16) modules(0)

 id-mod-cms-kemri-2023(TBD2) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL;

 IMPORTS

 OTHER-RECIPIENT, CMSVersion, RecipientIdentifier,

 EncryptedKey, KeyDerivationAlgorithmIdentifier,

 KeyEncryptionAlgorithmIdentifier, UserKeyingMaterial

 FROM CryptographicMessageSyntax-2010 -- [RFC6268]

 { iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs-9(9) smime(16) modules(0)

 id-mod-cms-2009(58) }

 KEM-ALGORITHM

 FROM KEMAlgorithmInformation-2023 -- [THISRFC]

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-kemAlgorithmInformation-2023(TBD3) }

 AlgorithmIdentifier{}

 FROM AlgorithmInformation-2009 -- [RFC5912]

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) } ;

 --

 -- OtherRecipientInfo Types (ori-)

 --

 SupportedOtherRecipInfo OTHER-RECIPIENT ::= { ori-KEM, ... }

 ori-KEM OTHER-RECIPIENT ::= {

 KEMRecipientInfo IDENTIFIED BY id-ori-kem }

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-kem OBJECT IDENTIFIER ::= { id-ori TBD1 }

 --

 -- KEMRecipientInfo

 --

 KEMRecipientInfo ::= SEQUENCE {

 version CMSVersion, -- always set to 0

 rid RecipientIdentifier,

 kem KEMAlgorithmIdentifier,

 kemct OCTET STRING,

 kdf KeyDerivationAlgorithmIdentifier,

 kekLength INTEGER (1..MAX),

 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,

 wrap KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey }

 KEMAlgSet KEM-ALGORITHM ::= { ... }

 KEMAlgorithmIdentifier ::=

 AlgorithmIdentifier{ KEM-ALGORITHM, {KEMAlgSet} }

 --

 -- CMSORIforKEMOtherInfo

 --

 CMSORIforKEMOtherInfo ::= SEQUENCE {

 wrap KeyEncryptionAlgorithmIdentifier,

 kekLength INTEGER (1..MAX),

 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL

 }

 END

<CODE ENDS>

¶

7. Security Considerations

The Security Considerations of [RFC5652] are applicable to this

document.

To be appropriate for use with this specification, the KEM algorithm

MUST explicitly be designed to be secure when the public key is used

many times. For example, a KEM algorithm with a single-use public

key is not appropriate because the public key is expected to be

carried in a long-lived certificate [RFC5280] and used over and

over. Thus, KEM algorithms that offer indistinguishability under

adaptive chosen ciphertext attack (IND-CCA2) security are

appropriate. A common design pattern for obtaining IND-CCA2 security

with public key reuse is to apply the Fujisaki-Okamoto (FO)

transform [FO] or a variant of the FO transform [HHK].

The choice of the KDF SHOULD be made based on the security level

provided by the KEM. The KDF SHOULD at least have the security level

of the KEM.

The choice of the key-encryption algorithm and the size of the key-

encryption key SHOULD be made based on the security level provided

by the KEM. The key-encryption algorithm and the key-encryption key

SHOULD at least have the security level of the KEM.

KEM algorithms do not provide data origin authentication; therefore,

when a KEM algorithm is used to with the authenticated-data content

type, the contents are delivered with integrity from an unknown

source.

Implementations MUST protect the KEM private key, the key-encryption

key, the content-encryption key and the content-authenticated-

encryption. Compromise of the KEM private key may result in the

disclosure of all contents protected with that KEM private key.

However, compromise of the key-encryption key, the content-

encryption key, or the content-authenticated-encryption may result

in disclosure of the encrypted content of a single message.

The KEM produces the IKM input value for the KDF. This IKM value

MUST NOT be reused for any other purpose. Likewise, any random value

used to by the KEM algorithm to produce the shared secret or its

encapsulation MUST NOT be reused for any other purpose. That is, the

originator MUST generate a fresh KEM shared secret for each

recipient in the KEMRecipientInfo structure, including any random

value used by the KEM algorithm to produce the KEM shared secret. In

addition, the originator MUST discard the KEM shared secret,

including any random value used by the KEM algorithm to produce the

KEM shared secret, after constructing the entry in the

KEMRecipientInfo structure for the corresponding recipient.

¶

¶

¶

¶

¶

¶

Similarly, the recipient MUST discard the KEM shared secret,

including any random value used by the KEM algorithm to produce the

KEM shared secret, after constructing the key-encryption key from

the KEMRecipientInfo structure.

Implementations MUST randomly generate content-encryption keys,

content-authenticated-encryption keys, and message-authentication

keys. Also, the generation of KEM key pairs relies on random

numbers. The use of inadequate pseudo-random number generators

(PRNGs) to generate these keys can result in little or no security.

An attacker may find it much easier to reproduce the PRNG

environment that produced the keys, searching the resulting small

set of possibilities, rather than brute force searching the whole

key space. The generation of quality random numbers is difficult.

[RFC4086] offers important guidance in this area.

If the cipher and key sizes used for the key-encryption and the

content-encryption algorithms are different, the effective security

is determined by the weaker of the two algorithms. If, for example,

the content is encrypted with AES-CBC using a 128-bit content-

encryption key, and the content-encryption key is wrapped with AES-

KEYWRAP using a 256-bit key-encryption key, then at most 128 bits of

protection is provided.

If the cipher and key sizes used for the key-encryption and the

content-authenticated-encryption algorithms are different, the

effective security is determined by the weaker of the two

algorithms. If, for example, the content is encrypted with AES-GCM

using a 128-bit content-authenticated-encryption key, and the

content-authenticated-encryption key is wrapped with AES-KEYWRAP

using a 192-bit key-encryption key, then at most 128 bits of

protection is provided.

If the cipher and key sizes used for the key-encryption and the

message-authentication algorithms are different, the effective

security is determined by the weaker of the two algorithms. If, for

example, the content is authenticated with HMAC-SHA256 using a 512-

bit message-authentication key, and the message-authentication key

is wrapped with AES-KEYWRAP using a 256-bit key-encryption key, then

at most 256 bits of protection is provided.

Implementers should be aware that cryptographic algorithms,

including KEM algorithms, become weaker with time. As new

cryptoanalysis techniques are developed and computing capabilities

advance, the work factor to break a particular cryptographic

algorithm will be reduced. As a result, cryptographic algorithm

implementations should be modular, allowing new algorithms to be

readily inserted. That is, implementers should be prepared for the

set of supported algorithms to change over time.

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC5083]

[RFC5280]

8. IANA Considerations

For KEMRecipientInfo in Section 3, IANA is requested to assign an

object identifier (OID) to replace TBD1. The OID for

KEMRecipientInfo should be allocated in the "SMI Security for S/MIME

Other Recipient Info Identifiers" registry

(1.2.840.113549.1.9.16.13).

For the ASN.1 Module in Section 6.1, IANA is requested to assign an

object identifier (OID) for the module identifier to replace TBD3.

The OID for the module should be allocated in the "SMI Security for

PKIX Module Identifier" registry (1.3.6.1.5.5.7.0).

For the ASN.1 Module in Section 6.2, IANA is requested to assign an

object identifier (OID) for the module identifier to replace TBD2.

The OID for the module should be allocated in the "SMI Security for

S/MIME Module Identifier" registry (1.2.840.113549.1.9.16.0).

Acknowledgements

Our thanks to Burt Kaliski for his guidance and design review.

Our thanks to Carl Wallace for his careful review of the ASN.1

modules.

References

Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Housley, R., "Cryptographic Message Syntax (CMS)

Authenticated-Enveloped-Data Content Type", RFC 5083, DOI

10.17487/RFC5083, November 2007, <https://www.rfc-

editor.org/rfc/rfc5083>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5083
https://www.rfc-editor.org/rfc/rfc5083

[RFC5652]

[RFC8174]

[X.680]

[X.690]

[FO]

[HHK]

[RFC4086]

[RFC5869]

[RFC5911]

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/rfc/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/rfc/rfc5652>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

ITU-T, "Information technology -- Abstract Syntax

Notation One (ASN.1): Specification of basic notation",

ITU-T Recommendation X.680, ISO/IEC 8824-1:2021, February

2021, <https://www.itu.int/rec/T-REC-X.680>.

ITU-T, "Information technology -- ASN.1 encoding rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2021,

February 2021, <https://www.itu.int/rec/T-REC-X.680>.

Informative References

Fujisaki, E. and T. Okamoto, "Secure Integration of

Asymmetric and Symmetric Encryption Schemes", Journal of

Cryptology vol. 26, no. 1, pp. 80-101, DOI 10.1007/

s00145-011-9114-1, December 2011, <https://doi.org/

10.1007/s00145-011-9114-1>.

Hofheinz, D., Hövelmanns, K., and E. Kiltz, "A Modular

Analysis of the Fujisaki-Okamoto Transformation", Theory

of Cryptography pp. 341-371, DOI

10.1007/978-3-319-70500-2_12, 2017, <https://doi.org/

10.1007/978-3-319-70500-2_12>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/rfc/rfc4086>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

rfc/rfc5869>.

Hoffman, P. and J. Schaad, "New ASN.1 Modules for

Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,

DOI 10.17487/RFC5911, June 2010, <https://www.rfc-

editor.org/rfc/rfc5911>.

https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5652
https://www.rfc-editor.org/rfc/rfc8174
https://www.itu.int/rec/T-REC-X.680
https://www.itu.int/rec/T-REC-X.680
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5911
https://www.rfc-editor.org/rfc/rfc5911

[RFC5912]

[RFC6268]

Hoffman, P. and J. Schaad, "New ASN.1 Modules for the

Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,

DOI 10.17487/RFC5912, June 2010, <https://www.rfc-

editor.org/rfc/rfc5912>.

Schaad, J. and S. Turner, "Additional New ASN.1 Modules

for the Cryptographic Message Syntax (CMS) and the Public

Key Infrastructure Using X.509 (PKIX)", RFC 6268, DOI

10.17487/RFC6268, July 2011, <https://www.rfc-editor.org/

rfc/rfc6268>.

Authors' Addresses

Russ Housley

Vigil Security, LLC

Herndon, VA,

United States of America

Email: housley@vigilsec.com

John Gray

Entrust

Minneapolis, MN,

United States of America

Email: john.gray@entrust.com

Tomofumi Okubo

DigiCert, Inc.

Fairfax, VA,

United States of America

Email: tomofumi.okubo+ietf@gmail.com

https://www.rfc-editor.org/rfc/rfc5912
https://www.rfc-editor.org/rfc/rfc5912
https://www.rfc-editor.org/rfc/rfc6268
https://www.rfc-editor.org/rfc/rfc6268
mailto:housley@vigilsec.com
mailto:john.gray@entrust.com
mailto:tomofumi.okubo+ietf@gmail.com

	Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. ASN.1
	1.3. CMS Version Numbers

	2. KEM Processing Overview
	3. KEM Recipient Information
	4. KEM Algorithm Identifier
	5. Key Derivation
	6. ASN.1 Modules
	6.1. KEMAlgorithmInformation-2023 ASN.1 Module
	6.2. CMS-KEMRecipientInfo ASN.1 Module

	7. Security Considerations
	8. IANA Considerations
	Acknowledgements
	References
	Normative References
	Informative References

	Authors' Addresses

