
Workgroup: lamps

Internet-Draft:

draft-ietf-lamps-e2e-mail-guidance-05

Published: 30 January 2023

Intended Status: Informational

Expires: 3 August 2023

Authors: D. K. Gillmor, Ed.

ACLU

Guidance on End-to-End E-mail Security

Abstract

End-to-end cryptographic protections for e-mail messages can provide

useful security. However, the standards for providing cryptographic

protection are extremely flexible. That flexibility can trap users

and cause surprising failures. This document offers guidance for

mail user agent implementers that need to compose or interpret e-

mail messages with end-to-end cryptographic protection. It provides

a useful set of vocabulary as well as suggestions to avoid common

failures.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

dkg.gitlab.io/e2e-mail-guidance/. Status information for this

document may be found at https://datatracker.ietf.org/doc/draft-

ietf-lamps-e2e-mail-guidance/.

Discussion of this document takes place on the LAMPS Working Group

mailing list (mailto:spasm@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/spasm/. Subscribe at https://

www.ietf.org/mailman/listinfo/spasm/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/dkg/e2e-mail-guidance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

https://dkg.gitlab.io/e2e-mail-guidance/
https://dkg.gitlab.io/e2e-mail-guidance/
https://datatracker.ietf.org/doc/draft-ietf-lamps-e2e-mail-guidance/
https://datatracker.ietf.org/doc/draft-ietf-lamps-e2e-mail-guidance/
mailto:spasm@ietf.org
https://mailarchive.ietf.org/arch/browse/spasm/
https://mailarchive.ietf.org/arch/browse/spasm/
https://www.ietf.org/mailman/listinfo/spasm/
https://www.ietf.org/mailman/listinfo/spasm/
https://gitlab.com/dkg/e2e-mail-guidance
https://gitlab.com/dkg/e2e-mail-guidance
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 August 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.1.1. Structural Headers

1.1.2. User-Facing Headers

2. Usability

2.1. Simplicity

2.2. E-mail Users Want a Familiar Experience

2.3. Warning About Failure vs. Announcing Success

3. Types of Protection

3.1. Simplified Mental Model

3.2. One Cryptographic Status Per Message

4. Cryptographic MIME Message Structure

4.1. Cryptographic Layers

4.1.1. S/MIME Cryptographic Layers

4.1.2. PGP/MIME Cryptographic Layers

4.2. Cryptographic Envelope

4.3. Cryptographic Payload

4.4. Types of Cryptographic Envelope

4.4.1. Simple Cryptographic Envelopes

4.4.2. Multilayer Cryptographic Envelopes

4.5. Errant Crytptographic Layers

4.5.1. Mailing List Wrapping

4.5.2. A Baroque Example

5. Message Composition

5.1. Message Composition Algorithm

¶

¶

¶

¶

https://trustee.ietf.org/license-info

5.2. Encryption Outside, Signature Inside

5.3. Avoid Offering Encrypted-only Messages

5.4. Composing a Reply Message

6. Message Interpretation

6.1. Rendering Well-formed Messages

6.2. Errant Cryptographic Layers

6.2.1. Errant Signing Layer

6.2.2. Errant Encryption Layer

6.2.3. Avoiding Non-MIME Cryptographic Mechanisms

6.3. Forwarded Messages with Cryptographic Protection

6.4. Signature failures

7. Reasoning about Message Parts

7.1. Main Body Part

7.2. Attachments

7.3. MIME Part Examples

8. Certificate Management

8.1. Peer Certificates

8.1.1. Cert Discovery from Incoming Messages

8.1.2. Certificate Directories

8.1.3. Peer Certificate Selection

8.1.4. Checking for Revocation

8.2. Local Certificates

8.2.1. Getting a Certificate for the User

8.2.2. Local Certificate Maintenance

8.2.3. Shipping Certificates in Outbound Messages

8.3. Certificate Authorities

9. Common Pitfalls and Guidelines

9.1. Reading Sent Messages

9.2. Composing an Encrypted Message with Bcc

9.2.1. Simple Encryption with Bcc

9.3. Composing a Message to Heterogeneous Recipients

9.4. Message Transport Protocol Proxy: A Dangerous Implementation

Choice

9.4.1. Dangers of a Submission Proxy for Message Composition

9.4.2. Dangers of an IMAP Proxy for Message Rendering

9.4.3. Who Controls the Proxy?

10. IANA Considerations

11. Security Considerations

12. Acknowledgements

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Test Vectors

A.1. Document History

A.1.1. Substantive changes from draft-ietf-...-04 to draft-

ietf-...-05

A.1.2. Substantive changes from draft-ietf-...-03 to draft-

ietf-...-04

A.1.3. Substantive changes from draft-ietf-...-02 to draft-

ietf-...-03

A.1.4. Substantive changes from draft-ietf-...-01 to draft-

ietf-...-02

A.1.5. Substantive changes from draft-ietf-...-00 to draft-

ietf-...-01

A.1.6. Substantive changes from draft-dkg-...-01 to draft-

ietf-...-00

A.1.7. Substantive changes from draft-dkg-...-00 to draft-

dkg-...-01

Author's Address

1. Introduction

E-mail end-to-end security using S/MIME ([RFC8551]) and PGP/MIME

([RFC3156]) cryptographic standards can provide integrity,

authentication and confidentiality to MIME ([RFC4289]) e-mail

messages.

However, there are many ways that a receiving mail user agent can

misinterpret or accidentally break these security guarantees (e.g.,

[EFAIL]).

A mail user agent that interprets a message with end-to-end

cryptographic protections needs to do so defensively, staying alert

to different ways that these protections can be bypassed by mangling

(either malicious or accidental) or a failed user experience.

A mail user agent that generates a message with end-to-end

cryptographic protections should be aware of these defensive

interpretation strategies, and should compose any new outbound

message conservatively if they want the protections to remain

intact.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.1. Terminology

For the purposes of this document, we define the following concepts:

MUA is short for Mail User Agent; an e-mail client.

Protection of message data refers to cryptographic encryption

and/or signatures, providing confidentiality, authenticity, and/

or integrity.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

Cryptographic Layer, Cryptographic Envelope, Cryptographic

Payload, and Errant Cryptographic Layer are defined in Section 4

A well-formed e-mail message with cryptographic protection has

both a Cryptographic Envelope and a Cryptographic Payload.

Structural Headers are documented in Section 1.1.1.

User-Facing Headers are documented in Section 1.1.2.

Main Body Part is the part (or parts) that are typically rendered

to the user as the message itself (not "as an attachment"). See

Section 7.1.

1.1.1. Structural Headers

A message header field named MIME-Version, or whose name begins

with Content- is referred to in this document as a "structural"

header. This is a less-ambiguous name for what [RFC2045] calls "MIME

Header Fields".

These headers indicate something about the specific MIME part they

are attached to, and cannot be transferred or copied to other parts

without endangering the readability of the message.

This includes:

MIME-Version

Content-Type

Content-Transfer-Encoding

Content-Disposition

1.1.2. User-Facing Headers

Of all the headers that an e-mail message may contain, only a

handful are typically presented directly to the user. The user-

facing headers are:

Subject

From

To

Cc

Date

*

¶

*

¶

* ¶

* ¶

*

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

Reply-To

Followup-To

The above is a complete list. No other headers are considered "user-

facing".

Other headers may affect the visible rendering of the message (e.g.,

References and In-Reply-To may affect the placement of a message in

a threaded discussion), but they are not directly displayed to the

user and so are not considered "user-facing".

2. Usability

Any MUA that enables its user to transition from unprotected

messages to messages with end-to-end cryptographic protection needs

to consider how the user understands this transition. That said, the

primary goal of the user of an MUA is communication -- so interface

elements that get in the way of communication should be avoided

where possible.

Furthermore, it is likely is that the user will continue to

encounter unprotected messages, and may need to send unprotected

messages (for example, if a given recipient cannot handle

cryptographic protections). This means that the MUA needs to provide

the user with some guidance, so that they understand what

protections any given message or conversation has. But the user

should not be overwhelmed with choices or presented with

unactionable information.

2.1. Simplicity

The end user (the operator of the MUA) is unlikely to understand

complex end-to-end cryptographic protections on any e-mail message,

so keep it simple.

For clarity to the user, any cryptographic protections should apply

to the message as a whole, not just to some subparts.

This is true for message composition: the standard message

composition user interface of an MUA should offer minimal controls

which indicate which types of protection to apply to the new message

as a whole.

This is also true for message interpretation: the standard message

rendering user interface of an MUA should offer a minimal, clear

indicator about the end-to-end cryptographic status of the message

as a whole.

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

See Section 3 for more detail about mental models and cryptographic

status.

2.2. E-mail Users Want a Familiar Experience

A person communicating over the Internet today often has many

options for reaching their desired correspondent, including web-

based bulletin boards, contact forms, and instant messaging

services.

E-mail offers a few distinctions from these other systems, most

notably features like:

Ubiquity: Most correspondents will have an e-mail address, while

not everyone is present on every alternate messaging service,

Federation: interaction between users on distinct domains who

have not agreed on a common communications provider is still

possible, and

User Control: the user can interact with the e-mail system using

a MUA of their choosing, including automation and other control

over their preferred and/or customized workflow.

Other systems (like some popular instant messaging applications,

such as WhatsApp and Signal Private Messenger) offer built-in end-

to-end cryptographic protections by default, which are simpler for

the user to understand. ("All the messages I see on Signal are

confidential and integrity-protected" is a clean user story)

A user of e-mail is likely using e-mail instead of other systems

because of the distinctions outlined above. When adding end-to-end

cryptographic protection to an e-mail endpoint, care should be taken

not to negate any of the distinct features of e-mail as a whole. If

these features are violated to provide end-to-end crypto, the user

may just as well choose one of the other systems that don't have the

drawbacks that e-mail has. Implmenters should try to provide end-to-

end protections that retain the familiar experience of e-mail

itself.

Furthermore, an e-mail user is likely to regularly interact with

other e-mail correspondents who cannot handle or produce end-to-end

cryptographic protections. Care should be taken that enabling

cryptography in a MUA does not inadvertently limit the ability of

the user to interact with legacy correspondents.

2.3. Warning About Failure vs. Announcing Success

Moving the web from http to https offers useful historical

similarities to adding end-to-end encryption to e-mail.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

In particular, the indicators of what is "secure" vs. "insecure" for

web browsers have changed over time. For example, years ago the

default experience was http, and https sites were flagged with

"secure" indicators like a lock icon. In 2018, some browsers

reversed that process by downplaying https, and instead visibly

marking http as "not secure" (see [chrome-indicators]).

By analogy, when the user of a MUA first enables end-to-end

cryptographic protection, it's likely that they will want to see

which messages have protection. But a user whose e-mail

communications are entirely end-to-end protected might instead want

to know which messages do not have the expected protections.

Note also that some messages are expected to be confidential, but

other messages are expected to be public -- the types of protection

(see Section 3) that apply to each particular message will be

different. And the types of protection that are expected to be

present in any context might differ (for example, by sender, by

thread, or by date).

It is out of scope for this document to define expectations about

protections for any given message, but an implementer who cares

about usable experience should be deliberate and judicious about the

expectations their interface assumes that the user has in a given

context.

3. Types of Protection

A given message might be:

signed,

encrypted,

both signed and encrypted, or

none of the above.

Given that many e-mail messages offer no cryptographic protections,

the user needs to be able to detect which protections are present

for any given message.

3.1. Simplified Mental Model

To the extent that an e-mail message actually does have end-to-end

cryptographic protections, those protections need to be visible and

comprehensible to the end user. If the user is unaware of the

protections, then they do not extend all the way to the "end".

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

However, most users do not have (or want to have) a sophisticated

mental model of what kinds of protections can be associated with a

given message. Even the four states above approach the limits of

complexity for an interface for normal users.

While Section 5.3 recommends avoiding deliberate creation of

encrypted-only messages, some messages may end up in the encrypted-

only state due to signature failure or certificate revocation.

A simple model for the user could be that a message is in one of

three normal states:

Unprotected

Verified (has a valid signature from the apparent sender of the

message)

Confidential (meaning, encrypted, with a valid signature from the

apparent sender of the message)

And one error state:

Encrypted But Unverified (meaning, encrypted without a valid

signature from the apparent sender of the message)

Note that this last state is not "Confidential" (a secret shared

exclusively between the participants in the communication) because

the recipient does not know for sure who sent it.

In an ecosystem where encrypted-only messages are never deliberately

sent (see Section 5.3), representing an Encrypted But Unverified

message as a type of user-visible error is not unreasonable.

Alternately, a MUA may prefer to represent the state of a Encrypted

but Unverified message to the user as though it was Unprotected,

since no verification is possible. However the MUA represents the

message to the user, though, it MUST NOT leak cleartext of an

encrypted message (even an Encrypted but Unverified message) in

subsequent replies (see Section 5.4) or similar replications of the

message.

Note that a cleartext message with an invalid signature SHOULD NOT

be represented to the user as anything other than Unprotected (see

Section 6.4).

In a messy legacy ecosystem, a MUA may prefer instead to represent

"Signed" and "Encrypted" as orthogonal states of any given message,

at the cost of an increase in the complexity of the user's mental

model.

¶

¶

¶

* ¶

*

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

3.2. One Cryptographic Status Per Message

Some MUAs may attempt to generate multiple copies of a given e-mail

message, with different copies offering different types of

protection (for example, opportunistically encrypting on a per-

recipient basis). A message resulting from this approach will have a

cryptographic state that few users will understand. Even if the

sender understands the different statuses of the different copies,

the recipients of the messages may not understand (each recipient

might not even know about the other copies). See for example the

discussion in Section 9.3 for how this can go wrong.

For comprehensibility, a MUA SHOULD NOT create multiple copies of a

given message that differ in the types of end-to-end cryptographic

protections afforded.

For opportunistic cryptographic protections that are not surfaced to

the user (that is, that are not end-to-end), other mechanisms like

transport encryption ([RFC3207]) or domain-based signing ([RFC6376])

may be preferable. These opportunistic protections are orthogonal to

the end-to-end protections described in this document.

To the extent that opportunistic protections are made visible to the

user for a given copy of a message, a reasonable MUA will

distinguish that status from the message's end-to-end cryptographic

status. But the potential confusion caused by rendering this

complex, hybrid state may not be worth the value of additional

knowledge gained by the user. The benefits of opportunistic

protections accrue (or don't) even without visibility to the user.

The user needs a single clear, simple, and correct indication about

the end-to-end cryptographic status of any given message.

4. Cryptographic MIME Message Structure

Implementations use the structure of an e-mail message to establish

(when sending) and understand (when receiving) the cryptographic

status of the message. This section establishes some conventions

about how to think about message structure.

4.1. Cryptographic Layers

"Cryptographic Layer" refers to a MIME substructure that supplies

some cryptographic protections to an internal MIME subtree. The

internal subtree is known as the "protected part" though of course

it may itself be a multipart object.

In the diagrams below, "↧" (DOWNWARDS ARROW FROM BAR, U+21A7)
indicates "decrypts to", and "⇩" (DOWNWARDS WHITE ARROW, U+21E9)
indicates "unwraps to".

¶

¶

¶

¶

¶

¶

¶

¶

4.1.1. S/MIME Cryptographic Layers

For S/MIME [RFC8551], there are four forms of Cryptographic Layers:

multipart/signed, PKCS#7 signed-data, PKCS7 enveloped-data, PKCS7

authEnveloped-data.

4.1.1.1. S/MIME Multipart Signed Cryptographic Layer

This MIME layer offers authentication and integrity.

4.1.1.2. S/MIME PKCS7 signed-data Cryptographic Layer

This MIME layer offers authentication and integrity.

4.1.1.3. S/MIME PKCS7 enveloped-data Cryptographic Layer

This MIME layer offers confidentiality.

4.1.1.4. S/MIME PKCS7 authEnveloped-data Cryptographic Layer

This MIME layer offers confidentiality and integrity.

Note that enveloped-data (Section 4.1.1.3) and authEnveloped-data

(Section 4.1.1.4) have identical message structure and very similar

semantics. The only difference between the two is ciphertext

malleability.

The examples in this document only include enveloped-data, but the

implications for that layer apply to authEnveloped-data as well.

4.1.1.5. PKCS7 Compression is NOT a Cryptographic Layer

The Cryptographic Message Syntax (CMS) provides a MIME compression

layer (smime-type="compressed-data"), as defined in [RFC3274]. While

¶

└┬╴multipart/signed; protocol="application/pkcs7-signature"
 ├─╴[protected part]
 └─╴application/pkcs7-signature

¶

¶

└─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
 └─╴[protected part]

¶

¶

└─╴application/pkcs7-mime; smime-type="enveloped-data"
 ↧ (decrypts to)
 └─╴[protected part]

¶

¶

└─╴application/pkcs7-mime; smime-type="authEnveloped-data"
 ↧ (decrypts to)
 └─╴[protected part]

¶

¶

¶

¶

the compression layer is technically a part of CMS, it is not

considered a Cryptographic Layer for the purposes of this document.

4.1.2. PGP/MIME Cryptographic Layers

For PGP/MIME [RFC3156] there are two forms of Cryptographic Layers,

signing and encryption.

4.1.2.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)

This MIME layer offers authenticity and integrity.

4.1.2.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

This MIME layer can offer any of:

confidentiality (via a Symmetrically Encrypted Data Packet, see

Section 5.7 of [RFC4880]; a MUA MUST NOT generate this form due

to ciphertext malleability)

confidentiality and integrity (via a Symmetrically Encrypted

Integrity Protected Data Packet (SEIPD), see Section 5.13 of

[RFC4880]), or

confidentiality, integrity, and authenticity all together (by

including an OpenPGP Signature Packet within the SEIPD).

4.2. Cryptographic Envelope

The Cryptographic Envelope is the largest contiguous set of

Cryptographic Layers of an e-mail message starting with the

outermost MIME type (that is, with the Content-Type of the message

itself).

If the Content-Type of the message itself is not a Cryptographic

Layer, then the message has no cryptographic envelope.

"Contiguous" in the definition above indicates that if a

Cryptographic Layer is the protected part of another Cryptographic

Layer, the layers together comprise a single Cryptographic Envelope.

¶

¶

└┬╴multipart/signed; protocol="application/pgp-signature"
 ├─╴[protected part]
 └─╴application/pgp-signature

¶

¶

└┬╴multipart/encrypted
 ├─╴application/pgp-encrypted
 └─╴application/octet-stream
 ↧ (decrypts to)
 └─╴[protected part]

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4880#section-5.7
https://rfc-editor.org/rfc/rfc4880#section-5.13

Note that if a non-Cryptographic Layer intervenes, all Cryptographic

Layers within the non-Cryptographic Layer are not part of the

Cryptographic Envelope. They are Errant Cryptographic Layers (see

Section 4.5).

Note also that the ordering of the Cryptographic Layers implies

different cryptographic properties. A signed-then-encrypted message

is different than an encrypted-then-signed message. See Section 5.2.

4.3. Cryptographic Payload

The Cryptographic Payload of a message is the first non-

Cryptographic Layer -- the "protected part" -- within the

Cryptographic Envelope.

4.4. Types of Cryptographic Envelope

4.4.1. Simple Cryptographic Envelopes

As described above, if the "protected part" identified in the

section above is not itself a Cryptographic Layer, that part is the

Cryptographic Payload.

If the application wants to generate a message that is both

encrypted and signed, it MAY use the simple MIME structure from

Section 4.1.2.2 by ensuring that the [RFC4880] Encrypted Message

within the application/octet-stream part contains an [RFC4880]

Signed Message (the final option described in Section 4.1.2.2.

4.4.2. Multilayer Cryptographic Envelopes

It is possible to construct a Cryptographic Envelope consisting of

multiple layers with either S/MIME or PGP/MIME , for example using

the following structure:

When handling such a message, the properties of the Cryptographic

Envelope are derived from the series A, C.

As noted in Section 4.4.1, PGP/MIME applications also have a simpler

MIME construction available with the same cryptographic properties.

¶

¶

¶

¶

¶

¶

A └─╴application/pkcs7-mime; smime-type="enveloped-data"
B ↧ (decrypts to)
C └─╴application/pkcs7-mime; smime-type="signed-data"
D ⇩ (unwraps to)
E └─╴[protected part]

¶

¶

¶

4.5. Errant Crytptographic Layers

Due to confusion, malice, or well-intentioned tampering, a message

may contain a Cryptographic Layer that is not part of the

Cryptographic Envelope. Such a layer is an Errant Cryptographic

Layer.

An Errant Cryptographic Layer SHOULD NOT contribute to the message's

overall cryptographic state.

Guidance for dealing with Errant Cryptographic Layers can be found

in Section 6.2.

4.5.1. Mailing List Wrapping

Some mailing list software will re-wrap a well-formed signed message

before re-sending to add a footer, resulting in the following

structure seen by recipients of the e-mail:

In this message, L is the footer added by the mailing list. I is now

an Errant Cryptographic Layer.

Note that this message has no Cryptographic Envelope at all.

It is NOT RECOMMENDED to produce e-mail messages with this

structure, because the data in part L may appear to the user as

though it were part of J, though they have different cryptographic

properties. In particular, if the user believes that the message is

signed, but cannot distinguish L from J then the author of L can

effectively tamper with content of the signed message, breaking the

user's expectation of integrity and authenticity.

4.5.2. A Baroque Example

Consider a message with the following overcomplicated structure:

¶

¶

¶

¶

H └┬╴multipart/mixed
I ├┬╴multipart/signed
J │├─╴text/plain
K │└─╴application/pgp-signature
L └─╴text/plain

¶

¶

¶

¶

¶

The 3 Cryptographic Layers in such a message are rooted in parts M,

Q, and S. But the Cryptographic Envelope of the message consists

only of the properties derived from the series M, Q. The

Cryptographic Payload of the message is part R. Part S is an Errant

Cryptographic Layer.

Note that this message has both a Cryptographic Envelope and an

Errant Cryptographic Layer.

It is NOT RECOMMENDED to generate messages with such complicated

structures. Even if a receiving MUA can parse this structure

properly, it is nearly impossible to render in a way that the user

can reason about the cryptographic properties of part T compared to

part V.

5. Message Composition

This section describes the ideal composition of an e-mail message

with end-to-end cryptographic protection. A message composed with

this form is most likely to achieve its end-to-end security goals.

5.1. Message Composition Algorithm

This section roughly describes the steps that a MUA should use to

compose a cryptographically-protected message that has a proper

cryptographic envelope and payload.

The message composition algorithm takes three parameters:

origbody: the traditional unprotected message body as a well-

formed MIME tree (possibly just a single MIME leaf part). As a

well-formed MIME tree, origbody already has structural headers

present (see Section 1.1.1).

origheaders: the intended non-structural headers for the message,

represented here as a list of (h,v) pairs, where h is a header

field name and v is the associated value.

M └┬╴multipart/encrypted
N ├─╴application/pgp-encrypted
O └─╴application/octet-stream
P ↧ (decrypts to)
Q └┬╴multipart/signed
R ├┬╴multipart/mixed
S │├┬╴multipart/signed
T ││├─╴text/plain
U ││└─╴application/pgp-signature
V │└─╴text/plain
W └─╴application/pgp-signature

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

crypto: The series of cryptographic protections to apply (for

example, "sign with the secret key corresponding to X.509

certificate X, then encrypt to X.509 certificates X and Y"). This

is a routine that accepts a MIME tree as input (the Cryptographic

Payload), wraps the input in the appropriate Cryptographic

Envelope, and returns the resultant MIME tree as output.

The algorithm returns a MIME object that is ready to be injected

into the mail system:

Apply crypto to origbody, yielding MIME tree output

For each header name and value (h,v) in origheaders:

Add header h of output with value v

Return output

5.2. Encryption Outside, Signature Inside

Users expect any message that is both signed and encrypted to be

signed inside the encryption, and not the other way around.

Putting the signature inside the encryption has two advantages:

The details of the signature remain confidential, visible only to

the parties capable of decryption.

Any mail transport agent that modifies the message is unlikely to

be able to accidentally break the signature.

A MUA SHOULD NOT generate an encrypted and signed message where the

only signature is outside the encryption.

5.3. Avoid Offering Encrypted-only Messages

When generating an e-mail, the user has options about what forms of

end-to-end cryptographic protections to apply to it.

In some cases, offering any end-to-end cryptographic protection is

harmful: it may confuse the recipient and offer no benefit.

In other cases, signing a message is useful (authenticity and

integrity are desirable) but encryption is either impossible (for

example, if the sender does not know how to encrypt to all

recipients) or meaningless (for example, an e-mail message to a

mailing list that is intended to be be published to a public

archive).

*

¶

¶

* ¶

* ¶

- ¶

* ¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

In other cases, full end-to-end confidentiality, authenticity, and

integrity are desirable.

It is unclear what the use case is for an e-mail message with end-

to-end confidentiality but without authenticity or integrity.

A reasonable MUA will keep its message composition interface simple,

so when presenting the user with a choice of cryptographic

protection, it SHOULD offer no more than three choices:

no end-to-end cryptographic protection

Verified (signed only)

Confidential (signed and encrypted)

Note that these choices correspond to the simplified mental model in

Section 3.1.

5.4. Composing a Reply Message

When replying to a message, most MUAs compose an initial draft of

the reply that contains quoted text from the original message. A

responsible MUA will take precautions to avoid leaking the cleartext

of an encrypted message in such a reply.

If the original message was end-to-end encrypted, the replying MUA

MUST either:

compose the reply with end-to-end encryption, or

avoid including quoted text from the original message.

In general, MUAs SHOULD prefer the first option: to compose an

encrypted reply. This is what users expect.

However, in some circumstances, the replying MUA cannot compose an

encrypted reply. For example, the MUA might not have a valid,

unexpired, encryption-capable certificate for all recipients. This

can also happen during composition when a user adds a new recipient

into the reply, or manually toggles the cryptographic protections to

remove encryption.

In this circumstance, the composing MUA SHOULD strip the quoted text

from the original message.

Note additional nuance about replies to malformed messages that

contain encryption in Section 6.2.2.1.

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

6. Message Interpretation

Despite the best efforts of well-intentioned senders to create e-

mail messages with well-formed end-to-end cryptographic protection,

receiving MUAs will inevitably encounter some messages with

malformed end-to-end cryptographic protection.

This section offers guidance on dealing with both well-formed and

malformed messages containing Cryptographic Layers.

6.1. Rendering Well-formed Messages

A message is well-formed when it has a Cryptographic Envelope, a

Cryptographic Payload, and no Errant Cryptographic Layers. Rendering

a well-formed message is straightforward.

The receiving MUA should evaluate and summarize the cryptographic

properties of the Cryptographic Envelope, and display that status to

the user in a secure, strictly-controlled part of the UI. In

particular, the part of the UI used to render the cryptographic

summary of the message MUST NOT be spoofable, modifiable, or

otherwise controllable by the received message itself.

Aside from this cryptographic summary, the message itself should be

rendered as though the Cryptographic Payload is the body of the

message. The Cryptographic Layers themselves SHOULD not be rendered

otherwise.

6.2. Errant Cryptographic Layers

If an incoming message has any Errant Cryptographic Layers, the

interpreting MUA SHOULD ignore those layers when rendering the

cryptographic summary of the message to the user.

6.2.1. Errant Signing Layer

When rendering a message with an Errant Cryptographic Layer that

provides authenticity and integrity (via signatures), the message

should be rendered by replacing the Cryptographic layer with the

part it encloses.

For example, a message with this structure:

¶

¶

¶

¶

¶

¶

¶

¶

A └┬╴multipart/mixed
B ├╴text/plain
C ├┬╴multipart/signed
D │├─╴image/jpeg
E │└─╴application/pgp-signature
F └─╴text/plain

¶

Should be rendered identically to this:

In such a situation, an MUA SHOULD NOT indicate in the cryptographic

summary that the message is signed.

6.2.1.1. Exception: Mailing List Footers

The use case described in Section 4.5.1 is common enough in some

contexts, that a MUA MAY decide to handle it as a special exception.

If the MUA determines that the message comes from a mailing list

(for example, it has a List-ID header), and it has a structure that

appends a footer to a signing-only Cryptographic Layer with a valid

signature, such as:

or:

Then, the MUA MAY indicate to the user that this is a signed message

that has been wrapped by the mailing list.

In this case, the MUA MUST distinguish the footer (part L) from the

protected part (part J) when rendering any information about the

signature.

One way to do this is to offer the user two different views of the

message: the "mailing list" view, which hides any cryptographic

summary but shows the footer:

¶

A └┬╴multipart/mixed
B ├─╴text/plain
D ├─╴image/jpeg
F └─╴text/plain

¶

¶

¶

¶

H └┬╴multipart/mixed
I ├┬╴multipart/signed
J │├─╴[protected part, may be arbitrary MIME subtree]
K │└─╴application/{pgp,pkcs7}-signature
L └─╴[footer, typically text/plain]

¶

¶

H └┬╴multipart/mixed
I ├─╴application/pkcs7-mime; smime-type="signed-data"
 │⇩ (unwraps to)
J │└─╴[protected part, may be an arbitrary MIME subtree]
L └─╴[footer, typically text/plain]

¶

¶

¶

¶

Cryptographic Protections: none

H └┬╴multipart/mixed
J ├─╴[protected part, may be arbitrary MIME subtree]
L └─╴[footer, typically text/plain]

¶

or the "sender's view", which shows the cryptographic summary but

hides the footer:

6.2.2. Errant Encryption Layer

An MUA may encounter a message with an Errant Cryptographic Layer

that offers confidentiality (encryption), and the MUA is capable of

decrypting it.

The user wants to be able to see the contents of any message that

they receive, so an MUA in this situation SHOULD decrypt the part.

In this case, though, the MUA MUST NOT indicate in the message's

cryptographic summary that the message itself was encrypted. Such an

indication could be taken to mean that other (non-encrypted) parts

of the message arrived with cryptographic confidentiality.

Furthermore, when decrypting an Errant Cryptographic Layer, the MUA

MUST treat the decrypted cleartext as a distinct MIME subtree, and

not attempt to merge or splice it together with any other part of

the message. This offers protection against the direct exfiltration

(also known as EFAIL-DE) attacks described in [EFAIL] and so-called

multipart/oracle attacks described in [ORACLE].

6.2.2.1. Replying to a Message with an Errant Encryption Layer

Note that there is an asymmetry here between rendering and replying

to a message with an Errant Encryption Layer.

When rendering, the MUA does not indicate that the message was

encrypted, even if some subpart of it was decrypted for rendering.

When composing a reply to a message that has any encryption layer,

even an errant one, the reply message SHOULD be marked for

encryption, as noted in {#composing-reply}.

When composing a reply to a message with an errant cryptographic

layer, the MUA MUST NOT decrypt any errant cryptographic layers when

generating quoted or attributed text. This will typically mean

either leaving the ciphertext itself in the generated reply message,

or simply no generating any quoted or attributed text at all. This

offers protection against the reply-based attacks described in

[EFAIL].

In all circumstances, if the reply message cannot be encrypted (or

if the user elects to not encrypt the reply), the composed reply

MUST NOT include any material from the decrypted subpart.

¶

Cryptographic Protections: signed [details from part I]

J └─╴[protected part, may be arbitrary MIME subtree]
¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.2.3. Avoiding Non-MIME Cryptographic Mechanisms

In some cases, there may be a cryptographic signature or encryption

that does not coincide with a MIME boundary. For example so-called

"PGP Inline" messages typically contain base64-encoded ("ASCII-

armored", see Section 6 of [RFC4880]) ciphertext, or within the

content of a MIME part.

6.2.3.1. Do Not Validate Non-MIME Signatures

When encountering cryptographic signatures in these positions, a MUA

MUST NOT attempt to validate any signature. It is challenging to

communicate to the user exactly which part of such a message is

covered by the signature, so it is better to leave the message

marked as unsigned.

6.2.3.2. Skip or Isolate Non-MIME Decryption When Rendering

When encountering what appears to be encrypted data not at a MIME

boundary, the MUA MAY decline to decrypt the data at all.

During message rendering, if the MUA attempts decryption of such a

non-MIME encrypted section of an e-mail, it MUST synthesize a

separate MIME part to contain only the decrypted data, and not

attempt to merge or splice that part together with any other part of

the message. Keeping such a section distinct and isolated from any

other part of the message offers protection against the direct

exfiltration attacks (also known as EFAIL-DE) described in [EFAIL].

6.2.3.3. Do Not Decrypt Non-MIME Decryption when Replying

When composing a reply to a message with such a non-MIME encrypted

section, the MUA MUST NOT decrypt the any non-MIME encrypted section

when generating quoted or attributed text, similar to the guidance

in Section 6.2.2.1.

This offers protection against the reply-based attacks described in

[EFAIL].

6.3. Forwarded Messages with Cryptographic Protection

An incoming e-mail message may include an attached forwarded

message, typically as a MIME subpart with Content-Type: message/

rfc822 ([RFC5322]) or Content-Type: message/global ([RFC5355]).

Regardless of the cryptographic protections and structure of the

incoming message, the internal forwarded message may have its own

Cryptographic Envelope.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4880#section-6

The Cryptographic Layers that are part of the Cryptographic Envelope

of the forwarded message are not Errant Cryptographic Layers of the

surrounding message -- they are simply layers that apply to the

forwarded message itself.

The rendering MUA MUST NOT conflate the cryptographic protections of

the forwarded message with the cryptographic protections of the

incoming message.

The rendering MUA MAY render a cryptographic summary of the

protections afforded to the forwarded message by its own

Cryptographic Envelope, as long as that rendering is unambiguously

tied to the forwarded message itself, and cannot be spoofed either

by the enclosing message or by the forwarded message.

6.4. Signature failures

A cryptographic signature may fail in multiple ways. A receiving MUA

that discovers a failed signature should treat the message as though

the signature did not exist. This is similar to the standard

guidance for about failed DKIM signatures (see Section 6.1 of

[RFC6376]).

A MUA SHOULD NOT render a message with a failed signature as more

dangerous or more dubious than a comparable message without any

signature at all.

A MUA that encounters an encrypted-and-signed message where the

signature is invalid SHOULD treat the message the same way that it

would treat a message that is encryption-only.

Some different ways that a signature may be invalid on a given

message:

the signature is not cryptographically valid (the math fails).

the signature relies on suspect cryptographic primitives (e.g.

over a legacy digest algorithm, or was made by a weak key, e.g.,

1024-bit RSA)

the signature is made by a certificate which the receiving MUA

does not have access to.

the certificate that made the signature was revoked.

the certificate that made the signature was expired at the time

that the signature was made.

the certificate that made the signature does not correspond to

the author of the message. (for X.509, there is no subjectAltName

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

https://rfc-editor.org/rfc/rfc6376#section-6.1

of type RFC822Name whose value matches an e-mail address found in

From: or Sender:)

the certificate that made the signature was not issued by an

authority that the MUA user is willing to rely on for certifying

the sender's e-mail address, and the user has no other reasonable

indication that the certificate belongs to the sender's e-mail

address.

the signature indicates that it was made at a time much before or

much after from the date of the message itself.

A valid signature must pass all these tests, but of course invalid

signatures may be invalid in more than one of the ways listed above.

7. Reasoning about Message Parts

When generating or rendering messages, it is useful to know what

parts of the message are likely to be displayed, and how. This

section introduces some common terms that can be applied to parts

within the Cryptographic Payload.

7.1. Main Body Part

When an e-mail message is composed or rendered to the user there is

typically one main view that presents a (mostly textual) part of the

message.

While the message itself may be constructed of several distinct MIME

parts in a tree, the part that is rendered to the user is the "Main

Body Part".

When rendering a message, one of the primary jobs of the receiving

MUA is identifying which part (or parts) is the Main Body Part.

Typically, this is found by traversing the MIME tree of the message

looking for a leaf node that has a primary content type of text

(e.g. text/plain or text/html) and is not Content-Disposition:

attachment.

MIME tree traversal follows the first child of every multipart node,

with the exception of multipart/alternative. When traversing a

multipart/alternative node, all children should be scanned, with

preference given to the last child node with a MIME type that the

MUA is capable of rendering directly.

A MUA MAY offer the user a mechanism to prefer a particular MIME

type within multipart/alternative instead of the last renderable

child. For example, a user may explicitly prefer a text/plain

alternative part over text/html.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

Note that due to uncertainty about the capabilities and

configuration of the receiving MUA, the composing MUA SHOULD

consider that multiple parts might be rendered as the Main Body Part

when the message is ultimately viewed.

When composing a message, an originating MUA operating on behalf of

an active user can identify which part (or parts) are the "main"

parts: these are the parts the MUA generates from the user's editor.

Tooling that automatically generates e-mail messages should also

have a reasonable estimate of which part (or parts) are the "main"

parts, as they can be programmatically identified by the message

author.

For a filtering program that attempts to transform an outbound

message without any special knowledge about which parts are Main

Body Parts, it can identify the likely parts by following the same

routine as a receiving MUA.

7.2. Attachments

A message may contain one or more separated MIME parts that are

intended for download or extraction. Such a part is commonly called

an "attachment", and is commonly identified by having Content-

Disposition: attachment, and is a subpart of a multipart/mixed or

multipart/related container.

An MUA MAY identify a subpart as an attachment, or permit extraction

of a subpart even when the subpart does not have Content-

Disposition: attachment.

For a message with end-to-end cryptographic protection, any

attachment MUST be included within the Cryptographic Payload. If an

attachment is found outside the Cryptographic Payload, then the

message is not well-formed (see Section 6.1).

Some MUAs have tried to compose messages where each attachment is

placed in its own cryptographic envelope. Such a message is

problematic for several reasons:

The attachments can be stripped, replaced, or reordered without

breaking any cryptographic integrity mechanism.

The resulting message may have a mix of cryptographic statuses

(e.g. if a signature on one part fails but another succeeds, or

if one part is encrypted and another is not). This mix of

statuses is difficult to represent to the user in a

comprehensible way.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

7.3. MIME Part Examples

Consider a common message with the folloiwing MIME structure:

Parts M and N comprise the Cryptographic Envelope.

Parts Q and R are both Main Body Parts.

If part S is Content-Disposition: attachment, then it is an

attachment. If part S has no Content-Disposition header, it is

potentially ambiguous whether it is an attachment or not.

Consider also this alternate structure:

In this case, parts M and N are still the Cryptographic Envelope.

Parts P and R (the first two leaf nodes within each subtree of part

O) are the Main Body Parts.

Part S is more likely not to be an attachment, as the subtree layout

suggests that it is only relevant for the HTML version of the

message. For example, it might be rendered as an image within the

HTML alternative.

8. Certificate Management

A cryptographically-capable MUA typically maintains knowledge about

certificates for the user's own account(s), as well as certificates

for the peers that it communicates with.

¶

M └─╴application/pkcs7-mime
 ↧ (decrypts to)
N └─╴application/pkcs7-mime
 ⇩ (unwraps to)
O └┬╴multipart/mixed
P ├┬╴multipart/alternative
Q │├─╴text/plain
R │└─╴text/html
S └─╴image/png

¶

¶

¶

¶

¶

M └─╴application/pkcs7-mime
 ↧ (decrypts to)
N └─╴application/pkcs7-mime
 ⇩ (unwraps to)
O └┬╴multipart/alternative
P ├─╴text/plain
Q └┬╴multipart/related
R ├─╴text/html
S └─╴image/png

¶

¶

¶

¶

¶

8.1. Peer Certificates

Most certificates that a cryptographically-capable MUA will use will

be certificates belonging to the parties that the user communicates

with through the MUA. This section discusses how to manage the

certificates that belong to such a peer.

The MUA will need to be able to discover X.509 certificates for each

peer, cache them, and select among them when composing an encrypted

message.

8.1.1. Cert Discovery from Incoming Messages

TODO: incoming PKCS#7 messages tend to have a bundle of certificates

in them. How should these certs be handled?

TODO: point to Autocrypt certificate discovery mechanism

TODO: point to OpenPGP embedded certificate subpacket proposal

TODO: compare mechanisms, explain where each case is useful.

8.1.2. Certificate Directories

Some MUAs may have the capability to look up peer certificates in a

directory.

TODO: more information here about X.509 directories -- LDAP?

TODO: mention WKD for OpenPGP certificates?

TODO: mention SMIMEA and OPENPGPKEY DNS RRs

8.1.3. Peer Certificate Selection

When composing an encrypted message, the MUA needs to select a

certificate for each recipient that is capable of encryption.

To select such a certificate for a given destination e-mail address,

the MUA should look through all of its known certificates and verify

that all of the conditions below are met:

The certificate must be valid, not expired or revoked.

It must have a subjectAltName of type rFC822Name whose contents

exactly match the destination address.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

The algorithm OID in the certificate's SPKI is known to the MUA

and capable of encryption. Examples include (TODO: need OIDs)

RSA, with keyUsage present and the "key encipherment" bit set

EC Public Key, with keyUsage present and the "key agreement"

bit set

EC DH, with keyUsage present and the "key agreement" bit set

If extendedKeyUsage is present, it contains at least one of the

following OIDs: e-mail protection, anyExtendedKeyUsage.

TODO: If OID is EC Public Key and keyUsage is absent, what should

happen?

TODO: what if multiple certificates meet all of these criteria for a

given recipient?

8.1.4. Checking for Revocation

TODO: discuss how/when to check for peer certificate revocation

TODO: privacy concerns: what information leaks to whom when checking

peer cert revocations?

8.2. Local Certificates

The MUA also needs to know about one or more certificates associated

with the user's e-mail account. It is typically expected to have

access to the secret key material associated with the public keys in

those certificates.

8.2.1. Getting a Certificate for the User

TODO: mention ACME SMIME?

TODO: mention automatic self-signed certs e.g. OpenPGP?

TODO: SHOULD generate secret key material locally, and MUST NOT

accept secret key material from an untrusted third party as the

basis for the user's certificate.

8.2.2. Local Certificate Maintenance

The MUA should warn the user when/if:

The user's own certificate set does not include a valid,

unexpired encryption-capable X.509 certificate, and a valid,

unexpired signature-capable X.509 certificate.

*

¶

- ¶

-

¶

- ¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

Any of the user's own certificates is due to expire soon (TODO:

what is "soon"?)

Any of the user's own certificates does not match the e-mail

address associated with the user's account.

Any of the user's own certificates does not have a keyUsage

section

Any of the user's own certificates does not contain an

extendedKeyUsage extension

TODO: how does the MUA do better than warning in the cases above?

What can the MUA actually do here to fix problems before they

happen?

TODO: discuss how/when to check for own certificate revocation, and

what to do if it (or any intermediate certificate authority) is

found to be revoked.

8.2.3. Shipping Certificates in Outbound Messages

TODO: What certificates should the MUA include in an outbound

message so that peers can discover them?

local signing certificate so that signature can be validated

local encryption-capable certificate(s) so that incoming messages

can be encrypted.

On an encrypted message to multiple recipients, the encryption-

capable peer certs of the other recipients (to enable "reply

all")?

intermediate certificates to chain all of the above to some set

of root authorities?

8.3. Certificate Authorities

TODO: how should the MUA select root certificate authorities?

TODO: should the MUA cache intermediate CAs?

TODO: should the MUA share such a cache with other PKI clients

(e.g., web browsers)? Are there distinctions between a CA for S/MIME

and for the web?

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

9. Common Pitfalls and Guidelines

This section highlights a few "pitfalls" and guidelines based on

these discussions and lessons learned.

FIXME: some possible additional commentary on:

indexing and search of encrypted messages

managing access to cryptographic secret keys that require user

interaction

secure deletion

storage of composed/sent messages

cached signature validation

aggregated cryptographic status of threads/conversations ?

Draft messages

copies to the Sent folder

9.1. Reading Sent Messages

When composing a message, a typical MUA will store a copy of the

message sent in sender's Sent mail folder so that the sender can

read it later. If the message is an encrypted message, storing it

encrypted requires some forethought to ensure that the sender can

read it in the future.

It is a common and simple practice to encrypt the message not only

to the recipients of the message, but also to the sender. One

advantage of doing this is that the message that is sent on the wire

can be identical to the message stored in the sender's Sent mail

folder. This allows the sender to review and re-read the message

even though it was encrypted.

There are at least three other approaches that are possible to

ensure future readability by the sender of the message, but with

different tradeoffs:

Encrypt two versions of the message: one to the recipients (this

version is sent on the wire), and one to the sender only (this

version is stored in the sender's Sent folder). This approach

means that the message stored in the Sent folder is not byte-for-

byte identical to the message sent to the recipients. In the

event that message delivery has a transient failure, the MUA

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

*

cannot simply re-submit the stored message into the SMTP system

and expect it to be readable by the recipient.

Store a cleartext version of the message in the Sent folder. This

presents a risk of information leakage: anyone with access to the

Sent folder can read the contents of the message. Furthermore,

any attempt to re-send the message needs to also re-apply the

cryptographic transformation before sending, or else the message

contents will leak upon re-send.

A final option is that the MUA can store a copy of the message's

encryption session key. Standard e-mail encryption mechanisms

(e.g. S/MIME and PGP/MIME) are hybrid mechanisms: the asymmetric

encryption steps simply encrypt a symmetric "session key", which

is used to encrypt the message itself. If the MUA stores the

session key itself, it can use the session key to decrypt the

Sent message without needing the Sent message to be decryptable

by the user's own asymmetric key. An MUA doing this must take

care to store (and backup) its stash of session keys, because if

it loses them it will not be able to read the sent messages; and

if someone else gains access to them, they can decrypt the sent

messages. This has the additional consequence that any other MUA

accessing the same Sent folder cannot decrypt the message unless

it also has access to the stashed session key.

9.2. Composing an Encrypted Message with Bcc

When composing an encrypted message containing at least one

recipient address in the Bcc header field, there is a risk that the

encrypted message itself could leak information about the actual

recipients, even if the Bcc header field does not mention the

recipient. For example, if the message clearly indicates which

certificates it is encrypted to, the set of certificates can

identify the recipients even if they are not named in the message

headers.

Because of these complexities, there are several interacting factors

that need to be taken into account when composing an encrypted

message with Bcc'ed recipients.

Section 3.6.3 of [RFC5322] describes a set of choices about

whether (and how) to populate the Bcc field explicitly on Bcc'ed

copies of the message, and in the copy stored in the sender's

Sent folder.

When separate copies are made for Bcced recipients, should each

separate copy also be encrypted to the named recipients, or just

to the designated Bcc recipient?

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc5322#section-3.6.3

When a copy is stored in the Sent folder, should that copy also

be encrypted to Bcced recipients? (see also Section 9.1)

When a message is encrypted, if there is a mechanism to include

the certificates of the recipients, whose certificates should be

included?

9.2.1. Simple Encryption with Bcc

Here is a simple approach that tries to minimize the total number of

variants of the message created while leaving a coherent view of the

message itself:

No cryptographic payload contains any Bcc header field.

The main copy of the message is signed and encrypted to all named

recipients and to the sender. A copy of this message is also

stored in the sender's Sent folder.

Each Bcc recipient receives a distinct copy of the message, with

an identical cryptographic payload, and the message is signed and

encrypted to that specific recipient and all the named

recipients. These copies are not stored in the sender's Sent

folder.

To the extent that spare certificates are included in the

message, each generated copy of the message should include

certificates for the sender and for each named recipient.

Certificates for Bcc'ed recipients are not included in any

message.

9.2.1.1. Rationale

The approach described in Section 9.2.1 aligns the list of

cryptographic recipients as closely as possible with the set of

named recipients, while still allowing a Bcced recipient to read

their own copy, and to "Reply All" should they want to.

This should reduce user confusion on the receiving side: a recipient

of such a message who naively looks at the user-facing headers from

their own mailbox will have a good sense of what cryptographic

treatments have been applied to the message. It also simplifies

message composition and user experience: the message composer sees

fields that match their expectations about what will happen to the

message. Additionally, it may preserve the ability for a Bcc'ed

recipient to retain their anonymity, should they need to offer the

signed cryptographic payload to an outside party as proof of the

original sender's intent without revealing their own identity.

*

¶

*

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

9.3. Composing a Message to Heterogeneous Recipients

When sending a message that the user intends to be encrypted, it's

possible that some recipients will be unable to receive an encrypted

copy. For example, when Carol composes a message to Alice and Bob,

Carol's MUA may be able to find a valid encryption-capable

certificate for Alice, but none for Bob.

In this situation, there are four possible strategies, each of which

has a negative impact on the experience of using encrypted mail.

Carol's MUA can:

send encrypted to Alice and Bob, knowing that Bob will be

unable to read the message.

send encrypted to Alice only, dropping Bob from the message

recipient list.

send the message in the clear to both Alice and Bob.

send an encrypted copy of the message to Alice, and a cleartext

copy to Bob.

Each of these strategies has different drawbacks.

The problem with approach 1 is that Bob will receive unreadable

mail.

The problem with approach 2 is that Carol's MUA will not send the

message to Bob, despite Carol asking it to.

The problem with approach 3 is that Carol's MUA will not encrypt the

message, despite Carol asking it to.

Approach 4 has two problems:

Carol's MUA will release a cleartext copy of the message, despite

Carol asking it to send the message encrypted.

If Alice wants to "reply all" to the message, she may not be able

to find an encryption-capable certificate for Bob either. This

puts Alice in an awkward and confusing position, one that users

are unlikely to understand. In particular, if Alice's MUA is

following the guidance about replies to encrypted messages in

Section 5.4, having received an encrypted copy will make Alice's

Reply buffer behave in an unusual fashion.

This is particularly problematic when the second recipient is not

"Bob" but in fact a public mailing list or other visible archive,

where messages are simply never encrypted.

¶

¶

1.

¶

2.

¶

3. ¶

4.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

Carol is unlikely to understand the subtleties and negative

downstream interactions involved with approaches 1 and 4, so

presenting the user with those choices is not advised.

The most understandable approach for a MUA with an active user is to

ask the user (when they hit "send") to choose between approach 2 and

approach 3. If the user declines to choose between 2 and 3, the MUA

can drop them back to their message composition window and let them

make alternate adjustments.

9.4. Message Transport Protocol Proxy: A Dangerous Implementation

Choice

An implementor of end-to-end cryptographic protections may be

tempted by a simple software design that piggybacks off of a mail

protocol like SMTP, IMAP, or JMAP to handle message assembly and

interpretation. In such an architecture, a naive MUA speaks

something like a "standard" protocol like SMTP, IMAP, or JMAP to a

local proxy, and the proxy handles signing and encryption

(outbound), and decryption and verification (inbound) internally on

behalf of the user. While such a "pluggable" architecture has the

advantage that it is likely to be easy to apply to any mail user

agent, it is problematic for the goals of end-to-end communication,

especially in an existing cleartext ecosystem like e-mail, where any

given message might be unsigned or signed, cleartext or encrypted.

In particular:

the user cannot easily and safely identify what protections any

particular message has (including messages currently being

composed), and

the proxy itself is unaware of subtle nuances about the message

that the MUA actually knows.

With a trustworthy and well-synchronized sidechannel or protocol

extension between the MUA and the proxy, it is possible to deploy

such an implementation safely, but the requirement for the

sidechannel or extension eliminates the universal-deployability

advantage of the scheme.

This section attempts to document some of the inherent risks

involved with such an architecture.

9.4.1. Dangers of a Submission Proxy for Message Composition

When composing and sending a message, the act of applying

cryptographic protections has subtleties that cannot be directly

expressed in the SMTP protocol used by Submission [RFC6409], or in

any other simple protocol that hands off a cleartext message for

further processing.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

For example, the sender cannot indicate via SMTP whether or not a

given message should be encrypted (some messages, like those sent to

a publicly archived mailing list, are pointless to encrypt), or

select among multiple certificates for a recipient, if they exist

(see Section 8.1.3).

Likewise, because such a proxy only interacts with the message when

it is ready to be sent, it cannot indicate back to the user during

message composition whether or not the message is able to be

encrypted (that is, whether a valid certificate is available for

each intended recipient). A message author may write an entirely

different message if they know that it will be protected end-to-end;

but without this knowledge, the author is obliged either to write

text that they presume will be intercepted, or to risk revealing

sensitive content.

Even without encryption, deciding whether to sign or not (and which

certificate to sign with, if more than one exists) is another choice

that the proxy is ill-equipped to make. The common message-signing

techniques either render a message unreadable by any client that

does not support cryptographic mail (i.e., PKCS7 signed-data), or

appear as an attachment that can cause confusion to a naive

recipient using a legacy client (i.e., multipart/signed). If the

sender knows that the recipient will not check signatures, they may

prefer to leave a cleartext message without a cryptographic

signature at all.

Furthermore, handling encryption properly depends on the context of

any given message, which cannot be expressed by the MUA to the

Submission proxy. For example, decisions about how to handle

encryption and quoted or attributed text may depend on the

cryptographic status of the message that is being replied to (see

Section 5.4).

Additionally, such a proxy would need to be capable of managing the

user's own key and certificate (see Section 8.2). How will the

implementation indicate to the user when their own certificate is

near expiry, for example? How will any other error conditions be

handled when communication with the user is needed?

While an extension to SMTP might be able to express all the

necessary semantics that would allow a generic MUA to compose

messages with standard cryptographic protections via a proxy, such

an extension is beyond the scope of this document. FIXME: add a

reference to JMAP cryptographic message composition work.

¶

¶

¶

¶

¶

¶

9.4.2. Dangers of an IMAP Proxy for Message Rendering

When receiving and rendering a message, the process of indicating to

the user the cryptographic status of a message requires subtleties

that are difficult to offer from a straightforwad IMAP (or POP, or

JMAP) proxy.

One approach such a proxy could take is to remove all the

Cryptographic Layers from a well-formed message, and to package a

description of those layers into a special header field that the MUA

can read. But this merely raises the question: what semantics need

to be represented? For example:

Was the message signed? If so, by whom? When?

Should the details of the cryptographic algorithms used in any

signatures found be indicated as well?

Was the message encrypted? if so, to whom? What key was used to

decrypt it?

If both signed and encrypted, was the signing outside the

encryption or inside?

How should errant Cryptographic Layers (see Section 4.5) be dealt

with?

What cryptographic protections do the headers of the message

have? (see [I-D.draft-ietf-lamps-header-protection])

How are any errors or surprises communicated to the user?

If the proxy passes any of this cryptographic status to the client

in an added header field, it must also ensure that no such header

field is present on the messages it receives before processing it.

If it were to allow such a header field through unmodified to any

client that is willing to trust its contents, an attacker could

spoof the field to make the user believe lies about the

cryptographic status of the message. In order for a MUA to be

confident in such a header field, then, it needs a guarantee from

the proxy that any header it produces will be safe. How does the MUA

reliably negogiate this guarantee with the proxy? If the proxy can

no longer offer this guarantee, how will the MUA know that things

have changed?

If such a proxy handles certificate discovery in inbound messages

(see Section 8.1.1), it will also need to communicate the results of

that discovery process to its corresponding proxy for message

composition (see Section 9.4.1).

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

[RFC8551]

[RFC3156]

While an extension to IMAP (or POP, or JMAP) might be able to

express all the necessary semantics that would allow a generic MUA

to indicate standardized cryptographic message status, such an

extension is beyond the scope of this document. FIXME: add a

reference to JMAP cryptographic status work.

9.4.3. Who Controls the Proxy?

Finally, consider that the naive proxy deployment approach is risky

precisely because of its opacity to the end user. Such a deployment

could be placed anywhere in the stack, including on a machine that

is not ultimately controlled by the end user, making it effectively

a form of transport protection, rather than end-to-end protection.

A MUA explicitly under the control of the end user with thoughtful

integration can offer UI/UX and security guarantees that a proxy

cannot provide.

10. IANA Considerations

MAYBE: provide an indicator in the IANA header registry for which

headers are "structural" and which are "user-facing"? This is

probably unnecessary.

11. Security Considerations

This entire document addresses security considerations about end-to-

end cryptographic protections for e-mail messages.

12. Acknowledgements

The set of constructs and recommendations in this document are

derived from discussions with many different implementers, including

Alexey Melnikov, Bernie Hoeneisen, Bjarni Rúnar Einarsson, David

Bremner, Deb Cooley, Holger Krekel, Jameson Rollins, Jonathan

Hammell, juga, Patrick Brunschwig, Santosh Chokhani, and Vincent

Breitmoser.

13. References

13.1. Normative References

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Elkins, M., Del Torto, D., Levien, R., and T. Roessler,

"MIME Security with OpenPGP", RFC 3156, DOI 10.17487/

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551

[RFC4289]

[RFC2119]

[RFC8174]

[chrome-indicators]

[EFAIL]

[ORACLE]

[RFC2045]

[RFC3207]

[RFC6376]

[RFC3274]

RFC3156, August 2001, <https://www.rfc-editor.org/info/

rfc3156>.

Freed, N. and J. Klensin, "Multipurpose Internet Mail

Extensions (MIME) Part Four: Registration Procedures",

BCP 13, RFC 4289, DOI 10.17487/RFC4289, December 2005,

<https://www.rfc-editor.org/info/rfc4289>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

Schechter, E., "Evolving Chrome's security

indicators", May 2018, <https://blog.chromium.org/

2018/05/evolving-chromes-security-indicators.html>.

"EFAIL", n.d., <https://efail.de>.

Ising, F., Poddebniak, D., Kappert, T., Saatjohann, C.,

and S. Schinzel, "Content-Type: multipart/oracle Tapping

into Format Oracles in Email End-to-End Encryption",

n.d., <https://www.usenix.org/conference/

usenixsecurity23/presentation/ising>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message

Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

<https://www.rfc-editor.org/info/rfc2045>.

Hoffman, P., "SMTP Service Extension for Secure SMTP over

Transport Layer Security", RFC 3207, DOI 10.17487/

RFC3207, February 2002, <https://www.rfc-editor.org/info/

rfc3207>.

Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,

"DomainKeys Identified Mail (DKIM) Signatures", STD 76,

RFC 6376, DOI 10.17487/RFC6376, September 2011, <https://

www.rfc-editor.org/info/rfc6376>.

Gutmann, P., "Compressed Data Content Type for

Cryptographic Message Syntax (CMS)", RFC 3274, DOI

10.17487/RFC3274, June 2002, <https://www.rfc-editor.org/

info/rfc3274>.

https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc4289
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
https://efail.de
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc3274
https://www.rfc-editor.org/info/rfc3274

[RFC4880]

[RFC5322]

[RFC5355]

[RFC6409]

[I-D.draft-ietf-lamps-header-protection]

[I-D.draft-bre-openpgp-samples-01]

[RFC9216]

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.

Thayer, "OpenPGP Message Format", RFC 4880, DOI 10.17487/

RFC4880, November 2007, <https://www.rfc-editor.org/info/

rfc4880>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Stillman, M., Ed., Gopal, R., Guttman, E., Sengodan, S.,

and M. Holdrege, "Threats Introduced by Reliable Server

Pooling (RSerPool) and Requirements for Security in

Response to Threats", RFC 5355, DOI 10.17487/RFC5355,

September 2008, <https://www.rfc-editor.org/info/

rfc5355>.

Gellens, R. and J. Klensin, "Message Submission for

Mail", STD 72, RFC 6409, DOI 10.17487/RFC6409, November

2011, <https://www.rfc-editor.org/info/rfc6409>.

Gillmor, D. K., Hoeneisen,

B., and A. Melnikov, "Header Protection for S/MIME", Work

in Progress, Internet-Draft, draft-ietf-lamps-header-

protection-11, 24 January 2023, <https://www.ietf.org/

archive/id/draft-ietf-lamps-header-protection-11.txt>.

Einarsson, B. R., "juga", and D.

K. Gillmor, "OpenPGP Example Keys and Certificates", Work

in Progress, Internet-Draft, draft-bre-openpgp-

samples-01, 20 December 2019, <https://www.ietf.org/

archive/id/draft-bre-openpgp-samples-01.txt>.

Gillmor, D. K., Ed., "S/MIME Example Keys and

Certificates", RFC 9216, DOI 10.17487/RFC9216, April

2022, <https://www.rfc-editor.org/info/rfc9216>.

Appendix A. Test Vectors

FIXME: This document should contain examples of well-formed and

malformed messages using cryptographic key material and certificates

from [I-D.draft-bre-openpgp-samples-01] and [RFC9216].

It may also include example renderings of these messages.

¶

¶

https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5355
https://www.rfc-editor.org/info/rfc5355
https://www.rfc-editor.org/info/rfc6409
https://www.ietf.org/archive/id/draft-ietf-lamps-header-protection-11.txt
https://www.ietf.org/archive/id/draft-ietf-lamps-header-protection-11.txt
https://www.ietf.org/archive/id/draft-bre-openpgp-samples-01.txt
https://www.ietf.org/archive/id/draft-bre-openpgp-samples-01.txt
https://www.rfc-editor.org/info/rfc9216

A.1. Document History

A.1.1. Substantive changes from draft-ietf-...-04 to draft-ietf-...-05

Adopt and update text about Bcc from draft-ietf-lamps-header-

protection

Add section about the dangers of an implementation based on a

network protocol proxy

A.1.2. Substantive changes from draft-ietf-...-03 to draft-ietf-...-04

Added reference to multipart/oracle attacks

Clarified that "Structural Headers" are the same as RFC2045's

"MIME Headers"

A.1.3. Substantive changes from draft-ietf-...-02 to draft-ietf-...-03

Added section about mixed recipients

Noted SMIMEA and OPENPGPKEY DNS RR cert discovery mechanisms

Added more notes about simplified mental models

More clarification on one-status-per-message

Added guidance to defend against EFAIL

A.1.4. Substantive changes from draft-ietf-...-01 to draft-ietf-...-02

Added definition of "user-facing" headers

A.1.5. Substantive changes from draft-ietf-...-00 to draft-ietf-...-01

Added section about distinguishing Main Body Parts and

Attachments

Updated document considerations section, including reference to

auto-built editor's copy

A.1.6. Substantive changes from draft-dkg-...-01 to draft-ietf-...-00

WG adopted draft

moved Document History and Document Considerations sections to

end of appendix, to avoid section renumbering when removed

A.1.7. Substantive changes from draft-dkg-...-00 to draft-dkg-...-01

consideration of success/failure indicators for usability

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

clarify extendedKeyUsage and keyUsage algorithm-specific details

initial section on certificate management

added more TODO items

Author's Address

Daniel Kahn Gillmor (editor)

American Civil Liberties Union

125 Broad St.

New York, NY, 10004

United States of America

Email: dkg@fifthhorseman.net

* ¶

* ¶

* ¶

mailto:dkg@fifthhorseman.net

	Guidance on End-to-End E-mail Security
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.1.1. Structural Headers
	1.1.2. User-Facing Headers

	2. Usability
	2.1. Simplicity
	2.2. E-mail Users Want a Familiar Experience
	2.3. Warning About Failure vs. Announcing Success

	3. Types of Protection
	3.1. Simplified Mental Model
	3.2. One Cryptographic Status Per Message

	4. Cryptographic MIME Message Structure
	4.1. Cryptographic Layers
	4.1.1. S/MIME Cryptographic Layers
	4.1.1.1. S/MIME Multipart Signed Cryptographic Layer
	4.1.1.2. S/MIME PKCS7 signed-data Cryptographic Layer
	4.1.1.3. S/MIME PKCS7 enveloped-data Cryptographic Layer
	4.1.1.4. S/MIME PKCS7 authEnveloped-data Cryptographic Layer
	4.1.1.5. PKCS7 Compression is NOT a Cryptographic Layer

	4.1.2. PGP/MIME Cryptographic Layers
	4.1.2.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)
	4.1.2.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

	4.2. Cryptographic Envelope
	4.3. Cryptographic Payload
	4.4. Types of Cryptographic Envelope
	4.4.1. Simple Cryptographic Envelopes
	4.4.2. Multilayer Cryptographic Envelopes

	4.5. Errant Crytptographic Layers
	4.5.1. Mailing List Wrapping
	4.5.2. A Baroque Example

	5. Message Composition
	5.1. Message Composition Algorithm
	5.2. Encryption Outside, Signature Inside
	5.3. Avoid Offering Encrypted-only Messages
	5.4. Composing a Reply Message

	6. Message Interpretation
	6.1. Rendering Well-formed Messages
	6.2. Errant Cryptographic Layers
	6.2.1. Errant Signing Layer
	6.2.1.1. Exception: Mailing List Footers

	6.2.2. Errant Encryption Layer
	6.2.2.1. Replying to a Message with an Errant Encryption Layer

	6.2.3. Avoiding Non-MIME Cryptographic Mechanisms
	6.2.3.1. Do Not Validate Non-MIME Signatures
	6.2.3.2. Skip or Isolate Non-MIME Decryption When Rendering
	6.2.3.3. Do Not Decrypt Non-MIME Decryption when Replying

	6.3. Forwarded Messages with Cryptographic Protection
	6.4. Signature failures

	7. Reasoning about Message Parts
	7.1. Main Body Part
	7.2. Attachments
	7.3. MIME Part Examples

	8. Certificate Management
	8.1. Peer Certificates
	8.1.1. Cert Discovery from Incoming Messages
	8.1.2. Certificate Directories
	8.1.3. Peer Certificate Selection
	8.1.4. Checking for Revocation

	8.2. Local Certificates
	8.2.1. Getting a Certificate for the User
	8.2.2. Local Certificate Maintenance
	8.2.3. Shipping Certificates in Outbound Messages

	8.3. Certificate Authorities

	9. Common Pitfalls and Guidelines
	9.1. Reading Sent Messages
	9.2. Composing an Encrypted Message with Bcc
	9.2.1. Simple Encryption with Bcc
	9.2.1.1. Rationale

	9.3. Composing a Message to Heterogeneous Recipients
	9.4. Message Transport Protocol Proxy: A Dangerous Implementation Choice
	9.4.1. Dangers of a Submission Proxy for Message Composition
	9.4.2. Dangers of an IMAP Proxy for Message Rendering
	9.4.3. Who Controls the Proxy?

	10. IANA Considerations
	11. Security Considerations
	12. Acknowledgements
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Test Vectors
	A.1. Document History
	A.1.1. Substantive changes from draft-ietf-...-04 to draft-ietf-...-05
	A.1.2. Substantive changes from draft-ietf-...-03 to draft-ietf-...-04
	A.1.3. Substantive changes from draft-ietf-...-02 to draft-ietf-...-03
	A.1.4. Substantive changes from draft-ietf-...-01 to draft-ietf-...-02
	A.1.5. Substantive changes from draft-ietf-...-00 to draft-ietf-...-01
	A.1.6. Substantive changes from draft-dkg-...-01 to draft-ietf-...-00
	A.1.7. Substantive changes from draft-dkg-...-00 to draft-dkg-...-01

	Author's Address

