
Workgroup: lamps

Internet-Draft:

draft-ietf-lamps-e2e-mail-guidance-16

Published: 16 March 2024

Intended Status: Informational

Expires: 17 September 2024

Authors: D. K. Gillmor, Ed.

ACLU

B. Hoeneisen, Ed.

pEp Project

A. Melnikov, Ed.

Isode Ltd

Guidance on End-to-End E-mail Security

Abstract

End-to-end cryptographic protections for e-mail messages can provide

useful security. However, the standards for providing cryptographic

protection are extremely flexible. That flexibility can trap users

and cause surprising failures. This document offers guidance for

mail user agent implementers to help mitigate those risks, and to

make end-to-end e-mail simple and secure for the end user. It

provides a useful set of vocabulary as well as recommendations to

avoid common failures. It also identifies a number of currently

unsolved usability and interoperability problems.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

dkg.gitlab.io/e2e-mail-guidance/. Status information for this

document may be found at https://datatracker.ietf.org/doc/draft-

ietf-lamps-e2e-mail-guidance/.

Discussion of this document takes place on the LAMPS Working Group

mailing list (mailto:spasm@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/spasm/. Subscribe at https://

www.ietf.org/mailman/listinfo/spasm/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/dkg/e2e-mail-guidance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

https://dkg.gitlab.io/e2e-mail-guidance/
https://dkg.gitlab.io/e2e-mail-guidance/
https://datatracker.ietf.org/doc/draft-ietf-lamps-e2e-mail-guidance/
https://datatracker.ietf.org/doc/draft-ietf-lamps-e2e-mail-guidance/
mailto:spasm@ietf.org
https://mailarchive.ietf.org/arch/browse/spasm/
https://mailarchive.ietf.org/arch/browse/spasm/
https://www.ietf.org/mailman/listinfo/spasm/
https://www.ietf.org/mailman/listinfo/spasm/
https://gitlab.com/dkg/e2e-mail-guidance
https://gitlab.com/dkg/e2e-mail-guidance

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.1.1. Structural Header Fields

1.1.2. User-Facing Header Fields

2. Usability

2.1. Simplicity

2.2. E-mail Users Want a Familiar Experience

2.3. Warning About Failure vs. Announcing Success

3. Types of Protection

3.1. Simplified Mental Model

3.2. One Cryptographic Status Per Message

4. Cryptographic MIME Message Structure

4.1. Cryptographic Layers

4.1.1. S/MIME Cryptographic Layers

4.1.2. PGP/MIME Cryptographic Layers

4.2. Cryptographic Envelope

4.3. Cryptographic Payload

4.4. Types of Cryptographic Envelope

4.4.1. Simple Cryptographic Envelopes

4.4.2. Multilayer Cryptographic Envelopes

4.5. Errant Cryptographic Layers

4.5.1. Mailing List Wrapping

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4.5.2. A Baroque Example

4.6. Cryptographic Summary

5. Message Composition

5.1. Message Composition Algorithm

5.2. Encryption Outside, Signature Inside

5.3. Avoid Offering Encrypted-only Messages

5.4. Composing a Reply Message

6. Message Interpretation

6.1. Rendering Well-formed Messages

6.2. Errant Cryptographic Layers

6.2.1. Errant Signing Layer

6.2.2. Errant Encryption Layer

6.2.3. Avoiding Non-MIME Cryptographic Mechanisms

6.3. Forwarded Messages with Cryptographic Protection

6.4. Signature failures

6.5. Weak Encryption

7. Reasoning about Message Parts

7.1. Main Body Part

7.2. Attachments

7.3. MIME Part Examples

8. Certificate Management

8.1. Peer Certificates

8.1.1. Peer Certificate Selection

8.2. Local Certificates

8.2.1. Getting Certificates for the User

8.2.2. Local Certificate Maintenance

8.2.3. Shipping Certificates in Outbound Messages

9. Common Pitfalls and Guidelines

9.1. Reading Sent Messages

9.2. Reading Encrypted Messages after Certificate Expiration

9.3. Unprotected Message Header Fields

9.4. Composing an Encrypted Message with Bcc

9.4.1. Simple Encryption with Bcc

9.5. Draft Messages

9.6. Composing a Message to Heterogeneous Recipients

9.7. Message Transport Protocol Proxy: A Dangerous Implementation

Choice

9.7.1. Dangers of a Submission Proxy for Message Composition

9.7.2. Dangers of an IMAP Proxy for Message Rendering

9.7.3. Who Controls the Proxy?

9.8. Intervening MUAs Do Not Handle End-to-End Cryptographic

Protections

9.9. External Subresources in MIME Parts Break Cryptographic

Protections

10. IANA Considerations

11. Security Considerations

12. Acknowledgements

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Future Work

A.1. Webmail Threat Model

A.2. Test Vectors

A.3. Further Guidance on Peer Certificates

A.3.1. Certificate Discovery from Incoming Messages

A.3.2. Certificate Directories

A.3.3. Checking for Certificate Revocation

A.3.4. Further Peer Certificate Selection

A.3.5. Human-readable Names in Peer Certificates, Header

Fields, and Addressbooks

A.4. Further Guidance on Local Certificates and Secret Keys

A.4.1. Cross-MUA sharing of Local Certificates and Secret Keys

A.4.2. Use of Smartcards or Other Portable Secret Key

Mechanisms

A.4.3. Active Local Certificate Maintenance

A.5. Certification Authorities

A.6. Indexing and Search of Encrypted Messages

A.7. Cached Signature Validation

A.8. Aggregate Cryptographic Status

A.9. Expectations of Cryptographic Protection

A.10. Secure Deletion

A.11. Interaction with Opportunistic Encryption

A.12. Split Attachments

A.13. Proxy Extensions

A.14. Mailing Lists

Appendix B. Document History

B.1. Substantive changes from draft-ietf-...-15 to draft-

ietf-...-16

B.2. Substantive changes from draft-ietf-...-14 to draft-

ietf-...-15

B.3. Substantive changes from draft-ietf-...-13 to draft-

ietf-...-14

B.4. Substantive changes from draft-ietf-...-12 to draft-

ietf-...-13

B.5. Substantive changes from draft-ietf-...-11 to draft-

ietf-...-12

B.6. Substantive changes from draft-ietf-...-10 to draft-

ietf-...-11

B.7. Substantive changes from draft-ietf-...-09 to draft-

ietf-...-10

B.8. Substantive changes from draft-ietf-...-08 to draft-

ietf-...-09

B.9. Substantive changes from draft-ietf-...-07 to draft-

ietf-...-08

B.10. Substantive changes from draft-ietf-...-06 to draft-

ietf-...-07

B.11. Substantive changes from draft-ietf-...-05 to draft-

ietf-...-06

B.12. Substantive changes from draft-ietf-...-04 to draft-

ietf-...-05

B.13. Substantive changes from draft-ietf-...-03 to draft-

ietf-...-04

B.14. Substantive changes from draft-ietf-...-02 to draft-

ietf-...-03

B.15. Substantive changes from draft-ietf-...-01 to draft-

ietf-...-02

B.16. Substantive changes from draft-ietf-...-00 to draft-

ietf-...-01

B.17. Substantive changes from draft-dkg-...-01 to draft-

ietf-...-00

B.18. Substantive changes from draft-dkg-...-00 to draft-

dkg-...-01

Authors' Addresses

1. Introduction

E-mail end-to-end security using S/MIME ([RFC8551]) and PGP/MIME

([RFC3156]) cryptographic standards can provide integrity,

authentication and confidentiality to MIME ([RFC4289]) e-mail

messages.

However, there are many ways that a receiving mail user agent can

misinterpret or accidentally break these security guarantees. For

example, [EFAIL]'s "Direct Exfiltration" attack leaks cleartext due

to an attack that splices existing ciphertext into a new message,

which is then handled optimistically (and wrongly) by many mail user

agents.

A mail user agent that interprets a message with end-to-end

cryptographic protections needs to do so defensively, staying alert

to different ways that these protections can be bypassed by mangling

(either malicious or accidental) or a failed user experience.

A mail user agent that generates a message with end-to-end

cryptographic protections should be aware of these defensive

interpretation strategies, and should compose any new outbound

message conservatively if they want the protections to remain

intact.

This document offers guidance to the implementer of a mail user

agent that provides these cryptographic protections, whether for

sending or receiving mail. An implementation that follows this

guidance will provide its users with stronger and easier-to-

understand security properties, and will also offer more reliable

interoperability for messages exchanged with other implementations.

¶

¶

¶

¶

¶

In Appendix A, this document also identifies a number of

interoperability and usability concerns for end-to-end cryptographic

e-mail which have no current broadly accepted technical standard for

resolution. One major area not covered in this document is the

acquisition and long-term maintenance of cryptographic identity

information and metadata across multiple mail user agents controlled

by the same user.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.1. Terminology

For the purposes of this document, we define the following concepts:

MUA is short for Mail User Agent; an e-mail client.

Protection of message data refers to cryptographic encryption

and/or signatures, providing confidentiality, authenticity, and/

or integrity.

Cryptographic Layer, Cryptographic Envelope, Cryptographic

Payload, Cryptographic Summary, and Errant Cryptographic Layer

are defined in Section 4

A well-formed e-mail message with cryptographic protection has

both a Cryptographic Envelope and a Cryptographic Payload.

Structural Header Fields are documented in Section 1.1.1.

User-Facing Header Fields are documented in Section 1.1.2.

Main Body Part is the part (or parts) that are typically rendered

to the user as the message itself (not "as an attachment"). See

Section 7.1.

This document contains extensive discussion about end-to-end

cryptographic protections in e-mail, while acknowledging that many

MUAs have no capabilities for end-to-end cryptographic protections

at all. We divide MUAs into three distinct profiles:

A Non-cryptographic MUA has no capabilities for end-to-end

cryptographic protections.

A Conformant MUA follows the guidance in this document when

dealing with end-to-end cryptographic protections.

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

*

¶

*

¶

A Legacy MUA has capabilities for end-to-end cryptographic

protections, but does not adhere to the the guidance in this

document.

At the time of the writing of this document, most MUAs with

cryptographic protections are legacy MUAs.

1.1.1. Structural Header Fields

A message header field named MIME-Version, or whose name begins

with Content- is referred to in this document as a "structural"

header field. This is a less-ambiguous name for what [RFC2045] calls

"MIME Header Fields".

These header fields indicate something about the specific MIME part

they are attached to, and cannot be transferred or copied to other

parts without endangering the readability of the message.

This includes:

MIME-Version

Content-Type

Content-Transfer-Encoding

Content-Disposition

1.1.2. User-Facing Header Fields

Of all the header fields that an e-mail message may contain, only a

handful are typically presented directly to the user. This document

refers to them as "user-facing" header fields. Typically, user-

facing header fields are:

Subject

From

To

Cc

Date

Reply-To

Followup-To

Sender

*

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Resent-From

Resent-To

Resent-Cc

Resent-Date

Resent-Sender

The above list are the header fields most often presented directly

to the user who views a message, though an MUA may also decide to

treat any other header field as "user-facing". Of course, many of

these header fields are entirely absent from any given message, and

an absent header field is not presented to the user at all.

Note that the resending header fields (those beginning with Resent-)

are typically only added by an intervening MUA (see Section 3.6.6 of

[RFC5322] and Section 9.8 of this document). As such, though they

may in some cases be presented to the user, they will typically not

bear any end-to-end cryptographic protection (even if the original

header fields of a message are protected, see Section 9.3), because

they are unknown to the original sender.

Other header fields may affect the visible rendering of the message

(e.g., References and In-Reply-To may affect the placement of a

message in a threaded discussion; or the List-* and Archived-At

header fields added by mailing lists may cause additional buttons to

be displayed during rendering), but they are not directly displayed

to the user and so are not considered "user-facing".

2. Usability

Any MUA that enables its user to transition from unprotected

messages to messages with end-to-end cryptographic protection needs

to consider how the user understands this transition. That said, the

primary goal of the user of an MUA is communication -- so interface

elements that interfere with communication should be avoided where

possible.

Furthermore, it is a near certainty that the user will continue to

encounter unprotected messages, and may need to send unprotected

messages (for example, if a given recipient cannot handle

cryptographic protections). This means that the MUA needs to provide

the user with some guidance, so that they understand what

protections any given message or conversation has. But the user

should not be overwhelmed with choices or presented with

unactionable information.

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5322#section-3.6.6

2.1. Simplicity

The end user (the operator of the MUA) is unlikely to understand

complex end-to-end cryptographic protections on any e-mail message,

so keep it simple.

For clarity to the user, any cryptographic protections should apply

to the message as a whole, not just to some subparts.

This is true for message composition: the standard message

composition user interface of an MUA should offer minimal controls

which indicate which types of protection to apply to the new message

as a whole.

This is also true for message interpretation: the standard message

rendering user interface of an MUA should offer a minimal, clear

indicator about the end-to-end cryptographic status of the message

as a whole.

See Section 3 for more detail about mental models and cryptographic

status.

(It is of course possible that a message forwarded as a MIME

attachment could have its own cryptographic status while still being

a message subpart; but that status should be distinct from the

status of the enclosing message.)

2.2. E-mail Users Want a Familiar Experience

A person communicating over the Internet today often has many

options for reaching their desired correspondent, including web-

based bulletin boards, contact forms, and instant messaging

services.

E-mail offers a few distinctions from these other systems, most

notably features like:

Ubiquity: Most correspondents will have an e-mail address, while

not everyone is present on the various non-e-mail messaging

services, particularly those that have reliable end-to-end

cryptographic protections,

Federation: interaction between users on distinct domains who

have not agreed on a common communications provider is still

possible, and

User Control: the user can interact with the e-mail system using

an MUA of their choosing, including automation and other control

over their preferred and/or customized workflow.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

Other systems (like some popular instant messaging applications,

such as WhatsApp and Signal Private Messenger) offer built-in end-

to-end cryptographic protections by default, which are simpler for

the user to understand. ("All the messages I see on Signal are

confidential and integrity-protected" is a clean user story)

A user of e-mail is likely using e-mail instead of other systems

because of the distinctions outlined above. When adding end-to-end

cryptographic protection to an e-mail endpoint, care should be taken

not to negate any of the distinct features of e-mail as a whole. If

these features are violated to provide end-to-end crypto, the user

may just as well choose one of the other systems that don't have the

drawbacks that e-mail has. Implementers should try to provide end-

to-end protections that retain the familiar experience of e-mail

itself.

Furthermore, an e-mail user is likely to regularly interact with

other e-mail correspondents who cannot handle or produce end-to-end

cryptographic protections. Care should be taken that enabling

cryptography in an MUA does not inadvertently limit the ability of

the user to interact with correspondents who use legacy or non-

cryptographic MUAs.

2.3. Warning About Failure vs. Announcing Success

Moving the web from http to https offers useful historical

similarities to adding end-to-end encryption to e-mail.

In particular, the indicators of what is "secure" vs. "insecure" for

web browsers have changed over time. For example, years ago the

default experience was http, and https sites were flagged with

"secure" indicators like a lock icon. Starting in 2018, some

browsers reversed that process by downplaying https, and instead

visibly marking http as "not secure" (see [chrome-indicators]).

By analogy, when the user of an MUA first enables end-to-end

cryptographic protection, it's likely that they will want to see

which messages have protection (that is, the security indicators

amenable to a conformant MUA as of 2024 are most likely to be

comparable to those of a pre-2018 web browser). But a user whose

private e-mail communications with a given correspondent, or within

a given domain are known to be entirely end-to-end protected might

instead want to know which messages do not have the expected

protections.

Note also that some messages may be expected to be confidential, but

other messages are expected to be public -- the types of protection

(see Section 3) that apply to each particular message will be

different. And the types of protection that are expected to be

¶

¶

¶

¶

¶

¶

present in any context might differ (for example, by sender, by

thread, or by date).

It is out of scope for this document to define expectations about

protections for any given message, but an implementer who cares

about usable experience should be deliberate and judicious about the

expectations their interface assumes that the user has in a given

context. See also Appendix A.9 for future work.

3. Types of Protection

A given message might be:

signed,

encrypted,

both signed and encrypted, or

none of the above.

Given that many e-mail messages offer no cryptographic protections,

the user needs to be able to detect which protections are present

for any given message.

3.1. Simplified Mental Model

To the extent that an e-mail message actually does have end-to-end

cryptographic protections, those protections need to be visible and

comprehensible to the end users: both the sending user and the

receiving user. If either user is unaware of the protections, then

they do not effectively extend all the way to the "end".

However, most users do not have (or want to have) a sophisticated

mental model of what kinds of protections can be associated with a

given message. Even the four states above approach the limits of

complexity for an interface for normal users.

While Section 5.3 recommends avoiding deliberate creation of

encrypted-only messages, some messages may end up in the encrypted-

only state due to signature failure or certificate revocation.

A simple model for the receiving user could be that a message is in

one of three normal states, which align with the only reasonable

choices for message composition:

Unprotected

Verified (has a valid signature from the apparent sender of the

message)

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

* ¶

*

¶

Confidential (meaning, encrypted, with a valid signature from the

apparent sender of the message)

However, one error state exists for received mail that does not

correspond to a reasonable choice for message composition:

Encrypted But Unverified (meaning, encrypted without a valid

signature from the apparent sender of the message)

Note that this last state is not "Confidential" (a secret shared

exclusively between the participants in the communication) because

the recipient does not know for sure who sent it.

In an ecosystem where encrypted-only messages are never deliberately

sent (see Section 5.3), representing an Encrypted But Unverified

message as a type of user-visible error is not unreasonable.

However, this is not the state of the global e-mail ecosystem when

this document was written, since some legacy MUAs permit sending

encrypted-but-unsigned mail (see Appendix A.9 for possible future

guidance).

Alternately, an MUA may prefer to represent the state of a Encrypted

but Unverified message to the user as though it was Unprotected,

since no verification is possible. However the MUA represents the

message to the user, though, it MUST NOT leak cleartext of an

encrypted message (even an Encrypted but Unverified message) in

subsequent replies (see Section 5.4) or similar replications of the

message.

Note that a cleartext message with an invalid signature SHOULD NOT

be represented to the user as anything other than Unprotected (see

Section 6.4), unless the MUA is providing the user with debugging

information.

At the time this document was written, the global e-mail ecosystem

contains a heterogeneous mix of legacy and non-cryptographic MUAs.

In such an ecosystem, a conformant MUA may prefer instead to

represent "Verified" and "Encrypted" as orthogonal states of any

given received message. While this model does not precisely match

the choice a user makes when composing a message, it may align more

with the reality of the range of messages they receive.

3.2. One Cryptographic Status Per Message

Some MUAs may attempt to generate multiple copies of a given e-mail

message, with different copies offering different types of

protection (for example, opportunistically encrypting on a per-

recipient basis). A message resulting from this approach will have a

cryptographic state that few users will understand. Even if the

sender understands the different statuses of the different copies,

*

¶

¶

*

¶

¶

¶

¶

¶

¶

the recipients of the messages may not understand (each recipient

might not even know about the other copies). See for example the

discussion in Section 9.6 for how this can go wrong.

For comprehensibility, a conformant MUA SHOULD NOT create multiple

copies of a given message that differ in the types of end-to-end

cryptographic protections afforded.

For opportunistic cryptographic protections that are not surfaced to

the user (that is, that are not end-to-end), other mechanisms like

transport encryption ([RFC3207]) or domain-based signing ([RFC6376])

may be preferable due to ease of implementation and deployment.

These opportunistic transport protections are orthogonal to the end-

to-end protections described in this document.

To the extent that opportunistic message protections are made

visible to the user for a given copy of a message, a conformant MUA

will distinguish that status from the message's end-to-end

cryptographic status. But the potential confusion caused by

rendering this complex, hybrid state may not be worth the value of

additional knowledge gained by the user. The benefits of

opportunistic protections accrue (or don't) even without visibility

to the user (see [RFC7435]).

The user needs a single clear, simple, and correct indication about

the end-to-end cryptographic status of any given message. See

Section 4.6 for more details.

4. Cryptographic MIME Message Structure

Implementations use the structure of an e-mail message to establish

(when sending) and understand (when receiving) the cryptographic

status of the message. This section establishes some conventions

about how to think about message structure.

4.1. Cryptographic Layers

"Cryptographic Layer" refers to a MIME substructure that supplies

some cryptographic protections to an internal MIME subtree. The

internal subtree is known as the "protected part" though of course

it may itself be a multipart object.

In the diagrams below, "↧" (DOWNWARDS ARROW FROM BAR, U+21A7)
indicates "decrypts to", and "⇩" (DOWNWARDS WHITE ARROW, U+21E9)
indicates "unwraps to".

¶

¶

¶

¶

¶

¶

¶

¶

4.1.1. S/MIME Cryptographic Layers

For S/MIME [RFC8551], there are four forms of Cryptographic Layers:

multipart/signed, PKCS#7 signed-data, PKCS7 enveloped-data, PKCS7

authEnveloped-data.

4.1.1.1. S/MIME Multipart Signed Cryptographic Layer

This MIME layer offers authentication and integrity.

4.1.1.2. S/MIME PKCS7 signed-data Cryptographic Layer

This MIME layer offers authentication and integrity.

4.1.1.3. S/MIME PKCS7 enveloped-data Cryptographic Layer

This MIME layer offers confidentiality.

4.1.1.4. S/MIME PKCS7 authEnveloped-data Cryptographic Layer

This MIME layer offers confidentiality and integrity.

Note that enveloped-data (Section 4.1.1.3) and authEnveloped-data

(Section 4.1.1.4) have identical message structure and very similar

confidentiality semantics. The only difference between the two is

ciphertext malleability.

The examples in this document only include enveloped-data, but the

implications for that layer apply to authEnveloped-data as well.

4.1.1.5. PKCS7 Compression is NOT a Cryptographic Layer

The Cryptographic Message Syntax (CMS) provides a MIME compression

layer (smime-type="compressed-data"), as defined in [RFC3274]. While

¶

└┬╴multipart/signed; protocol="application/pkcs7-signature"
 ├─╴[protected part]
 └─╴application/pkcs7-signature

¶

¶

└─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
 └─╴[protected part]

¶

¶

└─╴application/pkcs7-mime; smime-type="enveloped-data"
 ↧ (decrypts to)
 └─╴[protected part]

¶

¶

└─╴application/pkcs7-mime; smime-type="authEnveloped-data"
 ↧ (decrypts to)
 └─╴[protected part]

¶

¶

¶

¶

the compression layer is technically a part of CMS, it is not

considered a Cryptographic Layer for the purposes of this document.

4.1.2. PGP/MIME Cryptographic Layers

For PGP/MIME [RFC3156] there are two forms of Cryptographic Layers,

signing and encryption.

4.1.2.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)

This MIME layer offers authenticity and integrity.

4.1.2.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

This MIME layer can offer any of:

confidentiality (via a Symmetrically Encrypted Data Packet, see

Section 5.7 of [I-D.ietf-openpgp-crypto-refresh-13]; an MUA MUST

NOT generate this form due to ciphertext malleability)

confidentiality and integrity (via a Symmetrically Encrypted

Integrity Protected Data Packet (SEIPD), see Section 5.13 of

[I-D.ietf-openpgp-crypto-refresh-13]), or

confidentiality, integrity, and authenticity all together (by

including an OpenPGP Signature Packet within the SEIPD).

4.2. Cryptographic Envelope

The Cryptographic Envelope is the largest contiguous set of

Cryptographic Layers of an e-mail message starting with the

outermost MIME type (that is, with the Content-Type of the message

itself).

If the Content-Type of the message itself is not a Cryptographic

Layer, then the message has no cryptographic envelope.

"Contiguous" in the definition above indicates that if a

Cryptographic Layer is the protected part of another Cryptographic

Layer, the layers together comprise a single Cryptographic Envelope.

¶

¶

└┬╴multipart/signed; protocol="application/pgp-signature"
 ├─╴[protected part]
 └─╴application/pgp-signature

¶

¶

└┬╴multipart/encrypted
 ├─╴application/pgp-encrypted
 └─╴application/octet-stream
 ↧ (decrypts to)
 └─╴[protected part]

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13#section-5.7
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13#section-5.13

Note that if a non-Cryptographic Layer intervenes, all Cryptographic

Layers within the non-Cryptographic Layer are not part of the

Cryptographic Envelope. They are Errant Cryptographic Layers (see

Section 4.5).

Note also that the ordering of the Cryptographic Layers implies

different cryptographic properties. A signed-then-encrypted message

is different than an encrypted-then-signed message. See Section 5.2.

4.3. Cryptographic Payload

The Cryptographic Payload of a message is the first non-

Cryptographic Layer -- the "protected part" -- within the

Cryptographic Envelope.

4.4. Types of Cryptographic Envelope

4.4.1. Simple Cryptographic Envelopes

As described above, if the "protected part" identified in the

section above is not itself a Cryptographic Layer, that part is the

Cryptographic Payload.

If the application wants to generate a message that is both

encrypted and signed, it MAY use the simple MIME structure from

Section 4.1.2.2 by ensuring that the

[I-D.ietf-openpgp-crypto-refresh-13] Encrypted Message within the

application/octet-stream part contains an

[I-D.ietf-openpgp-crypto-refresh-13] Signed Message (the final

option described in Section 4.1.2.2).

4.4.2. Multilayer Cryptographic Envelopes

It is possible to construct a Cryptographic Envelope consisting of

multiple layers with either S/MIME or PGP/MIME , for example using

the following structure:

When handling such a message, the properties of the Cryptographic

Envelope are derived from the series A, C.

As noted in Section 4.4.1, PGP/MIME applications also have a simpler

MIME construction available with the same cryptographic properties.

¶

¶

¶

¶

¶

¶

A └─╴application/pkcs7-mime; smime-type="enveloped-data"
B ↧ (decrypts to)
C └─╴application/pkcs7-mime; smime-type="signed-data"
D ⇩ (unwraps to)
E └─╴[protected part]

¶

¶

¶

4.5. Errant Cryptographic Layers

Due to confusion, malice, or well-intentioned tampering, a message

may contain a Cryptographic Layer that is not part of the

Cryptographic Envelope. Such a layer is an Errant Cryptographic

Layer.

An Errant Cryptographic Layer MUST NOT contribute to the message's

overall cryptographic state.

Guidance for dealing with Errant Cryptographic Layers can be found

in Section 6.2.

4.5.1. Mailing List Wrapping

Some mailing list software will re-wrap a well-formed signed message

before re-sending to add a footer, resulting in the following

structure seen by recipients of the e-mail:

In this message, L is the footer added by the mailing list. I is now

an Errant Cryptographic Layer.

Note that this message has no Cryptographic Envelope at all.

It is NOT RECOMMENDED to produce e-mail messages with this

structure, because a legacy MUA may present the data in part L as

though it were part of J, though they have different cryptographic

properties. In particular, if the user believes that the entire

message is signed, but cannot distinguish L from J then the author

of L can effectively tamper with content of the signed message,

breaking the user's expectation of integrity and authenticity.

4.5.2. A Baroque Example

Consider a message with the following overcomplicated structure:

¶

¶

¶

¶

H └┬╴multipart/mixed
I ├┬╴multipart/signed
J │├─╴text/plain
K │└─╴application/pgp-signature
L └─╴text/plain

¶

¶

¶

¶

¶

The 3 Cryptographic Layers in such a message are rooted in parts M,

Q, and S. But the Cryptographic Envelope of the message consists

only of the properties derived from the series M, Q. The

Cryptographic Payload of the message is part R. Part S is an Errant

Cryptographic Layer.

Note that this message has both a Cryptographic Envelope and an

Errant Cryptographic Layer.

It is NOT RECOMMENDED to generate messages with such complicated

structures. Even if a receiving MUA can parse this structure

properly, it is nearly impossible to render in a way that the user

can reason about the cryptographic properties of part T compared to

part V.

4.6. Cryptographic Summary

The cryptographic status of an e-mail message with end-to-end

cryptographic protections is known as the Cryptographic Summary. A

reasonable, simple Cryptographic Summary is derived from the

aggregate properties of the layers in the Cryptographic Envelope.

This is a conceptual tool and a feature that an MUA can use to guide

behavior and user experience, but it is not necessarily always

directly exposed in any given user interface. See Section 6.1 for

guidance and considerations about rendering the Cryptographic

Summary to the user.

5. Message Composition

This section describes the ideal composition of an e-mail message

with end-to-end cryptographic protection. A message composed with

this form is most likely to achieve its end-to-end security goals.

5.1. Message Composition Algorithm

This section roughly describes the steps that an MUA should use to

compose a cryptographically-protected message that has a proper

cryptographic envelope and payload.

M └┬╴multipart/encrypted
N ├─╴application/pgp-encrypted
O └─╴application/octet-stream
P ↧ (decrypts to)
Q └┬╴multipart/signed
R ├┬╴multipart/mixed
S │├┬╴multipart/signed
T ││├─╴text/plain
U ││└─╴application/pgp-signature
V │└─╴text/plain
W └─╴application/pgp-signature

¶

¶

¶

¶

¶

¶

¶

The message composition algorithm takes three parameters:

origbody: the traditional unprotected message body as a well-

formed MIME tree (possibly just a single MIME leaf part). As a

well-formed MIME tree, origbody already has structural header

fields present (see Section 1.1.1).

origheaders: the intended non-structural header fields for the

message, represented here as a list of (h,v) pairs, where h is a

header field name and v is the associated value.

crypto: The series of cryptographic protections to apply (for

example, "sign with the secret key corresponding to X.509

certificate X, then encrypt to X.509 certificates X and Y"). This

is a routine that accepts a MIME tree as input (the Cryptographic

Payload), wraps the input in the appropriate Cryptographic

Envelope, and returns the resultant MIME tree as output.

The algorithm returns a MIME object that is ready to be injected

into the mail system:

Apply crypto to origbody, yielding MIME tree output

For each header name and value (h,v) in origheaders:

Add header h to output with value v

Return output

5.2. Encryption Outside, Signature Inside

An e-mail message that is both signed and encrypted is signed inside

the encryption, and not the other way around. For example, when

crafting an encrypted and signed message using a simple

Cryptographic Envelope of a single layer (Section 4.4.1) with PGP/

MIME, the OpenPGP Encrypted Message object should contain an OpenPGP

Signed Message. Likewise, when using a multilayer Cryptographic

Envelope (Section 4.4.2), the outer layer should be an encryption

layer and the inner layer should be a signing layer.

Putting the signature inside the encryption has two advantages:

The details of the signature remain confidential, visible only to

the parties capable of decryption.

Any mail transport agent that modifies the message is unlikely to

be able to accidentally break the signature.

A conformant MUA MUST NOT generate an encrypted and signed message

where the only signature is outside the encryption.

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

- ¶

* ¶

¶

¶

*

¶

*

¶

¶

5.3. Avoid Offering Encrypted-only Messages

When generating an e-mail, the user has options about what forms of

end-to-end cryptographic protections to apply to it.

In some cases, offering any end-to-end cryptographic protection is

harmful: it may confuse the recipient and offer no benefit.

In other cases, signing a message is useful (authenticity and

integrity are desirable) but encryption is either impossible (for

example, if the sender does not know how to encrypt to all

recipients) or meaningless (for example, an e-mail message to a

mailing list that is intended to be published to a public archive).

In other cases, full end-to-end confidentiality, authenticity, and

integrity are desirable.

There is no common use case for generating an e-mail message with

end-to-end confidentiality but without authenticity or integrity.

A conformant MUA will keep its message composition interface simple,

so when presenting the user with a choice of cryptographic

protection, it MUST offer no more than three choices:

no end-to-end cryptographic protection

Verified (signed only)

Confidential (signed and encrypted)

Note that these choices correspond to the simplified mental model in

Section 3.1.

The alternative approach, offering the user two boolean choices

during message composition (one choice about signing, another choice

about encryption) is a common anti-pattern among legacy MUAs, and

creates additional usability hurdles for normal users:

A user who wants to send a signed and encrypted message will have

to click two buttons instead of one.

A user who clicks "Encrypt" but neglects to click "Signed" may

not understand that they are creating a message which cannot be

authenticated by the receiver.

5.4. Composing a Reply Message

When replying to a message, most MUAs compose an initial draft of

the reply that contains quoted text from the original message. A

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

*

¶

*

¶

responsible MUA will take precautions to avoid leaking the cleartext

of an encrypted message in such a reply.

If the original message was end-to-end encrypted, the replying MUA

MUST either:

compose the reply with end-to-end encryption, or

avoid including quoted text from the original message.

In general, MUAs SHOULD prefer the first option: to compose an

encrypted reply. This is what users expect.

However, in some circumstances, the replying MUA cannot compose an

encrypted reply. For example, the MUA might not have a valid,

unexpired, encryption-capable certificate for all recipients. This

can also happen during composition when a user adds a new recipient

into the reply, or manually toggles the cryptographic protections to

remove encryption.

In this circumstance, the composing MUA SHOULD strip the quoted text

from the original message, unless the user indicates that they are

deliberately including previously confidential content in a non-

confidential message.

Note additional nuance about replies to malformed messages that

contain encryption in Section 6.2.2.1.

6. Message Interpretation

Despite the best efforts of well-intentioned senders to create e-

mail messages with well-formed end-to-end cryptographic protection,

receiving MUAs will inevitably encounter some messages with

malformed end-to-end cryptographic protection.

This section offers guidance on dealing with both well-formed and

malformed messages containing Cryptographic Layers.

6.1. Rendering Well-formed Messages

A message is well-formed when it has a Cryptographic Envelope, a

Cryptographic Payload, and no Errant Cryptographic Layers. Rendering

a well-formed message is straightforward.

The receiving MUA evaluates and assembles the cryptographic

properties of the Cryptographic Envelope into a Cryptographic

Summary and displays that status to the user in a secure, strictly-

controlled part of the UI. In particular, the part of the UI used to

render the Cryptographic Summary of the message MUST NOT be

spoofable, modifiable, or otherwise controllable by the received

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

message itself. By analogy, consider the "lock" icon in the address

bar of the web browser: regardless of the content of the webpage,

the lock icon will only be displayed when the transport to the web

server is adequately secured.

Aside from this Cryptographic Summary, the message itself MUST be

rendered as though the Cryptographic Payload is the body of the

message. The Cryptographic Layers themselves SHOULD NOT be rendered

as distinct objects unless the MUA is providing the user with

debugging information.

6.2. Errant Cryptographic Layers

If an incoming message has any Errant Cryptographic Layers, a

conformant interpreting MUA MUST ignore those layers when rendering

the Cryptographic Summary of the message to the user.

6.2.1. Errant Signing Layer

When rendering a message with an Errant Cryptographic Layer that

provides authenticity and integrity (via signatures), the message

should be rendered by replacing the Cryptographic layer with the

part it encloses.

For example, a message with this structure:

Should be rendered identically to this:

In such a situation, a conformant MUA MUST NOT indicate in the

Cryptographic Summary that the message is signed. It MUST indicate

that the message is Unprotected.

6.2.1.1. Exception: Mailing List Footers

The use case described in Section 4.5.1 is common enough in some

contexts that a conformant MUA MAY decide to handle it as a special

exception.

¶

¶

¶

¶

¶

A └┬╴multipart/mixed
B ├╴text/plain
C ├┬╴multipart/signed
D │├─╴image/jpeg
E │└─╴application/pgp-signature
F └─╴text/plain

¶

¶

A └┬╴multipart/mixed
B ├─╴text/plain
D ├─╴image/jpeg
F └─╴text/plain

¶

¶

¶

If the MUA determines that the message comes from a mailing list

(for example, it has a List-ID header), and it has a structure that

appends a footer to a signing-only Cryptographic Layer with a valid

signature, such as:

or:

Then, the MUA MAY indicate to the user that this is a Verified

message that has been wrapped by the mailing list.

In this case, the MUA MUST distinguish the footer (part L) from the

protected part (part J) when rendering any information about the

signature.

One way to do this is to offer the user two different views of the

message: the "mailing list" view, which hides any positive

Cryptographic Summary but shows the footer:

or the "sender's view", which shows the Cryptographic Summary as

Verified, but hides the footer:

6.2.2. Errant Encryption Layer

An MUA may encounter a message with an Errant Cryptographic Layer

that offers confidentiality (encryption), and the MUA is capable of

decrypting it.

The user wants to be able to see the contents of any message that

they receive, so a conformant MUA in this situation SHOULD decrypt

the part.

¶

H └┬╴multipart/mixed
I ├┬╴multipart/signed
J │├─╴[protected part, may be arbitrary MIME subtree]
K │└─╴application/{pgp,pkcs7}-signature
L └─╴[footer, typically text/plain]

¶

¶

H └┬╴multipart/mixed
I ├─╴application/pkcs7-mime; smime-type="signed-data"
 │⇩ (unwraps to)
J │└─╴[protected part, may be an arbitrary MIME subtree]
L └─╴[footer, typically text/plain]

¶

¶

¶

¶

Cryptographic Protections: Unprotected

H └┬╴multipart/mixed
J ├─╴[protected part, may be arbitrary MIME subtree]
L └─╴[footer, typically text/plain]

¶

¶

Cryptographic Protections: Verified [details from part I]

J └─╴[protected part, may be arbitrary MIME subtree]
¶

¶

¶

In this case, though, a conformant MUA MUST NOT indicate in the

message's Cryptographic Summary that the message itself was

encrypted. Such an indication could be taken to mean that other

(non-encrypted) parts of the message arrived with cryptographic

confidentiality.

Furthermore, when decrypting an Errant Cryptographic Layer, the MUA

MUST treat the decrypted cleartext as a distinct MIME subtree, and

not attempt to merge or splice it together with any other part of

the message. This offers protection against the direct exfiltration

(also known as EFAIL-DE) attacks described in [EFAIL] and so-called

multipart/oracle attacks described in [ORACLE].

6.2.2.1. Replying to a Message with an Errant Encryption Layer

Note that there is an asymmetry here between rendering and replying

to a message with an Errant Encryption Layer.

When rendering, the MUA does not indicate that the message was

encrypted, even if some subpart of it was decrypted for rendering.

When composing a reply to a message that has any encryption layer,

even an errant one, the reply message SHOULD be marked for

encryption, unless quoted and attributed text is not included in the

reply, as noted in Section 5.4.

When composing a reply to a message with an errant cryptographic

layer, a conformant MUA MUST NOT decrypt any errant cryptographic

layers when generating quoted or attributed text. This will

typically mean either leaving the ciphertext itself in the generated

reply message, or simply not generating any quoted or attributed

text at all. This offers protection against the reply-based attacks

described in [REPLY].

In all circumstances, if the reply message cannot be encrypted (or

if the user elects to not encrypt the reply), the composed reply

MUST NOT include any material from the decrypted subpart.

6.2.3. Avoiding Non-MIME Cryptographic Mechanisms

In some cases, there may be a cryptographic signature or encryption

that does not coincide with a MIME boundary. For example so-called

"PGP Inline" messages typically contain base64-encoded ("ASCII-

armored", see Section 6 of [I-D.ietf-openpgp-crypto-refresh-13])

ciphertext, or within the content of a MIME part.

6.2.3.1. Do Not Validate Non-MIME Signatures

When encountering cryptographic signatures in these positions, a

conformant MUA MUST NOT attempt to validate any signature. It is

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13#section-6

challenging to communicate to the user exactly which part of such a

message is covered by the signature, so it is better to leave the

message marked as Unprotected. See [SPOOFING] for examples of

spoofed message signatures that rely on permissive legacy clients

that are willing to validate signatures in poorly-structured

messages.

6.2.3.2. Skip or Isolate Non-MIME Decryption When Rendering

When encountering what appears to be encrypted data not at a MIME

boundary, a conformant MUA MAY decline to decrypt the data at all.

During message rendering, if a conformant MUA attempts decryption of

such a non-MIME encrypted section of an e-mail, it MUST synthesize a

separate MIME part to contain only the decrypted data, and not

attempt to merge or splice that part together with any other part of

the message. Keeping such a section distinct and isolated from any

other part of the message offers protection against the direct

exfiltration attacks (also known as EFAIL-DE) described in [EFAIL].

6.2.3.3. Do Not Decrypt Non-MIME Decryption when Replying

When composing a reply to a message with such a non-MIME encrypted

section, a conformant MUA MUST NOT decrypt any non-MIME encrypted

section when generating quoted or attributed text, similar to the

guidance in Section 6.2.2.1.

This offers protection against the reply-based attacks described in

[REPLY].

6.3. Forwarded Messages with Cryptographic Protection

An incoming e-mail message may include an attached forwarded

message, typically as a MIME subpart with Content-Type: message/

rfc822 ([RFC5322]) or Content-Type: message/global ([RFC5355]).

Regardless of the cryptographic protections and structure of the

incoming message, the internal forwarded message may have its own

Cryptographic Envelope.

The Cryptographic Layers that are part of the Cryptographic Envelope

of the forwarded message are not Errant Cryptographic Layers of the

surrounding message -- they are simply layers that apply to the

forwarded message itself.

A conformant rendering MUA MUST NOT conflate the cryptographic

protections of the forwarded message with the cryptographic

protections of the incoming message.

¶

¶

¶

¶

¶

¶

¶

¶

¶

A conformant rendering MUA MAY render a Cryptographic Summary of the

protections afforded to the forwarded message by its own

Cryptographic Envelope, as long as that rendering is unambiguously

tied to the forwarded message itself, and cannot be spoofed either

by the enclosing message or by the forwarded message.

6.4. Signature failures

A cryptographic signature may fail in multiple ways. A conformant

receiving MUA that discovers a failed signature treats the message

as though the signature did not exist. This is similar to the

standard guidance for about failed DKIM signatures (see Section 6.1

of [RFC6376]).

A conformant MUA MUST NOT render a message with a failed signature

as more dangerous or more dubious than a comparable message without

any signature at all. In both cases, the Cryptographic Summary

should be Unprotected.

A conformant MUA that encounters an encrypted-and-signed message

where the signature is invalid SHOULD treat the message the same way

that it would treat a message that is encryption-only, unless the

MUA is providing the user with debugging information.

Some different ways that a signature may be invalid on a given

message:

the signature is not cryptographically valid (the math fails).

the signature relies on suspect cryptographic primitives (e.g.,

over a deprecated digest algorithm, or was made by a weak key,

e.g., 1024-bit RSA); note that this requires the rendering MUA to

have an explicit policy about what cryptographic primitives are

acceptable.

the signature is made by a certificate which the receiving MUA

does not have access to.

the certificate used to verify the signature was revoked.

the certificate used to verify the signature was expired at the

time that the signature was made.

the certificate used to verify the signature does not correspond

to the author of the message. (for X.509, there is no

subjectAltName of type rfc822Name whose value matches an e-mail

address found in From: or Sender:)

the certificate used to verify the signature was not issued by an

authority that the MUA user is willing to rely on for certifying

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

https://rfc-editor.org/rfc/rfc6376#section-6.1

the sender's e-mail address, and the user has no other reasonable

indication that the certificate belongs to the sender's e-mail

address.

the signature indicates that it was made at a time much before or

much after from the date of the message itself.

The signature covers a message that depends on an external

subresource that might change (see Section 9.9).

A valid signature must pass all these tests, but of course invalid

signatures may be invalid in more than one of the ways listed above.

6.5. Weak Encryption

Sometimes, a MUA might encounter a message with a well-formed

Cryptographic Envelope that uses a form of encryption with

substantial known flaws. For example, a PGP/MIME message might use a

Symmetrically Encrypted Data packet, which is known to have

malleable ciphertext (see Section 5.7 of

[I-D.ietf-openpgp-crypto-refresh-13]). Aِs another example, an S/MIME

message may use an enveloped-data MIME part with a

contentEncryptionAlgorithm of rc2-cbc with rc2ParameterVersion of

160, meaning a 40-bit key (see Section 5.2 of [RFC3370]), which is

widely considered breakable via brute force with moderate hardware

investment in 2024. As cryptanalysis and hardware capacities

advance, an implementation may widen the scope of what encryption

mechanisms are considered weak.

A receiving MUA MUST warn the user that such a message has a known

weakness. The receiving MUA MAY decline to decrypt such a message at

all. If it decides to decrypt a message with a weak encryption

layer, it MUST NOT indicate in the message's Cryptographic Summary

that the message was encrypted, as the confidentiality of the

message is suspect. This is similar to the approach taken in

Section 6.2.2 for messages with an Errant Encryption Layer.

Like the Errant Encryption Layer situation, there is an asymmetry

between rendering and replying to a message with weak encryption.

The guidance in Section 6.2.2.1 should be followed when replying to

a message with weak encryption as well.

A receiving MUA MAY also treat historically archived messages with

weak encryption differently from modern messages. For example, if an

encryption algorithm was known to be weak in 2005, then a message

that appears to have been encrypted with that algorithm in 1995

might decrypted with a warning, as an archival service. But a

message that appears to have been encrypted with that same weak

algorithm in 2015 might be quarantined as a likely attack.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13#section-5.7
https://rfc-editor.org/rfc/rfc3370#section-5.2

There are several possible ways to distinguish a historical message

from a modern one, including:

The message timestamp (e.g., the Date header field)

The time the message was first observed on the network (e.g.,

delivery of a new message via IMAP from a mailbox that had

recently checked)

The timestamp in any signature observed in the message

The message structure (a message composed using protocol elements

that were invented after the encryption algorithm was known weak

is likely to be an attack than a legitimate archival message)

7. Reasoning about Message Parts

When generating or rendering messages, it is useful to know what

parts of the message are likely to be displayed, and how. This

section introduces some common terms that can be applied to parts

within the Cryptographic Payload.

7.1. Main Body Part

When an e-mail message is composed or rendered to the user there is

typically one main view that presents a (mostly textual) part of the

message.

While the message itself may be constructed of several distinct MIME

parts in a tree, the part that is rendered to the user is the "Main

Body Part".

When rendering a message, one of the primary jobs of the receiving

MUA is identifying which part (or parts) is the Main Body Part.

Typically, this is found by traversing the MIME tree of the message

looking for a leaf node that has a primary content type of text

(e.g., text/plain or text/html) and is not Content-Disposition:

attachment.

MIME tree traversal follows the first child of every multipart node,

with the exception of multipart/alternative. When traversing a

multipart/alternative node, all children should be scanned, with

preference given to the last child node with a MIME type that the

MUA is capable of rendering directly.

An MUA MAY offer the user a mechanism to prefer a particular MIME

type within multipart/alternative instead of the last renderable

child. For example, a user may explicitly prefer a text/plain

alternative part over text/html. Note that due to uncertainty about

the capabilities and configuration of the receiving MUA, a

¶

* ¶

*

¶

* ¶

*

¶

¶

¶

¶

¶

¶

conformant composing MUA should consider that multiple parts might

be rendered as the Main Body Part when the message is ultimately

viewed. In particular, the composing MUA should ensure that any part

likely to be viewed as the Main Body Part has the same semantic

content as any other such part.

When composing a message, an originating MUA operating on behalf of

an active user can identify which part (or parts) are the "main"

parts: these are the parts the MUA generates from the user's editor.

Tooling that automatically generates e-mail messages should also

have a reasonable estimate of which part (or parts) are the "main"

parts, as they can be programmatically identified by the message

author.

For a filtering program that attempts to transform an outbound

message without any special knowledge about which parts are Main

Body Parts, it can identify the likely parts by following the same

routine as a receiving MUA.

7.2. Attachments

A message may contain one or more separated MIME parts that are

intended for download or extraction. Such a part is commonly called

an "attachment", and is commonly identified by having Content-

Disposition: attachment.

An MUA MAY identify a subpart as an attachment, or permit extraction

of a subpart even when the subpart does not have Content-

Disposition: attachment.

When generating a message with end-to-end cryptographic protection,

any attachment MUST be included within the Cryptographic Payload. If

an attachment is found outside the Cryptographic Payload, then the

message is not well-formed (see Section 6.1), and will not be

handled by other MUAs as intended.

Some MUAs have tried to compose messages where each attachment is

placed in its own cryptographic envelope. Such a message is

problematic for several reasons:

The attachments can be stripped, replaced, or reordered without

breaking any cryptographic integrity mechanism.

The resulting message may have a mix of cryptographic statuses

(e.g., if a signature on one part fails but another succeeds, or

if one part is encrypted and another is not). This mix of

statuses is difficult to represent to the user in a

comprehensible way.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

The divisions between the different attachments are visible to

operators of any mail transport agent (MTA) that handles the

message, potentially resulting in a metadata leak. For example,

the MTA operator may learn the number of attachments, and the

size of each attachment.

These messages are unlikely to be usefully interoperable without

additional standardization work (see Appendix A.12).

7.3. MIME Part Examples

Consider a common message with the following MIME structure:

Parts M and N comprise the Cryptographic Envelope.

Parts Q and R are both Main Body Parts.

If part S is Content-Disposition: attachment, then it is an

attachment. If part S has no Content-Disposition header, it is

potentially ambiguous whether it is an attachment or not. If the

sender prefers a specific behavior, it should explicitly set the

Content-Disposition header on part S to either inline or attachment

as guidance to the receiving MUA.

Consider also this alternate structure:

In this case, parts M and N still comprise the Cryptographic

Envelope.

Parts P and R (the first two leaf nodes within each subtree of part

O) are the Main Body Parts.

*

¶

¶

¶

M └─╴application/pkcs7-mime
 ↧ (decrypts to)
N └─╴application/pkcs7-mime
 ⇩ (unwraps to)
O └┬╴multipart/mixed
P ├┬╴multipart/alternative
Q │├─╴text/plain
R │└─╴text/html
S └─╴image/png

¶

¶

¶

¶

¶

M └─╴application/pkcs7-mime
 ↧ (decrypts to)
N └─╴application/pkcs7-mime
 ⇩ (unwraps to)
O └┬╴multipart/alternative
P ├─╴text/plain
Q └┬╴multipart/related
R ├─╴text/html
S └─╴image/png

¶

¶

¶

Part S is more likely not to be an attachment, as the subtree layout

suggests that it is only relevant for the HTML version of the

message. For example, it might be rendered as an image within the

HTML alternative.

8. Certificate Management

A cryptographically-capable MUA typically maintains knowledge about

certificates for the user's own account(s), as well as certificates

for the peers that it communicates with.

8.1. Peer Certificates

Most certificates that a cryptographically-capable MUA will use will

be certificates belonging to the parties that the user communicates

with through the MUA. This section discusses how to manage the

certificates that belong to such a peer.

The MUA will need to be able to discover X.509 certificates for each

peer, cache them, and select among them when composing an encrypted

message.

Detailed guidance about how to do this is beyond the scope of this

document, but future revisions may bring it into scope (see

Appendix A.3).

8.1.1. Peer Certificate Selection

When composing an encrypted message, the MUA needs to select an

encryption-capable certificate for each recipient.

To select such a certificate for a given destination e-mail address,

the MUA should look through all of its known certificates and verify

that all of the conditions below are met:

The certificate must be valid, not expired or revoked.

It must have a subjectAltName of type rfc822Name whose contents

match the destination e-mail address. In particular, the local-

part of the two addresses should be an exact bytewise match, and

the domain parts of the two addresses should be matched by

ensuring label equivalence across the full domain name, as

described in Section 2.3.2.4 of [RFC5890].

The algorithm OID in the certificate's SPKI is known to the MUA

and capable of encryption. Examples include:

rsaEncryption (OID 1.2.840.113549.1.1.1), with keyUsage (OID

2.5.29.15) extension present and the "key encipherment" bit

(value 32) set.

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

-

¶

https://rfc-editor.org/rfc/rfc5890#section-2.3.2.4

curveX25519 (OID 1.3.101.110) with keyUsage extension present

and the "key agreement" bit (value 8) set.

If extendedKeyUsage (OID 2.5.29.37) is present, it contains at

least one of the following OIDs: e-mail protection (OID

1.3.6.1.5.5.7.3.4), anyExtendedKeyUsage (OID 2.5.29.37.0).

A conformant MUA may include more considerations when selecting a

peer certificate as well, see Appendix A.3.4 for examples.

8.2. Local Certificates

The MUA also needs to know about one or more certificates associated

with the user's e-mail account. It is typically expected to have

access to the secret key material associated with the public keys in

those certificates.

While some basic guidance is offered here, it is beyond the scope of

this document to describe all possible relevant guidance for local

certificate and key material handling. See Appendix A.4 for

suggestions of guidance that a future version might bring into

scope.

8.2.1. Getting Certificates for the User

If a conformant MUA does not have any certificate or secret key for

the user, it should help the user to generate, acquire, or import

them with a minimum of difficulty.

8.2.1.1. User Certificates for S/MIME

For S/MIME, the user SHOULD have both a signing-capable certificate

and an encryption-capable certificate (and the corresponding secret

keys). Using the same cryptographic key material for multiple

algorithms (i.e., for both encryption and signing) has been the

source of vulnerabilities in other (non-e-mail) contexts (e.g.,

[DROWN] and [IKE]). The simplest way to avoid any comparable risk is

to use distinct key material for each cryptographic algorithm. A

conformant MUA that generates S/MIME certificates for the user MUST

generate distinct S/MIME certificates: one for encryption and

another for signing, to avoid possible cross-protocol key misuse.

The simplest option for an S/MIME-capable MUA is for the MUA to

permit the user to import a PKCS #12 ([RFC7292]) object that is

expected to contain secret key material, end entity certificates for

the user, and intermediate certification authority certificates that

permit chaining from the end entity certs to widely-accepted trust

anchors. A conformant MUA that imports such a PKCS #12 bundle SHOULD

warn the user if the bundle contains an S/MIME certificate and

-

¶

*

¶

¶

¶

¶

¶

¶

corresponding secret key where the same secret key is used for both

encryption and signing.

An S/MIME-capable MUA that has access to user certificates and their

corresponding secret key material should also offer the ability to

export those objects into a well-formed PKCS #12 object that could

be imported into another MUA operated by the same user.

Manual handling of PKCS #12 objects is challenging for most users.

Producing the initial PKCS #12 object typically can only be done

with the aid of a certification authority via non-standardized,

labor-intensive, and error-prone procedures that most users do not

understand. Furthermore, manual export and import incurs ongoing

labor (for example, before certificate expiration) by the user which

most users are unprepared to do (see Section 8.2.2).

A better approach is for the MUA to integrate some form of automated

certificate issuance procedure, for example, by using the ACME

protocol for end user S/MIME certificates ([RFC8823]).

Another possible approach is integration with a cryptographic

hardware token or smartcard that can provide certificates and permit

the use of isolated secret key material, for example [PKCS11],

though this approach delegates the complexity of acquiring and

managing certificates to management of the hardware token itself

(see Appendix A.4.2).

See also [I-D.woodhouse-cert-best-practice] for more recommendations

about managing user certificates.

8.2.1.2. User Certificates for PGP/MIME

As distinct from S/MIME, OpenPGP

([I-D.ietf-openpgp-crypto-refresh-13]) has a different set of common

practices. For one thing, a single OpenPGP certificate can contain

both a signing-capable key and a distinct encryption-capable key, so

only one certificate is needed for an e-mail user of OpenPGP, as

long as the certificate has distinct key material for the different

purposes.

Furthermore, a single OpenPGP certificate MAY be only self-signed,

so the MUA can generate such a certificate entirely on its own.

An OpenPGP-capable MUA should have the ability to import and export

OpenPGP Tranferable Secret Keys (see Section 10.2 of

[I-D.ietf-openpgp-crypto-refresh-13]), to enable manual transfer of

user certificates and secret key material between multiple MUAs

controlled by the user.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13#section-10.2

Since an OpenPGP certificate MAY be certified by third parties

(whether formal certification authorities or merely other well-

connected peers) the MUA SHOULD offer affordances to help the user

acquire and merge third party certifications on their certificate.

When doing this, the MUA should prioritize third-party

certifications from entities that the user's peers are likely to

know about and be willing to rely on.

Since an OpenPGP certificate can grow arbitrarily large with third-

party certifications, the MUA should assist the user in pruning it

to ensure that it remains a reasonable size when transmitting it to

other parties.

8.2.1.3. Generate Secret Key Material Locally

Regardless of protocol used (S/MIME or PGP), when producing

certificates for the end user, the MUA SHOULD ensure that it has

generated secret key material locally, and MUST NOT accept secret

key material from an untrusted external party as the basis for the

user's certificate. For example, a user who trusts their system

administrator not to compromise their MUA may accept secret key

material generated by the sysdmin, but probably should not accept

secret key material generated by an unaffiliated online web service.

An MUA that accepts secret key material from a third party cannot

prevent that third party from retaining this material. A third party

with this level of access could decrypt messages intended to be

confidential for the user, or could forge messages that would appear

to come from the user.

8.2.2. Local Certificate Maintenance

In the context of a single e-mail account managed by an MUA, where

that e-mail account is expected to be able to use end-to-end

cryptographic protections, the MUA SHOULD warn the user (or

proactively fix the problem) when/if:

For S/MIME, the user's own certificate set for the account does

not include a valid, unexpired encryption-capable X.509

certificate, and a valid, unexpired signature-capable X.509

certificate.

For PGP/MIME, the user's own certificate does not include a

valid, unexpired signing-capable key/subkey and a valid,

unexpired encryption-capable key/subkey.

Any of the user's own certificates for the account:

is due to expire in the next month (or at some other

reasonable cadence).

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

-

¶

not match the e-mail address associated with the account in

question.

Any of the user's own S/MIME certificates for the account:

does not have a keyUsage extension.

does not contain an extendedKeyUsage extension.

would be considered invalid by the MUA for any other reason if

it were a peer certificate.

An MUA that takes active steps to fix any of these problems before

they arise is even more usable than just warning, but guidance on

how to do active certificate maintenance is beyond scope for this

current document (see Appendix A.4.3).

If the MUA does find any of these issues and chooses to warn the

user, it should use one aggregate warning with simple language that

the certificates might not be acceptable for other people, and

recommend a course of action that the user can take to remedy the

problem.

8.2.3. Shipping Certificates in Outbound Messages

When sending mail, a conformant MUA SHOULD include copies of the

user's own certificates (and potentially other certificates) in each

message to facilitate future communication, unless it has specific

knowledge that the other parties involved already know the relevant

keys (for example, if it is mail between members within a domain

that has a synchronized and up-to-date certificate directory).

The mechanism for including these certificates, and which

certificates to include in the message, are protocol specific.

8.2.3.1. Shipping Certificates in S/MIME Messages

In any S/MIME SignedData object, certificates can be shipped in the

"certificates" member. In S/MIME EnvelopedData object, certificates

can be shipped in the "originatorInfo.certs" member.

When a single S/MIME-protected e-mail message is encrypted and

signed, it is usually sufficient to ship all the relevant

certificates in the inner SignedData object's "certificates" member.

The S/MIME certificates shipped in such a message SHOULD include:

The user's own S/MIME signing certificate, so that signature on

the current message can be validated.

-

¶

* ¶

- ¶

- ¶

-

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

The user's own S/MIME encryption-capable certificate, so that the

recipient can reply in encrypted form.

On an encrypted message to multiple recipients, the encryption-

capable peer certificates of the other recipients, so that any

recipient can easily "reply all" without needing to search for

certificates.

Any intermediate CA certificates needed to chain all of the above

to a widely-trusted set of root authorities.

8.2.3.2. Shipping Certificates in PGP/MIME Messages

PGP/MIME does not have a single specific standard location for

shipping certificates.

Some MUAs ship relevant OpenPGP certificates in a single MIME leaf

of Content-Type "application/pgp-keys". When such a message has

cryptographic protections, to ensure that the message is well-

formed, this kind of MIME part SHOULD be a leaf of the Cryptographic

Payload, and not outside of it. One problem with this approach is

that it appears to recipients with non-cryptographic MUAs as an

"attachment", which can lead to confusion if the user does not know

how to use it.

Other implementations ship relevant OpenPGP certificates in

"Autocrypt" or "Autocrypt-Gossip" message header fields (see

[AUTOCRYPT]). To ensure that those header fields receive the same

cryptographic authenticity as the rest of the message, these header

fields SHOULD be protected as described in

[I-D.ietf-lamps-header-protection].

The OpenPGP certificates shipped in such a message SHOULD include:

The user's own OpenPGP certificate, capable of both signing and

encryption, so that the user can validate the message's signature

and can encrypt future messages

On an encrypted message to multiple recipients, the OpenPGP

certificates of the other recipients, so that any recipient can

easily "reply all" without needing to search for certificates.

9. Common Pitfalls and Guidelines

This section highlights a few "pitfalls" and guidelines based on

these discussions and lessons learned.

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

¶

9.1. Reading Sent Messages

When sending a message, a typical MUA will store a copy of the

message sent in sender's Sent mail folder so that the sender can

read it later. If the message is an encrypted message, storing it

encrypted requires some forethought to ensure that the sender can

read it in the future.

It is a common and simple practice to encrypt the message not only

to the recipients of the message, but also to the sender. One

advantage of doing this is that the message that is sent on the wire

can be identical to the message stored in the sender's Sent mail

folder. This allows the sender to review and re-read the message

even though it was encrypted.

There are at least three other approaches that are possible to

ensure future readability by the sender of the message, but with

different tradeoffs:

Encrypt two versions of the message: one to the recipients (this

version is sent on the wire), and one to the sender only (this

version is stored in the sender's Sent folder). This approach

means that the message stored in the Sent folder is not byte-for-

byte identical to the message sent to the recipients. In the

event that message delivery has a transient failure, the MUA

cannot simply re-submit the stored message into the SMTP system

and expect it to be readable by the recipient.

Store a cleartext version of the message in the Sent folder. This

presents a risk of information leakage: anyone with access to the

Sent folder can read the contents of the message. Furthermore,

any attempt to re-send the message needs to also re-apply the

cryptographic transformation before sending, or else the message

contents will leak upon re-send. A conformant MUA SHOULD NOT

store a cleartext copy in the Sent folder unless it knows that

the Sent folder cannot be read by an attacker. For example, if

end-to-end confidentiality is desired, then storing the cleartext

in an IMAP folder where a potentially adversarial server can read

it defeats the purpose.

A final option is that the MUA can store a copy of the message's

encryption session key. Standard e-mail encryption mechanisms

(e.g., S/MIME and PGP/MIME) are hybrid mechanisms: the asymmetric

encryption steps simply encrypt a symmetric "session key", which

is used to encrypt the message itself. If the MUA stores the

session key itself, it can use the session key to decrypt the

Sent message without needing the Sent message to be decryptable

by the user's own asymmetric key. An MUA doing this must take

care to store (and backup) its stash of session keys, because if

¶

¶

¶

*

¶

*

¶

*

it loses them it will not be able to read the sent messages; and

if someone else gains access to them, they can decrypt the sent

messages. This has the additional consequence that any other MUA

accessing the same Sent folder cannot decrypt the message unless

it also has access to the stashed session key.

9.2. Reading Encrypted Messages after Certificate Expiration

When encrypting a message, the sending MUA should decline to encrypt

to an expired certificate (see Section 8.1.1). But when decrypting a

message, as long as the viewing MUA has access to the appropriate

secret key material, it should permit decryption of the message,

even if the associated certificate is expired. That is, the viewing

MUA should not prevent the user from reading a message that they

have already received.

The viewing MUA may warn the user when decrypting a message that

appears to have been encrypted to an encryption-capable certificate

that was expired at the time of encryption (e.g., based on the Date:

header field of the message, or the timestamp in the cryptographic

signature), but otherwise should not complain.

The primary goal of certificate expiration is to facilitate rotation

of secret key material, so that secret key material does not need to

be retained indefinitely. Certificate expiration permits the user to

destroy an older secret key if access to the messages received under

it is no longer necessary (see also Appendix A.10).

9.3. Unprotected Message Header Fields

Many legacy cryptographically-aware MUAs only apply cryptographic

protections to the body of the message, but leave the header fields

unprotected. This gives rise to vulnerabilities like information

leakage (e.g., the Subject line is visible to a passive

intermediary) or message tampering (e.g., the Subject line is

replaced, effectively changing the semantics of a signed message).

These are not only security vulnerabilities, but usability problems,

because the distinction between what is a header and what is the

body of a message is unclear to many end users, and requires a more

complex mental model than is necessary. Useful security comes from

alignment between simple mental models and tooling.

To avoid these concerns, a conformant MUA MUST implement header

protection as described in [I-D.ietf-lamps-header-protection].

Note that some message header fields, like List-*, Archived-At, and

Resent-* are typically added by an intervening MUA (see

Section 9.8), not by one of the traditional "ends" of an end-to-end

e-mail exchange. A receiving MUA may choose to consider the contents

of these header fields on an end-to-end protected message as markers

¶

¶

¶

¶

¶

¶

added during message transit, even if they are not covered by the

end-to-end cryptographic protection.

9.4. Composing an Encrypted Message with Bcc

When composing an encrypted message containing at least one

recipient address in the Bcc header field, there is a risk that the

encrypted message itself could leak information about the actual

recipients, even if the Bcc header field does not mention the

recipient. For example, if the message clearly indicates which

certificates it is encrypted to, the set of certificates can

identify the recipients even if they are not named in the message

header fields.

Because of these complexities, there are several interacting factors

that need to be taken into account when composing an encrypted

message with Bcc'ed recipients.

Section 3.6.3 of [RFC5322] describes a set of choices about

whether (and how) to populate the Bcc field explicitly on Bcc'ed

copies of the message, and in the copy stored in the sender's

Sent folder.

When separate copies are made for Bcced recipients, should each

separate copy also be encrypted to the named recipients, or just

to the designated Bcc recipient?

When a copy is stored in the Sent folder, should that copy also

be encrypted to Bcced recipients? (see also Section 9.1)

When a message is encrypted, if there is a mechanism to include

the certificates of the recipients, whose certificates should be

included?

9.4.1. Simple Encryption with Bcc

Here is a simple approach that tries to minimize the total number of

variants of the message created while leaving a coherent view of the

message itself:

No cryptographic payload contains any Bcc header field.

The main copy of the message is signed and encrypted to all named

recipients and to the sender. A copy of this message is also

stored in the sender's Sent folder.

Each Bcc recipient receives a distinct copy of the message, with

an identical cryptographic payload, and the message is signed and

encrypted to that specific recipient and all the named

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

*

https://rfc-editor.org/rfc/rfc5322#section-3.6.3

recipients. These copies are not stored in the sender's Sent

folder.

Any Bcc'ed recipient MUST NOT be taken into consideration when

determining which certificates to include in the message. In

particular, certificates for Bcc'ed recipients MUST NOT included

in any message.

9.4.1.1. Rationale

The approach described in Section 9.4.1 aligns the list of

cryptographic recipients as closely as possible with the set of

named recipients, while still allowing a Bcced recipient to read

their own copy, and to "Reply All" should they want to.

This should reduce user confusion on the receiving side: a recipient

of such a message who naively looks at the user-facing header fields

from their own mailbox will have a good sense of what cryptographic

treatments have been applied to the message. It also simplifies

message composition and user experience: the message composer sees

fields that match their expectations about what will happen to the

message. Additionally, it may preserve the ability for a Bcc'ed

recipient to retain their anonymity, should they need to offer the

signed cryptographic payload to an outside party as proof of the

original sender's intent without revealing their own identity.

9.5. Draft Messages

When composing a message, most MUAs will save a copy of the as-yet-

unsent message to a "Drafts" folder. If that folder is itself stored

somewhere not under the user's control (e.g., an IMAP mailbox), it

would be a mistake to store the draft message in the clear, because

its contents could leak.

This is the case even if the message is ultimately sent deliberately

in the clear. During message composition, the MUA does not know

whether the message is intended to be sent encrypted or not. For

example, just before sending, the sender could decide to encrypt the

message, and the MUA would have had no way of knowing.

The MUA SHOULD encrypt all draft messages, unless it has explicit

knowledge that the message will not be encrypted when sent, or that

the Drafts folder cannot be read by an attacker. For example, if

end-to-end confidentiality is desired, then storing a cleartext

draft in an IMAP folder where a potentially adversarial server can

read it defeats the purpose.

Furthermore, when encrypting a draft message, the message draft MUST

only be encrypted to the user's own certificate, or to some

equivalent secret key that only the user possesses. A draft message

¶

*

¶

¶

¶

¶

¶

¶

encrypted in this way can be decrypted when the user wants to resume

composing the message, but cannot be read by anyone else, including

a potential intended recipient. Note that a draft message encrypted

in this way will only be resumable by another MUA attached to the

same mailbox if that other MUA has access to the user's decryption-

capable secret key. This shared access to key material is also

likely necessary for useful interoperability, but is beyond the

scope of this document (see Appendix A.4.1).

A conformant MUA MUST NOT sign a message draft with the user's

normal signing key. If draft signing is intended for cryptographic

coordination between multiple MUAs of the same user, it should be

negotiated with a different key (but see Appendix A.4.1).

The message should only be encrypted to its recipients upon actually

sending the message. No reasonable user expects their message's

intended recipients to be able to read a message that is not yet

complete.

9.6. Composing a Message to Heterogeneous Recipients

When sending a message that the user intends to be encrypted, it's

possible that some recipients will be unable to receive an encrypted

copy. For example, when Carol composes a message to Alice and Bob,

Carol's MUA may be able to find a valid encryption-capable

certificate for Alice, but none for Bob.

In this situation, there are four possible strategies, each of which

has a negative impact on the experience of using encrypted mail.

Carol's MUA can:

send encrypted to Alice and Bob, knowing that Bob will be

unable to read the message.

send encrypted to Alice only, dropping Bob from the message

recipient list.

send the message in the clear to both Alice and Bob.

send an encrypted copy of the message to Alice, and a cleartext

copy to Bob.

Each of these strategies has different drawbacks.

The problem with approach 1 is that Bob will receive unreadable

mail.

The problem with approach 2 is that Carol's MUA will not send the

message to Bob, despite Carol asking it to.

¶

¶

¶

¶

¶

1.

¶

2.

¶

3. ¶

4.

¶

¶

¶

¶

The problem with approach 3 is that Carol's MUA will not encrypt the

message, despite Carol asking it to.

Approach 4 has two problems:

Carol's MUA will release a cleartext copy of the message, despite

Carol asking it to send the message encrypted.

If Alice wants to "reply all" to the message, she may not be able

to find an encryption-capable certificate for Bob either. This

puts Alice in an awkward and confusing position, one that users

are unlikely to understand. In particular, if Alice's MUA is

following the guidance about replies to encrypted messages in

Section 5.4, having received an encrypted copy will make Alice's

Reply buffer behave in an unusual fashion.

This is particularly problematic when the second recipient is not

"Bob" but in fact a public mailing list or other visible archive,

where messages are simply never encrypted.

Carol is unlikely to understand the subtleties and negative

downstream interactions involved with approaches 1 and 4, so

presenting the user with those choices is not advised.

The most understandable approach for an MUA with an active user is

to ask the user (when they hit "send") to choose between approach 2

and approach 3. If the user declines to choose between 2 and 3, the

MUA can drop them back to their message composition window and let

them make alternate adjustments.

See also further discussion of these scenarios in

[I-D.dkg-mail-cleartext-copy].

9.7. Message Transport Protocol Proxy: A Dangerous Implementation

Choice

An implementer of end-to-end cryptographic protections may be

tempted by a simple software design that piggybacks off of a mail

protocol like SMTP Submission ([RFC6409]), IMAP ([RFC9051]), or JMAP

([RFC8621]) to handle message assembly and interpretation. In such

an architecture, a naive MUA speaks something like a "standard"

protocol like SMTP, IMAP, or JMAP to a local proxy, and the proxy

handles signing and encryption (outbound), and decryption and

verification (inbound) internally on behalf of the user. While such

a "pluggable" architecture has the advantage that it is likely to be

easy to apply to any mail user agent, it is problematic for the

goals of end-to-end communication, especially in an existing

¶

¶

*

¶

*

¶

¶

¶

¶

¶

cleartext ecosystem like e-mail, where any given message might be

unsigned or signed, cleartext or encrypted. In particular:

the user cannot easily and safely identify what protections any

particular message has (including messages currently being

composed), and

the proxy itself is unaware of subtle nuances about the message

that the MUA actually knows.

With a trustworthy and well-synchronized sidechannel or protocol

extension between the MUA and the proxy, it is possible to deploy

such an implementation safely, but the requirement for the

sidechannel or extension eliminates the universal-deployability

advantage of the scheme.

Similar concerns apply to any implementation bound by an API which

operates on message objects alone, without any additional contextual

parameters.

This section attempts to document some of the inherent risks

involved with such an architecture.

9.7.1. Dangers of a Submission Proxy for Message Composition

When composing and sending a message, the act of applying

cryptographic protections has subtleties that cannot be directly

expressed in the SMTP protocol used by Submission [RFC6409], or in

any other simple protocol that hands off a cleartext message for

further processing.

For example, the sender cannot indicate via SMTP whether or not a

given message should be encrypted (some messages, like those sent to

a publicly archived mailing list, are pointless to encrypt), or

select among multiple certificates for a recipient, if they exist

(see Section 8.1.1).

Likewise, because such a proxy only interacts with the message when

it is ready to be sent, it cannot indicate back to the user during

message composition whether or not the message is able to be

encrypted (that is, whether a valid certificate is available for

each intended recipient). A message author may write an entirely

different message if they know that it will be protected end-to-end;

but without this knowledge, the author is obliged either to write

text that they presume will be intercepted, or to risk revealing

sensitive content.

Even without encryption, deciding whether to sign or not (and which

certificate to sign with, if more than one exists) is another choice

that the proxy is ill-equipped to make. The common message-signing

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

techniques either render a message unreadable by any non-

cryptographic MUA (i.e., PKCS7 signed-data), or appear as an

attachment that can cause confusion to a naive recipient using a

non-cryptographic MUA (i.e., multipart/signed). If the sender knows

that the recipient will not check signatures, they may prefer to

leave a cleartext message without a cryptographic signature at all.

Furthermore, handling encryption properly depends on the context of

any given message, which cannot be expressed by the MUA to the

Submission proxy. For example, decisions about how to handle

encryption and quoted or attributed text may depend on the

cryptographic status of the message that is being replied to (see

Section 5.4).

Additionally, such a proxy would need to be capable of managing the

user's own key and certificate (see Section 8.2). How will the

implementation indicate to the user when their own certificate is

near expiry, for example? How will any other error conditions be

handled when communication with the user is needed?

While an extension to SMTP might be able to express all the

necessary semantics that would allow a generic MUA to compose

messages with standard cryptographic protections via a proxy, such

an extension is beyond the scope of this document. See

[I-D.ietf-jmap-smime-sender-extensions] for an example of how an MUA

using a proxy protocol might indicate signing and encryption

instructions to its proxy.

9.7.2. Dangers of an IMAP Proxy for Message Rendering

When receiving and rendering a message, the process of indicating to

the user the cryptographic status of a message requires subtleties

that are difficult to offer from a straightforwad IMAP (or POP

[RFC1939], or JMAP) proxy.

One approach such a proxy could take is to remove all the

Cryptographic Layers from a well-formed message, and to package a

description of those layers into a special header field that the MUA

can read. But this merely raises the question: what semantics need

to be represented? For example:

Was the message signed? If so, by whom? When?

Should the details of the cryptographic algorithms used in any

signatures found be indicated as well?

Was the message encrypted? if so, to whom? What key was used to

decrypt it?

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

If both signed and encrypted, was the signing outside the

encryption or inside?

How should errant Cryptographic Layers (see Section 4.5) be dealt

with?

What cryptographic protections do the header fields of the

message have? (see [I-D.ietf-lamps-header-protection])

How are any errors or surprises communicated to the user?

If the proxy passes any of this cryptographic status to the client

in an added header field, it must also ensure that no such header

field is present on the messages it receives before processing it.

If it were to allow such a header field through unmodified to any

client that is willing to trust its contents, an attacker could

spoof the field to make the user believe lies about the

cryptographic status of the message. In order for an MUA to be

confident in such a header field, then, it needs a guarantee from

the proxy that any header it produces will be safe. How does the MUA

reliably negotiate this guarantee with the proxy? If the proxy can

no longer offer this guarantee, how will the MUA know that things

have changed?

If such an inbound proxy handles certificate discovery in inbound

messages (see Appendix A.3.1), it will also need to communicate the

results of that discovery process to its corresponding outbound

proxy for message composition (see Section 9.7.1).

While an extension to IMAP (or POP, or JMAP) might be able to

express all the necessary semantics that would allow a generic MUA

to indicate standardized cryptographic message status, such an

extension is beyond the scope of this document. [RFC9219] describes

S/MIME signature verification status over JMAP, which is a subset of

the cryptographic status information described here.

9.7.3. Who Controls the Proxy?

Finally, consider that the naive proxy deployment approach is risky

precisely because of its opacity to the end user. Such a deployment

could be placed anywhere in the stack, including on a machine that

is not ultimately controlled by the end user, making it effectively

a form of transport protection, rather than end-to-end protection.

An MUA explicitly under the control of the end user with thoughtful

integration can offer UI/UX and security guarantees that a simple

proxy cannot provide. See also Appendix A.13 for suggestions of

future work that might augment a proxy to make it safer.

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

9.8. Intervening MUAs Do Not Handle End-to-End Cryptographic

Protections

Some Mail User Agents (MUAs) will resend a message in identical form

(or very similar form) to the way that they received it. For

example, consider the following use cases:

A mail expander or mailing list that receives a message and re-

sends it to all subscribers (see also Appendix A.14 for more

discussion of mailing lists).

An individual user who reintroduces a message they received into

the mail transport system (see Section 3.6.6 of [RFC5322]).

An automated e-mail intake system that forwards a report to the

mailboxes of responsible staffers.

These MUAs intervene in message transport by receiving and then re-

injecting messages into the mail transport system. In some cases,

the original sender or final recipient of a message that has passed

through such an MUA may be unaware of the intervention. (Note that

an MUA that forwards a received message as a attachment (MIME

subpart) of type message/rfc822 or message/global or "inline" in the

body of a message is not acting as an intervening MUA in this sense,

because the forwarded message is encapsulated within a visible outer

message that is clearly from the MUA itself.)

An intervening MUA should be aware of end-to-end cryptographic

protections that might already exist on messages that they re-send.

In particular, it is unclear what the "end-to-end" properties are of

a message that has been handled by an intervening MUA. For signed-

only messages, if the intervening MUA makes any substantive

modifications to the message as it passes it along, it may break the

signature from the original sender. In many cases, breaking the

original signature is the appropriate result, since the original

message has been modified, and the original sender has no control

over the modifications made by the intervening MUA. For encrypted-

and-signed messages, if the intervening MUA is capable of decrypting

the message, it must be careful when re-transmitting the message.

Will the new recipient be able to decrypt it? If not, will the

message be useful to the recipient? If not, it may not make sense to

re-send the message.

Beyond the act of re-sending, an intervening MUA should not itself

try to apply end-to-end cryptographic protections on a message that

it is resending unless directed otherwise by some future

specification. Additional layers of cryptographic protection added

in an ad-hoc way by an intervening MUA are more likely to confuse

the recipient and will not be interpretable as end-to-end

¶

*

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc5322#section-3.6.6

protections as they do not originate with the original sender of the

message.

9.9. External Subresources in MIME Parts Break Cryptographic

Protections

A MIME part with a content type that can refer to external resources

(like text/html) may itself have some sort of end-to-end

cryptographic protections. However, retrieving or rendering these

external resources may violate the properties that users expect from

cryptographic protection.

As a baseline, retrieving the external resource at the time a

message is read can be used as a "web bug", leaking the activity and

network location of the receiving user to the server hosting the

external resource. This privacy risk is present, of course, even for

messages with no cryptographic protections, but may be even more

surprising to users who are shown some level of security indicator

about a given message.

Other problems with external resources are more specifically bound

to cryptographic protections.

For example, an signed e-mail message with at text/html part that

refers to an external image (i.e., via <img src="https://

example.com/img.png">) may render differently if the hosting

webserver decides to serve different content at the source URL for

the image. This effectively breaks the goals of integrity and

authenticity that the user should be able to rely on for signed

messages, unless the external subresource has strict integrity

guarantees (e.g., via [SRI]).

Likewise, fetching an external subresource for an encrypted-and-

signed message effectively breaks goals of privacy and

confidentiality for the user.

This is loosely analogous to security indicator problems that arose

for web browsers as described in [mixed-content]. However, while

fetching the external subresource over https is sufficient to avoid

a "mixed content" warning from most browsers, it is insufficicent

for an MUA that wants to offer its users true end-to-end guarantees

for e-mail messages.

A conformant sending MUA that applies signing-only cryptographic

protection to a new e-mail message with an external subresource

should take one of the following options:

pre-fetch the external subresource and include it in the message

itself,

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

use a strong integrity mechanism like Subresource Integrity

([SRI]) to guarantee the content of the subresource (though this

does not fix the "web bug" privacy risk described above), or

prompt the composing user to remove the subresource from the

message.

A conformant sending MUA that applies encryption to a new e-mail

message with an external resource cannot depend on subresource

integrity to protect the privacy and confidentiality of the message,

so it should either pre-fetch the external resource to include it in

the message, or prompt the composing user to remove it before

sending.

A conformant receiving MUA that encounters a message with end-to-end

cryptographic protections that contain a subresource MUST either

refuse to retrieve and render the external subresource, or it should

decline to treat the message as having cryptographic protections.

For example, it could indicate in the Cryptographic Summary that the

message is Unprotected.

Note that when composing a message reply with quoted text from the

original message, if the original message did contain an external

resource, the composing MUA SHOULD NOT fetch the external resource

solely to include it in the reply message, as doing so would trigger

the "web bug" at reply composition time. Instead, the safest way to

deal with quoted text that contains an external resource in an end-

to-end encrypted reply is to strip any reference to the external

resource during initial composition of the reply.

10. IANA Considerations

This document does not require anything from IANA.

11. Security Considerations

This entire document addresses security considerations about end-to-

end cryptographic protections for e-mail messages.

12. Acknowledgements

The set of constructs and recommendations in this document are

derived from discussions with many different implementers, including

Bjarni Rúnar Einarsson, Daniel Huigens, David Bremner, Deb Cooley,

Eliot Lear, Fabian Ising, Heiko Schaefer, Holger Krekel, Jameson

Rollins, John Levine, Jonathan Hammell, juga, Patrick Brunschwig,

Paul Kyzivat, Pete Resnick, Roman Danyliw, Santosh Chokhani, Stephen

Farrell, and Vincent Breitmoser.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-lamps-header-protection]

[RFC2119]

[RFC3156]

[RFC4289]

[RFC5890]

[RFC8174]

[RFC8551]

[AUTOCRYPT]

[chrome-indicators]

13. References

13.1. Normative References

Gillmor, D. K., Hoeneisen, B.,

and A. Melnikov, "Header Protection for Cryptographically

Protected E-mail", Work in Progress, Internet-Draft,

draft-ietf-lamps-header-protection-20, 1 March 2024,

<https://datatracker.ietf.org/doc/html/draft-ietf-lamps-

header-protection-20>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Elkins, M., Del Torto, D., Levien, R., and T. Roessler,

"MIME Security with OpenPGP", RFC 3156, DOI 10.17487/

RFC3156, August 2001, <https://www.rfc-editor.org/rfc/

rfc3156>.

Freed, N. and J. Klensin, "Multipurpose Internet Mail

Extensions (MIME) Part Four: Registration Procedures",

BCP 13, RFC 4289, DOI 10.17487/RFC4289, December 2005,

<https://www.rfc-editor.org/rfc/rfc4289>.

Klensin, J., "Internationalized Domain Names for

Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010, <https://

www.rfc-editor.org/rfc/rfc5890>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/rfc/

rfc8551>.

13.2. Informative References

Breitmoser, V., Krekel, H., and D. K. Gillmor,

"Autocrypt - Convenient End-to-End Encryption for E-

Mail", July 2018, <https://autocrypt.org/>.

Schechter, E., "Evolving Chrome's security

indicators", May 2018, <https://blog.chromium.org/

2018/05/evolving-chromes-security-indicators.html>.

https://datatracker.ietf.org/doc/html/draft-ietf-lamps-header-protection-20
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-header-protection-20
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3156
https://www.rfc-editor.org/rfc/rfc3156
https://www.rfc-editor.org/rfc/rfc4289
https://www.rfc-editor.org/rfc/rfc5890
https://www.rfc-editor.org/rfc/rfc5890
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8551
https://www.rfc-editor.org/rfc/rfc8551
https://autocrypt.org/
https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html
https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html

[DROWN]

[EFAIL]

[I-D.dkg-mail-cleartext-copy]

[I-D.ietf-jmap-smime-sender-extensions]

[I-D.ietf-openpgp-crypto-refresh-13]

[I-D.koch-openpgp-webkey-service]

[I-D.woodhouse-cert-best-practice]

Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N.,

Dankel, M., Steube, J., Valenta, L., Adrian, D.,

Halderman, J. A., Dukhovni, V., Käsper, E., Cohney, S.,

Engels, S., Paar, C., and Y. Shavitt, "DROWN: Breaking

TLS using SSLv2", March 2016, <https://drownattack.com/>.

Poddebniak, D., Dresen, C., Müller, J., Ising, F.,

Schinzel, S., Friedberger, S., Somorovsky, J., and J.

Schwenk, "Efail: breaking S/MIME and OpenPGP email

encryption using exfiltration channels", August 2018,

<https://efail.de>.

Gillmor, D. K., "Encrypted E-mail with Cleartext Copies",

Work in Progress, Internet-Draft, draft-dkg-mail-

cleartext-copy-01, 21 February 2023, <https://

datatracker.ietf.org/doc/html/draft-dkg-mail-cleartext-

copy-01>.

Melnikov, A., "JMAP extension for S/MIME signing and

encryption", Work in Progress, Internet-Draft, draft-

ietf-jmap-smime-sender-extensions-04, 3 August 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-jmap-

smime-sender-extensions-04>.

Wouters, P., Huigens, D.,

Winter, J., and N. Yutaka, "OpenPGP", Work in Progress,

Internet-Draft, draft-ietf-openpgp-crypto-refresh-13, 4

January 2024, <https://datatracker.ietf.org/doc/html/

draft-ietf-openpgp-crypto-refresh-13>.

Koch, W., "OpenPGP Web Key Directory", Work in Progress,

Internet-Draft, draft-koch-openpgp-webkey-service-17, 18

December 2023, <https://datatracker.ietf.org/doc/html/

draft-koch-openpgp-webkey-service-17>.

Woodhouse, D. and N.

Mavrogiannopoulos, "Recommendations for applications

using X.509 client certificates", Work in Progress,

Internet-Draft, draft-woodhouse-cert-best-practice-01, 25

https://drownattack.com/
https://efail.de
https://datatracker.ietf.org/doc/html/draft-dkg-mail-cleartext-copy-01
https://datatracker.ietf.org/doc/html/draft-dkg-mail-cleartext-copy-01
https://datatracker.ietf.org/doc/html/draft-dkg-mail-cleartext-copy-01
https://datatracker.ietf.org/doc/html/draft-ietf-jmap-smime-sender-extensions-04
https://datatracker.ietf.org/doc/html/draft-ietf-jmap-smime-sender-extensions-04
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-13
https://datatracker.ietf.org/doc/html/draft-koch-openpgp-webkey-service-17
https://datatracker.ietf.org/doc/html/draft-koch-openpgp-webkey-service-17

[I-D.wussler-openpgp-forwarding]

[IKE]

[mixed-content]

[ORACLE]

[PKCS11]

[REPLY]

[RFC1939]

[RFC2045]

[RFC3207]

July 2023, <https://datatracker.ietf.org/doc/html/draft-

woodhouse-cert-best-practice-01>.

Wussler, A., "Automatic Forwarding for ECDH Curve25519

OpenPGP messages", Work in Progress, Internet-Draft,

draft-wussler-openpgp-forwarding-00, 10 July 2023,

<https://datatracker.ietf.org/doc/html/draft-wussler-

openpgp-forwarding-00>.

Felsch, D., Grothe, M., Schwenk, J., Czubak, A., and M.

Szymane, "The Dangers of Key Reuse: Practical Attacks on

IPsec IKE", August 2018, <https://www.usenix.org/system/

files/conference/usenixsecurity18/sec18-felsch.pdf>.

"Mixed Content", February 2023, <https://www.w3.org/

TR/mixed-content/>.

Ising, F., Poddebniak, D., Kappert, T., Saatjohann, C.,

and S. Schinzel, "Content-Type: multipart/oracle Tapping

into Format Oracles in Email End-to-End Encryption",

August 2023, <https://www.usenix.org/conference/

usenixsecurity23/presentation/ising>.

Bong, D. and T. Cox, "PKCS", 23 July 2023, <https://

docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/os/pkcs11-

spec-v3.1-os.html>.

Müller, J., Brinkmann, M., Poddebniak, D., Schinzel, S.,

and J. Schwenk, "Re: What’s Up Johnny?: Covert Content

Attacks on Email End-to-End Encryption", Applied

Cryptography and Network Security pp. 24-42, DOI

10.1007/978-3-030-21568-2_2, 2019, <https://doi.org/

10.1007/978-3-030-21568-2_2>.

Myers, J. and M. Rose, "Post Office Protocol - Version

3", STD 53, RFC 1939, DOI 10.17487/RFC1939, May 1996,

<https://www.rfc-editor.org/rfc/rfc1939>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message

Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

<https://www.rfc-editor.org/rfc/rfc2045>.

Hoffman, P., "SMTP Service Extension for Secure SMTP over

Transport Layer Security", RFC 3207, DOI 10.17487/

https://datatracker.ietf.org/doc/html/draft-woodhouse-cert-best-practice-01
https://datatracker.ietf.org/doc/html/draft-woodhouse-cert-best-practice-01
https://datatracker.ietf.org/doc/html/draft-wussler-openpgp-forwarding-00
https://datatracker.ietf.org/doc/html/draft-wussler-openpgp-forwarding-00
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-felsch.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-felsch.pdf
https://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/mixed-content/
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/os/pkcs11-spec-v3.1-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/os/pkcs11-spec-v3.1-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/os/pkcs11-spec-v3.1-os.html
https://doi.org/10.1007/978-3-030-21568-2_2
https://doi.org/10.1007/978-3-030-21568-2_2
https://www.rfc-editor.org/rfc/rfc1939
https://www.rfc-editor.org/rfc/rfc2045

[RFC3274]

[RFC3370]

[RFC4511]

[RFC5322]

[RFC5355]

[RFC6376]

[RFC6409]

[RFC7292]

[RFC7435]

[RFC7929]

RFC3207, February 2002, <https://www.rfc-editor.org/rfc/

rfc3207>.

Gutmann, P., "Compressed Data Content Type for

Cryptographic Message Syntax (CMS)", RFC 3274, DOI

10.17487/RFC3274, June 2002, <https://www.rfc-editor.org/

rfc/rfc3274>.

Housley, R., "Cryptographic Message Syntax (CMS)

Algorithms", RFC 3370, DOI 10.17487/RFC3370, August 2002,

<https://www.rfc-editor.org/rfc/rfc3370>.

Sermersheim, J., Ed., "Lightweight Directory Access

Protocol (LDAP): The Protocol", RFC 4511, DOI 10.17487/

RFC4511, June 2006, <https://www.rfc-editor.org/rfc/

rfc4511>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/rfc/rfc5322>.

Stillman, M., Ed., Gopal, R., Guttman, E., Sengodan, S.,

and M. Holdrege, "Threats Introduced by Reliable Server

Pooling (RSerPool) and Requirements for Security in

Response to Threats", RFC 5355, DOI 10.17487/RFC5355,

September 2008, <https://www.rfc-editor.org/rfc/rfc5355>.

Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,

"DomainKeys Identified Mail (DKIM) Signatures", STD 76,

RFC 6376, DOI 10.17487/RFC6376, September 2011, <https://

www.rfc-editor.org/rfc/rfc6376>.

Gellens, R. and J. Klensin, "Message Submission for

Mail", STD 72, RFC 6409, DOI 10.17487/RFC6409, November

2011, <https://www.rfc-editor.org/rfc/rfc6409>.

Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,

and M. Scott, "PKCS #12: Personal Information Exchange

Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,

<https://www.rfc-editor.org/rfc/rfc7292>.

Dukhovni, V., "Opportunistic Security: Some Protection

Most of the Time", RFC 7435, DOI 10.17487/RFC7435,

December 2014, <https://www.rfc-editor.org/rfc/rfc7435>.

Wouters, P., "DNS-Based Authentication of Named Entities

(DANE) Bindings for OpenPGP", RFC 7929, DOI 10.17487/

RFC7929, August 2016, <https://www.rfc-editor.org/rfc/

rfc7929>.

https://www.rfc-editor.org/rfc/rfc3207
https://www.rfc-editor.org/rfc/rfc3207
https://www.rfc-editor.org/rfc/rfc3274
https://www.rfc-editor.org/rfc/rfc3274
https://www.rfc-editor.org/rfc/rfc3370
https://www.rfc-editor.org/rfc/rfc4511
https://www.rfc-editor.org/rfc/rfc4511
https://www.rfc-editor.org/rfc/rfc5322
https://www.rfc-editor.org/rfc/rfc5322
https://www.rfc-editor.org/rfc/rfc5355
https://www.rfc-editor.org/rfc/rfc6376
https://www.rfc-editor.org/rfc/rfc6376
https://www.rfc-editor.org/rfc/rfc6409
https://www.rfc-editor.org/rfc/rfc7292
https://www.rfc-editor.org/rfc/rfc7435
https://www.rfc-editor.org/rfc/rfc7929
https://www.rfc-editor.org/rfc/rfc7929

[RFC8162]

[RFC8621]

[RFC8823]

[RFC9051]

[RFC9216]

[RFC9219]

[SPOOFING]

[SRI]

Hoffman, P. and J. Schlyter, "Using Secure DNS to

Associate Certificates with Domain Names for S/MIME", RFC

8162, DOI 10.17487/RFC8162, May 2017, <https://www.rfc-

editor.org/rfc/rfc8162>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP) for Mail", RFC 8621, DOI 10.17487/

RFC8621, August 2019, <https://www.rfc-editor.org/rfc/

rfc8621>.

Melnikov, A., "Extensions to Automatic Certificate

Management Environment for End-User S/MIME Certificates",

RFC 8823, DOI 10.17487/RFC8823, April 2021, <https://

www.rfc-editor.org/rfc/rfc8823>.

Melnikov, A., Ed. and B. Leiba, Ed., "Internet Message

Access Protocol (IMAP) - Version 4rev2", RFC 9051, DOI

10.17487/RFC9051, August 2021, <https://www.rfc-

editor.org/rfc/rfc9051>.

Gillmor, D. K., Ed., "S/MIME Example Keys and

Certificates", RFC 9216, DOI 10.17487/RFC9216, April

2022, <https://www.rfc-editor.org/rfc/rfc9216>.

Melnikov, A., "S/MIME Signature Verification Extension to

the JSON Meta Application Protocol (JMAP)", RFC 9219, DOI

10.17487/RFC9219, April 2022, <https://www.rfc-

editor.org/rfc/rfc9219>.

Müller, J., Brinkmann, M., Poddebniak, D., Böck, H.,

Schinzel, S., Somorovsky, J., and J. Schwenk, "“Johnny,

you are fired!” – Spoofing OpenPGP and S/MIME Signatures

in Emails", August 2019, <https://www.usenix.org/system/

files/sec19-muller.pdf>.

"Subresource Integrity", June 2016, <https://www.w3.org/

TR/SRI/>.

Appendix A. Future Work

This document contains useful guidance for MUA implementers, but it

cannot contain all possible guidance. Future revisions to this

document may want to further explore the following topics, which are

out of scope for this version.¶

https://www.rfc-editor.org/rfc/rfc8162
https://www.rfc-editor.org/rfc/rfc8162
https://www.rfc-editor.org/rfc/rfc8621
https://www.rfc-editor.org/rfc/rfc8621
https://www.rfc-editor.org/rfc/rfc8823
https://www.rfc-editor.org/rfc/rfc8823
https://www.rfc-editor.org/rfc/rfc9051
https://www.rfc-editor.org/rfc/rfc9051
https://www.rfc-editor.org/rfc/rfc9216
https://www.rfc-editor.org/rfc/rfc9219
https://www.rfc-editor.org/rfc/rfc9219
https://www.usenix.org/system/files/sec19-muller.pdf
https://www.usenix.org/system/files/sec19-muller.pdf
https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/

A.1. Webmail Threat Model

The webmail threat model for end-to-end cryptographic protections is

significantly more complex than the traditional MUA model. For

example, the web server hosting the webmail interface could be a

potential adversary. If the user treats the web server as a trusted

party, but the web server violates that trust, the end-to-end

cryptographic protections do not hold.

A future version of this document could include more detailed

discussion of an adversarial threat model for end-to-end

cryptographic protections in a webmail context.

A.2. Test Vectors

A future version of this document (or a companion document) could

contain examples of well-formed and malformed messages using

cryptographic key material and certificates from

[I-D.ietf-openpgp-crypto-refresh-13] and [RFC9216].

It may also include example renderings of these messages.

A.3. Further Guidance on Peer Certificates

A.3.1. Certificate Discovery from Incoming Messages

As described in Section 8.2.3, an incoming e-mail message may have

one or more certificates embedded in it. This document currently

acknowledges that receiving MUA should assemble a cache of

certificates for future use, but providing more detailed guidance

for how to assemble and manage that cache is currently out of scope.

Existing recommendations like [AUTOCRYPT] provide some guidance for

handling incoming certificates about peers, but only in certain

contexts. A future version of this document may describe in more

detail how these incoming certs should be handled.

A.3.2. Certificate Directories

Some MUAs may have the capability to look up peer certificates in a

directory, for example via LDAP [RFC4511], WKD

[I-D.koch-openpgp-webkey-service], or the DNS (e.g., SMIMEA

[RFC8162] or OPENPGPKEY [RFC7929] resource records).

A future version of this document may describe in more detail what

sources an MUA should consider when searching for a peer's

certificates, and what to do with the certificates found by various

methods.

¶

¶

¶

¶

¶

¶

¶

¶

A.3.3. Checking for Certificate Revocation

A future version of this document could discuss how/when to check

for revocation of peer certificates, or of the user's own

certificate.

Such discussion should address privacy concerns: what information

leaks to whom when checking peer cert revocations?

A.3.4. Further Peer Certificate Selection

A future version of this document may describe more prescriptions

for deciding whether a peer certificate is acceptable for encrypting

a message. For example, if the SPKI is an EC Public Key and the

keyUsage extension is absent, what should the encrypting MUA do?

A future version of this document might also provide guidance on

what to do if multiple certificates are all acceptable for

encrypting to a given recipient. For example, the sender could

select among them in some deterministic way; it could encrypt to all

of them; or it could present them to the user to let the user select

any or all of them.

A.3.5. Human-readable Names in Peer Certificates, Header Fields, and

Addressbooks

In header fields like From: that may contain a display-name as

described in Section 3.4 of [RFC5322], a malicious sender (or

interfering adversary) may populate the display-name part with a

human-readable name that does not at all match the actual name of

the participant. Section 8.1.1 describes some matching rules

relating peer certificates to e-mail addresses (the addr-spec part

of these e-mail header fields), but does not contemplate matching

display-names or other or similar user-visible data elements.

Section 6.4 describes how signature validation should confirm a

binding between the addr-spec and the certificate itself, but also

does not contemplate matching display-names or other similar user-

visible data elements. Depending on how the receiving MUA renders

the display-name in a message's header field, that unvalidated field

may present a risk of user confusion which could break the intended

end-to-end assurances. Yet both X.509 and OpenPGP certificate

formats offer ways to provide cryptographically certified (though

possibly not unique) comparable human-readable names. Additionally,

many MUAs also include an addressbook or comparable feature which

can make substantive connections between user-relevant identity

labels and e-mail addresses.

A human-readable name like a display-name does not have the property

of global uniqueness that an addr-spec does, so reasoning about

human-readable names and rendering them to the user as an element in

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5322#section-3.4

a system providing end-to-end cryptographic assurance requires

additional deliberate analysis.

A future version of this document might offer strategies for

associating human-readable names from certificates (and features

like addressbooks) to the rendering of header fields that include

display-name. Such guidance should be paired with an analysis of

specific usability and security risks associated with these human-

readable fields, as well as a description of how the recommended

guidance mitigates those risks.

A.4. Further Guidance on Local Certificates and Secret Keys

A.4.1. Cross-MUA sharing of Local Certificates and Secret Keys

Many users today use more than one MUA to access the same mailbox

(for example, one MUA on a mobile device, and another MUA on a

desktop computer).

A future version of this document might offer guidance on how

multiple MUAs attached to the same mailbox can efficiently and

securely share the user's own secret key material and certificates

between each other. This guidance should include suggestions on how

to maintain the user's keys (e.g., avoiding certificate expiration)

and safe secret key transmission.

A.4.2. Use of Smartcards or Other Portable Secret Key Mechanisms

Rather than having to transfer secret key material between clients,

some users may prefer to rely on portable hardware-backed secret

keys in the form of smartcards, USB tokens or other comparable form

factors. These secret keys sometimes require direct user interaction

for each use, which can complicate the usability of any MUA that

uses them to decrypt a large number of messages.

Guidance on the use of this kind of secret key management are beyond

the scope of this document, but future revisions may bring them into

scope.

A.4.3. Active Local Certificate Maintenance

Section 8.2.2 describes conditions where the MUA SHOULD warn the

user that something is going wrong with their certificate.

A future version of this document might outline how an MUA could

actively avoid these warning situations, for example, by

automatically updating the certificate or prompting the user to take

specific action.

¶

¶

¶

¶

¶

¶

¶

¶

A.5. Certification Authorities

A future document could offer guidance on how an MUA should select

and manage root certification authorities (CAs).

For example:

Should the MUA cache intermediate CAs?

Should the MUA share such a cache with other PKI clients (e.g.,

web browsers)?

What distinctions are there between a CA for S/MIME and a CA for

the web?

A.6. Indexing and Search of Encrypted Messages

A common use case for MUAs is search of existing messages by keyword

or topic. This is done most efficiently for large mailboxes by

assembling an index of message content, rather than by a linear scan

of all message content.

When message contents and header fields are encrypted, search by

index is complicated. If the cleartext is not indexed, then messages

cannot be found by search. On the other hand, if the cleartext is

indexed, then the index effectively contains the sensitive contents

of the message, and needs to be protected.

Detailed guidance on the tradeoff here, including choices about

remote search vs local search, are beyond the scope of this

document, but a future version of the document may bring them into

scope.

A.7. Cached Signature Validation

Asymmetric signature validation can be computationally expensive,

and the results can also potentially vary over time (e.g., if a

signing certificate is discovered to be revoked). In some cases, the

user may care about the signature validation that they saw when they

first read or received the message, not only about the status of the

signature verification at the current time.

So, for both performance reasons and historical perspective, it may

be useful for an MUA to cache signature validation results in a way

that they can be easily retrieved and compared. Documenting how and

when to cache signature validation, as well as how to indicate it to

the user, is beyond the scope of this document, but a future version

of the document may bring these topics into scope.

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

A.8. Aggregate Cryptographic Status

This document limits itself to consideration of the cryptographic

status of single messages as a baseline concept that can be clearly

and simply communicated to the user. However, some users and some

MUAs may find it useful to contemplate even higher-level views of

cryptographic status which are not considered directly here.

For example, a future version of the document may also consider how

to indicate a simple cryptographic status of message threads (groups

of explicitly related messages), conversations (groups of messages

with shared sets of participants), peers, or other perspectives that

an MUA can provide.

A.9. Expectations of Cryptographic Protection

As mentioned in Section 2.3, the types of security indicators

displayed to the user may well vary based on the expectations of the

user for a given communication. At present, there is no widely

shared method for the MUA to establish and maintain reasonable

expectations about whether a specific received message should have

cryptographic protections.

If such a standard is developed, a future version of this document

should reference it and encourage the deployment of clearer and

simpler security indicators.

A.10. Secure Deletion

One feature many users desire from a secure communications medium is

the ability to reliably destroy a message such that it cannot be

recovered even by a determined adversary. In other contexts, a

similar desired property is called "forward secrecy". Doing this

with standard e-mail mechanisms like S/MIME and PGP/MIME is

challenging because of two interrelated factors:

A copy of of an e-mail message may be retained by any of the mail

transport agents that handle it during delivery, and

The secret key used to decrypt an encrypted e-mail message is

typically retained indefinitely.

This means that an adversary aiming to recover the cleartext

contents of a deleted message can do so by getting access to a copy

of the encrypted message and the long-term secret key material.

Some mitigation measures may be available to make it possible to

delete some encrypted messages securely, but this document considers

this use case out of scope. A future version of the document may

elaborate on secure message deleton in more detail.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

A.11. Interaction with Opportunistic Encryption

This document focuses on guidance for strong, user-comprehensible

end-to-end cryptographic protections for e-mail. Other approaches

are possible, including various forms of opportunistic and transport

encryption, which are out of scope for this document.

A future version of this document could describe the interaction

between this guidance and more opportunistic forms of encryption,

for example some of the scenarios contemplated in

[I-D.dkg-mail-cleartext-copy].

A.12. Split Attachments

As noted in Section 7.2, the standard form for encrypted e-mail

messages is a single cryptographic envelope. In a scenario where

multiple user agents are drafting a single encrypted message over

low-bandwidth links, this can create a poor user experience, as each

MUA has to retrieve the full message, including attachments, to

modify the draft. Similarly, when retrieving a message with a large

attachment, the receiving MUA might want to only render the main

body part, and will have a significant delay in doing so if required

to process the full message before handling.

Future work might include an attempt to standardize a mechanism that

eases this use case, potentially at the risk of additional metadata

leakage about the message (e.g., the size and number of message

parts). Any such work should explicitly try to minimize the risks

and concerns described in Section 7.2.

A.13. Proxy Extensions

As noted in Section 9.7, a proxy-based implementation can be a

tempting approach. But its naive form is likely to be insufficient

to provide safe end-to-end encrypted e-mail.

A future version of this document, or a separate but related

document, could try to outline the specific additional information,

state, and network API surface that would be needed to allow an MUA

to be safely integrated with an encryption provider. Any such work

should try to address the potential problems described in

Section 9.7.

A.14. Mailing Lists

Mailing lists offer challenging complications to any notion of end-

to-end cryptographic protections. By default, there is some sort of

intervening MUA (see Section 9.8), but more than that, user

expectations about cryptographic protections might differ from

normal messages, at least insofar as they understand they are

¶

¶

¶

¶

¶

¶

writing to a mailing list. A particular challenge to the notion of

end-to-end cryptographic security with mailing lists is that a

subscriber to a mailing list often does not know who else is

subscribed to the mailing list. Another challenge is that for some

mailing lists, some subscribers might not have a valid, non-expired

certificate.

Encryption can interact with mailing lists in different ways,

depending on the use case of the list. It's not clear that there are

any useful motivations for sending encrypted mail to a publicly

archived mailing list. But an unarchived mailing list might want to

provide confidentiality between all recipients, even if the

recipients don't know for certain who all the other participants

are. Or, a mailing list with private archives might well decide that

two "hops" of encryption (between the sender and the mailing list,

and the mailing list and all the subscribers) are a useful

confidentiality measure even though they are not "end-to-end" in the

sense of the sender directly to all recipients.

Similarly, cryptographic signatures may play different roles in a

mailing list, depending on the list's communication goals. The

mailing list itself might want to verify that an incoming message is

cryptographically signed by an authorized sender before

redistribution to the list subscribers. It might also want to pass

along the sender's signature in a way that the subscribers can all

verify it. Alternately, the mailing list might want to sign each

redistributed message itself, and change the message so it appears

to come from the list rather than the original sender.

Yet another design for a mailing list with end-to-end cryptographic

protections might involve redistributing shared secret keys to all

recipients, or using some sort of proxied re-encryption scheme,

similar to [I-D.wussler-openpgp-forwarding].

A future version of this document or a separate but related document

might describe some of these tradeoffs and provide guidance for

safely meeting common requirements or use cases when combining end-

to-end cryptographic protections with mailing lists.

Appendix B. Document History

B.1. Substantive changes from draft-ietf-...-15 to draft-ietf-...-16

Address feedback from Last Call and IESG review:

Add "Weak Encryption" section

Add Future Work subsection on mailing lists

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

Mention possible user control over stripping quoted text in

cleartext reply to encrypted message

Simplify Bcc guidance about certificate inclusion

B.2. Substantive changes from draft-ietf-...-14 to draft-ietf-...-15

update IMAP reference to RFC 9051

add webmail concerns as part of Future Work

B.3. Substantive changes from draft-ietf-...-13 to draft-ietf-...-14

Responded to SEC AD Review, including:

clarify "conformant" vs "legacy" vs "non-cryptographic" MUA

categories

tighten up MUSTs for conformant MUAs

explicitly recommend encrypting drafts

clarify debugging as a use case for showing invalid signatures

clarify "Headers" to "Header Fields"

3 states for sending, 4 for receiving

B.4. Substantive changes from draft-ietf-...-12 to draft-ietf-...-13

clarify RFC 2119 guidance about not rendering cryptographic

layers other than message cryptographic status

B.5. Substantive changes from draft-ietf-...-11 to draft-ietf-...-12

More nuance (and future work) around split attachments

More nuance (and future work) around proxy-style design

Clearer caveats about external resources in text/html parts

B.6. Substantive changes from draft-ietf-...-10 to draft-ietf-...-11

Mention List-* and Archived-At message header fields

Add additional references to papers that describe flaws in e2e e-

mail

B.7. Substantive changes from draft-ietf-...-09 to draft-ietf-...-10

Introduction: describe one major theme of Future Work

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

B.8. Substantive changes from draft-ietf-...-08 to draft-ietf-...-09

Clarify goals of document

Identify cross-protocol attacks in more detail to justify

prescription against key reuse

Add informative references to Opportunistic Encryption RFC and

Certificate Best Practice draft

Add "Reading Encrypted Messages after Certificate Expiration"

section to Common Pitfalls and Guidelines

Clean up nits identified by Stephen Farrell and Eliot Lear

B.9. Substantive changes from draft-ietf-...-07 to draft-ietf-...-08

Add guidance about importing and exporting secret key material

More explanation about "encryption outside, signature inside"

Guidance about Intervening (resending) MUAs

Include Sender and Resent-* as user-facing header fields

Guidance about external subresources for cryptographically

protected messages

Relax "user-facing" definition to be more advisory

B.10. Substantive changes from draft-ietf-...-06 to draft-ietf-...-07

Add Bernie Hoeneisen and Alexey Melnikov as editors

Explicitly avoid requiring anything from IANA

Simplify description of "attachments"

Add concrete detail on how to compare e-mail addresses

Explicitly define "Cryptographic Summary"

B.11. Substantive changes from draft-ietf-...-05 to draft-ietf-...-06

Expand proxy implementation warning to comparable APIs

Move many marked TODO and FIXME items to "Future Work"

More detailed guidance on local certificates

Provide guidance on encrypting draft messages

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

More detailed guidanc eon shipping certificates in outbound

messages

Recommend implementing header protection

Added "Future Work" subsection about interactions with

opportunistic approaches

B.12. Substantive changes from draft-ietf-...-04 to draft-ietf-...-05

Adopt and update text about Bcc from draft-ietf-lamps-header-

protection

Add section about the dangers of an implementation based on a

network protocol proxy

B.13. Substantive changes from draft-ietf-...-03 to draft-ietf-...-04

Added reference to multipart/oracle attacks

Clarified that "Structural Header fields" are the same as

RFC2045's "MIME Headers"

B.14. Substantive changes from draft-ietf-...-02 to draft-ietf-...-03

Added section about mixed recipients

Noted SMIMEA and OPENPGPKEY DNS RR cert discovery mechanisms

Added more notes about simplified mental models

More clarification on one-status-per-message

Added guidance to defend against EFAIL

B.15. Substantive changes from draft-ietf-...-01 to draft-ietf-...-02

Added definition of "user-facing" header fields

B.16. Substantive changes from draft-ietf-...-00 to draft-ietf-...-01

Added section about distinguishing Main Body Parts and

Attachments

Updated document considerations section, including reference to

auto-built editor's copy

B.17. Substantive changes from draft-dkg-...-01 to draft-ietf-...-00

WG adopted draft

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

moved Document History and Document Considerations sections to

end of appendix, to avoid section renumbering when removed

B.18. Substantive changes from draft-dkg-...-00 to draft-dkg-...-01

consideration of success/failure indicators for usability

clarify extendedKeyUsage and keyUsage algorithm-specific details

initial section on certificate management

added more TODO items

Authors' Addresses

Daniel Kahn Gillmor (editor)

American Civil Liberties Union

125 Broad St.

New York, NY, 10004

United States of America

Email: dkg@fifthhorseman.net

Bernie Hoeneisen (editor)

pEp Project

Oberer Graben 4

CH- 8400 Winterthur

Switzerland

Email: bernie.hoeneisen@pep-project.org

URI: https://pep-project.org/

Alexey Melnikov (editor)

Isode Ltd

14 Castle Mews

Hampton, Middlesex

TW12 2NP

United Kingdom

Email: alexey.melnikov@isode.com

*

¶

* ¶

* ¶

* ¶

* ¶

mailto:dkg@fifthhorseman.net
mailto:bernie.hoeneisen@pep-project.org
https://pep-project.org/
mailto:alexey.melnikov@isode.com

	Guidance on End-to-End E-mail Security
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.1.1. Structural Header Fields
	1.1.2. User-Facing Header Fields

	2. Usability
	2.1. Simplicity
	2.2. E-mail Users Want a Familiar Experience
	2.3. Warning About Failure vs. Announcing Success

	3. Types of Protection
	3.1. Simplified Mental Model
	3.2. One Cryptographic Status Per Message

	4. Cryptographic MIME Message Structure
	4.1. Cryptographic Layers
	4.1.1. S/MIME Cryptographic Layers
	4.1.1.1. S/MIME Multipart Signed Cryptographic Layer
	4.1.1.2. S/MIME PKCS7 signed-data Cryptographic Layer
	4.1.1.3. S/MIME PKCS7 enveloped-data Cryptographic Layer
	4.1.1.4. S/MIME PKCS7 authEnveloped-data Cryptographic Layer
	4.1.1.5. PKCS7 Compression is NOT a Cryptographic Layer

	4.1.2. PGP/MIME Cryptographic Layers
	4.1.2.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)
	4.1.2.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

	4.2. Cryptographic Envelope
	4.3. Cryptographic Payload
	4.4. Types of Cryptographic Envelope
	4.4.1. Simple Cryptographic Envelopes
	4.4.2. Multilayer Cryptographic Envelopes

	4.5. Errant Cryptographic Layers
	4.5.1. Mailing List Wrapping
	4.5.2. A Baroque Example

	4.6. Cryptographic Summary

	5. Message Composition
	5.1. Message Composition Algorithm
	5.2. Encryption Outside, Signature Inside
	5.3. Avoid Offering Encrypted-only Messages
	5.4. Composing a Reply Message

	6. Message Interpretation
	6.1. Rendering Well-formed Messages
	6.2. Errant Cryptographic Layers
	6.2.1. Errant Signing Layer
	6.2.1.1. Exception: Mailing List Footers

	6.2.2. Errant Encryption Layer
	6.2.2.1. Replying to a Message with an Errant Encryption Layer

	6.2.3. Avoiding Non-MIME Cryptographic Mechanisms
	6.2.3.1. Do Not Validate Non-MIME Signatures
	6.2.3.2. Skip or Isolate Non-MIME Decryption When Rendering
	6.2.3.3. Do Not Decrypt Non-MIME Decryption when Replying

	6.3. Forwarded Messages with Cryptographic Protection
	6.4. Signature failures
	6.5. Weak Encryption

	7. Reasoning about Message Parts
	7.1. Main Body Part
	7.2. Attachments
	7.3. MIME Part Examples

	8. Certificate Management
	8.1. Peer Certificates
	8.1.1. Peer Certificate Selection

	8.2. Local Certificates
	8.2.1. Getting Certificates for the User
	8.2.1.1. User Certificates for S/MIME
	8.2.1.2. User Certificates for PGP/MIME
	8.2.1.3. Generate Secret Key Material Locally

	8.2.2. Local Certificate Maintenance
	8.2.3. Shipping Certificates in Outbound Messages
	8.2.3.1. Shipping Certificates in S/MIME Messages
	8.2.3.2. Shipping Certificates in PGP/MIME Messages

	9. Common Pitfalls and Guidelines
	9.1. Reading Sent Messages
	9.2. Reading Encrypted Messages after Certificate Expiration
	9.3. Unprotected Message Header Fields
	9.4. Composing an Encrypted Message with Bcc
	9.4.1. Simple Encryption with Bcc
	9.4.1.1. Rationale

	9.5. Draft Messages
	9.6. Composing a Message to Heterogeneous Recipients
	9.7. Message Transport Protocol Proxy: A Dangerous Implementation Choice
	9.7.1. Dangers of a Submission Proxy for Message Composition
	9.7.2. Dangers of an IMAP Proxy for Message Rendering
	9.7.3. Who Controls the Proxy?

	9.8. Intervening MUAs Do Not Handle End-to-End Cryptographic Protections
	9.9. External Subresources in MIME Parts Break Cryptographic Protections

	10. IANA Considerations
	11. Security Considerations
	12. Acknowledgements
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Future Work
	A.1. Webmail Threat Model
	A.2. Test Vectors
	A.3. Further Guidance on Peer Certificates
	A.3.1. Certificate Discovery from Incoming Messages
	A.3.2. Certificate Directories
	A.3.3. Checking for Certificate Revocation
	A.3.4. Further Peer Certificate Selection
	A.3.5. Human-readable Names in Peer Certificates, Header Fields, and Addressbooks

	A.4. Further Guidance on Local Certificates and Secret Keys
	A.4.1. Cross-MUA sharing of Local Certificates and Secret Keys
	A.4.2. Use of Smartcards or Other Portable Secret Key Mechanisms
	A.4.3. Active Local Certificate Maintenance

	A.5. Certification Authorities
	A.6. Indexing and Search of Encrypted Messages
	A.7. Cached Signature Validation
	A.8. Aggregate Cryptographic Status
	A.9. Expectations of Cryptographic Protection
	A.10. Secure Deletion
	A.11. Interaction with Opportunistic Encryption
	A.12. Split Attachments
	A.13. Proxy Extensions
	A.14. Mailing Lists

	Appendix B. Document History
	B.1. Substantive changes from draft-ietf-...-15 to draft-ietf-...-16
	B.2. Substantive changes from draft-ietf-...-14 to draft-ietf-...-15
	B.3. Substantive changes from draft-ietf-...-13 to draft-ietf-...-14
	B.4. Substantive changes from draft-ietf-...-12 to draft-ietf-...-13
	B.5. Substantive changes from draft-ietf-...-11 to draft-ietf-...-12
	B.6. Substantive changes from draft-ietf-...-10 to draft-ietf-...-11
	B.7. Substantive changes from draft-ietf-...-09 to draft-ietf-...-10
	B.8. Substantive changes from draft-ietf-...-08 to draft-ietf-...-09
	B.9. Substantive changes from draft-ietf-...-07 to draft-ietf-...-08
	B.10. Substantive changes from draft-ietf-...-06 to draft-ietf-...-07
	B.11. Substantive changes from draft-ietf-...-05 to draft-ietf-...-06
	B.12. Substantive changes from draft-ietf-...-04 to draft-ietf-...-05
	B.13. Substantive changes from draft-ietf-...-03 to draft-ietf-...-04
	B.14. Substantive changes from draft-ietf-...-02 to draft-ietf-...-03
	B.15. Substantive changes from draft-ietf-...-01 to draft-ietf-...-02
	B.16. Substantive changes from draft-ietf-...-00 to draft-ietf-...-01
	B.17. Substantive changes from draft-dkg-...-01 to draft-ietf-...-00
	B.18. Substantive changes from draft-dkg-...-00 to draft-dkg-...-01

	Authors' Addresses

