
Workgroup: LAMPS Working Group

Internet-Draft:

draft-ietf-lamps-header-protection-03

Published: 22 February 2021

Intended Status: Standards Track

Expires: 26 August 2021

Authors: D.K. Gillmor

American Civil Liberties Union

B. Hoeneisen

pEp Foundation

A. Melnikov

Isode Ltd

Header Protection for S/MIME

Abstract

S/MIME version 3.1 has introduced a feasible standardized option to

accomplish Header Protection. However, few implementations generate

messages using this structure, and several legacy and non-legacy

implementations have revealed rendering issues at the receiving

side. Clearer specifications regarding message processing,

particularly with respect to header sections, are needed in order to

resolve these rendering issues. Some mail user agents are also

sending and receiving cryptographically-protected message headers

using a different structure.

In order to help implementers to correctly compose and render email

messages with Header Protection, this document updates S/MIME Header

Protection specifications with additional guidance on MIME format,

sender and receiver processing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 August 2021.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Two Schemes of Protected Headers

1.2. Problems with Wrapped Messages

1.3. Motivation

1.4. Other Protocols to Protect Email Headers

1.5. Requirements Language

1.6. Terms

2. Problem Statement

2.1. Privacy

2.2. Security

2.3. Usability

2.4. Interoperability

3. Use Cases

3.1. Interactions

3.1.1. Main Use Case

3.1.2. Backward Compatibility Use Cases

3.2. Protection Levels

3.2.1. In-Scope

3.2.2. Out-of-Scope

4. Specification

4.1. Main Use Case

4.1.1. MIME Format

4.1.2. Sending Side

4.1.3. Default Header Confidentiality Policy

4.1.4. Receiving Side

4.2. Backward Compatibility Use Cases

4.2.1. Receiving Side MIME-Conformant

4.2.2. Receiving Side Not MIME-Conformant

5. Usability Considerations

5.1. Mixed Protections Within a Message Are Hard To Understand

5.2. Users Should Not Have To Choose a Header Confidentiality

Policy

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

6. Security Considerations

7. Privacy Considerations

8. IANA Considerations

9. Acknowledgments

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Test Vectors

A.1. Wrapped Message examples

A.1.1. Wrapped Message: signed-only, with PKCS7 signedData

A.1.2. Wrapped Message: signed-only, using multipart/signed

A.1.3. Wrapped Message: signed-and-encrypted

A.2. Injected Headers examples

A.2.1. Injected Headers: signed-only, with PKCS7 signedData

A.2.2. Injected Headers: signed-only, using multipart/signed

A.2.3. Injected Headers: signed-and-encrypted with Legacy

Display part

A.2.4. Injected Headers: signed-and-encrypted without Legacy

Display part

A.3. Messages without Header Protection

A.3.1. Unprotected Headers: signed-only, with PKCS7 signedData

A.3.2. Unprotected Headers: signed-only, using multipart/signed

A.3.3. Unprotected Headers: signed-and-encrypted

Appendix B. Additional information

B.1. Stored Variants of Messages with Bcc

Appendix C. Text Moved from Above

C.1. MIME Format

C.1.1. S/MIME Specification

C.1.2. Sending Side

Appendix D. Document Considerations

Appendix E. Document Changelog

Appendix F. Open Issues

Authors' Addresses

1. Introduction

Privacy and security issues regarding email Header Protection in S/

MIME have been identified for some time. Most current

implementations of cryptographically-protected electronic mail

protect only the body of the message, which leaves significant room

for attacks against otherwise-protected messages. For example, lack

of header protection allows an attacker to substitute the message

subject and/or author.

This document describes two different structures for how message

headers can be cryptographically protected, and provides guidance

for implementers of MUAs that generate and interpret such messages.

It takes particular care to ensure that messages interact reasonably

well with legacy MUAs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.1. Two Schemes of Protected Headers

Unfortunately, there are two different schemes for

cryptographically-protected email headers that may be in use on the

Internet today. This document addresses them both and provides

guidance to implementers.

One scheme is the form specified in S/MIME 3.1 and later, which

involves wrapping a message/rfc822 MIME object with a Cryptographic

Envelope. This document calls this scheme "Wrapped Message", and it

is documented in more detail in [RFC8551]. Experience has shown that

this form does not interact well with some legacy MUAs (see Section

1.2).

Consequently, another form of header protection is produced and

consumed by some MUAs, where the protected headers are placed

directly on the Cryptographic Payload, without using an intervening

message/* MIME object. This document calls this scheme "Injected

Headers", and it is documented in more detail in [I-D.autocrypt-

lamps-protected-headers].

1.2. Problems with Wrapped Messages

Several legacy MUAs have revealed rendering issues when dealing with

a message with headers protected by the Wrapped Message scheme. In

some cases the user sees an attachment suggesting a forwarded email

message, which -- in fact -- contains the protected email message

that should be rendered directly. For these cases, the user can

click on the attachment to view the protected message. However,

there have also been reports of email clients displaying garbled

text, or sometimes nothing at all. In those cases the email clients

on the receiving side are (most likely) not fully MIME-capable.

The following shortcomings have been identified to cause these

issues:

Broken or incomplete implementations

Lack of a simple means to distinguish "forwarded message" and

"wrapped message" (for the sake of Header Protection)

Not enough guidance with respect to handling of Header Fields on

both the sending and the receiving side

1.3. Motivation

Furthermore, the need (technical) Data Minimization, which includes

data sparseness and hiding all technically concealable information,

has grown in importance over the past several years. In addition,

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

backwards compatibility must be considered when it is possible to do

so without compromising privacy and security.

No mechanism for Header Protection has been standardized for PGP/

MIME (Pretty Good Privacy) [RFC3156] yet. PGP/MIME developers have

implemented ad-hoc header-protection, and would like to see a

specification that is applicable to both S/MIME and PGP/MIME.

This document describes the problem statement (Section 2), generic

use cases (Section 3) and the specification for Header Protection

(Section 4) with guidance on MIME format, sender and receiver

processing .

[I-D.ietf-lamps-header-protection-requirements] defines the

requirements that this specification is based on.

This document is in an early draft state and contains a proposal on

which to base future discussions of this topic. In any case, the

final mechanism is to be determined by the IETF LAMPS WG.

1.4. Other Protocols to Protect Email Headers

A range of protocols for the protection of electronic mail (email)

exists, which allows one to assess the authenticity and integrity of

the email headers section or selected Header Fields from the domain-

level perspective, specifically DomainKeys Identified Mail (DKIM)

[RFC6376], as used by Domain-based Message Authentication,

Reporting, and Conformance (DMARC) [RFC7489]. These protocols

provide a domain-based reputation mechanism that can be used to

mitigate some forms of unsolicited email (spam). At the same time,

these protocols can provide a level of cryptographic integrity and

authenticity for some headers, depending on how they are used.

However, integrity protection and proof of authenticity are both

tied to the domain name of the sending e-mail address, not the

sending address itself, so these protocols do not provide end-to-end

protection, and are incapable of providing any form of

confidentiality.

1.5. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

1.6. Terms

The following terms are defined for the scope of this document:

Man-in-the-middle (MITM) attack: cf. [RFC4949], which states: "A

form of active wiretapping attack in which the attacker

¶

¶

¶

¶

¶

¶

¶

¶

*

intercepts and selectively modifies communicated data to

masquerade as one or more of the entities involved in a

communication association."

Note: Historically, MITM has stood for 'Man-in-the-middle'.

However, to indicate that the entity in the middle is not always

a human attacker, MITM can also stand for 'Machine-in-the-middle'

or 'Meddler-in-the-middle'.

S/MIME: Secure/Multipurpose Internet Mail Extensions (cf.

[RFC8551])

PGP/MIME: MIME Security with OpenPGP (cf. [RFC3156])

Message: An Email Message consisting of Header Fields

(collectively called "the Header Section of the message")

followed, optionally, by a Body; cf. [RFC5322].

Note: To avoid ambiguity, this document does not use the terms

"Header" or "Headers" in isolation, but instead always uses

"Header Field" to refer to the individual field and "Header

Section" to refer to the entire collection; cf. [RFC5322].

Header Field (HF): cf. [RFC5322] Header Fields are lines

beginning with a field name, followed by a colon (":"), followed

by a field body (value), and terminated by CRLF.

Header Section (HS): The Header Section is a sequence of lines of

characters with special syntax as defined in [RFC5322]. It is the

(top) section of a Message containing the Header Fields.

Body: The Body is simply a sequence of bytes that follows the

Header Section and is separated from the Header Section by an

empty line (i.e., a line with nothing preceding the CRLF); cf

[RFC5322]. It is the (bottom) section of Message containing the

payload of a Message. Typically, the Body consists of a (possibly

multipart) MIME [RFC2045] construct.

MIME Header Fields: Header Fields describing content of a MIME

entity [RFC2045], in particular the MIME structure. Each MIME

Header Field name starts with "Content-" prefix.

MIME Header Section (part): The collection of MIME Header Fields.

"MIME Header Section" refers to a Header Sections that contains

only MIME Header Fields, whereas "MIME Header Section part"

refers to the MIME Header Fields of a Header Section that - in

addition to MIME Header Fields - also contains non-MIME Header

Fields.

¶

¶

*

¶

* ¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Essential Header Fields (EHF): The minimum set of Header Fields

an Outer Message Header Section SHOULD contain; cf. Appendix C.

1.2.5.

Header Protection (HP): cryptographic protection of email Header

Sections (or parts of it) for signatures and/or encryption

Protection Levels (PL): The level of protection applied to a

Message, e.g. 'signature and encryption' or 'signature only' (cf.

Section 3.2).

Protected: Portions of a message that have had any Protection

Levels applied.

Protected Message: A Message that has had any Protection Levels

applied.

Unprotected: Portions of a Message that has had no Protection

Levels applied.

Unprotected Message: A Message that has had no Protection Levels

applied.

Submission Entity: The entity which executes further processing

of the Message (incl. transport towards the receiver), after

protection measures have been applied to the Message.

Note: The Submission Entity varies among implementations, mainly

depending on the stage where protection measures are applied:

E.g. a Message Submission Agent (MSA) [RFC6409] or another

(proprietary) solution. The latter is particularly relevant, if

protection is implemented as a plugin solution. Some

implementations may determine the destination recipients by

reading the To, Cc and Bcc Header Fields of the Outer Message.

Original Message (OrigM): The Message to be protected before any

protection-related processing has been applied on the sending

side. If the source is not a "message/rfc822" Message, OrigM is

defined as the "virtual" Message that would be constructed for

sending it as unprotected email.

Inner Message (InnerM): The Message to be protected which has had

wrapping and protection measures aapplied on the sending side OR

the resulting Message once decryption and unwrapping on the

receiving side has been performed. Typically, the Inner Message

is in clear text. The Inner Message is a subset of (or the same

as) the Original Message. The Inner Message must be the same on

the sending and the receiving side.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

Outer Message (OuterM): The Message as provided to the Submission

Entity or received from the last hop respectively. The Outer

Message normally differs on the sending and the receiving side

(e.g. new Header Fields are added by intermediary nodes).

Receiving User Facing Message (RUFM): The Message used for

rendering at the receiving side. Typically this is the same as

the Inner Message.

Data Minimization: Data sparseness and hiding of all technically

concealable information whenever possible.

Cryptographic Layer, Cryptographic Payload, Cryptographic

Envelope, Structural Headers, and MUA are all used as defined in

[I-D.dkg-lamps-e2e-mail-guidance]

User-Facing Headers are defined in [I-D.autocrypt-lamps-

protected-headers].

Legacy MUA: a MUA that does not understand protected headers as

described in this document. A Legacy Non-Crypto MUA is incapable

of doing any end-to-end cryptographic operations. A Legacy Crypto

MUA is capable of doing cryptographic operations, but does not

understand or generate protected headers.

Wrapped Message: The protected headers scheme that uses the

mechanism described in [RFC8551], where the Cryptographic Payload

is a message/rfc822 or message/global MIME object.

Injected Headers: The protected headers scheme that uses the

mechanism described in [I-D.autocrypt-lamps-protected-headers],

where the protected headers are inserted on the Cryptographic

Payload directly.

Header Confidentiality Policy: documented in Section 4.1.2.2

2. Problem Statement

The LAMPS charter contains the following Work Item:

Update the specification for the cryptographic protection of

email headers -- both for signatures and encryption -- to improve

the implementation situation with respect to privacy, security,

usability and interoperability in cryptographically-protected

electronic mail. Most current implementations of

cryptographically-protected electronic mail protect only the body

of the message, which leaves significant room for attacks against

otherwise-protected messages.

In the following a set of challenges to be addressed:

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

[[TODO: Enhance this section, add more items to the following.]]

2.1. Privacy

(Technical) Data Minimization, which includes data sparseness and

hiding all technically concealable information whenever possible

2.2. Security

Prevent MITM attacks (cf. [RFC4949])

2.3. Usability

Improved User interaction / User experience, in particular at the

receiving side

2.4. Interoperability

Interoperability with [RFC8551] implementations

3. Use Cases

In the following, the reader can find a list of the generic use

cases that need to be addressed for Messages with Header Protection

(HP). These use cases apply regardless of technology (S/MIME, PGP/

MIME, etc.) used to achieve HP.

3.1. Interactions

The following use cases assume that at least the sending side

supports Header Protection as specified in this document. Receiving

sides that support this specification are expected to be able to

distinguish between Messages that use Header Protection as specified

in this document, and (legacy) Mail User Agents (MUAs) which do not

implement this specification.

[[TODO: Verify once solution is stable and update last sentence.]]

3.1.1. Main Use Case

Both the sending and receiving side (fully) support Header

Protection as specified in this document.

The main use case is specified in Section 4.1.

3.1.2. Backward Compatibility Use Cases

Regarding backward compatibility, the main distinction is based on

whether or not the receiving side conforms to MIME according to

[RFC2046], ff., which in particular also includes Section 2 of

¶

*

¶

* ¶

*

¶

* ¶

¶

¶

¶

¶

¶

[RFC2049] on "MIME Conformance". The following excerpt is

contextually relevant:

[[TODO: The compatibility of legacy HP systems with this new

solution, and how to handle issues surrounding future maintenance

for these legacy systems, will be decided by the LAMPS WG.]]

3.1.2.1. Receiving Side MIME-Conformant

The sending side (fully) supports Header Protection as specified in

this document, while the receiving side does not support this

specification. However, the receiving side is MIME-conformant

according to [RFC2045], ff. (cf. Section 3.1.2).

This use case is specified in Section 4.2.1.

Note: This case should perform as expected if the sending side

applies this specification as outlined in Section 4.1.

[[TODO: Verify once solution is stable and update last sentence.]]

3.1.2.2. Receiving Side Not MIME-Conformant

The sending side (fully) supports Header Protection as specified in

this document, while the receiving side does not support this

¶

 A mail user agent that is MIME-conformant MUST:

 [...]

 -- Recognize and display at least the RFC822 message

 encapsulation (message/rfc822) in such a way as to

 preserve any recursive structure, that is, displaying

 or offering to display the encapsulated data in

 accordance with its media type.

 -- Treat any unrecognized subtypes as if they were

 "application/octet-stream".

 [...]

 An MUA that meets the above conditions is said to be MIME-

 conformant. A MIME-conformant MUA is assumed to be "safe" to

 send virtually any kind of properly-marked data to users of

 such mail systems, because these systems are, at a minimum,

 capable of treating the data as undifferentiated binary, and

 will not simply splash it onto the screen of unsuspecting

 users.

¶

¶

¶

¶

¶

¶

specification. Furthermore, the receiving side is not MIME-

conformant according to [RFC2045], ff. (cf. Section 3.1.2).

This use case is specified in Section 4.2.2.

3.2. Protection Levels

3.2.1. In-Scope

The following Protection Levels are in scope for this document:

a) Signature and encryption

b) Signature only

3.2.2. Out-of-Scope

Legacy implementations, implementations not (fully) compliant with

this document or corner-cases may lead to further Protection Levels

to appear on the receiving side, such as (list not exhaustive):

Triple wrap

Encryption only

Encryption before signature

Signature and encryption, but:

Signature fails to validate

Signature validates but the signing certificate revoked

Signature only, but:

with multiple valid signatures, layered atop each other

These Protection Levels, as well as any further Protection Levels

not listed in Section 3.2.1 are beyond the scope of this document.

4. Specification

This section contains the specification for Header Protection in S/

MIME to update and clarify Section 3.1 of [RFC8551] (S/MIME 4.0).

¶

¶

¶

¶

Messages containing a cryptographic signature, which are also

encrypted.

¶

¶

Messages containing a cryptographic signature, but which are not

encrypted.

¶

¶

* ¶

* ¶

* ¶

* ¶

- ¶

- ¶

* ¶

- ¶

¶

¶

Note: It is likely that PGP/MIME [RFC3156] will also incorporate

this specification or parts of it.

This specification applies to the Protection Levels "signature &

encryption" and "signature only" (cf. Section 3.2):

Sending and receiving sides MUST implement the "signature and

encryption" Protection Level, which SHOULD be used as default on the

sending side.

Certain implementations may decide to send "signature only"

Messages, depending on the circumstances and customer requirements.

Sending sides MAY and receiving sides MUST implement "signature

only" Protection Level.

It generally is NOT RECOMMENDED to send a Message with any other

Protection Level. On the other hand, the receiving side must be

prepared to receive Messages with other Protection Levels.

[[TODO: Further study is necessary to determine whether - and if

yes to what extent - additional guidance for handling messages with

other Protection Levels, e.g. "encryption only" at the receiving

side should be included in this document.]]

4.1. Main Use Case

This section applies to the main use case, where the sending and

receiving side (fully) support Header Protection as specified herein

(cf. Section 3.1.1).

Note: The sending side specification of the main use case is also

applicable to the cases where the sending side (fully) supports

Header Protection as specified herein, while the receiving side does

not, but is MIME-conformant according to [RFC2045], ff. (cf. Section

3.1.2 and Section 3.1.2.1).

Further backward compatibility cases are defined in Section 4.2.

4.1.1. MIME Format

4.1.1.1. Introduction

As per S/MIME version 3.1 and later (cf. [RFC8551]), the sending

client MAY wrap a full MIME message in a message/RFC822 wrapper in

order to apply S/MIME security services to these header fields.

To help the receiving side to distinguish between a forwarded and a

wrapped message, the Content-Type header field parameter "forwarded"

is added as defined in [I-D.melnikov-iana-reg-forwarded].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The simplified (cryptographic overhead not shown) MIME structure of

such an Email Message looks as follows:

The following example demonstrates how an Original Message might be

protected, i.e., the Original Message is contained as Inner Message

in the Protected Body of an Outer Message. It illustrates the first

Body part (of the Outer Message) as a "multipart/signed"

(application/pkcs7-signature) media type:

Lines are prepended as follows:

"O: " Outer Message Header Section

"I: " Message Header Section

"W: " Wrapper (MIME Header Section)

¶

 <Outer Message Header Section (unprotected)>

 <Outer Message Body (protected)>

 <MIME Header Section (wrapper)>

 <Inner Message Header Section>

 <Inner Message Body>

¶

¶

¶

* ¶

* ¶

* ¶

The Outer Message Header Section is unprotected, while the remainder

(Outer Message Body) is protected. The Outer Message Body consists

of the wrapper (MIME Header Section) and the Inner Message (Header

Section and Body).

The wrapper is a simple MIME Header Section with media type

"message/rfc822" containing a Content-Type header field parameter

"forwarded=no" followed by an empty line.

If the source is an Original (message/rfc822) Message, the Inner

Message Header Section is typically the same as (or a subset of) the

Original Message Header Section, and the Inner Message Body is

typically the same as the Original Message Body.

The Inner Message itself may contain any MIME structure.

 O: Date: Mon, 25 Sep 2017 17:31:42 +0100 (GMT Daylight Time)

 O: Message-ID: <e4a483cb-1dfb-481d-903b-298c92c21f5e@m.example.net>

 O: Subject: Meeting at my place

 O: From: "Alexey Melnikov" <alexey.melnikov@example.net>

 O: To: somebody@example.net

 O: MIME-Version: 1.0

 O: Content-Type: multipart/signed; charset=us-ascii; micalg=sha1;

 O: protocol="application/pkcs7-signature";

 O: boundary=boundary-AM

 This is a multipart message in MIME format.

 --boundary-AM

 W: Content-Type: message/RFC822; forwarded=no

 W:

 I: Date: Mon, 25 Sep 2017 17:31:42 +0100 (GMT Daylight Time)

 I: From: "Alexey Melnikov" <alexey.melnikov@example.net>

 I: Message-ID: <e4a483cb-1dfb-481d-903b-298c92c21f5e@m.example.net>

 I: MIME-Version: 1.0

 I: MMHS-Primary-Precedence: 3

 I: Subject: Meeting at my place

 I: To: somebody@example.net

 I: X-Mailer: Isode Harrier Web Server

 I: Content-Type: text/plain; charset=us-ascii

 This is an important message that I don't want to be modified.

 --boundary-AM

 Content-Transfer-Encoding: base64

 Content-Type: application/pkcs7-signature

 [[base-64 encoded signature]]

 --boundary-AM--

¶

¶

¶

¶

¶

Note: It is still to be decided by the LAMPS WG whether or not to

recommend an alternative MIME format as described in Appendix C.

1.1.1 (instead of the currently standardized and above defined

format).

4.1.2. Sending Side

This section describes the process an MUA should use to apply

cryptographic protection to an e-mail message with header

protection. We start by describing the legacy message composition

process as a baseline.

4.1.2.1. Composing a Cryptographically-Protected Message Without

Header Protection

[I-D.dkg-lamps-e2e-mail-guidance] describes the typical process for

a legacy crypto MUA to apply cryptographic protections to an e-mail

message. That guidance and terminology is replicated here for

reference:

origbody: the traditional unprotected message body as a well-

formed MIME tree (possibly just a single MIME leaf part). As a

well-formed MIME tree, origbody already has structural headers

(Content-*) present.

origheaders: the intended non-structural headers for the message,

represented here as a list of (h,v) pairs, where h is a header

field name and v is the associated value. Note that these are

header fields that the MUA intends to be visible to the recipient

of the message. In particular, if the MUA uses the Bcc header

during composition, but plans to omit it from the message (see

section 3.6.3 of [RFC5322]), it will not be in origheaders.

crypto: The series of cryptographic protections to apply (for

example, "sign with the secret key corresponding to X.509

certificate X, then encrypt to X.509 certificates X and Y"). This

is a routine that accepts a MIME tree as input (the Cryptographic

Payload), wraps the input in the appropriate Cryptographic

Envelope, and returns the resultant MIME tree as output.

The algorithm returns a MIME object that is ready to be injected

into the mail system:

Apply crypto to origbody, yielding MIME tree output

For each header name and value (h,v) in origheaders:

Add header h of output with value v

Return output

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

- ¶

* ¶

4.1.2.2. Header Confidentiality Policy

When composing an encrypted message with protected headers, the

composing MUA needs a Header Confidentialiy Policy. In this

document, we represent that Header Confidentiality Policy as a

function hcp:

hcp(name, val_in) --> val_out: this function takes a header field

name name and initial value val_in as arguments, and returns a

replacement header value val_out. If val_out is the special value

null, it mean that the header in question should be omitted from

the set of headers visible outside the Cryptographic Envelope.

For example, an MUA that only obscures the Subject header field by

replacing it with the literal string [...] and does not offer

confidentiality to any other header fields would be represented as

(in pseudocode):

hcp(name, val_in) --> val_out: if name is 'Subject': return '[...]'

else: return val_in

Note that such a policy is only needed when the end-to-end

protections include encryption (confidentiality). No comparable

policy is needed for other end-to-end cryptographic protections

(integrity and authenticity), as they are simply uniformly applied

so that all header fields known by the sender have these

protections.

This asymmetry is an unfortunate consequence of complexities in

message delivery systems, some of which may reject, drop, or delay

messages where all headers are removed from the top-level MIME

object.

This document does not mandate any particular Header Confidentiality

Policy, though it offers guidance for MUA implementers in selecting

one in Section 4.1.3. Future documents may recommend or mandate such

a policy for an MUA with specific needs. Such a recommendation might

be motivated by descriptions of metadata-derived attacks, or stem

from research about message deliverability, or describe new

signalling mechanisms, but these topics are out of scope for this

document.

4.1.2.3. Composing with "Wrapped Message" Header Protection

To compose a message using "Wrapped Message" header protection, we

use those inputs described in Section 4.1.2.1 plus the Header

¶

*

¶

¶

¶

¶

¶

¶

Confidentiality Policy hcp defined in Section 4.1.2.2. The new

algorithm is:

For header name and value (h,v) in origheaders:

Add header h of origbody with value v

If any of the header fields in origbody, including headers in the

nested internal MIME structure, contain any 8-bit UTF-8

characters (see section section 3.7 of [RFC6532]):

Let payload be a new MIME part with one header: Content-Type:

message/global; forwarded=no, and whose body is origbody.

Else:

Let payload be a new MIME part with one header: Content-Type:

message/rfc822; forwarded=no, and whose body is origbody.

Apply crypto to payload, yielding MIME tree output

If crypto contains encryption:

Create new empty list of header field names and values newh

For header name and value (h,v) in origheaders:

Let newval be hcp(h, v)

If newval is not null:

Append (h,newval) to newh

Set origheaders to newh

For header name and value (h,v) in origheaders:

Add header h of output with value v

Return output

Note that the Header Confidentiality Policy hcp is ignored if crypto

does not contain encryption. This is by design.

¶

* ¶

- ¶

*

¶

-

¶

* ¶

-

¶

* ¶

* ¶

- ¶

- ¶

o ¶

o ¶

o ¶

- ¶

* ¶

- ¶

* ¶

¶

4.1.2.4. Composing with "Injected Headers" Header Protection

To compose a message using "Injected Headers" header protection, the

composing MUA needs one additional input in addition to the Header

Confidentiality Policy hcp defined in Section 4.1.2.2.

legacy: a boolean value, indicating whether any recipient of the

message is believed to have a legacy client. If all recipients

are known to implement this draft, legacy should be set to false.

(How a MUA determines the value of legacy is out of scope for

this document; an initial implementation can simply set it to

true)

The revised algorithm for applying cryptographic protection to a

message is as follows:

Create a new MIME leaf part legacydisplay with header Content-

Type: text/plain; protected-headers="v1" and an empty body.

if crypto contains encryption, and legacy is true:

For each header name and value (h,v) in origheaders:

If h is user-facing (see [I-D.autocrypt-lamps-protected-

headers]):

If hcp(h,v) is not v:

Add h: v to the body of legacydisplay. For example,

if h is Subject, and v is lunch plans?, then add the

line Subject: lunch plans? to the body of

legacydisplay

If the body of legacydisplay is empty:

Let payload be MIME part origbody, discarding legacydisplay

Else: (body of legacydisplay is not empty)

Construct a new MIME part wrapper with Content-Type:

multipart/mixed

Give wrapper exactly two subparts: legacydisplay and origbody,

in that order.

Let payload be MIME part wrapper

For each header name and value (h,v) in origheaders:

Add header h of MIME part payload with value v

¶

*

¶

¶

*

¶

* ¶

- ¶

o

¶

o ¶

o

¶

* ¶

- ¶

* ¶

-

¶

-

¶

- ¶

* ¶

- ¶

Set the protected-headers parameter on the Content-Type of

payload to v1

Apply crypto to payload, producing MIME tree output

If crypto contains encryption:

Create new empty list of header field names and values newh

For header name and value (h,v) in origheaders:

Let newval be hcp(h, v)

If newval is not null:

Add newh[h] to newval

Set origheaders to newh

For each header name and value (h,v) in origheaders:

Add header h of output with value v

Return output

Note that both new parameters (hcp and legacy) are effectively

ignored if crypto does not contain encryption. This is by design,

because they are irrelevant for signed-only cryptographic

protections.

4.1.2.5. Choosing Between Wrapped Message and Injected Headers

When composing a message with end-to-end cryptographic protections,

an MUA SHOULD protect the headers of that message as well as the

body.

An MUA MAY protect the headers of any outbound message using either

the "Wrapped Message" or the "Injected Headers" style of protection.

See Section 4.2 for more discussion about reasons to choose one

mechanism or another.

[[TODO: this document should recommend generation of one particular

scheme by default for new implementers]]

4.1.3. Default Header Confidentiality Policy

An MUA SHOULD have a sensible default Header Confidentiality Policy,

and SHOULD NOT require the user to select one.

*

¶

* ¶

* ¶

- ¶

- ¶

o ¶

o ¶

o ¶

- ¶

* ¶

- ¶

* ¶

¶

¶

¶

¶

¶

The default Header Confidentiality Policy SHOULD provide

confidentiality for the Subject header field by replacing it with

the literal string [...]. Most users treat the Subject of a message

the same way that they treat the body, and they are surprised to

find that the Subject of an encrypted message is visible.

[[TODO: select one of the two policies below the recommended

default]]

4.1.3.1. Minimalist Header Confidentiality Policy

Accordingly, the most conservative recommended Header

Confidentiality Policy only protects the Subject:

hcp_minimal(name, val_in) --> val_out: if name is 'Subject': return

'[...]' else: return val_in

4.1.3.2. Strong Header Confidentiality Policy

Alternately, a more aggressive (and therefore more privacy-

preserving) Header Confidentiality Policy only leaks a handful of

fields whose absence is known to increase rates of delivery failure,

and simultaneously obscures the Message-ID behind a random new one:

hcp_strong(name, val_in) --> val_out: if name in ['From', 'To',

'Cc', 'Date']: return val_in else if name is 'Subject': return

'[...]' else if name is 'Message-ID': return

generate_new_message_id() else: return null

The function generate_new_message_id() represents whatever process

the MUA typically uses to generate a Message-ID for a new outbound

message.

4.1.3.3. Offering Stronger Header Confidentiality

A MUA MAY offer even stronger confidentiality for headers of an

encrypted message than described in Section 4.1.3.2. For example, it

might implement an HCP that obfuscates the From field, or omits the

Cc field, or ensures Date is represented in UTC (obscuring the local

timezone).

The authors of this document hope that implementers with deployment

experience will document their chosen Header Confidentiality Policy

and the rationale behind their choice.

4.1.4. Receiving Side

An MUA that receives a cryptographically-protected e-mail will

render it for the user.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The receiving MUA will render the message body, a selected subset of

header fields, and (as described in [I-D.dkg-lamps-e2e-mail-

guidance]) provide a summary of the cryptographic properties of the

message.

Most MUAs only render a subset of header fields by default. For

example, few MUAs typically render Message-Id or Received header

fields for the user, but most do render From, To, Cc, Date, and

Subject.

A MUA that knows how to handle a message with protected headers

makes the following two changes to its behavior when rendering a

message:

If it detects that an incoming message had protected headers, it

renders header fields for the message from the protected headers,

ignoring the external (unprotected) headers.

It includes information in the message's cryptographic summary to

indicate the types of protection that applied to each rendered

header field (if any).

A MUA that handles protected headers does not need to render any new

header fields that it did not render before.

4.1.4.1. Identifying that a Message has Protected Headers

An incoming message can be identified as having protected headers

based on one of two signals:

The Cryptographic Payload has Content-Type: message/rfc822 or

Content-Type: message/global and the parameter forwarded has a

value of no. See Section 4.1.4.3 for rendering guidance.

The Cryptographic Payload has some other Content-Type and it has

parameter protected-headers set to v1. See Section 4.1.4.4 for

rendering guidance.

Messages of both types exist in the wild, and a sensible MUA should

be able to handle them both. They provide the same semantics and the

same meaning.

4.1.4.2. Updating the Cryptographic Summary

Regardless of whether a cryptographically-protected message has

protected headers, the cryptographic summary of the message should

be modified to indicate what protections the headers have.

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

¶

Each header individually has exactly one the following protections:

unprotected (this is the case for all headers in messages that

have no protected headers)

signed-only (bound into the same validated signature as the

enclosing message, but also visible in transit)

encrypted-only (only appears within the cryptographic payload;

the corresponding external header was either omitted or

obfuscated)

encrypted-and-signed (same as encrypted, but additionally is

under a validatd signature)

Note that while the message itself may be encrypted-and-signed, some

headers may be replicated on the outside of the message (e.g. Date)

Those headers would be signed-only, despite the message itself

being encrypted-and-signed.

Rendering this information is likely to be complex and messy ---

users may not understand it. It is beyond the scope of this document

to suggest any specific graphical affordances or user experience.

Future work should include examples of successful rendering of this

information.

4.1.4.3. Rendering a Wrapped Message

When the Cryptographic Payload has Content-Type of message/rfc822 or

message/global, and the parameter forwarded is set to no, the values

of the protected headers are drawn from the headers of the

Cryptographic Payload, and the body that is rendered is the body of

the Cryptographic Payload.

4.1.4.3.1. Example Signed-Only Wrapped Message

Consider a message with this structure, where the MUA is able to

validate the cryptographic signature:

The message body should be rendered the same way as this message:

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

A └─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
B └┬╴message/rfc822 [Cryptographic Payload]
C └┬╴multipart/alternative [Rendered Body]
D ├─╴text/plain
E └─╴text/html

¶

¶

It should render header fields taken from part C.

Its cryptographic summary should indicates that the message was

signed and all rendered header fields were included in the

signature.

The MUA SHOULD ignore header fields from part A for the purposes of

rendering.

4.1.4.3.2. Example Encrypted-and-Signed Wrapped Message

Consider a message with this structure, where the MUA is able to

validate the cryptographic signature:

The message body should be rendered the same way as this message:

It should render headers taken from part I.

Its cryptographic summary should indicates that the message was

signed and encrypted. Each rendered header field found in I should

be compared against the header field of the same name from F. If the

value found in F matches the value found in I, the header field

should be marked as signed-only. If no matching header field was

found in F, or the value found did not match the value from I, the

header field should be marked as signed-and-encrypted.

4.1.4.4. Rendering a Message with Injected Headers

When the Cryptographic Payload does not have a Content-Type of

message/rfc822 or message/global, and the parameter protected-

headers is set to v1, the values of the protected headers are drawn

from the headers of the Cryptographic Payload, and the body that is

rendered is the Cryptographic Payload itself.

C └┬╴multipart/alternative
D ├─╴text/plain
E └─╴text/html

¶

¶

¶

¶

¶

F └─╴application/pkcs7-mime; smime-type="enveloped-data"
 ↧ (decrypts to)
G └─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
H └┬╴message/rfc822 [Cryptographic Payload]
I └┬╴multipart/alternative [Rendered Body]
J ├─╴text/plain
K └─╴text/html

¶

¶

I └┬╴multipart/alternative
J ├─╴text/plain
K └─╴text/html

¶

¶

¶

¶

4.1.4.4.1. Example Signed-only Message with Injected Headers

The message body should be rendered the same way as this message:

It should render header fieldss taken from part M.

Its cryptographic summary should indicates that the message was

signed and all rendered header fields were included in the

signature.

The MUA SHOULD ignore header fields from part L for the purposes of

rendering.

4.1.4.4.2. Example Signed-and-Encrypted Message with Injected Headers

Consider a message with this structure, where the MUA is able to

validate the cryptographic signature:

The message body should be rendered the same way as this message:

It should render headers taken from part R.

Its cryptographic summary should indicates that the message was

signed and encrypted. As in Section 4.1.4.3.2, each rendered header

field found in R should be compared against the header field of the

same name from P. If the value found in P matches the value found in

R, the header field should be marked as signed-only. If no matching

header field was found in P, or the value found did not match the

L └─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
M └┬╴multipart/alternative [Cryptographic Payload + Rendered Body]
N ├─╴text/plain
O └─╴text/html

¶

¶

M └┬╴multipart/alternative
N ├─╴text/plain
O └─╴text/html

¶

¶

¶

¶

¶

P └─╴application/pkcs7-mime; smime-type="enveloped-data"
 ↧ (decrypts to)
Q └─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
R └┬╴multipart/alternative [Cryptographic Payload + Rendered Body]
S ├─╴text/plain
T └─╴text/html

¶

¶

R └┬╴multipart/alternative
S ├─╴text/plain
T └─╴text/html

¶

¶

value from R, the header field should be marked as signed-and-

encrypted.

4.1.4.4.3. Do Not Render Legacy Display Part

As described [I-D.autocrypt-lamps-protected-headers], a message with

cryptographic confidentiality protection MAY include a "Legacy

Display" part for backward-compatibility with legacy MUAs

The receiving MUA SHOULD avoid rendering the Legacy Display part to

the user at all, since it is aware of and can render the actual

Protected Headers.

If a Legacy Display part is detected, it and its enclosing

multipart/mixed wrapper should be discarded before rendering.

4.1.4.4.3.1. Legacy Display Detection Algorithm

A receiving MUA acting on a message SHOULD detect the presence of a

Legacy Display part and the corresponding "original body" with the

following simple algorithm:

Check that all of the following are true for the message:

The Cryptographic Envelope must contain an encrypting

Cryptographic Layer

The Cryptographic Payload must have a Content-Type of multipart/

mixed

The Cryptographic Payload must have exactly two subparts

The first subpart of the Cryptographic Payload must have a

Content-Type of text/plain or text/rfc822-headers

The first subpart of the Cryptographic Payload's Content-Type

must contain a property of protected-headers, and its value must

be v1.

If all of the above are true, then the first subpart is the

Legacy Display part, and the second subpart is the "original

body". Otherwise, the message does not have a Legacy Display

part.

4.1.4.4.3.2. Legacy Display Example

Consider a message with this structure, where the MUA is able to

validate the cryptographic signature:

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

The message body should be rendered the same way as this message,

effectively hiding the Legacy Display part (X) and its wrapper:

It should render headers taken from part W, following the same

guidance as in Section 4.1.4.4.2 and Section 4.1.4.3.2 about the

cryptographic status of each rendered header field.

4.1.4.5. Affordances for Debugging and Troubleshooting

Note that advanced users of an MUA may need access to the original

message, for example to troubleshoot problems with the MUA itself,

or problems with the SMTP transport path taken by the message.

A MUA that applies these rendering guidelines SHOULD ensure that the

full original source of the message as it was received remains

available to such a user for debugging and troubleshooting.

4.1.4.6. Composing a Reply to an Encrypted Message with Protected

Headers

When composing a reply to an encrypted message with protected

headers, the MUA is acting both as a receiving MUA and as a sending

MUA. Special guidance applies here, as things can go wrong in at

least two ways: leaking previously-confidential information, and

replying to the wrong party.

4.1.4.6.1. Avoid Leaking Encrypted Headers in Reply

As noted in [I-D.dkg-lamps-e2e-mail-guidance], an MUA in this

position MUST NOT leak previously-encrypted content in the clear in

a followup message. The same is true for protected headers.

Values from any header field that was identified as either encrypted

or signed-and-encrypted based on the steps outlined above MUST NOT

be placed in cleartext output when generating a message.

U └─╴application/pkcs7-mime; smime-type="enveloped-data"
 ↧ (decrypts to)
V └─╴application/pkcs7-mime; smime-type="signed-data"
 ⇩ (unwraps to)
W └┬╴multipart/mixed [Cryptographic Payload]
X ├─╴text/plain [Legacy Display]
Y └┬╴multipart/alternative [Rendered Body]
Z ├─╴text/plain
A' └─╴text/html

¶

¶

Y └┬╴multipart/alternative
Z ├─╴text/plain
A' └─╴text/html

¶

¶

¶

¶

¶

¶

¶

In particular, if Subject was encrypted, and it is copied into the

draft encrypted reply, the replying MUA MUST obfuscate the Subject

field in the cleartext header as described above.

[[TODO: formally describe how a replying MUA should generate a

message-specific Header Protection policy based on the cryptographic

status of the headers of the incoming message]]

4.1.4.6.2. Avoid Misdirected Replies to Encrypted Messages with
Protected Headers

When replying to a message, the Composing MUA typically decides who

to send the reply to based on:

the Reply-To, Mail-Followup-To, or From headers

optionally, the other To or Cc headers (if the user chose to

"reply all")

When a message has protected headers, the replying MUA MUST populate

the destination fields of the draft message using the protected

headers, and ignore any unprotected headers.

This mitigates against an attack where Mallory gets a copy of an

encrypted message from Alice to Bob, and then replays the message to

Bob with an additional Cc to Mallory's own e-mail address in the

message's outer header.

If Bob knows Mallory's certificate already, and he replies to such a

message without following the guidance in this section, it's likely

that his MUA will encrypt the cleartext of the message directly to

Mallory.

4.1.4.7. Implicitly-rendered Header Fields

While From and To and Cc and Subject and Date are often explicitly

rendered to the user, some header fields do affect message display,

without being explicitly rendered.

For example, Message-Id, References, and In-Reply-To header fields

may collectively be used to place a message in a "thread" or series

of messages.

In another example, Section 4.1.4.6.2 observes that the value of the

Reply-To field can influence the draft reply message. So while the

user may never see the Reply-To header directly, it is implicitly

"rendered" when the user interacts with the message by replying to

it.

¶

¶

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

An MUA that depends on any implicitly-rendered header field in a

message with protected headers SHOULD use the value from the

protected header, and SHOULD NOT use any value found outside the

cryptographic protection.

4.1.4.8. Unprotected Headers Added in Transit

Some headers are legitimately added in transit, and could not have

been known to the sender at message composition time.

The most common of these headers are Received and DKIM-Signature,

neither of which are typically rendered, either explicitly or

implicitly.

If a receiving MUA has specific knowledge about a given header

field, including that:

the header field would not have been known to the original

sender, and

the header field might be rendered explicitly or implicitly,

then the MUA MAY decide to operate on the value of that header field

from the unprotected header section, even though the message has

protected headers.

The MUA MAY prefer to verify that the headers in question have

additional transit-derived cryptographic protections (e.g., to test

whether they are covered by a valid DKIM-Signature) before rendering

or acting on them.

Specific examples appear below.

4.1.4.8.1. Mailing list headers: List-* and Archived-At

If the message arrives through a mailing list, the list manager

itself may inject headers (most of which start with List-) in the

message:

List-Archive

List-Subscribe

List-Unsubscribe

List-Id

List-Help

List-Post

¶

¶

¶

¶

*

¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Archived-At

For some MUAs, these headers are implicitly rendered, by providing

buttons for actions like "Subscribe", "View Archived Version",

"Reply List", "List Info", etc.

An MUA that receives a message with protected headers that contains

these header fields in the unprotected section, and that has reason

to believe the message is coming through a mailing list MAY decide

to render them to the user (explicitly or implicitly) even though

they are not protected.

FIXME: other examples of unprotected transit headers?

4.2. Backward Compatibility Use Cases

4.2.1. Receiving Side MIME-Conformant

This section applies to the case where the sending side (fully)

supports Header Protection as specified in this document, while the

receiving side does not support this specification, but is MIME-

conformant according to [RFC2045], ff. (cf. Section 3.1.2 and

Section 3.1.2.1)

The sending side specification of the main use case (cf. Section

4.1) MUST ensure that receiving sides can still recognize and

display or offer to display the encapsulated data in accordance with

its media type (cf. [RFC2049], Section 2). In particular, receiving

sides that do not support this specification, but are MIME-

conformant according to [RFC2045], ff. can still recognize and

display the Message intended for the user.

[[TODO: Verify once solution is stable and update last sentence.]]

4.2.2. Receiving Side Not MIME-Conformant

This section applies to cases where the sending side (fully)

supports Header Protection as specified in this document, while the

receiving side neither supports this specification nor is MIME-

conformant according to [RFC2045], ff. (cf. Section 3.1.2 and

Section 3.1.2.2).

[I-D.autocrypt-lamps-protected-headers] describes a possible way to

achieve backward compatibility with existing S/MIME (and PGP/MIME)

implementations that predate this specification and are not MIME-

conformant (Legacy Display) either. It mainly focuses on email

clients that do not render emails which utilize header protection in

a user friendly manner, which may confuse the user. While this has

been observed occasionally in PGP/MIME (cf. [RFC3156]), the extent

of this problem with S/MIME implementations is still unclear. (Note:

* ¶

¶

¶

¶

¶

¶

¶

¶

At this time, none of the samples in [I-D.autocrypt-lamps-protected-

headers] apply header protection as specified in Section 3.1 of

[RFC8551], which is wrapping as Media Type "message/RFC822".)

Should serious backward compatibility issues with rendering at the

receiving side be discovered, the Legacy Display format described in

[I-D.autocrypt-lamps-protected-headers] may serve as a basis to

mitigate those issues (cf. Section 4.2).

Another variant of backward compatibility has been implemented by

pEp [I-D.pep-email], i.e. pEp Email Format 1.0. At this time pEp has

implemented this for PGP/MIME, but not yet S/MIME.

5. Usability Considerations

This section describes concerns for MUAs that are interested in easy

adoption of header protection by normal users.

While they are not protocol-level artifacts, these concerns motivate

the protocol features described in this document.

See also the Usability section in [I-D.dkg-lamps-e2e-mail-guidance].

5.1. Mixed Protections Within a Message Are Hard To Understand

[[TODO]]

5.2. Users Should Not Have To Choose a Header Confidentiality Policy

[[TODO]]

6. Security Considerations

[[TODO]]

7. Privacy Considerations

[[TODO]]

8. IANA Considerations

This document requests no action from IANA.

[[RFC Editor: This section may be removed before publication.]]

9. Acknowledgments

The authors would like to thank the following people who have

provided helpful comments and suggestions for this document: Berna

Alp, Claudio Luck, David Wilson, Hernani Marques, juga, Krista

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.dkg-lamps-e2e-mail-guidance]

[I-D.ietf-lamps-header-protection-requirements]

[RFC2045]

[RFC2046]

[RFC2049]

[RFC2119]

[RFC5322]

[RFC8551]

Bennett, Kelly Bristol, Lars Rohwedder, Robert Williams, Russ

Housley, Sofia Balicka, Steve Kille, Volker Birk, and Wei Chuang.

10. References

10.1. Normative References

Gillmor, D. K., "Guidance on End-to-End E-mail Security",

Work in Progress, Internet-Draft, draft-dkg-lamps-e2e-

mail-guidance-01, 22 February 2021, <https://

www.ietf.org/archive/id/draft-dkg-lamps-e2e-mail-

guidance-01.txt>.

Melnikov, A. and B. Hoeneisen, "Problem Statement and

Requirements for Header Protection", Work in Progress,

Internet-Draft, draft-ietf-lamps-header-protection-

requirements-01, 29 October 2019, <https://www.ietf.org/

archive/id/draft-ietf-lamps-header-protection-

requirements-01.txt>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message

Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

<https://www.rfc-editor.org/info/rfc2045>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Five: Conformance Criteria and

Examples", RFC 2049, DOI 10.17487/RFC2049, November 1996,

<https://www.rfc-editor.org/info/rfc2049>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

¶

https://www.ietf.org/archive/id/draft-dkg-lamps-e2e-mail-guidance-01.txt
https://www.ietf.org/archive/id/draft-dkg-lamps-e2e-mail-guidance-01.txt
https://www.ietf.org/archive/id/draft-dkg-lamps-e2e-mail-guidance-01.txt
https://www.ietf.org/archive/id/draft-ietf-lamps-header-protection-requirements-01.txt
https://www.ietf.org/archive/id/draft-ietf-lamps-header-protection-requirements-01.txt
https://www.ietf.org/archive/id/draft-ietf-lamps-header-protection-requirements-01.txt
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2049
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322

[I-D.autocrypt-lamps-protected-headers]

[I-D.dkg-lamps-samples]

[I-D.melnikov-iana-reg-forwarded]

[I-D.pep-email]

[pEp.mixnet]

[RFC3156]

[RFC4949]

[RFC6376]

[RFC6409]

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

10.2. Informative References

Einarsson, B. R., juga, and D. K. Gillmor, "Protected

Headers for Cryptographic E-mail", Work in Progress,

Internet-Draft, draft-autocrypt-lamps-protected-

headers-02, 20 December 2019, <https://www.ietf.org/

archive/id/draft-autocrypt-lamps-protected-

headers-02.txt>.

Gillmor, D. K., "S/MIME Example Keys and

Certificates", Work in Progress, Internet-Draft, draft-

dkg-lamps-samples-05, 18 February 2021, <https://

www.ietf.org/archive/id/draft-dkg-lamps-samples-05.txt>.

Melnikov, A. and B. Hoeneisen, "IANA Registration of

Content-Type Header Field Parameter 'forwarded'", Work in

Progress, Internet-Draft, draft-melnikov-iana-reg-

forwarded-00, 4 November 2019, <https://www.ietf.org/

archive/id/draft-melnikov-iana-reg-forwarded-00.txt>.

Marques, H., "pretty Easy privacy (pEp): Email

Formats and Protocols", Work in Progress, Internet-Draft,

draft-pep-email-01, 2 November 2020, <https://

www.ietf.org/archive/id/draft-pep-email-01.txt>.

pEp Foundation, "Mixnet", June 2020, <https://

dev.pep.foundation/Mixnet>.

Elkins, M., Del Torto, D., Levien, R., and T. Roessler,

"MIME Security with OpenPGP", RFC 3156, DOI 10.17487/

RFC3156, August 2001, <https://www.rfc-editor.org/info/

rfc3156>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/info/rfc4949>.

Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,

"DomainKeys Identified Mail (DKIM) Signatures", STD 76,

RFC 6376, DOI 10.17487/RFC6376, September 2011, <https://

www.rfc-editor.org/info/rfc6376>.

Gellens, R. and J. Klensin, "Message Submission for

Mail", STD 72, RFC 6409, DOI 10.17487/RFC6409, November

2011, <https://www.rfc-editor.org/info/rfc6409>.

https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.ietf.org/archive/id/draft-autocrypt-lamps-protected-headers-02.txt
https://www.ietf.org/archive/id/draft-autocrypt-lamps-protected-headers-02.txt
https://www.ietf.org/archive/id/draft-autocrypt-lamps-protected-headers-02.txt
https://www.ietf.org/archive/id/draft-dkg-lamps-samples-05.txt
https://www.ietf.org/archive/id/draft-dkg-lamps-samples-05.txt
https://www.ietf.org/archive/id/draft-melnikov-iana-reg-forwarded-00.txt
https://www.ietf.org/archive/id/draft-melnikov-iana-reg-forwarded-00.txt
https://www.ietf.org/archive/id/draft-pep-email-01.txt
https://www.ietf.org/archive/id/draft-pep-email-01.txt
https://dev.pep.foundation/Mixnet
https://dev.pep.foundation/Mixnet
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc6409

[RFC6532]

[RFC7489]

Yang, A., Steele, S., and N. Freed, "Internationalized

Email Headers", RFC 6532, DOI 10.17487/RFC6532, February

2012, <https://www.rfc-editor.org/info/rfc6532>.

Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based

Message Authentication, Reporting, and Conformance

(DMARC)", RFC 7489, DOI 10.17487/RFC7489, March 2015,

<https://www.rfc-editor.org/info/rfc7489>.

Appendix A. Test Vectors

This section contains sample messages using the different schemes

described in this document. Each sample contains a MIME object, and

examples of how an MUA might render it.

The cryptographic protections used in this document use the S/MIME

standard, and keying material and certificates come from [I-D.dkg-

lamps-samples].

For the signed-and-encrypted messages, only the Subject header is

obscured.

A.1. Wrapped Message examples

The examples in this subsection use the "Wrapped Message" header

protection scheme.

A.1.1. Wrapped Message: signed-only, with PKCS7 signedData

[[TODO]]

A.1.2. Wrapped Message: signed-only, using multipart/signed

[[TODO]]

A.1.3. Wrapped Message: signed-and-encrypted

[[TODO]]

A.2. Injected Headers examples

The examples in this subsection use the "Injected Headers" header

protection scheme.

A.2.1. Injected Headers: signed-only, with PKCS7 signedData

[[TODO]]

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc6532
https://www.rfc-editor.org/info/rfc7489

A.2.2. Injected Headers: signed-only, using multipart/signed

[[TODO]]

A.2.3. Injected Headers: signed-and-encrypted with Legacy Display part

[[TODO]]

A.2.4. Injected Headers: signed-and-encrypted without Legacy Display

part

[[TODO]]

A.3. Messages without Header Protection

The examples in this subsection have cryptographic protection, but

no header protection. They are provided in this document as a

counterexample. An MUA implementer can use these messages to verify

that the reported cryptographic summary of the message indicates no

header protection.

A.3.1. Unprotected Headers: signed-only, with PKCS7 signedData

[[TODO]]

A.3.2. Unprotected Headers: signed-only, using multipart/signed

[[TODO]]

A.3.3. Unprotected Headers: signed-and-encrypted

[[TODO]]

Appendix B. Additional information

B.1. Stored Variants of Messages with Bcc

Messages containing at least one recipient address in the Bcc header

field may appear in up to three different variants:

The Message for the recipient addresses listed in To or Cc

header fields, which must not include the Bcc header field

neither for signature calculation nor for encryption.

The Message(s) sent to the recipient addresses in the Bcc

header field, which depends on the implementation:

a) One Message for each recipient in the Bcc header field

separately, with a Bcc header field containing only the address

of the recipient it is sent to.

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

¶

b) The same Message for each recipient in the Bcc header field

with a Bcc header field containing an indication such as

"Undisclosed recipients", but no addresses.

c) The same Message for each recipient in the Bcc header field

which does not include a Bcc header field (this Message is

identical to 1. / cf. above).

The Message stored in the 'Sent'-Folder of the sender, which

usually contains the Bcc unchanged from the original Message,

i.e., with all recipient addresses.

The most privacy preserving method of the alternatives (2a, 2b, and

2c) is to standardize 2a, as in the other cases (2b and 2c),

information about hidden recipients is revealed via keys. In any

case, the Message has to be cloned and adjusted depending on the

recipient.

Appendix C. Text Moved from Above

Note: Per an explicit request by the chair of the LAMPS WG to only

present one option for the specification, the following text has

been stripped from the main body of the draft. It is preserved in an

Appendix for the time being and may be moved back to the main body

or deleted, depending on the decision of the LAMPS WG.

C.1. MIME Format

Currently there are two options in discussion:

The option according to the current S/MIME specification (cf.

[RFC8551])

An alternative option that is based on the former "memory hole"

approach (cf. [I-D.autocrypt-lamps-protected-headers])

C.1.1. S/MIME Specification

Note: This is currently described in the main part of this document.

C.1.1.1. Alternative Option Autocrypt "Protected Headers" (Ex-"Memory

Hole")

An alternative option (based on the former autocrypt "Memory Hole"

approach) to be considered, is described in [I-D.autocrypt-lamps-

protected-headers].

Unlike the option described in Appendix C.1.1, this option does not

use a "message/RFC822" wrapper to unambiguously delimit the Inner

Message.

¶

¶

3.

¶

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

Before choosing this option, the following two issues must be

assessed to ensure no interoperability issues result from it:

How current MIME parser implementations treat non-MIME Header

Fields, which are not part of the outermost MIME entity and not

part of a Message wrapped into a MIME entity of media type

"message/rfc822", and how such Messages are rendered to the

user.

[I-D.autocrypt-lamps-protected-headers] provides some examples

for testing this.

MIME-conformance, i.e. whether or not this option is (fully)

MIME-conformant [RFC2045] ff., in particular also Section 5.1.

of [RFC2046] on "Multipart Media Type). In the following an

excerpt of paragraphs that may be relevant in this context:

The MIME structure of an Email Message looks as follows:

¶

1.

¶

¶

2.

¶

 The only header fields that have defined meaning for body parts

 are those the names of which begin with "Content-". All other

 header fields may be ignored in body parts. Although they

 should generally be retained if at all possible, they may be

 discarded by gateways if necessary. Such other fields are

 permitted to appear in body parts but must not be depended on.

 "X-" fields may be created for experimental or private

 purposes, with the recognition that the information they

 contain may be lost at some gateways.

¶

 NOTE: The distinction between an RFC 822 Message and a body

 part is subtle, but important. A gateway between Internet and

 X.400 mail, for example, must be able to tell the difference

 between a body part that contains an image and a body part

 that contains an encapsulated Message, the body of which is a

 JPEG image. In order to represent the latter, the body part

 must have "Content-Type: message/rfc822", and its body (after

 the blank line) must be the encapsulated Message, with its own

 "Content-Type: image/jpeg" header field. The use of similar

 syntax facilitates the conversion of Messages to body parts,

 and vice versa, but the distinction between the two must be

 understood by implementors. (For the special case in which

 parts actually are Messages, a "digest" subtype is also

 defined.)

¶

¶

The following example demonstrates how an Original Message might be

protected, i.e., the Original Message is contained as Inner Message

in the Protected Body of an Outer Message. It illustrates the first

Body part (of the Outer Message) as a "multipart/signed"

(application/pkcs7-signature) media type:

Lines are prepended as follows:

"O: " Outer Message Header Section

"I: " Message Header Section

 <Outer Message Header Section (unprotected)>

 <Outer Message Body (protected)>

 <Inner Message Header Section>

 <Inner Message Body>

¶

¶

¶

* ¶

* ¶

The Outer Message Header Section is unprotected, while the remainder

(Outer Message Body) is protected. The Outer Message Body consists

of the Inner Message (Header Section and Body).

The Inner Message Header Section is the same as (or a subset of) the

Original Message Header Section.

The Inner Message Body is the same as the Original Message Body.

The Original Message itself may contain any MIME structure.

C.1.2. Sending Side

To ease explanation, the following describes the case where an

Original (message/rfc822) Message to be protected is present. If

this is not the case, Original Message means the (virtual) Message

that would be constructed for sending it as unprotected email.

 O: Date: Mon, 25 Sep 2017 17:31:42 +0100 (GMT Daylight Time)

 O: Message-ID: <e4a483cb-1dfb-481d-903b-298c92c21f5e@m.example.net>

 O: Subject: Meeting at my place

 O: From: "Alexey Melnikov" <alexey.melnikov@example.net>

 O: MIME-Version: 1.0

 O: Content-Type: multipart/signed; charset=us-ascii; micalg=sha1;

 O: protocol="application/pkcs7-signature";

 O: boundary=boundary-AM

 This is a multipart message in MIME format.

 --boundary-AM

 I: Date: Mon, 25 Sep 2017 17:31:42 +0100 (GMT Daylight Time)

 I: From: "Alexey Melnikov" <alexey.melnikov@example.net>

 I: Message-ID: <e4a483cb-1dfb-481d-903b-298c92c21f5e@m.example.net>

 I: MIME-Version: 1.0

 I: MMHS-Primary-Precedence: 3

 I: Subject: Meeting at my place

 I: To: somebody@example.net

 I: X-Mailer: Isode Harrier Web Server

 I: Content-Type: text/plain; charset=us-ascii

 This is an important message that I don't want to be modified.

 --boundary-AM

 Content-Transfer-Encoding: base64

 Content-Type: application/pkcs7-signature

 [[base-64 encoded signature]]

 --boundary-AM--

¶

¶

¶

¶

¶

¶

C.1.2.1. Inner Message Header Fields

It is RECOMMENDED that the Inner Message contains all Header Fields

of the Original Message with the exception of the following Header

Field, which MUST NOT be included within the Inner Message nor

within any other protected part of the Message:

Bcc

[[TODO: Bcc handling needs to be further specified (see also

Appendix B.1). Certain MUAs cannot properly decrypt Messages with

Bcc recipients.]]

C.1.2.2. Wrapper

The wrapper is a simple MIME Header Section followed by an empty

line preceding the Inner Message (inside the Outer Message Body).

The media type of the wrapper MUST be "message/RFC822" and MUST

contain the Content-Type header field parameter "forwarded=no" as

defined in [I-D.melnikov-iana-reg-forwarded]. The wrapper

unambiguously delimits the Inner Message from the rest of the

Message.

C.1.2.3. Cryptographic Layers / Envelope

[[TODO: Basically refer to S/MIME standards]]

C.1.2.4. Sending Side Message Processing

For a protected Message the following steps are applied before a

Message is handed over to the Submission Entity:

C.1.2.4.1. Step 1: Decide on Protection Level and Information

Disclosure

The implementation which applies protection to a Message must

decide:

Which Protection Level (signature and/or encryption) shall be

applied to the Message? This depends on user request and/or local

policy as well as availability of cryptographic keys.

Which Header Fields of the Original Message shall be part of the

Outer Message Header Section? This typically depends on local

policy. By default, the Essential Header Fields are part of the

Outer Message Header Section; cf. Appendix C.1.2.5.

Which of these Header Fields are to be obfuscated? This depends

on local policy and/or specific Privacy requirements of the user.

¶

* ¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

By default only the Subject Header Field is obfuscated; cf.

Appendix C.1.2.5.

C.1.2.4.2. Step 2: Compose the Outer Message Header Section

Depending on the decision in Appendix C.1.2.4.1, the implementation

shall compose the Outer Message Header Section. (Note that this also

includes the necessary MIME Header Section part for the following

protection layer.)

Outer Header Fields that are not obfuscated should contain the same

values as in the Original Message (except for MIME Header Section

part, which depends on the Protection Level selected in Appendix C.

1.2.4.1).

C.1.2.4.3. Step 3: Apply Protection to the Original Message

Depending on the Protection Level selected in Appendix C.1.2.4.1,

the implementation applies signature and/or encryption to the

Original Message, including the wrapper (as per [RFC8551]), and sets

the resulting package as the Outer Message Body.

The resulting (Outer) Message is then typically handed over to the

Submission Entity.

[[TODO: Example]]

C.1.2.5. Outer Message Header Fields

C.1.2.5.1. Encrypted Messages

To maximize Privacy, it is strongly RECOMMENDED to follow the

principle of Data Minimization (cf. Section 2.1).

However, the Outer Message Header Section SHOULD contain the

Essential Header Fields and, in addition, MUST contain the Header

Fields of the MIME Header Section part to describe Cryptographic

Layer of the protected MIME subtree as per [RFC8551].

The following Header Fields are defined as the Essential Header

Fields:

From

To (if present in the Original Message)

Cc (if present in the Original Message)

Bcc (if present in the Original Message, see also Appendix B.1)

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

Date

Message-ID

Subject

Further processing by the Submission Entity normally depends on part

of these Header Fields, e.g. From and Date HFs are required by

[RFC5322]. Furthermore, not including certain Header Fields may

trigger spam detection to flag the Message, and/or lead to user

experience (UX) issues.

For further Data Minimization, the value of the Subject Header Field

SHOULD be obfuscated as follows:

and it is RECOMMENDED to replace the Message-ID by a new randomly

generated Message-ID.

In addition, the value of other Essential Header Fields MAY be

obfuscated.

Non-Essential Header Fields SHOULD be omitted from the Outer Message

Header Section where possible. If Non-essential Header Fields are

included in the Outer Message Header Section, those MAY be

obfuscated too.

Header Fields that are not obfuscated should contain the same values

as in the Original Message.

If an implementation obfuscates the From, To, and/or Cc Header

Fields, it may need to provide access to the clear text content of

these Header Fields to the Submission Entity for processing

purposes. This is particularly relevant, if proprietary Submission

Entities are used. Obfuscation of Header Fields may adversely impact

spam filtering.

(A use case for obfuscation of all Outer Message Header Fields is

routing email through the use of onion routing or mix networks, e.g.

[pEp.mixnet].)

The MIME Header Section part is the collection of MIME Header Fields

describing the following MIME structure as defined in [RFC2045]. A

MIME Header Section part typically includes the following Header

Fields:

Content-Type

Content-Transfer-Encoding

* ¶

* ¶

* ¶

¶

¶

* Subject: [...]¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

Content-Disposition

The following example shows the MIME Header Section part of an S/

MIME signed Message (using application/pkcs7-mime with SignedData):

Depending on the scenario, further Header Fields MAY be exposed in

the Outer Message Header Section, which is NOT RECOMMENDED unless

justified. Such Header Fields may include e.g.:

References

Reply-To

In-Reply-To

C.1.2.5.2. Unencrypted Messages

The Outer Message Header Section of unencrypted Messages SHOULD

contain at least the Essential Header Fields and, in addition, MUST

contain the Header Fields of the MIME Header Section part to

describe Cryptographic Layer of the protected MIME subtree as per

[RFC8551]. It may contain further Header Fields, in particular those

also present in the Inner Message Header Section.

Appendix D. Document Considerations

[[RFC Editor: This section is to be removed before publication]]

This draft is built from markdown source, and its development is

tracked in a git repository.

While minor editorial suggestions and nit-picks can be made as merge

requests, please direct all substantive discussion to the LAMPS

mailing list at spasm@ietf.org.

Appendix E. Document Changelog

[[RFC Editor: This section is to be removed before publication]]

draft-ietf-lamps-header-protection-03

dkg takes over from Bernie as primary author

* ¶

¶

 MIME-Version: 1.0

 Content-Type: application/pkcs7-mime; smime-type=signed-data;

 name=smime.p7m

 Content-Transfer-Encoding: base64

 Content-Disposition: attachment; filename=smime.p7m

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

* ¶

- ¶

https://gitlab.com/dkg/lamps-header-protection
https://gitlab.com/dkg/lamps-header-protection
https://gitlab.com/dkg/lamps-header-protection
https://www.ietf.org/mailman/listinfo/spasm
https://www.ietf.org/mailman/listinfo/spasm

Add Usability section

describe two distinct formats "Wrapped Message" and "Injected

Headers"

Introduce Header Confidentiality Policy model

Overhaul message composition guidance

Simplify document creation workflow, move public face to

gitlab

draft-ietf-lamps-header-protection-02

editorial changes / improve language

draft-ietf-lamps-header-protection-01

Add DKG as co-author

Partial Rewrite of Abstract and Introduction [HB/AM/DKG]

Adding definiations for Cryptographic Layer, Cryptographic

Payload, and Cryptographic Envelope (reference to [I-D.dkg-

lamps-e2e-mail-guidance]) [DKG]

Enhanced MITM Definition to include Machine- / Meddler-in-the-

middle [HB]

Relaxed definition of Original message, which may not be of

type "message/rfc822" [HB]

Move "memory hole" option to the Appendix (on request by Chair

to only maintain one option in the specification) [HB]

Updated Scope of Protection Levels according to WG discussion

during IETF-108 [HB]

Obfuscation recommendation only for Subject and Message-Id and

distinguish between Encrypted and Unencrypted Messages [HB]

Removed (commented out) Header Field Flow Figure (it appeared

to be confusing as is was) [HB]

draft-ietf-lamps-header-protection-00

Initial version (text partially taken over from [I-D.ietf-

lamps-header-protection-requirements]

- ¶

-

¶

- ¶

- ¶

-

¶

* ¶

- ¶

* ¶

- ¶

- ¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

* ¶

-

¶

Appendix F. Open Issues

[[RFC Editor: This section should be empty and is to be removed

before publication.]]

Ensure "protected header" (Ex-Memory-Hole) option is (fully)

compliant with the MIME standard, in particular also [RFC2046],

Section 5.1. (Multipart Media Type) Appendix C.1.1.1.

Test Vectors! This should be a new appendix section, to avoid

injecting large blobs of unreadable data in the main text. Once

present, we can point to the relevant test vector in the main

text by reference.

Should Outer Message Header Section (as received) be preserved

for the user? (Section 4.1.4.5)

Decide on whether or not merge requirements from [I-D.ietf-lamps-

header-protection-requirements] into this document.

Decide what parts of [I-D.autocrypt-lamps-protected-headers] to

merge into this document.

Enhance Introduction Section 1 and Problem Statement (Section 2).

Decide on whether or not specification for more legacy HP

requirements should be added to this document (Section 3.1.2).

Verify simple backward compatibility case (Receiving Side MIME-

Conformant) is working; once solution is stable and update

paragraphs in Section 4.1, Section 3.1.2.1 and Section 4.2.1

accordingly.

Verify ability to distinguish between Messages with Header

Protection as specified in this document and legacy clients and

update Section 3.1 accordingly.

Improve definitions of Protection Levels and enhance list of

Protection Levels (Section 3.2, Section 4).

Privacy Considerations Section 7

Security Considerations Section 6

Authors' Addresses

Daniel Kahn Gillmor

American Civil Liberties Union

125 Broad St.

New York, NY, 10004

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

United States of America

Email: dkg@fifthhorseman.net

Bernie Hoeneisen

pEp Foundation

Oberer Graben 4

CH- CH-8400 Winterthur

Switzerland

Email: bernie.hoeneisen@pep.foundation

URI: https://pep.foundation/

Alexey Melnikov

Isode Ltd

14 Castle Mews

Hampton, Middlesex

TW12 2NP

United Kingdom

Email: alexey.melnikov@isode.com

mailto:dkg@fifthhorseman.net
mailto:bernie.hoeneisen@pep.foundation
https://pep.foundation/
mailto:alexey.melnikov@isode.com

	Header Protection for S/MIME
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Two Schemes of Protected Headers
	1.2. Problems with Wrapped Messages
	1.3. Motivation
	1.4. Other Protocols to Protect Email Headers
	1.5. Requirements Language
	1.6. Terms

	2. Problem Statement
	2.1. Privacy
	2.2. Security
	2.3. Usability
	2.4. Interoperability

	3. Use Cases
	3.1. Interactions
	3.1.1. Main Use Case
	3.1.2. Backward Compatibility Use Cases
	3.1.2.1. Receiving Side MIME-Conformant
	3.1.2.2. Receiving Side Not MIME-Conformant

	3.2. Protection Levels
	3.2.1. In-Scope
	3.2.2. Out-of-Scope

	4. Specification
	4.1. Main Use Case
	4.1.1. MIME Format
	4.1.1.1. Introduction

	4.1.2. Sending Side
	4.1.2.1. Composing a Cryptographically-Protected Message Without Header Protection
	4.1.2.2. Header Confidentiality Policy
	4.1.2.3. Composing with "Wrapped Message" Header Protection
	4.1.2.4. Composing with "Injected Headers" Header Protection
	4.1.2.5. Choosing Between Wrapped Message and Injected Headers

	4.1.3. Default Header Confidentiality Policy
	4.1.3.1. Minimalist Header Confidentiality Policy
	4.1.3.2. Strong Header Confidentiality Policy
	4.1.3.3. Offering Stronger Header Confidentiality

	4.1.4. Receiving Side
	4.1.4.1. Identifying that a Message has Protected Headers
	4.1.4.2. Updating the Cryptographic Summary
	4.1.4.3. Rendering a Wrapped Message
	4.1.4.3.1. Example Signed-Only Wrapped Message
	4.1.4.3.2. Example Encrypted-and-Signed Wrapped Message

	4.1.4.4. Rendering a Message with Injected Headers
	4.1.4.4.1. Example Signed-only Message with Injected Headers
	4.1.4.4.2. Example Signed-and-Encrypted Message with Injected Headers
	4.1.4.4.3. Do Not Render Legacy Display Part
	4.1.4.4.3.1. Legacy Display Detection Algorithm
	4.1.4.4.3.2. Legacy Display Example

	4.1.4.5. Affordances for Debugging and Troubleshooting
	4.1.4.6. Composing a Reply to an Encrypted Message with Protected Headers
	4.1.4.6.1. Avoid Leaking Encrypted Headers in Reply
	4.1.4.6.2. Avoid Misdirected Replies to Encrypted Messages with Protected Headers

	4.1.4.7. Implicitly-rendered Header Fields
	4.1.4.8. Unprotected Headers Added in Transit
	4.1.4.8.1. Mailing list headers: List-* and Archived-At

	4.2. Backward Compatibility Use Cases
	4.2.1. Receiving Side MIME-Conformant
	4.2.2. Receiving Side Not MIME-Conformant

	5. Usability Considerations
	5.1. Mixed Protections Within a Message Are Hard To Understand
	5.2. Users Should Not Have To Choose a Header Confidentiality Policy

	6. Security Considerations
	7. Privacy Considerations
	8. IANA Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Test Vectors
	A.1. Wrapped Message examples
	A.1.1. Wrapped Message: signed-only, with PKCS7 signedData
	A.1.2. Wrapped Message: signed-only, using multipart/signed
	A.1.3. Wrapped Message: signed-and-encrypted

	A.2. Injected Headers examples
	A.2.1. Injected Headers: signed-only, with PKCS7 signedData
	A.2.2. Injected Headers: signed-only, using multipart/signed
	A.2.3. Injected Headers: signed-and-encrypted with Legacy Display part
	A.2.4. Injected Headers: signed-and-encrypted without Legacy Display part

	A.3. Messages without Header Protection
	A.3.1. Unprotected Headers: signed-only, with PKCS7 signedData
	A.3.2. Unprotected Headers: signed-only, using multipart/signed
	A.3.3. Unprotected Headers: signed-and-encrypted

	Appendix B. Additional information
	B.1. Stored Variants of Messages with Bcc
	Appendix C. Text Moved from Above
	C.1. MIME Format
	C.1.1. S/MIME Specification
	C.1.1.1. Alternative Option Autocrypt "Protected Headers" (Ex-"Memory Hole")

	C.1.2. Sending Side
	C.1.2.1. Inner Message Header Fields
	C.1.2.2. Wrapper
	C.1.2.3. Cryptographic Layers / Envelope
	C.1.2.4. Sending Side Message Processing
	C.1.2.4.1. Step 1: Decide on Protection Level and Information Disclosure
	C.1.2.4.2. Step 2: Compose the Outer Message Header Section
	C.1.2.4.3. Step 3: Apply Protection to the Original Message

	C.1.2.5. Outer Message Header Fields
	C.1.2.5.1. Encrypted Messages
	C.1.2.5.2. Unencrypted Messages

	Appendix D. Document Considerations
	Appendix E. Document Changelog
	Appendix F. Open Issues
	Authors' Addresses

