
Workgroup: LAMPS Working Group

Internet-Draft:

draft-ietf-lamps-lightweight-cmp-profile-15

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: H. Brockhaus

Siemens

D. von Oheimb

Siemens

S. Fries

Siemens

Lightweight Certificate Management Protocol (CMP) Profile

Abstract

This document aims at simple, interoperable, and automated PKI

management operations covering typical use cases of industrial and

IoT scenarios. This is achieved by profiling the Certificate

Management Protocol (CMP), the related Certificate Request Message

Format (CRMF), and HTTP-based or CoAP-based transfer in a succinct

but sufficiently detailed and self-contained way. To make secure

certificate management for simple scenarios and constrained devices

as lightweight as possible, only the most crucial types of

operations and options are specified as mandatory. More specialized

or complex use cases are supported with optional features.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. How to Read This Document

1.2. Motivation for a Lightweight Profile of CMP

1.3. Special Requirements of Industrial and IoT Scenarios

1.4. Existing CMP Profiles

1.5. Use of CMP in SZTP and BRSKI Environments

1.6. Compatibility with Existing CMP Profiles

1.7. Scope of this Document

1.8. Structure of this Document

1.9. Convention and Terminology

2. Solution Architecture

3. Generic Aspects of PKI Messages and PKI Management Operations

3.1. General Description of the CMP Message Header

3.2. General Description of the CMP Message Protection

3.3. General Description of CMP Message ExtraCerts

3.4. Generic PKI Management Operation Prerequisites

3.5. Generic Validation of a PKI Message

3.6. Error Handling

3.6.1. Reporting Error Conditions Upstream

3.6.2. Reporting Error Conditions Downstream

3.6.3. Handling Error Conditions on Nested Messages Used for

Batching

3.6.4. PKIStatusInfo and Error Messages

4. PKI Management Operations

4.1. Enrolling End Entities

4.1.1. Enrolling an End Entity to a New PKI

4.1.2. Enrolling an End Entity to a Known PKI

4.1.3. Updating a Valid Certificate

4.1.4. Enrolling an End Entity Using a PKCS#10 Request

4.1.5. Using MAC-Based Protection for Enrollment

4.1.6. Adding Central Key Pair Generation to Enrollment

4.1.6.1. Using Key Agreement Key Management Technique

4.1.6.2. Using Key Transport Key Management Technique

4.1.6.3. Using Password-Based Key Management Technique

4.2. Revoking a Certificate

4.3. Support Messages

4.3.1. Get CA Certificates

4.3.2. Get Root CA Certificate Update

4.3.3. Get Certificate Request Template

4.3.4. CRL Update Retrieval

4.4. Handling Delayed Delivery

¶

5. PKI Management Entity Operations

5.1. Responding to Requests

5.1.1. Responding to a Certificate Request

5.1.2. Responding to a Confirmation Message

5.1.3. Responding to a Revocation Request

5.1.4. Responding to a Support Message

5.1.5. Initiating Delayed Delivery

5.2. Forwarding Messages

5.2.1. Not Changing Protection

5.2.2. Adding Protection and Batching of Messages

5.2.2.1. Adding Protection to a Request Message

5.2.2.2. Batching Messages

5.2.3. Replacing Protection

5.2.3.1. Not Changing Proof-of-Possession

5.2.3.2. Using raVerified

5.3. Acting on Behalf of other PKI Entities

5.3.1. Requesting a Certificate

5.3.2. Revoking a Certificate

6. CMP Message Transfer Mechanisms

6.1. HTTP Transfer

6.2. CoAP Transfer

6.3. Piggybacking on Other Reliable Transfer

6.4. Offline Transfer

6.4.1. File-Based Transfer

6.4.2. Other Asynchronous Transfer Protocols

7. Conformance Requirements

7.1. PKI Management Operations

7.2. Message Transfer

8. IANA Considerations

9. Security Considerations

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Example CertReqTemplate

Appendix B. History of Changes

Authors' Addresses

1. Introduction

[RFC Editor:

Please perform the following substitution.

RFCXXXX --> the assigned numerical RFC value for this draft

RFCAAAA --> the assigned numerical RFC value for

[I-D.ietf-lamps-cmp-updates]

¶

¶

* ¶

*

¶

RFCBBBB --> the assigned numerical RFC value for

[I-D.ietf-lamps-cmp-algorithms]

Please also update the following references to associated drafts in

progress to reflect their final RFC assignments, if available:

[I-D.ietf-lamps-cmp-updates]

[I-D.ietf-lamps-cmp-algorithms]

[I-D.ietf-ace-cmpv2-coap-transport]

[I-D.ietf-uta-rfc7525bis]

[I-D.ietf-netconf-sztp-csr]

[I-D.ietf-anima-brski-ae]

[I-D.ietf-anima-brski-prm]

]

This document specifies PKI management operations supporting

machine-to-machine and IoT use cases. Its focus is to maximize

automation and interoperability between all involved PKI entities,

ranging from end entities (EE) over any number of intermediate PKI

management entities such as Registration Authorities (RA) to the CMP

endpoints of Certification Authority (CA) systems. This profile

makes use of the concepts and syntax specified in CMP [RFC4210],

[I-D.ietf-lamps-cmp-updates], and [I-D.ietf-lamps-cmp-algorithms],

CRMF [RFC4211] and [RFC9045], CMS [RFC5652] and [RFC8933], HTTP

transfer for CMP [RFC6712], and CoAP transfer for CMP

[I-D.ietf-ace-cmpv2-coap-transport]. CMP, CRMF and CMS are feature-

rich specifications, but most application scenarios use only a

limited subset of the same specified functionality. Additionally,

the standards are not always precise enough on how to interpret and

implement the described concepts. Therefore, this document aims at

tailoring the available options and specifying at an adequate detail

how to use them to make the implementation of interoperable

automated certificate management as straightforward and lightweight

as possible.

Note: In the meantime RFC4210bis [I-D.ietf-lamps-rfc4210bis] and

RFC6712bis [I-D.ietf-lamps-rfc6712bis] drafts were submitted

incorporating the changes listed in CMP Updates

[I-D.ietf-lamps-cmp-updates] into the original RFC text.

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

1.1. How to Read This Document

This document has become longer than the authors would have liked it

to be. Yet apart from studying Section 3, which contains general

requirements, the reader does not have to work through the whole

document. The guidance in Section 1.8 and Section 7 should be used

to figure out which parts of Section 4 to Section 6 are relevant for

the target certificate management solution depending on the PKI

management operations, their variants, and types of message transfer

needed.

Since conformity to this document can be achieved by implementing

only the functionality declared mandatory in Section 7, the profile

can still be called lightweight because in particular for end

entities the mandatory-to-implement set of features is rather

limited.

1.2. Motivation for a Lightweight Profile of CMP

CMP was standardized in 1999 and is implemented in several PKI

products. In 2005, a completely reworked and enhanced version 2 of

CMP [RFC4210] and CRMF [RFC4211] has been published, followed by a

document specifying a transfer mechanism for CMP messages using HTTP

[RFC6712] in 2012.

Though CMP is a capable protocol it is so far not used very widely.

The most important reason appears to be that the protocol offers a

too large set of features and options. On the one hand, this makes

CMP applicable to a very wide range of scenarios, but on the other

hand, a full implementation supporting all options is not realistic

because this would take undue effort.

In order to reduce complexity, the set of mandatory PKI management

operations and variants required by this specification has been kept

lean. This limits development effort and minimizes resource needs,

which is particularly important for memory-constrained devices. To

this end, when there was design flexibility to either have necessary

complexity on the EE or in the PKI management entity, this profile

chose to include it in the PKI management entities where typically

more computational resources are available. Additional recommended

PKI management operations and variants support some more complex

scenarios that are considered beneficial for environments with more

specific demands or boundary conditions. The optional PKI management

operations support less common scenarios and requirements.

Moreover, many details of the CMP protocol have been left open or

have not been specified in full preciseness. The profiles specified

in Appendix D and E of [RFC4210] define some more detailed PKI

management operations. Yet, the specific needs of highly automated

¶

¶

¶

¶

¶

scenarios for a machine-to-machine communication are not covered

sufficiently.

Profiling is a way to reduce feature richness and complexity of

standards to what is needed for specific use cases. 3GPP and UNISIG

already use profiling of CMP as a way to cope with these challenges.

To profile means to take advantage of the strengths of the given

protocol, while explicitly narrowing down the options it provides to

those needed for the purpose(s) at hand and eliminating all

identified ambiguities. In this way the general aspects of the

protocol are utilized and only the special requirements of the

target scenarios need to be dealt with using distinct features the

protocol offers.

Defining a profile for a new target environment takes high effort

because the range of available options needs to be well understood

and the selected options need to be consistent with each other and

suitably cover the intended application scenario. Since most

industrial PKI management use cases typically have much in common it

is worth sharing this effort, which is the aim of this document.

Other standardization bodies can reference this document and do not

need to come up with individual profiles from scratch.

1.3. Special Requirements of Industrial and IoT Scenarios

The profiles specified in Appendix D and E of RFC 4210 [RFC4210]

have been developed particularly for managing certificates of human

end entities. With the evolution of distributed systems and client-

server architectures, certificates for machines and applications on

them have become widely used. This trend has strengthened even more

in emerging industrial and IoT scenarios. CMP is sufficiently

flexible to support them well.

Today's IT security architectures for industrial solutions typically

use certificates for endpoint authentication within protocols like

IPsec, TLS, or SSH. Therefore, the security of these architectures

highly relies upon the security and availability of the implemented

certificate management operations.

Due to increasing security and availability needs in operational

technology, especially when used for critical infrastructures and

systems with a high number of certificates, a state-of-the-art

certificate management system must be constantly available and cost-

efficient, which calls for high automation and reliability.

Consequently, the NIST Framework for Improving Critical

Infrastructure Cybersecurity [NIST.CSWP.04162018] refers to proper

processes for issuance, management, verification, revocation, and

audit for authorized devices, users, and processes involving

identity and credential management. Such PKI management operations

¶

¶

¶

¶

¶

according to commonly accepted best practices are also required in

IEC 62443-3-3 [IEC.62443-3-3] for security level 2 and higher.

Further challenges in many industrial systems are network

segmentation and asynchronous communication. Also, PKI management

entities like Certification Authorities (CA) typically are not

deployed on-site but in a high protected data center environment,

e.g., operated according to ETSI Policy and security requirements

for Trust Service Providers issuing certificates [ETSI-EN.319411-1].

Certificate management must be able to cope with such network

architectures. CMP offers the required flexibility and

functionality, namely self-contained messages, efficient polling,

and support for asynchronous message transfer while retaining end-

to-end security.

1.4. Existing CMP Profiles

As already stated, RFC 4210 [RFC4210] contains profiles with

mandatory and optional PKI management operations in Appendix D and

E. Those profiles focus on management of human user certificates and

only partly address the specific needs of certificate management

automation for unattended devices or machine-to-machine application

scenarios.

Both Appendixes D and E focus on EE-to-RA/CA PKI management

operations and do not address further profiling of RA-to-CA

communication as typically needed for full backend automation. All

requirements regarding algorithm support for RFC 4210 Appendix D and

E [RFC4210] have been updated by CMP Algorithms Section 7.1

[I-D.ietf-lamps-cmp-algorithms].

3GPP makes use of CMP [RFC4210] in its Technical Specification

33.310 [ETSI-3GPP.33.310] for automatic management of IPsec

certificates in 3G, LTE, and 5G backbone networks. Since 2010, a

dedicated CMP profile for initial certificate enrollment and

certificate update operations between EE and RA/CA is specified in

that document.

UNISIG has included a CMP profile for enrollment of TLS certificates

in the Subset-137 specifying the ETRAM/ETCS on-line key management

for train control systems [UNISIG.Subset-137] in 2015.

Both standardization bodies tailor CMP [RFC4210], CRMF [RFC4211],

and HTTP transfer for CMP [RFC6712] for highly automated and

reliable PKI management operations for unattended devices and

services.

¶

¶

¶

¶

¶

¶

¶

1.5. Use of CMP in SZTP and BRSKI Environments

In Secure Zero Touch Provisioning (SZTP) [RFC8572] and other

environments using NETCONF/YANG modules, SZTP-CSR

[I-D.ietf-netconf-sztp-csr] offers a YANG module that includes

different types of certificate requests to obtain a public-key

certificate for a locally generated key pair. One option is using a

CMP p10cr message. Such a message is of the form ietf-ztp-types:cmp-

csr from module ietf-ztp-csr and offers both proof-of-possession and

proof-of-identity. To allow PKI management entities to also comply

with this profile, the p10cr message MUST be formatted by the EE as

described in Section 4.1.4 of this profile, and it MAY be forwarded

as specified in Section 5.2.

In Bootstrapping Remote Secure Key Infrastructure (BRSKI) [RFC8995]

environments, BRSKI-AE: Alternative Enrollment Protocols in BRSKI

[I-D.ietf-anima-brski-ae] describes a generalization regarding the

employed enrollment protocols to allow alternatives to EST

[RFC7030]. For the use of CMP, it requires adherence to this

profile.

1.6. Compatibility with Existing CMP Profiles

The profile specified in this document is compatible with RFC 4210

Appendixes D and E (PKI Management Message Profiles) [RFC4210], with

the following exceptions:

signature-based protection is the default protection; an initial

PKI management operation may also use MAC-based protection,

certification of a second key pair within the same PKI management

operation is not supported,

proof-of-possession (POPO) with self-signature of the

certTemplate according to RFC 4211 Section 4.1 [RFC4211] clause 3

is the recommended default POPO method (deviations are possible

for EEs when requesting central key generation, for RAs when

using raVerified, and if the newly generated keypair is

technically not capable to generate digital signatures),

confirmation of newly enrolled certificates may be omitted, and

all PKI management operations consist of request-response message

pairs originating at the EE, i.e., announcement messages

(requiring a push model, a CMP server on the EE) are excluded in

favor of a lightweight implementation on the EE.

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

The profile specified in this document is compatible with the CMP

profile for 3G, LTE, and 5G network domain security and

authentication framework [ETSI-3GPP.33.310], except that:

protection of initial PKI management operations may be MAC-based,

the subject field is mandatory in certificate templates, and

confirmation of newly enrolled certificates may be omitted.

The profile specified in this document is compatible with the CMP

profile for on-line key management in rail networks as specified in

UNISIG Subset-137 [UNISIG.Subset-137], except that:

A certificate enrollment request message consists of only one

certificate request (CertReqMsg).

RFC 4210 [RFC4210] requires that the messageTime is Greenwich

Mean Time coded as generalizedTime.

Note: As UNISIG Subset-137 Table 5 [UNISIG.Subset-137] explicitly

states that the messageTime in required to be "UTC time", it is

not clear if this means a coding as UTCTime or generalizedTime

and if other time zones than Greenwich Mean Time shall be

allowed. Both time formats are described in RFC 5280 Section

4.1.2.5 [RFC5280].

The same type of protection is required to be used for all

messages of one PKI management operation. This means, in case the

request message protection is MAC-based, also the response,

certConf, and pkiConf messages must have a MAC-based protection.

Use of caPubs is not required but typically allowed in

combination with MAC-based protected PKI management operations.

On the other hand UNISIG Subset-137 Table 12 [UNISIG.Subset-137]

requires using caPubs.

Note: It remains unclear from UNISIG Subset-137 for which

certificate(s) the caPubs field should be used. For security

reasons, it cannot be used for delivering the root CA certificate

needed for validating the signature-based protection of the given

response message (as stated indirectly also in its UNISIG

Subset-137 Section 6.3.1.5.2 b [UNISIG.Subset-137]).

This profile requires that the certConf message has one

CertStatus element where the statusInfo field is recommended.

Note: In contrast, UNISIG Subset-137 Table 18 [UNISIG.Subset-137]

requires that the certConf message has one CertStatus element

where the statusInfo field must be absent. This precludes sending

¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

a negative certConf message in case the EE rejects the newly

enrolled certificate. This results in violating the general rule

that a certificate request transaction must include a certConf

message (since moreover, using implicitConfirm is not allowed

there, neither).

1.7. Scope of this Document

To minimize ambiguity and complexity through needless variety, this

document specifies exhaustive requirements on generating PKI

management messages on the sender side. On the other hand, it gives

only minimal requirements on checks by the receiving side and how to

handle error cases.

Especially on the EE side this profile aims at a lightweight

implementation. This means that the number of PKI management

operations implementations are reduced to a reasonable minimum to

support typical certificate management use cases in industrial

machine-to-machine environments. On the EE side only limited

resources are expected, while on the side of the PKI management

entities the profile accepts higher requirements.

For the sake of interoperability and robustness, implementations

should, as far as security is not affected, adhere to Postel's law:

"Be conservative in what you do, be liberal in what you accept from

others" (often reworded as: "Be conservative in what you send, be

liberal in what you receive").

Fields used in ASN.1 syntax in Section 3, Section 4, or Section 5

are specified in CMP [RFC4210] [I-D.ietf-lamps-cmp-updates], CRMF

[RFC4211], and CMS [RFC5652] [RFC8933]. When these sections do not

explicitly discuss a field, then the field SHOULD NOT be used by the

sending entity. The receiving entity MUST NOT require the absence of

such a field, and if the field is present, MUST handle it

gracefully.

1.8. Structure of this Document

Section 2 introduces the general PKI architecture and approach to

certificate management that is assumed in this document. Then it

lists the PKI management operations specified in this document,

partitioning them into mandatory, recommended, and optional ones.

Section 3 profiles the generic aspects of the PKI management

operations specified in detail in Section 4 and Section 5 to

minimize redundancy in the description and to ease implementation.

This covers the general structure and protection of messages, as

well as generic prerequisites, validation, and error handling.

¶

¶

¶

¶

¶

¶

¶

CA:

RA:

LRA:

Section 4 profiles the exchange of CMP messages between an EE and

the PKI management entity. There are various flavors of certificate

enrollment requests, optionally with polling, central key

generation, revocation, and general support PKI management

operations.

Section 5 profiles responding to requests, exchange between PKI

management entities, and operations on behalf of other PKI entities.

This may include delayed delivery of messages, which involves

polling for responses, and nesting of messages.

Section 6 outlines several mechanisms for CMP message transfer,

including HTTP-based [RFC6712] transfer optionally using TLS, and

[I-D.ietf-ace-cmpv2-coap-transport] transfer optionally using DTLS,

and offline file-based transport.

Section 7 defines which parts of the profile are mandatory,

recommended, optional, or not relevant to implement for which type

of entity.

1.9. Convention and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The key word "PROHIBITED" is to be interpreted to mean that the

respective ASN.1 field SHALL NOT be present or used.

Technical terminology is used in conformance with RFC 4210

[RFC4210], RFC 4211 [RFC4211], RFC 5280 [RFC5280], and IEEE 802.1AR

[IEEE.802.1AR_2018]. The following key words are used:

Certification authority, which issues certificates.

Registration authority, an optional PKI component to which a CA

delegates certificate management functions such as end entity

authentication and authorization checks for incoming requests. An

RA can also provide conversion between various certificate

management protocols and other protocols providing some

operations related to certificate management.

Local registration authority, a specific form of RA with

proximity to the end entities.

Note: For ease of reading, this document uses the term "RA" also

for LRAs in all cases where the difference is not relevant.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

KGA:

EE:

PKI management operation:

PKI management entity:

PKI entity:

Key generation authority, an optional system component,

typically co-located with an RA or CA, that offers key generation

services to end entities.

End entity, typically a device or service that holds a public-

private key pair for which it manages a public-key certificate.

An identifier for the EE is given as the subject of its

certificate.

The following terminology is reused from RFC 4210 [RFC4210], as

follows:

All CMP messages belonging to a single

transaction. The transaction is identified by the transactionID

field of the message headers.

A non-EE PKI entity, i.e., RA or CA.

An EE or PKI management entity.

2. Solution Architecture

To facilitate secure automatic certificate enrollment, the device

hosting an EE is typically equipped with a manufacturer-issued

device certificate. Such a certificate is typically installed during

production and is meant to identify the device throughout its

lifetime. This certificate can be used to protect the initial

enrollment of operational certificates after installation of the EE

in its operational environment. In contrast to the manufacturer-

issued device certificate, operational certificates are issued by

the owner or operator of the device to identify the device or one of

its components for operational use, e.g., in a security protocol

like IPsec, TLS, or SSH. In IEEE 802.1AR [IEEE.802.1AR_2018] a

manufacturer-issued device certificate is called IDevID certificate

and an operational certificate is called LDevID certificate.

Note: The owner or operator using the manufacturer-issued device

certificate for authenticating the device during initial enrollment

of operational certificates MUST trust the respective trust anchor

provided by the manufacturer.

Note: According to IEEE 802.1AR [IEEE.802.1AR_2018] a DevID

comprises the triple of the certificate, the corresponding private

key, and the certificate chain.

All certificate management operations specified in this document

follow the pull model, i.e., are initiated by an EE (or by an RA

acting as an EE). The EE creates a CMP request message, protects it

using some asymmetric credential or shared secret information and

¶

¶

¶

¶

¶

¶

¶

¶

¶

sends it to a PKI management entity. This PKI management entity may

be a CA or more typically an RA, which checks the request, responds

to it itself, or forwards the request upstream to the next PKI

management entity. In case an RA changes the CMP request message

header or body or wants to demonstrate successful verification or

authorization, it can apply a protection of its own. The

communication between an LRA and RA can be performed synchronously

or asynchronously. Asynchronous communication typically leads to

delayed message delivery as described in Section 4.4.

Figure 1: Certificate Management Architecture Example

In operational environments the certificate management architecture

can have multiple LRAs bundling requests from multiple EEs at

dedicated locations and one (or more than one) central RA

aggregating the requests from the LRAs. Every LRA in this scenario

has shared secret information (one per EE) for MAC-based protection

or a CMP protection key and certificate allowing it to (re-)protect

CMP messages it processes. The figure above shows an architecture

example with at least one LRA, RA, and CA. It is also possible not

to have an RA or LRA or that there is no CA with a CMP interface.

Depending on the network infrastructure, the message transfer

between PKI management entities may be based on synchronous online

connections, asynchronous connections, or even offline (e.g., file-

based) transfer.

Note: In contrast to the pull model used in this document, other

specifications could use the messages specified in this document

implementing the push model. In this case the EE is pushed

(triggered) by the PKI management entity to provide the CMP request,

and therefore, EE acts as the receiver, not initiating the

interaction with the PKI. For example, when the device itself does

only act as a server as described in BRSKI with Pledge in Responder

Mode (BRSKI-PRM) [I-D.ietf-anima-brski-prm], support of certificate

enrollment in a push model is needed. While BRSKI-PRM currently

utilizes its own format for the exchanges, CMP in general and the

¶

+-----+ +-----+ +-----+ +-----+

| | | | | | | |

| EE |<---------->| LRA |<-------------->| RA |<---------->| CA |

| | | | | | | |

+-----+ +-----+ +-----+ +-----+

 synchronous (a)synchronous (a)synchronous

 +----connection----+------connection------+----connection----+

 operators service partner

+---------on site--------+----back-end services-----+-trust center-+

¶

messages specified in this profile offer all required capabilities.

Nevertheless, the message flow and state machine as described in

Section 4 must be adapted to implement a push model.

Note: Third-party CAs, not conforming to this document, may

implement other variants of CMP, different standardized protocols,

or even proprietary interfaces for certificate management. In such

cases, an RA needs to adapt the exchanged CMP messages to the flavor

of certificate management interaction required by such a non-

conformant CA.

3. Generic Aspects of PKI Messages and PKI Management Operations

This section covers the generic aspects of the PKI management

operations specified in Section 4 and Section 5 as upfront general

requirements to minimize redundancy in the description and to ease

implementation.

As described in Section 5.1 of RFC 4210 [RFC4210], all CMP messages

have the following general structure:

Figure 2: CMP Message Structure

The general contents of the message header, protection, and

extraCerts fields are specified in the following three subsections.

In case a specific PKI management operation needs different contents

in the header, protection, or extraCerts fields, the differences are

described in the respective subsections.

The CMP message body contains the PKI management operation-specific

information. It is described in Section 4 and Section 5.

¶

¶

¶

¶

+--+

| PKIMessage |

| +--+ |

| | header | |

| +--+ |

| +--+ |

| | body | |

| +--+ |

| +--+ |

| | protection (OPTIONAL) | |

| +--+ |

| +--+ |

| | extraCerts (OPTIONAL) | |

| +--+ |

+--+

¶

¶

¶

Note: In the description of CMP messages, the presence of some

fields is stated as OPTIONAL or RECOMMENDED. The following text may

state requirements on the same fields apply only if the field is

present.

The generic prerequisites needed by the PKI entities in order to be

able to perform PKI management operations are described in

Section 3.4.

The generic validation steps to be performed by PKI entities on

receiving a CMP message are described in Section 3.5.

The generic aspects of handling and reporting errors are described

in Section 3.6.

3.1. General Description of the CMP Message Header

This section describes the generic header fields of all CMP messages

with signature-based protection.

In case a message has MAC-based protection the changes are described

in Section 4.1.5. The variations will affect the fields sender,

protectionAlg, and senderKID.

Any PKI management operation-specific fields or variations are

described in Section 4 and 5.

¶

¶

¶

¶

¶

¶

¶

header

 pvno REQUIRED

 -- MUST be 3 to indicate CMP v3 in all cases where EnvelopedData

 -- is supported and expected to be used in the current

 -- PKI management operation

 -- MUST be 3 to indicate CMP v3 in certConf messages when using

 -- the hashAlg field

 -- MUST be 2 to indicate CMP v2 in all other cases

 -- For details on version negotiation see RFCAAAA

 sender REQUIRED

 -- SHOULD contain a name representing the originator of the

 -- message; otherwise, the NULL-DN (a zero-length

 -- SEQUENCE OF RelativeDistinguishedNames) MUST be used

 -- SHOULD be the subject of the CMP protection certificate, i.e.,

 -- the certificate corresponding to the private key used to

 -- signthe message

 -- In a multi-hop scenario, the receiving entity SHOULD NOT rely

 -- on the correctness of the sender field.

 recipient REQUIRED

 -- SHOULD be the name of the intended recipient; otherwise, the

 -- NULL-DN MUST be used

 -- In the first message of a PKI management operation: SHOULD be

 -- the subject DN of the CA the PKI management operation is

 -- requested from

 -- In all other messages: SHOULD contain the value of the sender

 -- field of the previous message in the same PKI management

 -- operation

 -- The recipient field SHALL be handled gracefully by the

 -- receiving entity, because in a multi-hop scenario its

 -- correctness cannot be guaranteed.

 messageTime RECOMMENDED

 -- MUST be the time at which the message was produced, if present

 protectionAlg REQUIRED

 -- MUST be an algorithm identifier indicating the algorithm

 -- used for calculating the protection bits

 -- If it is a signature algorithm its type MUST be a

 -- MSG_SIG_ALG as specified in [RFCBBBB] Section 3 and

 -- MUST be consistent with the subjectPublicKeyInfo field of

 -- the protection certificate

 -- If it is a MAC algorithm its type MUST be a MSG_MAC_ALG as

 -- specified in [RFCBBBB] Section 6.1

 senderKID REQUIRED

 -- MUST be set

 -- MUST be the SubjectKeyIdentifier of the CMP protection

 -- certificate in case of signature-based protection

 transactionID REQUIRED

 -- In the first message of a PKI management operation: MUST be

 -- 128 bits of random data, to minimize the probability of

 -- having the transactionID already in use at the server

 -- In all other messages: MUST be the value from the previous

 -- message in the same PKI management operation

 senderNonce REQUIRED

 -- MUST be cryptographically secure and fresh 128 random bits

 recipNonce RECOMMENDED

 -- If this is the first message of a transaction: MUST be absent

 -- If this is a delayed response message: MUST be present and

 -- contain the value of the senderNonce of the respective

 -- requestmessage in the same transaction

 -- In all other messages: MUST be present and contain the value

 -- of the senderNonce of the previous message in the same

 -- transaction

 generalInfo OPTIONAL

 implicitConfirm OPTIONAL

 -- RECOMENDED in ir/cr/kur/p10cr messages,

 -- OPTIONAL in ip/cp/kup response messages, and

 -- PROHIBITED in other types of messages

 -- Added to request messages to request omission of the certConf

 -- message

 -- Added to response messages to grant omission of the certConf

 -- message

 -- See [RFC4210] Section 5.1.1.1.

 ImplicitConfirmValue REQUIRED

 -- ImplicitConfirmValue MUST be NULL

 confirmWaitTime OPTIONAL

 -- RECOMENDED in ip/cp/kup messages if implicitConfirm is

 -- not included

 -- PROHIBITED if implicitConfirm is included

 -- See [RFC4210] Section 5.1.1.2.

 ConfirmWaitTimeValue REQUIRED

 -- ConfirmWaitTimeValue MUST be a GeneralizedTime value

 -- specifying the point in time up to which the PKI management

 -- entity will wait for the certConf message. The accepted

 -- length of the waiting period will vary by use case.

 certProfile OPTIONAL

 -- MAY be present in ir/cr/kur/p10cr and in genm messages of type

 -- id-it-certReqTemplate

 -- MUST be omitted in all other messages

 -- See [RFCAAAA]

 CertProfileValue REQUIRED

 -- MUST contain a sequence of one UTF8String element

 -- MUST contain the name of a certificate profile

¶

3.2. General Description of the CMP Message Protection

This section describes the generic protection field contents of all

CMP messages with signature-based protection, which is the default

protection mechanism for all CMP messages described in this profile.

The private key used to sign a CMP message is called "protection

key" and the related certificate is called "protection certificate".

If the keyUsage extension is present, it MUST include

digitalSignature.

All CMP messages but those carrying error messages MUST be

protected. CMP error messages SHOULD be protected when possible. See

Section 3.6.4 for use cases where this would not be possible.

For MAC-based protection as specified in Section 4.1.5 and

Section 4.1.6.3 major differences apply as described there.

The CMP message protection provides, if available, message origin

authentication and integrity protection for the header and body. The

CMP message extraCerts field is not covered by this protection.

Note: The extended key usages described in CMP Updates Section 2.2

[I-D.ietf-lamps-cmp-updates] can be used for authorization of a

sending PKI management entity.

3.3. General Description of CMP Message ExtraCerts

This section describes the generic extraCerts field of all CMP

messages with signature-based protection. Any specific requirements

on the extraCerts are specified in the respective PKI management

operation.

¶

protection

 -- RECOMMENDED for error messages

 -- REQUIRED for all other messages

 -- MUST contain the signature calculated using the private key

 -- of the entity protecting the message. The signature

 -- algorithm used MUST be given in the protectionAlg field.

¶

¶

¶

¶

¶

¶

extraCerts

 -- SHOULD contain the CMP protection certificate together with

 -- its chain, if needed

 -- If present, the first certificate in this field MUST be

 -- the CMP protection certificate followed by its chain

 -- where each element SHOULD directly certify the one

 -- immediately preceding it.

 -- Self-signed certificates SHOULD be omitted from extraCerts and

 -- MUST NOT be trusted based on their inclusion in any case

¶

Note: One reason for adding a self-signed certificate to extraCerts

is if it is the protection certificate or a successor root CA self-

signed certificate as indicated in the HashOfRootKey extension of

the current root CA certificate, see [RFC8649]. Another reason for

including self-signed certificates in the extraCerts is, for

instance due to storage limitations, a receiving PKI entity may not

have the complete trust anchor as self-signed certificate available

but just unique identification of it, and thus needs the full self-

signed certificate for further processing (see also Security

Considerations Section 9).

Note: For maximum compatibility, all implementations SHOULD be

prepared to handle potentially additional certificates and arbitrary

orderings of the certificates.

3.4. Generic PKI Management Operation Prerequisites

This subsection describes what is generally needed by the PKI

entities to be able to perform PKI management operations.

Identification of PKI entities:

Each EE SHOULD know its own identity to fill the sender field.

Each EE SHOULD know the intended recipient of its requests to

fill the recipient field, e.g., the name of the addressed CA.

Note: This name may be established using an enrollment voucher,

e.g., [RFC8366], the issuer field from a CertReqTemplate response

message content, or by other configuration means.

Routing of CMP messages:

Each PKI entity sending messages upstream MUST know the address

needed for transferring messages to the next PKI management

entity.

Note: This address may depend on the recipient, the certificate

profile, and on the used transfer mechanism.

Authentication of PKI entities:

Each PKI entity MUST have credentials to authenticate itself. For

signature-based protection it MUST have a private key and the

corresponding certificate along with its chain.

Each PKI entity MUST be able to establish trust in PKI it

receives responses from. When signature-based protection is used,

it MUST have the trust anchor(s) and any certificate status

¶

¶

¶

¶

* ¶

*

¶

¶

¶

*

¶

¶

¶

*

¶

*

information needed to perform path validation of CMP protection

certificates used for signature-based protection.

Note: A trust anchor usually is a root certificate of the PKI

addressed by the requesting EE. It may be established by

configuration or in an out-of-band manner. For an EE it may be

established using an enrollment voucher [RFC8366] or in-band of

CMP by the caPubs field in a certificate response message.

Authorization of PKI management operations:

Each EE or RA MUST have sufficient information to be able to

authorize the PKI management entity for performing the upstream

PKI management operation.

Note: This may be achieved for example by using the cmcRA

extended key usage in server certificates, by local configuration

such as specific name patterns for subject DN or SAN portions

that may identify an RA, and/or by having a dedicated root CA

usable only for authenticating PKI management entities.

Each PKI management entity MUST have sufficient information to be

able to authorize the downstream PKI entity requesting the PKI

management operation.

Note: For authorizing an RA the same examples apply as above. The

authorization of EEs can be very specific to the application

domain based on local PKI policy.

3.5. Generic Validation of a PKI Message

This section describes generic validation steps of each PKI entity

receiving a PKI request or response message before any further

processing or forwarding. If a PKI management entity decides to

terminate a PKI management operation because a check failed, it MUST

send a negative response or an error message as described in

Section 3.6. The PKIFailureInfo bits given below in parentheses MAY

be used in the failInfo field of the PKIStatusInfo as described in

Section 3.6.4, see also RFC 4210 Appendix F [RFC4210].

All PKI message header fields not mentioned in this section like the

recipient and generalInfo fields SHOULD be handled gracefully on

reception.

The following list describes the basic set of message input

validation steps. Without these checks the protocol becomes

dysfunctional.

The formal ASN.1 syntax of the whole message MUST be compliant

with the definitions given in CMP [RFC4210] and

¶

¶

¶

*

¶

¶

*

¶

¶

¶

¶

¶

*

[I-D.ietf-lamps-cmp-updates], CRMF [RFC4211], and CMS [RFC5652]

and [RFC8933]. (failInfo: badDataFormat)

The pvno MUST be cmp2000(2) or cmp2021(3). (failInfo bit:

unsupportedVersion)

The transactionID MUST be present. (failInfo bit: badDataFormat)

The PKI message body type MUST be one of the message types

supported by the receiving PKI entity and MUST be allowed in the

current state of the PKI management operation identified by the

given transactionID. (failInfo bit: badRequest)

The following list describes the set of message input validation

steps required to ensure secure protocol operation:

The senderNonce MUST be present and MUST contain at least 128

bits of data. (failInfo bit: badSenderNonce)

Unless the PKI message is the first message of a PKI management

operation,

the recipNonce MUST be present and MUST equal the senderNonce

of the previous message or equal the senderNonce of the most

recent request message for which the response was delayed, in

case of delayed delivery as specified in Section 4.4.

(failInfo bit: badRecipientNonce)

Messages without protection MUST be rejected except for error

messages as described in Section 3.6.4.

The message protection MUST be validated when present and

messages with an invalid protection MUST be rejected.

The protection MUST be signature-based except if MAC-based

protection is used as described in Section 4.1.5 and

Section 4.1.6.3. (failInfo bit: wrongIntegrity)

If present, the senderKID MUST identify the key material

needed for verifying the message protection. (failInfo bit:

badMessageCheck)

If signature-based protection is used, the CMP protection

certificate MUST be successfully validated including path

validation using a trust anchor and MUST be authorized

according to local policies. If the keyUsage extension is

present in the CMP protection certificate the digitalSignature

bit MUST be set. (failInfo bit: badAlg, badMessageCheck, or

signerNotTrusted)

¶

*

¶

* ¶

*

¶

¶

*

¶

*

¶

-

¶

*

¶

*

¶

-

¶

-

¶

-

¶

The sender of a request message MUST be authorized for

requesting the operation according to PKI policies. (failInfo

bit: notAuthorized)

Note: The requirements for checking certificates given in RFC 5280

[RFC5280] MUST be followed for signature-based CMP message

protection. Unless the message is a positive ip/cp/kup where the

issuing CA certificate of the newly enrolled certificate is the same

as the CMP protection certificate of that message, certificate

status checking SHOULD be performed on the CMP protection

certificates.

Depending on local policies, one or more of the input validation

checks described below need to be implemented:

If signature-based protection is used, the sender field SHOULD

match the subject of the CMP protection certificate. (failInfo

bit: badMessageCheck)

If the messageTime is present and

the receiving system has a reliable system time, the

messageTime SHOULD be close to the current time of the

receiving system, where the threshold will vary by use case.

(failInfo bit: badTime)

the receiving system does not have a reliable system time, the

messageTime MAY be used for time synchronization.

3.6. Error Handling

This section describes how a PKI entity handles error conditions on

messages it receives. Each error condition SHOULD be logged

appropriately.

3.6.1. Reporting Error Conditions Upstream

An EE SHALL NOT send error messages. PKI management entities SHALL

NOT send error messages in upstream direction, either.

In case an EE rejects a newly issued certificate contained in an ip,

cp, or kup message and implicit confirmation has not been granted,

the EE MUST report this using a certConf message with "rejection"

status and await the pkiConf response as described in Section 4.1.1.

-

¶

*

¶

¶

*

¶

* ¶

-

¶

-

¶

¶

¶

¶

On all other error conditions regarding response messages, the EE or

PKI management entity MUST regard the current PKI management

operation as terminated with failure. The error conditions include

invalid response message header, body type, protection, or

extraCerts according to the checks described in Section 3.5,

any issue detected with response message contents,

receipt of an error message from upstream,

timeout occurred while waiting for a response,

rejection of a newly issued certificate while implicit

confirmation has been granted.

Upstream PKI management entities will not receive any CMP message to

learn that the PKI management operation has been terminated. In case

they expect a further message from the EE, a connection interruption

or timeout will occur. The value set for such timeouts will vary by

use case. Then they also MUST regard the current PKI management

operation as terminated with failure and MUST NOT attempt to send an

error message downstream.

3.6.2. Reporting Error Conditions Downstream

In case the PKI management entity detects an error condition, e.g.,

rejecting the request due to policy decision, in the body of an ir,

cr, p10cr, kur, or rr message received from downstream, it SHOULD

report the error in the specific response message, i.e., an ip, cp,

kup, or rp with "rejection" status, as described in Section 4.1.1

and Section 4.2. This can also happen in case of polling.

In case the PKI management entity detects any other error condition

on requests, including pollReq, certConf, genm, and nested messages,

received from downstream and on responses received from upstream,

such as invalid message header, body type, protection, or extraCerts

according to the checks described in Section 3.5 it MUST report them

downstream in the form of an error message as described in

Section 3.6.4.

3.6.3. Handling Error Conditions on Nested Messages Used for Batching

Batching of messages using nested messages as described in

Section 5.2.2.2 requires special error handling.

If the error condition is on an upstream nested message containing

batched requests, it MUST NOT attempt to respond to the individual

requests included in it.

¶

*

¶

* ¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

In case a PKI management entity receives an error message in

response to a nested message, it must propagate the error by

responding with an error message to each of the request messages

contained in the nested message.

In case a PKI management entity detects an error condition on the

downstream nested message received in response to a nested message

sent before, it MAY ignore this error condition and handle the

response as described in Section 5.2.2.2. Otherwise, it MUST

propagate the error by responding with an error message to each of

the requests contained in the nested message it sent originally.

3.6.4. PKIStatusInfo and Error Messages

When sending any kind of negative response, including error

messages, a PKI entity MUST indicate the error condition in the

PKIStatusInfo structure of the respective message as described

below. It then MUST regard the current PKI management operation as

terminated with failure.

The PKIStatusInfo structure is used to report errors. It may be part

of various message types, in particular: certConf, ip, cp, kup, and

error. The PKIStatusInfo structure consists of the following fields:

status: Here the PKIStatus value "rejection" MUST be used.

Note: When a PKI management entity indicates delayed delivery of

a CMP response message to the EE with an error message as

described in Section 4.4, the status "waiting" is used there.

statusString: Here any human-readable valid value for logging or

to display via a user interface SHOULD be added.

failInfo: Here the PKIFailureInfo bits MAY be used in the way

explained in Appendix F of RFC 4210 [RFC4210]. PKIFailureInfo

bits regarding the validation described in Section 3.5 are

referenced there. The PKIFailureInfo bits referenced in

Section 5.1 and Section 6 are described here:

badCertId: A kur, certConf, or rr message references an

unknown certificate

badPOP: An ir/cr/p10cr/kur contains an invalid proof-of-

possession

certRevoked: Revocation requested for a certificate already

revoked

badCertTemplate: The contents of a certificate request are not

accepted, e.g., a field is missing or has a non-acceptable

¶

¶

¶

¶

* ¶

¶

*

¶

*

¶

-

¶

-

¶

-

¶

-

value or the given public key is already in use in some other

certificate (depending on policy).

transactionIdInUse: This is sent by a PKI management entity in

case the received request contains a transactionID that has

already been used for another transaction. An EE receiving

such error message SHOULD resend the request in a new

transaction using a different transactionID.

notAuthorized: The sender of a request message is not

authorized for requesting the operation.

systemUnavail: This is sent by a PKI management entity in case

a back-end system is not available.

systemFailure: This is sent by a PKI management entity in case

a back-end system is currently not functioning correctly.

An EE receiving a systemUnavail or systemFailure failInfo SHOULD

resend the request in a new transaction after some time.

Detailed Message Description:

¶

-

¶

-

¶

-

¶

-

¶

¶

¶

Error Message -- error

Field Value

header

 -- As described in Section 3.1

body

 -- The message indicating the error that occurred

 error REQUIRED

 pKIStatusInfo REQUIRED

 status REQUIRED

 -- MUST have the value "rejection"

 statusString RECOMMENDED

 -- SHOULD be any human-readable text for debugging, logging or to

 -- display in a GUI

 failInfo OPTIONAL

 -- MAY be present and contain the relevant PKIFailureInfo bits

protection RECOMMENDED

 -- As described in Section 3.2

 -- MAY be omitted if protection is technically not feasible

extraCerts RECOMMENDED

 -- As described in Section 3.3

¶

Note: Protecting the error message may not be technically feasible

if it is not clear which credential the recipient will be able to

use when validating this protection, e.g., in case the request

message was fundamentally broken.

4. PKI Management Operations

This chapter focuses on the communication of an EE with the PKI

management entity it directly talks to. Depending on the network and

PKI solution, this can be an RA or directly a CA. Handling of a

message by a PKI management entity is described in Section 5.

The PKI management operations specified in this section cover the

following:

Requesting a certificate with variations like initial enrollment,

certificate updates, central key generation, and MAC-based

protection

Revoking a certificate

Support messages

These operations mainly specify the message body of the CMP messages

and utilize the specification of the message header, protection and

extraCerts as specified in Section 3. The messages are named by the

respective field names in PKIBody like ir, ip, cr, cp, etc., see

RFC 4210 Section 5.1.2 [RFC4210].

The following diagram shows the EE state machine covering all PKI

management operations described in this section, including negative

responses, error messages described in Section 3.6.4, as well as ip/

cp/kup/error messages with status "waiting", pollReq, and pollRep

messages described in Section 4.4.

On receiving messages from upstream, the EE MUST perform the general

validation checks described in Section 3.5. The behavior in case an

error occurs is described in Section 3.6.

¶

¶

¶

*

¶

* ¶

* ¶

¶

¶

¶

End Entity State Machine:

 start

 |

 | send ir/cr/p10cr/kur/rr/genm

 v

 waiting for response

 v

+--------------------------+--------------------------+

| | |

| receives ip/cp/kup with | received ip/cp/kup/error | received

| status "accepted" or | with status "waiting" | rp/genp or

| "grantedWithMods" | | ip/cp/kup/

| v | error

| +-------> polling | with status

| | | | "rejection"

| | received | send |

| | pollRep | pollReq |

| | v |

| | waiting for response |

| | v |

| +------------+--------+ |

| | | |

| received ip/cp/kup | | received |

| with status "accepted" | | rp/genp or |

| or "grantedWithMods" | | ip/cp/kup/error |

| | | with status |

+---------->+<-------------+ | "rejection" |

 v | |

+-----------+-----+ | |

| | | |

| implicitConfirm | implicitConfirm | |

| granted | not granted | |

| | | |

| | send certConf | |

| v | |

| waiting for pkiConf*) | |

| | | |

| | received | |

| v pkiConf v |

+---------------->+------->+<-------+<----------------+

 |

 v

 end

*) in case of a delayed delivery of pkiConf responses the same

 polling mechanism is initiated as for rp or genp messages, by

 sending an error message with status "waiting".

¶

Note: All CMP messages belonging to the same PKI management

operation MUST have the same transactionID because the message

receiver identifies the elements of the operation in this way.

This section is aligned with CMP [RFC4210], CMP Updates

[I-D.ietf-lamps-cmp-updates], and CMP Algorithms

[I-D.ietf-lamps-cmp-algorithms].

Guidelines as well as an algorithm use profile for this document are

available in CMP Algorithms [I-D.ietf-lamps-cmp-algorithms].

4.1. Enrolling End Entities

There are various approaches for requesting a certificate from a

PKI.

These approaches differ in the way the EE authenticates itself to

the PKI, in the form of the request being used, and how the key pair

to be certified is generated. The authentication mechanisms may be

as follows:

Using a certificate from an external PKI, e.g., a manufacturer-

issued device certificate, and the corresponding private key

Using a private key and certificate issued from the same PKI that

is addressed for requesting a certificate

Using the certificate to be updated and the corresponding private

key

Using shared secret information known to the EE and the PKI

management entity

An EE requests a certificate indirectly or directly from a CA. When

the PKI management entity handles the request as described in

Section 5.1.1 and responds with a message containing the requested

certificate, the EE MUST reply with a confirmation message unless

implicitConfirm was granted. The PKI management entity then MUST

handle it as described in Section 5.1.2 and respond with a

confirmation, closing the PKI management operation.

The message sequences described in this section allow the EE to

request certification of a locally or centrally generated public-

private key pair. Typically, the EE provides a signature-based

proof-of-possession of the private key associated with the public

key contained in the certificate request as defined by RFC 4211

Section 4.1 [RFC4211] case 3. To this end it is assumed that the

private key can technically be used for signing. This is the case

for the most common algorithms RSA and ECDSA, regardless of

potentially intended restrictions of the key usage.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Note: RFC 4211 Section 4 [RFC4211] allows for providing proof-of-

possession any method that a key can used for. In conformance with

NIST SP 800-57 Part 1 Section 8.1.5.1.1.2 [NIST.SP.800-57p1r5] the

newly generated private key may be used for self-signature, if

technically possible, even if the keyUsage extension requested in

the certificate request prohibits generation of digital signatures.

The requesting EE provides the binding of the proof-of-possession to

its identity by signature-based or MAC-based protection of the CMP

request message containing that POP. An upstream PKI management

entity should verify whether this EE is authorized to obtain a

certificate with the requested subject and other fields and

extensions.

The EE MAY indicate the certificate profile to use in the

certProfile extension of the generalInfo field in the PKIHeader of

the certificate request message as described in Section 3.1.

In case the EE receives a CA certificate in the caPubs field for

installation as a new trust anchor, it MUST properly authenticate

the message and authorize the sender as trusted source of the new

trust anchor. This authorization is typically indicated using shared

secret information for protecting an initialization response (ir)

message. Authorization can also be signature-based using a

certificate issued by another PKI that is explicitly authorized for

this purpose. A certificate received in caPubs MUST NOT be accepted

as a trust anchor if it is the root CA certificate of the

certificate used for protecting the message.

4.1.1. Enrolling an End Entity to a New PKI

This PKI management operation should be used by an EE to request a

certificate from a new PKI using an existing certificate from an

external PKI, e.g., a manufacturer-issued IDevID certificate

[IEEE.802.1AR_2018], to authenticate itself to the new PKI.

Note: In Bootstrapping Remote Secure Key Infrastructure (BRSKI)

[RFC8995] environments, BRSKI-AE: Alternative Enrollment Protocols

in BRSKI [I-D.ietf-anima-brski-ae] describes a generalization

regarding enrollment protocols alternative to EST [RFC7030]. As

replacement of EST simpleenroll, BRSKI-AE uses this PKI management

operation for bootstrapping LDevID certificates.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The certificate of the EE MUST have been enrolled by an external

PKI, e.g., a manufacturer-issued device certificate.

The PKI management entity MUST have the trust anchor of the

external PKI.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

When using the generalInfo field certProfile, the EE MUST know

the identifier needed to indicate the requested certificate

profile.

Message Flow:

For this PKI management operation, the EE MUST include a sequence of

one CertReqMsg in the ir. If more certificates are required, further

requests MUST be sent using separate PKI management operation.

The EE SHOULD include the implicitConfirm extension in the header of

the ir message as described in Section 3.1, unless it knows that

certificate confirmation is needed. This leaves the choice to the

PKI management entities whether the EE must send a certConf message

on receiving a new certificate. Depending on the PKI policy and

requirements for managing EE certificates, it can be important for

PKI management entities to learn if the EE accepted the new

certificate. In such cases, when responding with an ip message, the

PKI management entity MUST NOT include the implicitConfirm

extension. In case the PKI management entity does not need any

explicit confirmation from the EE, it MUST include the generalInfo

field implicitConfirm. Otherwise, it SHOULD include confirmWaitTime

as described in Section 3.1. This prevents explicit certificate

confirmation and saves the overhead of a further message round-trip.

If the EE did not request implicit confirmation or implicit

confirmation was not granted by the PKI management entity,

certificate confirmation MUST be performed as follows. If the EE

*

¶

¶

Step# EE PKI management entity

 1 format ir

 2 -> ir ->

 3 handle or

 forward ir

 4 format or receive ip

 5 possibly grant

 implicitConfirm

 6 <- ip <-

 7 handle ip

----------------- if implicitConfirm not granted -----------------

 8 format certConf

 9 -> certConf ->

 10 handle or

 forward certConf

 11 format or receive pkiConf

 12 <- pkiConf <-

 13 handle pkiConf

¶

¶

¶

successfully received the certificate, it MUST send a certConf

message in due time. On receiving a valid certConf message, the PKI

management entity MUST respond with a pkiConf message. If the PKI

management entity does not receive the expected certConf message in

time it MUST handle this like a rejection by the EE. In case of

rejection, depending on its policy the PKI management entity MAY

revoke the newly issued certificate, notify a monitoring system, or

log the event internally.

Note: Depending on PKI policy, a new certificate may be published by

a PKI management entity, and explicit confirmation may be required.

In this case it is advisable not to do the publication until a

positive certificate confirmation has been received. This way the

need to revoke the certificate on negative confirmation is avoided.

If the certificate request was rejected by the CA, the PKI

management entity must return an ip message containing the status

code "rejection" as described in Section 3.6 and no certifiedKeyPair

field. The EE MUST NOT react to such an ip message with a certConf

message and the PKI management operation MUST be terminated.

Detailed Message Description:

¶

¶

¶

¶

Initialization Request -- ir

Field Value

header

 -- As described in Section 3.1

body

 -- The request of the EE for a new certificate

 ir REQUIRED

 -- MUST contain a sequence of one CertReqMsg

 -- If more certificates are required, further PKI management

 -- operations MUST be initiated

 certReq REQUIRED

 certReqId REQUIRED

 -- MUST be 0

 certTemplate REQUIRED

 version OPTIONAL

 -- MUST be 2 if supplied

 subject REQUIRED

 -- The EE subject name MUST be carried in the subject field

 -- and/or the subjectAltName extension.

 -- If subject name is present only in the subjectAltName

 -- extension, then the subject field MUST be a NULL-DN

 publicKey OPTIONAL

 -- MUST be present if local key generation is used

 -- MAY be absent if central key generation is requested

 algorithm OPTIONAL

 -- MUST be present if local key generation is used and MUST

 -- include the subject public key algorithm identifier

 -- MAY be present if central key generation is requested and

 -- if present, informs the KGA of algorithm and parameter

 -- preferences regarding the to-be-generated key pair

 subjectPublicKey REQUIRED

 -- MUST contain the public key to be certified in case of local

 -- key generation

 -- MUST be a zero-length BIT STRING if central key generation

 -- is requested

 extensions OPTIONAL

 -- MAY include end-entity-specific X.509 extensions of the

 -- requested certificate like subject alternative name, key

 -- usage, and extended key usage

 -- The subjectAltName extension MUST be present if the EE subject

 -- name includes a subject alternative name.

 popo OPTIONAL

 -- MUST be present if local key generation is used

 -- MUST be absent if central key generation is requested

 signature RECOMMENDED

 -- MUST be used by an EE if the key can be used for signing and

 -- has the type POPOSigningKey

 poposkInput PROHIBITED

 -- MUST NOT be used; it is not needed because subject and

 -- publicKey are both present in the certTemplate

 algorithmIdentifier REQUIRED

 -- The signature algorithm MUST be consistent with the publicKey

 -- algorithm field of the certTemplate

 signature REQUIRED

 -- MUST contain the signature value computed over the DER-encoded

 -- certTemplate

 raVerified OPTIONAL

 -- MAY be used by an RA after verifying the proof-of-possession

 -- provided by the EE

protection REQUIRED

 -- As described in Section 3.2

extraCerts REQUIRED

 -- As described in Section 3.3

Initialization Response -- ip

Field Value

header

 -- As described in Section 3.1

body

 -- The response of the CA to the request as appropriate

 ip REQUIRED

 caPubs OPTIONAL

 -- MAY be used if the certifiedKeyPair field is present

 -- If used it MUST contain only a trust anchor, e.g. root

 -- certificate, of the certificate contained in certOrEncCert

 response REQUIRED

 -- MUST contain a sequence of one CertResponse

 certReqId REQUIRED

 -- MUST be 0

 status REQUIRED

 -- PKIStatusInfo structure MUST be present

 status REQUIRED

 -- positive values allowed: "accepted", "grantedWithMods"

 -- negative values allowed: "rejection"

 -- "waiting" only allowed with polling use case as described in

 -- Section 4.4

 statusString OPTIONAL

 -- MAY be any human-readable text for debugging, logging or to

 -- display in a GUI

 failInfo OPTIONAL

 -- MAY be present if status is "rejection"

 -- MUST be absent if status is "accepted" or "grantedWithMods"

 certifiedKeyPair OPTIONAL

 -- MUST be present if status is "accepted" or "grantedWithMods"

 -- MUST be absent if status is "rejection"

 certOrEncCert REQUIRED

 -- MUST be present if status is "accepted" or "grantedWithMods"

 certificate REQUIRED

 -- MUST be present when certifiedKeyPair is present

 -- MUST contain the newly enrolled X.509 certificate

 privateKey OPTIONAL

 -- MUST be absent in case of local key generation or "rejection"

 -- MUST contain the encrypted private key in an EnvelopedData

 -- structure as specified in Section 4.1.6 in case the private

 -- key was generated centrally

protection REQUIRED

 -- As described in Section 3.2

extraCerts REQUIRED

 -- As described in Section 3.3

 -- MUST contain the chain of the certificate present in

 -- certOrEncCert

 -- Self-signed certificates SHOULD be omitted

 -- Duplicate certificates MAY be omitted

Certificate Confirmation -- certConf

Field Value

header

 -- As described in Section 3.1

body

 -- The message of the EE sends as confirmation to the PKI

 -- management entity to accept or reject the issued

 -- certificates

 certConf REQUIRED

 -- MUST contain a sequence of one CertStatus

 CertStatus REQUIRED

 certHash REQUIRED

 -- MUST be the hash of the certificate, using the hash algorithm

 -- indicated in hashAlg, see below, or the same one as used to

 -- create the certificate signature

 certReqId REQUIRED

 -- MUST be 0

 statusInfo RECOMMENDED

 -- PKIStatusInfo structure SHOULD be present

 -- Omission indicates acceptance of the indicated certificate

 status REQUIRED

 -- positive values allowed: "accepted"

 -- negative values allowed: "rejection"

 statusString OPTIONAL

 -- MAY be any human-readable text for debugging, logging, or to

 -- display in a GUI

 failInfo OPTIONAL

 -- MAY be present if status is "rejection"

 -- MUST be absent if status is "accepted"

 hashAlg OPTIONAL

 -- The hash algorithm to use for calculating certHash

 -- SHOULD NOT be used in all cases where the AlgorithmIdentifier

 -- of the certificate signature specifies a hash algorithm

 -- If used, the pvno field in the header MUST be cmp2021 (3)

protection REQUIRED

 -- As described in Section 3.2

 -- MUST use the same credentials as in the first request message

 -- of this PKI management operation

extraCerts RECOMMENDED

 -- As described in Section 3.3

 -- MAY be omitted if the message size is critical and

 -- the PKI management entity caches the extraCerts from the

 -- first request message of this PKI management operation

PKI Confirmation -- pkiConf

Field Value

header

 -- As described in Section 3.1

body

 pkiconf REQUIRED

 -- The content of this field MUST be NULL

protection REQUIRED

 -- As described in Section 3.2

 -- MUST use the same credentials as in the first response

 -- message of this PKI management operation

extraCerts RECOMMENDED

 -- As described in Section 3.3

 -- MAY be omitted if the message size is critical and the EE has

 -- cached the extraCerts from the first response message of

 -- this PKI management operation

¶

1

2

4.1.2. Enrolling an End Entity to a Known PKI

This PKI management operation should be used by an EE to request an

additional certificate of the same PKI it already has certificates

from. The EE uses one of these existing certificates to authenticate

itself by signing its request messages using the respective private

key.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The certificate used by the EE MUST have been enrolled by the PKI

it requests another certificate from.

When using the generalInfo field certProfile, the EE MUST know

the identifier needed to indicate the requested certificate

profile.

The message sequence for this PKI management operation is identical

to that given in Section 4.1.1, with the following changes:

The body of the first request and response SHOULD be cr and

cp, respectively.

Note: Since the difference between ir/ip and cr/cp is

syntactically not essential, an ir/ip MAY be used in this PKI

management operation.

The caPubs field in the certificate response message SHOULD be

absent.

4.1.3. Updating a Valid Certificate

This PKI management operation should be used by an EE to request an

update for one of its certificates that is still valid. The EE uses

the certificate it wishes to update as the protection certificate.

Both for authenticating itself and for proving ownership of the

certificate to be updated, it signs the request messages with the

corresponding private key.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The certificate the EE wishes to update MUST NOT be expired or

revoked and MUST have been issued by the addressed CA.

A new public-private key pair SHOULD be used.

When using the generalInfo field certProfile, the EE MUST know

the identifier needed to indicate the requested certificate

profile.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

1

2

3

4

5

6

The message sequence for this PKI management operation is identical

to that given in Section 4.1.1, with the following changes:

The body of the first request and response MUST be kur and

kup, respectively.

Protection of the kur MUST be performed using the certificate

to be updated.

The subject field and/or the subjectAltName extension of the

certTemplate MUST contain the EE subject name of the existing

certificate to be updated, without modifications.

The certTemplate SHOULD contain the subject and/or

subjectAltName extension and publicKey of the EE only.

The oldCertId control MAY be used to make clear which

certificate is to be updated.

The caPubs field in the kup message MUST be absent.

As part of the certReq structure of the kur the oldCertId control is

added after the certTemplate field.

4.1.4. Enrolling an End Entity Using a PKCS#10 Request

This PKI management operation can be used by an EE to request a

certificate using PKCS#10 [RFC2986] format to interoperate with CAs

not supporting CRMF [RFC4211]. This offers a variation of the PKI

management operations specified in Section 4.1.2.

In Secure Zero Touch Provisioning (SZTP) [RFC8572] environments,

SZTP-CSR [I-D.ietf-netconf-sztp-csr] describes the use of a CMP

p10cr message as a form of certificate signing request (CSR) to

optionally include in device bootstrapping to obtain an identity

certificate as part of the onboarding information. Such a CSR is of

form ietf-sztp-types:cmp-csr from module ietf-sztp-csr. The

requirements given below on p10cr message MUST be adhered to.

¶

¶

¶

¶

¶

¶

¶

¶

 controls

 type RECOMMENDED

 -- MUST be the value id-regCtrl-oldCertID, if present

 value

 issuer REQUIRED

 serialNumber REQUIRED

 -- MUST contain the issuer and serialNumber of the certificate

 -- to be updated

¶

¶

¶

1

2

3

In this PKI management operation, the public key and all further

certificate template data MUST be contained in the subjectPKInfo and

other certificationRequestInfo fields of the PKCS#10 structure.

The prerequisites are the same as given in Section 4.1.2.

The message sequence for this PKI management operation is identical

to that given in Section 4.1.2, with the following changes:

The body of the first request and response MUST be p10cr and

cp, respectively.

The certReqId in the cp message MUST be -1.

The caPubs field in the cp message SHOULD be absent.

Detailed Message Description:

¶

¶

¶

¶

¶

¶

¶

4.1.5. Using MAC-Based Protection for Enrollment

This is a variant of the PKI management operations described in

Section 4.1.1 to Section 4.1.4. It should be used by an EE to

request a certificate of a new PKI in case it does not have a

certificate to prove its identity to the target PKI, but has some

secret information shared with the PKI management entity. Therefore,

Certification Request -- p10cr

Field Value

header

 -- As described in Section 3.1

body

 -- The request of the EE for a new certificate using a PKCS#10

 -- certificate request

 p10cr REQUIRED

 certificationRequestInfo REQUIRED

 version REQUIRED

 -- MUST be 0 to indicate PKCS#10 V1.7

 subject REQUIRED

 -- The EE subject name MUST be carried in the subject field

 -- and/or the subjectAltName extension.

 -- If subject name is present only in the subjectAltName

 -- extension, then the subject field MUST be a NULL-DN

 subjectPKInfo REQUIRED

 algorithm REQUIRED

 -- MUST include the subject public key algorithm identifier

 subjectPublicKey REQUIRED

 -- MUST include the public key to be certified

 attributes OPTIONAL

 -- MAY include end-entity-specific X.509 extensions of the

 -- requested certificate like subject alternative name,

 -- key usage, and extended key usage

 -- The subjectAltName extension MUST be present if the EE

 -- subject name includes a subject alternative name.

 signatureAlgorithm REQUIRED

 -- The signature algorithm MUST be consistent with the

 -- subjectPKInfo field.

 signature REQUIRED

 -- MUST contain the self-signature for proof-of-possession

protection REQUIRED

 -- As described in Section 3.2

extraCerts REQUIRED

 -- As described for the underlying PKI management operation

¶

1

2

3

the request and response messages are MAC-protected using this

shared secret information. The distribution of this shared secret is

out of scope for this document. The PKI management entity checking

the MAC-based protection SHOULD replace this protection according to

Section 5.2.3 in case the next hop does not know the shared secret

information.

Note: The entropy of the shared secret information is crucial for

the level of protection when using MAC-based protection. Further

guidance is available in the security considerations of CMP updated

by [I-D.ietf-lamps-cmp-updates].

Specific prerequisites augmenting the prerequisites in Section 3.4:

Rather than using private keys, certificates, and trust anchors,

the EE and the PKI management entity MUST share secret

information.

Note: The shared secret information MUST be established out-of-

band, e.g., by a service technician during initial local

configuration.

When using the generalInfo field certProfile, the EE MUST know

the identifier needed to indicate the requested certificate

profile.

The message sequence for this PKI management operation is identical

to that given in Section 4.1.1, with the following changes:

The protection of all messages MUST be MAC-based.

In case the sending entity does not know its own name by now,

it MUST put the NULL-DN into the sender field. The senderKID

MUST contain a reference the recipient can use to identify the

shared secret information used for the protection, e.g., the

username of the EE.

The extraCerts of all messages does not contain CMP protection

certs and associated chains.

See Section 6 of CMP Algorithms [I-D.ietf-lamps-cmp-algorithms] for

details on message authentication code algorithms (MSG_MAC_ALG) to

use. Typically, parameters are part of the protectionAlg field,

e.g., used for key derivation, like a salt and an iteration count.

Such fields SHOULD remain constant for message protection throughout

this PKI management operation to reduce the computational overhead.

¶

¶

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

4.1.6. Adding Central Key Pair Generation to Enrollment

This is a variant of the PKI management operations described in

Section 4.1.1 to Section 4.1.4 and the variant described in

Section 4.1.5. It needs to be used in case an EE is not able to

generate its new public-private key pair itself or central

generation of the EE key material is preferred. It is a matter of

the local implementation which PKI management entity will act as Key

Generation Authority (KGA) and perform the key generation. This PKI

management entity MUST use a certificate containing the additional

extended key usage extension id-kp-cmKGA in order to be acceptable

by the EE as a legitimate key generation authority.

As described in Section 5.3.1, the KGA can use one of the PKI

management operations described in the sections above to request the

certificate for this key pair on behalf of the EE.

When an EE requests central key generation for a certificate update

using a kur message, the KGA cannot use a kur message to request the

certificate on behalf of the EE as the old EE credential is not

available to the KGA for protecting this message. Therefore, if the

EE uses the PKI management operation described in Section 4.1.3, the

KGA MUST use Section 4.1.2 to request the certificate for the newly

generated key pair on behalf of the EE from the CA.

Generally speaking, in machine-to-machine scenarios it is strongly

preferable to generate public-private key pairs locally at the EE.

Together with proof-of-possession of the private key in the

certificate request, this is advisable to make sure that the entity

identified in the newly issued certificate is the only entity that

knows the private key.

Reasons for central key generation may include the following:

Lack of sufficient initial entropy.

Note: Good random numbers are needed not only for key generation

but also for session keys and nonces in any security protocol.

Therefore, a decent security architecture should anyways support

good random number generation on the EE side or provide enough

initial entropy for the RNG seed to guarantee good pseudo-random

number generation. Yet maybe this is not the case at the time of

requesting an initial certificate during manufacturing.

Lack of computational resources, in particular for RSA key

generation.

Note: Since key generation could be performed in advance to the

certificate enrollment communication, it is often not time

critical.

¶

¶

¶

¶

¶

* ¶

¶

*

¶

¶

Note: As mentioned in Section 2, central key generation may be

required in a push model, where the certificate response message is

transferred by the PKI management entity to the EE without a

previous request message.

The EE requesting central key generation MUST omit the publicKey

field from the certTemplate or, in case it has a preference on the

key type to be generated, provide it in the algorithm sub-field and

fill the subjectPublicKey sub-field with a zero-length BIT STRING.

Both variants indicate to the PKI management entity that a new key

pair shall be generated centrally on behalf of the EE.

Note: As the protection of centrally generated keys in the response

message has been extended to EncryptedKey by CMP Updates Section 2.7

[I-D.ietf-lamps-cmp-updates], EnvelopedData is the preferred

alternative to EncryptedValue. In CRMF Section 2.1.9 [RFC4211] the

use of EncryptedValue has been deprecated in favor of the

EnvelopedData structure. Therefore, this profile requires using

EnvelopedData as specified in CMS Section 6 [RFC5652]. When

EnvelopedData is to be used in a PKI management operation, CMP v3

MUST be indicated in the message header already for the initial

request message, see CMP Updates Section 2.19 and Section 2.20

[I-D.ietf-lamps-cmp-updates].

Figure 3: Encrypted Private Key Container

The PKI management entity delivers the private key in the privateKey

field in the certifiedKeyPair structure of the response message also

containing the newly issued certificate.

¶

¶

¶

+----------------------------------+

| EnvelopedData |

| [RFC5652] Section 6 |

| +------------------------------+ |

| | SignedData | |

| | [RFC5652] Section 5 | |

| | +--------------------------+ | |

| | | AsymmetricKeyPackage | | |

| | | [RFC5958] | | |

| | | +----------------------+ | | |

| | | | privateKey | | | |

| | | | OCTET STRING | | | |

| | | +----------------------+ | | |

| | +--------------------------+ | |

| +------------------------------+ |

+----------------------------------+

¶

The private key MUST be provided as an AsymmetricKeyPackage

structure as defined in RFC 5958 [RFC5958].

This AsymmetricKeyPackage structure MUST be wrapped in a SignedData

structure, as specified in CMS Section 5 [RFC5652] and [RFC8933],

signed by the KGA generating the key pair. The signature MUST be

performed using a private key related to a certificate asserting the

extended key usage id-kp-cmKGA as described in CMP Updates Section

2.2 [I-D.ietf-lamps-cmp-updates] to demonstrate authorization to

generate key pairs on behalf of an EE. The EE SHOULD validate the

signer certificate contained in the SignedData structure and verify

the presence of this extended key usage in the signer certificate.

Note: When using password-based key management technique as

described in Section 4.1.6.3 it may not be possible or meaningful to

the EE to validate the KGA signature and the related certificate in

the SignedData structure since shared secret information is used for

initial authentication. In this case the EE MAY omit this

validation.

The SignedData structure MUST be wrapped in an EnvelopedData

structure, as specified in CMS Section 6 [RFC5652], encrypting it

using a newly generated symmetric content-encryption key.

This content-encryption key MUST be securely provided as part of the

EnvelopedData structure to the EE using one of three key management

techniques. The choice of the key management technique to be used by

the PKI management entity depends on the authentication mechanism

the EE chose to protect the request message. See CMP Updates Section

2.7 [I-D.ietf-lamps-cmp-updates] for more details on which key

management technique to use.

Signature-based protection of the request message:

The content-encryption key SHALL be protected using the key

agreement key management technique, see Section 4.1.6.1, if

the certificate used by the EE for protecting the request

message allows the key usage keyAgreement. If the certificate

also allows the key usage keyEncipherment, the key transport

key management technique SHALL NOT be used.

The content-encryption key SHALL be protected using the key

transport key management technique, see Section 4.1.6.2, if

the certificate used by the EE for protecting the respective

request message allows the key usage keyEncipherment but not

keyAgreement.

¶

¶

¶

¶

¶

* ¶

-

¶

-

¶

MAC-based protected of the request message:

The content-encryption key SHALL be protected using the

password-based key management technique, see Section 4.1.6.3,

if and only if the EE used MAC-based protection for the

request message.

If central key generation is supported, support of the key agreement

key management technique is REQUIRED and support of key transport

and password-based key management techniques are OPTIONAL, for two

reasons: The key agreement key management technique is supported by

most asymmetric algorithms, while the key transport key management

technique is supported only by a very few of them. The password-

based key management technique SHALL only be used in combination

with MAC-based protection.

Specific prerequisites augmenting those of the respective

certificate enrollment PKI management operations:

If signature-based protection is used, the EE MUST be able to

authenticate and authorize the KGA, using suitable information,

which includes a trust anchor.

If MAC-based protection is used, the KGA MUST also know the

shared secret information to protect the encrypted transport of

the newly generated key pair. Consequently, the EE can also

authorize the KGA.

The PKI management entity MUST have a certificate containing the

additional extended key usage extension id-kp-cmKGA for signing

the SignedData structure containing the private key package.

For encrypting the SignedData structure a fresh content-

encryption key to be used by the symmetric encryption algorithm

MUST be generated with sufficient entropy.

Note: The security strength of the protection of the generated

private key should be similar or higher than the security

strength of the generated private key.

Detailed Description of privateKey Field:

* ¶

-

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

 privateKey REQUIRED

 -- MUST be an EnvelopedData structure as specified in CMS

 -- Section 6 [RFC5652]

 version REQUIRED

 -- MUST be 2 for recipientInfo type KeyAgreeRecipientInfo and

 -- KeyTransRecipientInfo

 -- MUST be 0 for recipientInfo type PasswordRecipientInfo

 recipientInfos REQUIRED

 -- MUST contain a sequence of one RecipientInfo, which MUST be

 -- kari of type KeyAgreeRecipientInfo (see section 4.1.6.1),

 -- ktri of type KeyTransRecipientInfo (see section 4.1.6.2), or

 -- pwri of type PasswordRecipientInfo (see section 4.1.6.3)

 encryptedContentInfo

 REQUIRED

 contentType REQUIRED

 -- MUST be id-signedData

 contentEncryptionAlgorithm

 REQUIRED

 -- MUST be the algorithm identifier of the algorithm used for

 -- content encryption

 -- The algorithm type MUST be a PROT_SYM_ALG as specified in

 -- RFCBBBB Section 5

 encryptedContent REQUIRED

 -- MUST be the SignedData structure as specified in CMS

 -- Section 5 [RFC5652] and [RFC8933] in encrypted form

 version REQUIRED

 -- MUST be 3

 digestAlgorithms

 REQUIRED

 -- MUST contain a sequence of one AlgorithmIdentifier element

 -- MUST be the algorithm identifier of the digest algorithm

 -- used for generating the signature and match the signature

 -- algorithm specified in signatureAlgorithm, see [RFC8933]

 encapContentInfo

 REQUIRED

 -- MUST contain the content that is to be signed

 eContentType REQUIRED

 -- MUST be id-ct-KP-aKeyPackage as specified in [RFC5958]

 eContent REQUIRED

 -- MUST be of type AsymmetricKeyPackage and

 -- MUST contain a sequence of one OneAsymmetricKey element

 version REQUIRED

 -- MUST be 1 (indicating v2)

 privateKeyAlgorithm

 REQUIRED

 -- The privateKeyAlgorithm field MUST contain the algorithm

 -- identifier of the asymmetric key pair algorithm

 privateKey

 REQUIRED

 publicKey

 REQUIRED

 -- MUST contain the public key corresponding to the private key

 -- for simplicity and consistency with v2 of OneAsymmetricKey

 certificates REQUIRED

 -- MUST contain the certificate for the private key used to sign

 -- the signedData content, together with its chain

 -- The first certificate in this field MUST be the KGA

 -- certificate used for protecting this content

 -- Self-signed certificates SHOULD NOT be included and MUST NOT

 -- be trusted based on their inclusion in any case

 signerInfos REQUIRED

 -- MUST contain a sequence of one SignerInfo element

 version REQUIRED

 -- MUST be 3

 sid REQUIRED

 subjectKeyIdentifier

 REQUIRED

 -- MUST be the subjectKeyIdentifier of the KGA certificate

 digestAlgorithm

 REQUIRED

 -- MUST be the same as in the digestAlgorithms field of

 -- encryptedContent

 -- MUST be the same as in digestAlgorithms

 signedAttrs REQUIRED

 -- MUST contain an id-contentType attribute containing the value

 -- id-ct-KP-aKeyPackage

 -- MUST contain an id-messageDigest attribute containing the

 -- message digest of eContent

 -- MAY contain an id-signingTime attribute containing the time

 -- of signature

 -- For details on the signed attributes see CMS Section 5.3 and

 -- Section 11 [RFC5652] and [RFC8933]

 signatureAlgorithm

 REQUIRED

 -- MUST be the algorithm identifier of the signature algorithm

 -- used for calculation of the signature bits

 -- The signature algorithm type MUST be a MSG_SIG_ALG as

 -- specified in RFCBBBB Section 3 and MUST be consistent

 -- with the subjectPublicKeyInfo field of the KGA certificate

 signature REQUIRED

 -- MUST be the digital signature of the encapContentInfo

¶

NOTE: As stated in Section 1.5, all fields of the ASN.1 syntax that

are defined in RFC 5652 [RFC5652] but are not explicitly specified

here SHOULD NOT be used.

4.1.6.1. Using Key Agreement Key Management Technique

This variant can be applied in combination with the PKI management

operations specified in Section 4.1.1 to Section 4.1.3 using

signature-based protection of CMP messages. The EE certificate used

for the signature-based protection of the request message MUST allow

for the key usage "keyAgreement" and therefore, the related key pair

MUST be used for establishment of the content-encryption key. For

this key management technique the KeyAgreeRecipientInfo structure

MUST be used in the contentInfo field.

The KeyAgreeRecipientInfo structure included into the EnvelopedData

structure is specified in CMS Section 6.2.2 [RFC5652].

Detailed Description of KeyAgreeRecipientInfo Structure:

¶

¶

¶

¶

4.1.6.2. Using Key Transport Key Management Technique

This variant can be applied in combination with the PKI management

operations specified in Section 4.1.1 to Section 4.1.3 using

signature-based protection of CMP messages. The EE certificate used

for the signature-based protection of the request message MUST allow

for the key usage "keyEncipherment" and not for "keyAgreement".

Therefore, the related key pair MUST be used for encipherment of the

content-encryption key. For this key management technique, the

KeyTransRecipientInfo structure MUST be used in the contentInfo

field.

 kari REQUIRED

 -- MUST be a KeyAgreeRecipientInfo as specified in CMS Section

 -- 6.2.2 [RFC5652]

 version REQUIRED

 -- MUST be 3

 originator REQUIRED

 -- MUST contain the subjectKeyIdentifier of the certificate,

 -- and thereby identifies the sender's public key.

 -- MUST contain the same value as the senderKID in the

 -- message header

 ukm RECOMMENDED

 -- MUST be used when 1-pass ECMQV is used, see [RFC5753]

 -- SHOULD be present to ensure uniqueness of the key

 -- encryption key

 keyEncryptionAlgorithm

 REQUIRED

 -- MUST be the algorithm identifier of the key agreement

 -- algorithm

 -- The algorithm type MUST be a KM_KA_ALG as specified in

 -- RFCBBBB Section 4.1

 -- The parameters field of the key agreement algorithm MUST

 -- contains the key wrap algorithm

 -- The algorithm type MUST be a KM_KW_ALG as specified in

 -- RFCBBBB Section 4.3

 recipientEncryptedKeys

 REQUIRED

 -- MUST contain a sequence of one RecipientEncryptedKey

 rid REQUIRED

 -- MUST contain the rKeyId choice

 rKeyId REQUIRED

 subjectKeyIdentifier

 REQUIRED

 -- MUST contain the same value as the senderKID in the

 -- respective request message header

 encryptedKey

 REQUIRED

 -- MUST be the encrypted content-encryption key

¶

¶

The KeyTransRecipientInfo structure included into the EnvelopedData

structure is specified in CMS Section 6.2.1 [RFC5652].

Detailed Description of KeyTransRecipientInfo Structure:

4.1.6.3. Using Password-Based Key Management Technique

This variant can be applied in combination with the PKI management

operation specified in Section 4.1.5 using MAC-based protection of

CMP messages. The shared secret information used for the MAC-based

protection MUST also be used for the encryption of the content-

encryption key but with a different salt value applied in the key

derivation algorithm. For this key management technique, the

PasswordRecipientInfo structure MUST be used in the contentInfo

field.

Note: The entropy of the shared secret information is crucial for

the level of protection when using a password-based key management

technique. For centrally generated key pairs, the entropy of the

shared secret information SHALL NOT be less than the security

strength of the centrally generated key pair. Further guidance is

available in Section 9.

The PasswordRecipientInfo structure included into the EnvelopedData

structure is specified in CMS Section 6.2.4 [RFC5652].

Detailed Description of PasswordRecipientInfo Structure:

¶

¶

 ktri REQUIRED

 -- MUST be a KeyTransRecipientInfo as specified in CMS

 -- Section 6.2.1 [RFC5652]

 version REQUIRED

 -- MUST be 2

 rid REQUIRED

 -- MUST contain the subjectKeyIdentifier choice

 subjectKeyIdentifier

 REQUIRED

 -- MUST contain the same value as the senderKID in the

 -- respective request message header

 keyEncryptionAlgorithm

 REQUIRED

 -- MUST be the algorithm identifier of the key transport

 -- algorithm

 -- The algorithm type MUST be a KM_KT_ALG as specified in

 -- RFCBBBB Section 4.2

 encryptedKey REQUIRED

 -- MUST be the encrypted content-encryption key

¶

¶

¶

¶

¶

4.2. Revoking a Certificate

This PKI management operation should be used by an entity to request

revocation of a certificate. Here the revocation request is used by

an EE to revoke one of its own certificates.

The revocation request message MUST be signed using the certificate

that is to be revoked to prove the authorization to revoke. The

revocation request message is signature-protected using this

certificate. This requires, that the EE still possesses the private

key. If this is not the case the revocation has to be initiated by

other means, e.g., revocation by the RA as specified in

Section 5.3.2.

An EE requests the revocation of an own certificate at the CA that

issued this certificate. The PKI management entity handles the

request as described in Section 5.1.3 and responds with a message

that contains the status of the revocation from the CA.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The certificate the EE wishes to revoke is not yet expired or

revoked.

Message Flow:

 pwri REQUIRED

 -- MUST be a PasswordRecipientInfo as specified in CMS

 -- Section 6.2.4 [RFC5652]

 version REQUIRED

 -- MUST be 0

 keyDerivationAlgorithm

 REQUIRED

 -- MUST be the algorithm identifier of the key derivation

 -- algorithm

 -- The algorithm type MUST be a KM_KD_ALG as specified in

 -- RFCBBBB Section 4.4

 keyEncryptionAlgorithm

 REQUIRED

 -- MUST be the algorithm identifier of the key wrap algorithm

 -- The algorithm type MUST be a KM_KW_ALG as specified in

 -- RFCBBBB Section 4.3

 encryptedKey REQUIRED

 -- MUST be the encrypted content-encryption key

¶

¶

¶

¶

¶

*

¶

¶

For this PKI management operation, the EE MUST include a sequence of

one RevDetails structure in the rr message body. In the case no

generic error occurred, the response to the rr MUST be an rp message

containing a single status field.

Detailed Message Description:

Step# EE PKI management entity

 1 format rr

 2 -> rr ->

 3 handle or forward rr

 4 format or receive rp

 5 <- rp <-

 6 handle rp

¶

¶

¶

Revocation Request -- rr

Field Value

header

 -- As described in Section 3.1

body

 -- The request of the EE to revoke its certificate

 rr REQUIRED

 -- MUST contain a sequence of one element of type RevDetails

 -- If more revocations are desired, further PKI management

 -- operations MUST be initiated

 certDetails REQUIRED

 -- MUST be present and is of type CertTemplate

 serialNumber REQUIRED

 -- MUST contain the certificate serialNumber attribute of the

 -- certificate to be revoked

 issuer REQUIRED

 -- MUST contain the issuer attribute of the certificate to be

 -- revoked

 crlEntryDetails REQUIRED

 -- MUST contain a sequence of one reasonCode of type CRLReason

 -- (see [RFC5280] section 5.3.1)

 -- If the reason for this revocation is not known or shall not

 -- be published the reasonCode MUST be 0 = unspecified

protection REQUIRED

 -- As described in Section 3.2 and using the private key related

 -- to the certificate to be revoked

extraCerts REQUIRED

 -- As described in Section 3.3

Revocation Response -- rp

Field Value

header

 -- As described in Section 3.1

body

 -- The responds of the PKI management entity to the request as

 -- appropriate

 rp REQUIRED

 status REQUIRED

 -- MUST contain a sequence of one element of type PKIStatusInfo

 status REQUIRED

 -- positive value allowed: "accepted"

 -- negative value allowed: "rejection"

 statusString OPTIONAL

 -- MAY be any human-readable text for debugging, logging or to

 -- display in a GUI

 failInfo OPTIONAL

 -- MAY be present if status is "rejection"

 -- MUST be absent if the status is "accepted"

protection REQUIRED

 -- As described in section 3.2

extraCerts REQUIRED

 -- As described in section 3.3

¶

4.3. Support Messages

The following support messages offer on demand in-band delivery of

content relevant to the EE provided by a PKI management entity. CMP

general messages and general response are used for this purpose.

Depending on the environment, these requests may be answered by an

RA or CA (see also Section 5.1.4).

The general messages and general response messages contain

InfoTypeAndValue structures. In addition to those infoType values

defined in RFC 4210 [RFC4210] and CMP Updates

[I-D.ietf-lamps-cmp-updates] further OIDs MAY be used to define new

PKI management operations or new general-purpose support messages as

needed in specific environments.

The following contents are specified in this document:

Get CA certificates

Get root CA certificate update

Get certificate request template

Get new CRLs

The following message flow and contents are common to all general

message (genm) and general response (genp) messages.

Message Flow:

Detailed Message Description:

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

Step# EE PKI management entity

 1 format genm

 2 -> genm ->

 3 handle or forward genm

 4 format or receive genp

 5 <- genp <-

 6 handle genp

¶

¶

General Message -- genm

Field Value

header

 -- As described in Section 3.1

body

 -- A request by the EE for information

 genm REQUIRED

 -- MUST contain a sequence of one element of type

 -- InfoTypeAndValue

 infoType REQUIRED

 -- MUST be the OID identifying one of the specific PKI

 -- management operations described below

 infoValue OPTIONAL

 -- MUST be as specified for the specific PKI management operation

protection REQUIRED

 -- As described in Section 3.2

extraCerts REQUIRED

 -- As described in Section 3.3

General Response -- genp

Field Value

header

 -- As described in Section 3.1

body

 -- The response of the PKI management entity providing

 -- information

 genp REQUIRED

 -- MUST contain a sequence of one element of type

 -- InfoTypeAndValue

 infoType REQUIRED

 -- MUST be the OID identifying the specific PKI management

 -- operation described below

 infoValue OPTIONAL

 -- MUST be as specified for the specific PKI management operation

protection REQUIRED

 -- As described in Section 3.2

extraCerts REQUIRED

 -- As described in Section 3.3

¶

1

2

3

4.3.1. Get CA Certificates

This PKI management operation can be used by an EE to request CA

certificates from the PKI management entity.

An EE requests CA certificates, e.g., for chain construction, from

an PKI management entity by sending a general message with OID id-

it-caCerts as specified in CMP Updates Section 2.14

[I-D.ietf-lamps-cmp-updates]. The PKI management entity responds

with a general response with the same OID that either contains a

SEQUENCE of certificates populated with the available intermediate

and issuing CA certificates or with no content in case no CA

certificate is available.

No specific prerequisites apply in addition to those specified in

Section 3.4.

The message sequence for this PKI management operation is as given

above, with the following specific content:

the infoType OID to use is id-it-caCerts

the infoValue of the request MUST be absent

if present, the infoValue of the response MUST contain a

sequence of certificates

Detailed Description of infoValue Field of genp:

4.3.2. Get Root CA Certificate Update

This PKI management operation can be used by an EE to request an

updated root CA Certificate as described in Section 4.4 of RFC 4210

[RFC4210].

An EE requests an update of a root CA certificate from the PKI

management entity by sending a general message with OID id-it-

rootCaCert, which SHOULD include the old root CA certificate in the

message body, as specified in CMP Updates Section 2.15

[I-D.ietf-lamps-cmp-updates]. The PKI management entity responds

with a general response with OID id-it-rootCaKeyUpdate that either

contains the update of the root CA certificate consisting of up to

three certificates, or with no content in case no update is

available.

¶

¶

¶

¶

¶

¶

¶

¶

 infoValue OPTIONAL

 -- MUST be absent if no CA certificate is available

 -- MUST be present if CA certificates are available

 -- if present, MUST be a sequence of CMPCertificate

¶

¶

¶

1

2

3

Note: This mechanism may also be used to update trusted non-root

certificates, i.e., trusted intermediate CA or issuing CA

certificates.

The newWithNew certificate is the new root CA certificate and is

REQUIRED to be present if available. The newWithOld certificate is

REQUIRED to be present in the response message because it is needed

for the receiving entity trusting the old root CA certificate to

gain trust in the new root CA certificate. The oldWithNew

certificate is OPTIONAL because it is only needed in rare scenarios

where entities do not already trust the old root CA.

No specific prerequisites apply in addition to those specified in

Section 3.4.

The message sequence for this PKI management operation is as given

above, with the following specific content:

the infoType OID to use is id-it-rootCaCert in the request and

id-it-rootCaKeyUpdate in the response

the infoValue of the request SHOULD contain the root CA

certificate the update is requested for

if present, the infoValue of the response MUST be a

RootCaKeyUpdateContent structure

Detailed Description of infoValue Field of genm:

Detailed Description of infoValue Field of genp:

¶

¶

¶

¶

¶

¶

¶

¶

 infoValue RECOMMENDED

 -- MUST contain the root CA certificate to be updated, if

 -- available

¶

¶

4.3.3. Get Certificate Request Template

This PKI management operation can be used by an EE to request a

template with parameters for future certificate requests.

An EE requests certificate request parameters from the PKI

management entity by sending a general message with OID id-it-

certReqTemplate as specified in CMP Updates Section 2.16

[I-D.ietf-lamps-cmp-updates]. The EE MAY indicate the certificate

profile to use in the id-it-certProfile extension of the generalInfo

field in the PKIHeader of the general message as described in

Section 3.1. The PKI management entity responds with a general

response with the same OID that either contains requirements on the

certificate request template, or with no content in case no specific

requirements are imposed by the PKI. The CertReqTemplateValue

contains requirements on certificate fields and extensions in a

certTemplate. Optionally it contains a keySpec field containing

requirements on algorithms acceptable for key pair generation.

The EE SHOULD follow the requirements from the received

CertTemplate, by including in the certificate requests all the

fields requested, taking over all the field values provided and

filling in any remaining fields values. The EE SHOULD NOT add

further fields, name components, and extensions or their

(sub-)components.

Note: We deliberately do not use "MUST" or "MUST NOT" here in order

to allow more flexibility in case the rules given here are not

sufficient for specific scenarios. The EE can populate the

certificate request as wanted and ignore any of the requirements

contained in the CertReqTemplateValue. On the other hand, a PKI

management entity is free to ignore or replace any parts of the

 infoValue OPTIONAL

 -- MUST be absent if no update of the root CA certificate is

 -- available

 -- MUST be present if an update of the root CA certificate

 -- is available and MUST be of type RootCaKeyUpdateContent

 newWithNew REQUIRED

 -- MUST be present if infoValue is present

 -- MUST contain the new root CA certificate

 newWithOld REQUIRED

 -- MUST be present if infoValue is present

 -- MUST contain a certificate containing the new public

 -- root CA key signed with the old private root CA key

 oldWithNew OPTIONAL

 -- MAY be present if infoValue is present

 -- MUST contain a certificate containing the old public

 -- root CA key signed with the new private root CA key

¶

¶

¶

¶

content of the certificate request provided by the EE. The

CertReqTemplate PKI management operation offers means to ease a

joint understanding which fields and/or which field values should be

used. An example is provided in Appendix A.

In case a field of type Name, e.g., subject, is present in the

CertTemplate but has the value NULL-DN (i.e., has an empty list of

RDN components), the field SHOULD be included in the certificate

request and filled with content provided by the EE. Similarly, in

case an X.509v3 extension is present but its extnValue is empty,

this means that the extension SHOULD be included and filled with

content provided by the EE. In case a Name component, for instance a

common name or serial number, is given but has an empty string

value, the EE SHOULD fill in a value. Similarly, in case an

extension has sub-components (e.g., an IP address in a

SubjectAltName field) with empty value, the EE SHOULD fill in a

value.

The EE MUST ignore (i.e., not include and fill in) empty fields,

extensions, and sub-components that it does not understand or does

not know suitable values to be filled in.

The publicKey field of type SubjectPublicKeyInfo in the CertTemplate

of the CertReqTemplateValue MUST be omitted. In case the PKI

management entity wishes to make stipulation on algorithms the EE

may use for key generation, this MUST be specified using the keySpec

field as specified in CMP Updates Section 2.15

[I-D.ietf-lamps-cmp-updates].

The keySpec field, if present, specifies the public key types

optionally with parameters, and/or RSA key lengths for which a

certificate may be requested.

The value of a keySpec element with the OID id-regCtrl-algId, as

specified in CMP Updates Section 2.15 [I-D.ietf-lamps-cmp-updates],

MUST be of type AlgorithmIdentifier and give an algorithm other than

RSA. For EC keys the curve information MUST be specified as

described in the respective standard documents.

The value of a keySpec element with the OID id-regCtrl-rsaKeyLen, as

specified in CMP Updates Section 2.15 [I-D.ietf-lamps-cmp-updates],

MUST be a positive integer value and give an RSA key length.

In the CertTemplate of the CertReqTemplateValue the serialNumber,

signingAlg, issuerUID, and subjectUID fields MUST be omitted.

¶

¶

¶

¶

¶

¶

¶

¶

1

2

3

4

Specific prerequisites augmenting the prerequisites in Section 3.4:

When using the generalInfo field certProfile, the EE MUST know

the identifier needed to indicate the requested certificate

profile.

The message sequence for this PKI management operation is as given

above, with the following specific content:

the infoType OID to use is id-it-certReqTemplate

the id-it-certProfile generalInfo field in the header of the

request MAY contain the name of the requested certificate

request template

the infoValue of the request MUST be absent

if present, the infoValue of the response MUST be a

CertReqTemplateValue containing a CertTemplate structure and

an optional keySpec field

Detailed Description of infoValue Field of genp:

4.3.4. CRL Update Retrieval

This PKI management operation can be used by an EE to request a new

CRL. If a CA offers methods to access a CRL, it may include CRL

distribution points or authority information access extensions as

specified in RFC 5280 [RFC5280] into the issued certificates. In

addition, CMP offers CRL provisioning functionality as part of the

PKI management operation.

¶

*

¶

¶

¶

¶

¶

¶

¶

 InfoValue OPTIONAL

 -- MUST be absent if no requirements are available

 -- MUST be present if the PKI management entity has any

 -- requirements on the contents of the certificate template

 certTemplate REQUIRED

 -- MUST be present if infoValue is present

 -- MUST contain the required CertTemplate structure elements

 -- The SubjectPublicKeyInfo field MUST be absent

 keySpec OPTIONAL

 -- MUST be absent if no requirements on the public key are

 -- available

 -- MUST be present if the PKI management entity has any

 -- requirements on the keys generated

 -- MUST contain a sequence of one AttributeTypeAndValue per

 -- supported algorithm with attribute id-regCtrl-algId or

 -- id-regCtrl-rsaKeyLen

¶

¶

1

2

3

An EE requests a CRL update from the PKI management entity by

sending a general message with OID id-it-crlStatusList. The EE MUST

include the CRL source identifying the requested CRL and, if

available, the thisUpdate time of the most current CRL instance it

already has, as specified in CMP Updates Section 2.17

[I-D.ietf-lamps-cmp-updates]. The PKI management entity MUST respond

with a general response with OID id-it-crls. If no thisUpdate value

was given by the EE, the PKI management entity MUST return the

latest CRL available. If a thisUpdate value was given, the PKI

management entity MUST return the latest available CRL if this CRL

has a more recent thisUpdate time. Otherwise, the infoValue in the

response message MUST be absent.

The EE MUST identify the requested CRL either by its CRL

distribution point name or issuer name. The CRL distribution point

name can either be provided from the CRL distribution points

extension of the certificate to be validated or from the issuing

distribution point extension from the CRL to be updated. If a

thisUpdate value was given, the PKI management entity MUST return

the latest available CRL if this CRL has a more recent thisUpdate

time. Otherwise, the infoValue in the response message MUST be

absent.

The PKI management entity SHOULD treat a CRL distribution point name

as an internal pointer to identify a CRL for which is available at

the PKI management entity directly. It is not intended as a way to

fetch an arbitrary CRL from an external location.

In addition to the prerequisites specified in Section 3.4, the EE

MUST know which CRL to request.

Note: If the EE does not want to request a specific CRL it MAY use

instead a general message with OID id-it-currentCrl as specified in

RFC 4210 Section 5.3.19.6 [RFC4210].

The message sequence for this PKI management operation is as given

above, with the following specific content:

the infoType OID to use is id-it-crlStatusList in the request

and id-it-crls in the response

the infoValue of the request MUST be present and contain a

sequence of one CRLStatus structure

if present, the infoValue of the response MUST contain a

sequence of one CRL

Detailed Description of infoValue Field of genm:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Detailed Description of infoValue Field of genp:

4.4. Handling Delayed Delivery

This is a variant of all PKI management operations described in this

document. It is initiated in case a PKI management entity cannot

respond to a request message in a timely manner, typically due to

offline or asynchronous upstream communication, or due to delays in

handling the request. The polling mechanism has been specified in

RFC 4210 Section 5.3.22 [RFC4210] and updated by

[I-D.ietf-lamps-cmp-updates].

Depending on the PKI architecture, the entity initiating delayed

delivery is not necessarily the PKI management entity directly

addressed by the EE.

When initiating delayed delivery of a message received from an EE,

the PKI management entity MUST respond with an ip/cp/kup/error

message including the status "waiting". On receiving this response,

the EE MUST store in its transaction context the senderNonce of the

preceding request message because this value will be needed for

checking the recipNonce of the final response to be received after

polling. It sends a poll request with certReqId 0 if referring to

the CertResponse element contained in the ip/cp/kup message, else -1

to refer to the whole message. In case the final response is not yet

available, the PKI management entity that initiated the delayed

delivery MUST answer with a poll response, with the same certReqId.

The included checkAfter time value indicates the minimum number of

seconds that SHOULD elapse before the EE sends a new pollReq message

 CRLSource REQUIRED

 -- MUST contain a sequence of one CRLSource structure

 -- MUST contain the dpn choice of type DistributionPointName if

 -- the CRL distribution point name is available

 -- Otherwise, MUST contain the issuer choice identifying the CA

 -- that issues the CRL. It MUST contain the issuer DN in the

 -- directoryName field of a GeneralName element.

 thisUpdate OPTIONAL

 -- SHOULD contain the thisUpdate field of the latest CRL the EE

 -- has got from the issuer specified in the given dpn or

 -- issuer field

 -- MUST be omitted if the EE does not have any instance of the

 -- requested CRL

¶

¶

 infoValue OPTIONAL

 -- MUST be absent if no CRL to be returned is available

 -- MUST contain a sequence of one CRL update from the referenced

 -- source, if a thisUpdate value was not given or a more recent

 -- CRL is available

¶

¶

¶

to the PKI management entity. This is repeated until a final

response is available or any party involved gives up on the current

PKI management operation, i.e., a timeout occurs.

When the PKI management entity that initiated delayed delivery can

provide the final response for the original request message of the

EE, it MUST send this response to the EE. Using this response, the

EE can continue the current PKI management operation as usual.

No specific prerequisites apply in addition to those of the

respective PKI management operation.

Message Flow:

¶

¶

¶

¶

Detailed Message Description:

Step# EE PKI management entity

 1 format request

 message

 2 -> request ->

 3 handle or forward

 request

 4 format ip/cp/kup/error

 with status "waiting"

 response in case no

 immediate final response

 is available,

 5 <- ip/cp/kup/error <-

 6 handle

 ip/cp/kup/error

 with status

 "waiting"

-------------------------- start polling --------------------------

 7 format pollReq

 8 -> pollReq ->

 9 handle or forward pollReq

10 in case the final response

 for the original request

 is available, continue

 with step 14

 otherwise, format or

 receive pollRep with

 checkAfter value

11 <- pollRep <-

12 handle pollRep

13 let checkAfter

 time elapse and

 continue with

 step 7

----------------- end polling, continue as usual ------------------

14 format or receive

 final response on

 original request

15 <- response <-

16 handle final

 response

¶

¶

Response with Status "waiting" -- ip/cp/kup/error

Field Value

header

 -- As described in Section 3.1

body

 -- As described for the respective PKI management operation, with

 -- the following adaptations:

 status REQUIRED -- in case of ip/cp/kup

 pKIStatusInfo REQUIRED -- in case of error response

 -- PKIStatusInfo structure MUST be present

 status REQUIRED

 -- MUST be status "waiting"

 statusString OPTIONAL

 -- MAY be any human-readable text for debugging, logging or to

 -- display in a GUI

 failInfo PROHIBITED

protection REQUIRED

 -- As described in Section 3.2

extraCerts OPTIONAL

 -- As described in Section 3.3

Polling Request -- pollReq

Field Value

header

 -- As described in Section 3.1

body

 -- The message of the EE asking for the final response or for a

 -- time to check again

 pollReq REQUIRED

 certReqId REQUIRED

 -- MUST be 0 if referring to a CertResponse element, else -1

protection REQUIRED

 -- As described in Section 3.2

 -- MUST use the same credentials as in the first request message

 -- of the PKI management operation

extraCerts RECOMMENDED

 -- As described in Section 3.3

 -- MAY be omitted if the message size is critical and

 -- the PKI management entity caches the extraCerts from the

 -- first request message of the PKI management operation

Polling Response -- pollRep

Field Value

header

 -- As described in Section 3.1

body

 -- The message indicates the delay after which the EE SHOULD

 -- send another pollReq message for this transaction

 pollRep REQUIRED

 certReqId REQUIRED

 -- MUST be 0 if referring to a CertResponse element, else -1

 checkAfter REQUIRED

 -- Time in seconds to elapse before a new pollReq SHOULD be sent

 reason OPTIONAL

 -- MAY be any human-readable text for debugging, logging or to

 -- display in a GUI

protection REQUIRED

 -- As described in Section 3.2

 -- MUST use the same credentials as in the first response

 -- message of the PKI management operation

extraCerts RECOMMENDED

 -- As described in Section 3.3

 -- MAY be omitted if the message size is critical and the EE has

 -- cached the extraCerts from the first response message of

 -- the PKI management operation

Final Response - Any Type of Response Message

Field Value

header

 -- MUST be the header as described for the response message

 -- of the respective PKI management operation

body

 -- The response of the PKI management entity to the initial

 -- request as described in the respective PKI management

 -- operation

protection REQUIRED

 -- MUST be as described for the response message of the

 -- respective PKI management operation

extraCerts REQUIRED

 -- MUST be as described for the response message of the

 -- respective PKI management operation

¶

5. PKI Management Entity Operations

This section focuses on request processing by a PKI management

entity. Depending on the network and PKI solution design, this can

be an RA or CA, any of which may include protocol conversion or

central key generation (i.e., acting as a KGA).

A PKI management entity may directly respond to request messages

from downstream and report errors. In case the PKI management entity

is an RA it typically forwards the received request messages

upstream after checking them and forwards respective response

messages downstream. Besides responding to messages or forwarding

them, a PKI management entity may request or revoke certificates on

behalf of EEs. A PKI management entity may also need to manage its

own certificates and thus act as an EE using the PKI management

operations specified in Section 4.

5.1. Responding to Requests

The PKI management entity terminating the PKI management operation

at CMP level MUST respond to all received requests by returning a

related CMP response message or an error. Any intermediate PKI

management entity MAY respond depending on the PKI configuration and

policy.

In addition to the checks described in Section 3.5, the responding

PKI management entity MUST check that a request that initiates a new

PKI management operation does not use a transactionID that is

currently in use. The failInfo bit value to use on reporting failure

as described in Section 3.6.4 is transactionIdInUse. If any of these

verification steps or any of the essential checks described in the

following subsections fails, the PKI management entity MUST proceed

as described in Section 3.6.

The responding PKI management entity SHOULD copy the sender field of

the request to the recipient field of the response, MUST copy the

senderNonce of the request to the recipNonce of the response, and

MUST use the same transactionID for the response.

5.1.1. Responding to a Certificate Request

An ir/cr/p10cr/kur message is used to request a certificate as

described in Section 4.1. The responding PKI management entity MUST

proceed as follows unless it initiates delayed delivery as described

in Section 5.1.5.

The PKI management entity MUST check the message body according to

the applicable requirements from Section 4.1. Possible failInfo bit

values used for error reporting in case a check failed include

badCertId and badCertTemplate. It MUST verify the presence and value

¶

¶

¶

¶

¶

¶

of the proof-of-possession (failInfo bit: badPOP), unless central

key generation is requested. In case the special POP value

"raVerified" is given, it SHOULD check that the request message was

signed using a certificate containing the cmcRA extended key usage

(failInfo bit: notAuthorized). The PKI management entity SHOULD also

perform any further checks on the certTemplate contents (failInfo:

badCertTemplate) according to any applicable PKI policy and

certificate profile.

If the requested certificate is available, the PKI management entity

MUST respond with a positive ip/cp/kup message as described in

Section 4.1.

Note: If central key generation is performed by the responding PKI

management entity, the responding PKI management entity MUST include

in the response the privateKey field as specified in Section 4.1.6.

It may have issued the certificate for the newly generated key pair

itself if it is a CA, or have requested the certificate on behalf of

the EE as described in Section 5.3.1, or have received it by other

means from a CA.

The prerequisites of the respective PKI management operation as

specified in Section 4.1 apply.

Note: If the EE requested omission of the certConf message, the PKI

management entity SHOULD handle it as described in Section 4.1.1.

Therefore, it MAY grant this by including the implicitConfirm

generalInfo field or include the confirmWaitTime field in the

response header.

5.1.2. Responding to a Confirmation Message

A PKI management entity MUST handle a certConf message if it has

responded before with a positive ip/cp/kup message not granting

implicit confirmation. It SHOULD check the message body according to

the requirements given in Section 4.1.1 (failInfo bit: badCertId)

and react as described there.

The prerequisites of the respective PKI management operation as

specified in Section 4.1 apply.

5.1.3. Responding to a Revocation Request

An rr message is used to request revocation of a certificate. The

responding PKI management entity SHOULD check the message body

according to the requirements in Section 4.2. It MUST make sure that

the referenced certificate exists (failInfo bit: badCertId), has

been issued by the addressed CA, and is not already expired or

revoked (failInfo bit: certRevoked). On success it MUST respond with

a positive rp message as described in Section 4.2.

¶

¶

¶

¶

¶

¶

¶

¶

No specific prerequisites apply in addition to those specified in

Section 3.4.

5.1.4. Responding to a Support Message

A genm message is used to retrieve extra content. The responding PKI

management entity SHOULD check the message body according to the

applicable requirements in Section 4.3 and perform any further

checks depending on the PKI policy. On success it MUST respond with

a genp message as described there.

Note: The responding PKI management entity may generate the response

from scratch or reuse the contents of previous responses. Therefore,

it may be worth caching the body of the response message as long as

the contained information is still valid, such that further requests

for the same contents can be answered immediately.

No specific prerequisites apply in addition to those specified in

Section 3.4.

5.1.5. Initiating Delayed Delivery

This functional extension can be used by a PKI management entity in

case the response to a request takes longer than usual. In this case

the PKI management entity MUST completely validate the request as

usual and then start preparing the response or forward the request

further upstream as soon as possible. In the meantime, it MUST

respond with an ip/cp/kup/error message including the status

"waiting" and handle subsequent polling as described in Section 4.4.

Note: Typically, as stated in Section 5.2.3, an intermediate PKI

management entity should not change the sender and recipient nonces

even in case it modifies a request or a response message. In the

special case of delayed delivery initiated by an intermediate PKI

management entity, there is an exception. Between the EE and this

PKI management entity, pollReq and pollRep messages are exchanged

handling the nonces as usual. Yet when the final response from

upstream has arrived at the PKI management entity, this response

contains the recipNonce copied (as usual) from the senderNonce in

the original request message. The PKI management entity that

initiated the delayed delivery may replace the recipNonce in the

response message with the senderNonce of the last received pollReq

because the downstream entities, including the EE, might expect it

in this way. Yet the check specified in Section 3.5 allows to

alternatively use the senderNonce of the original request.

No specific prerequisites apply in addition to those of the

respective PKI management operation.

¶

¶

¶

¶

¶

¶

¶

5.2. Forwarding Messages

In case the PKI solution consists of intermediate PKI management

entities (i.e., LRA or RA), each CMP request message coming from an

EE or any other downstream PKI management entity SHOULD be forwarded

to the next (upstream) PKI management entity as described in this

section and otherwise MUST be answered as described in Section 5.1.

Any received response message or error message MUST be forwarded to

the next (downstream) PKI entity.

In addition to the checks described in Section 3.5, the forwarding

PKI management entity MAY verify the proof-of-possession for ir/cr/

p10cr/kur messages. If one of these verification procedures fails,

the RA proceeds as described in Section 3.6.

A PKI management entity SHOULD NOT change the received message

unless its role in the PKI system requires it. This is because

changes to the message header or body imply re-protection and

changes to the protection breaks end-to-end authentication of the

message source, and changes to the certificate template in a

certificate request breaks proof-of-possession. More details are

available in the following sub-sections. Concrete PKI system

specifications may define in more detail when to do so.

This is particularly relevant in the upstream communication of a

request message.

Each forwarding PKI management entity has one or more

functionalities. It may

verify the identities of EEs and make authorization decisions for

certification request processing based on local PKI policy,

add or modify fields of certificate request messages,

replace a MAC-based protection by a signature-based protection

that can be verified also further upstream,

double-check if the messages transferred back and forth are

properly protected and well-formed,

provide an authentic indication that it has performed all

required checks,

initiate a delayed delivery due to delays transferring messages

or handling requests, or

collect messages from multiple RAs and forward them jointly.

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

Note: PKI management entities forwarding messages may also store

data from a message in a database for later usage or audit purposes.

They may also support traversal of a network boundary.

The decision if a message should be forwarded

unchanged with the original protection,

unchanged with a new protection, or

changed with a new protection

depends on the PKI solution design and the associated security

policy (CP/CPS [RFC3647]).

A PKI management entity MUST replace or add a protection of a

message if it

needs to securely indicate that it has done checks or validations

on the message to one of the next (upstream) PKI management

entity or

needs to protect the message using a key and certificate from a

different PKI.

A PKI management entity MUST replace a protection of a message if it

performs changes to the header or the body of the message or

needs to convert from or to a MAC-based protection.

This is particularly relevant in the upstream communication of

certificate request messages.

Note that the message protection covers only the header and the body

and not the extraCerts. The PKI management entity MAY change the

extraCerts in any of the following message adaptations, e.g., to

sort, add, or delete certificates to support subsequent PKI

entities. This may be particularly helpful to augment upstream

messages with additional certificates or to reduce the number of

certificates in downstream messages when forwarding to constrained

devices.

5.2.1. Not Changing Protection

This variant means that a PKI management entity forwards a CMP

message without changing the header, body, or protection. In this

case the PKI management entity acts more like a proxy, e.g., on a

network boundary, implementing no specific RA-like security

functionality that requires an authentic indication to the PKI.

¶

¶

* ¶

* ¶

* ¶

¶

¶

*

¶

*

¶

¶

* ¶

* ¶

¶

¶

Still the PKI management entity might implement checks that result

in refusing to forward the request message and instead responding as

specified in Section 3.6.

This variant of forwarding a message or the one described in

Section 5.2.2.1 SHOULD be used for kur messages and for central key

generation.

No specific prerequisites apply in addition to those specified in

Section 3.4.

5.2.2. Adding Protection and Batching of Messages

This variant of forwarding a message means that a PKI management

entity adds another protection to PKI management messages before

forwarding them.

The nested message is a PKI management message containing a

PKIMessages sequence as its body containing one or more CMP

messages.

As specified in the updated Section 5.1.3.4 of RFC 4210 [RFC4210]

(see also CMP Updates Section 2.6 [I-D.ietf-lamps-cmp-updates])

there are various use cases for adding another protection by a PKI

management entity. Specific procedures are described in more detail

in the following sections.

Detailed Message Description:

¶

¶

¶

¶

¶

¶

¶

Nested Message - nested

Field Value

header

 -- As described in Section 3.1

body

 -- Container to provide additional protection to original

 -- messages and to bundle request messages or alternatively

 -- response messages

 PKIMessages REQUIRED

 -- MUST be a sequence of one or more CMP messages

protection REQUIRED

 -- As described in Section 3.2 using the CMP protection key of

 -- the PKI management entity

extraCerts REQUIRED

 -- As described in Section 3.3

¶

5.2.2.1. Adding Protection to a Request Message

This variant means that a PKI management entity forwards a CMP

message while authentically indicating successful validation and

approval of a request message without changing the original message.

By adding a protection using its own CMP protection key the PKI

management entity provides a proof of verifying and approving the

message as described above. Thus, the PKI management entity acts as

an actual Registration Authority (RA), which implements important

security functionality of the PKI. Applying an additional protection

is specifically relevant when forwarding a message that requests a

certificate update or central key generation. This is because the

original protection of the EE must be preserved while adding an

indication of approval by the PKI management entity.

The PKI management entity wrapping the original request message in a

nested message structure MUST copy the values of the recipient,

recipNonce, and transactionID header fields of the original message

to the respective header fields of the nested message and apply

signature-based protection. The additional signature serves as proof

of verification and authorization by this PKI management entity.

The PKI management entity receiving such a nested message that

contains a single request message MUST validate the additional

protection signature on the nested message and check the

authorization for the approval it implies.

The PKI management entity responding to the request contained in the

nested message sends the response message as described in

Section 5.1, without wrapping it in a nested message.

Note: This form of nesting messages is characterized by the fact

that the transactionID in the header of the nested message is the

same as the one used in the included message.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The PKI management entity MUST be able to validate the respective

request and have the authorization to perform approval of the

request according to the PKI policies.

Message Flow:

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

5.2.2.2. Batching Messages

A PKI management entity MAY bundle any number of PKI management

messages for batch processing or to transfer a bulk of PKI

management messages using the nested message structure. In this use

case, nested messages are used both on the upstream interface

towards the next PKI management entity and by that entity on its

downstream interface.

This PKI management operation is typically used on the interface

between an LRA and an RA to bundle several messages for offline

delivery. In this case the LRA needs to initiate delayed delivery as

described in Section 5.1.5. If the RA needs different routing

information per nested PKI management message provided upstream, a

suitable mechanism may need to be implemented to ensure that the

downstream delivery of the response is done to the right requester.

Since this mechanism strongly depends on the requirements of the

target architecture, it is out of scope of this document.

A nested message containing requests is generated locally at the PKI

management entity. For the upstream nested message, the PKI

management entity acts as a protocol end point and therefore a fresh

transactionID and a fresh senderNonce MUST be used in the header of

the nested message. An upstream nested message may contain request

messages, e.g., ir, cr, p10cr, kur, pollReq, certConf, rr, or genm.

While building the upstream nested message the PKI management entity

MUST store the sender, transactionID, and senderNonce fields of all

bundled messages together with the transactionID of the upstream

nested message.

Such an upstream nested message is sent to the next PKI management

entity. The upstream PKI management entity that unbundles it MUST

handle each of the included request messages as usual. It MUST

answer with a downstream nested message. This downstream nested

message MUST use the transactionID of the upstream nested message

and return the senderNonce of the upstream nested message as the

recipNonce of the downstream nested message. The downstream nested

message SHOULD bundle the individual response messages (e.g., ip,

cp, kup, pollRep, pkiConf, rp, genp, error) for all original request

messages of the upstream nested message. While unbundling the

downstream nested message, the former PKI management entity can

Step# PKI management entity PKI management entity

 1 format nested

 2 -> nested ->

 3 handle or forward nested

 4 format or receive response

 5 <- response <-

 6 forward response

¶

¶

¶

¶

determine lost and unexpected responses based on the previously

stored transactionIDs. When it forwards the unbundled responses, any

extra messages MUST be dropped, and any missing response message

MUST be answered with an error message (failInfo bit: systemUnavail)

to inform the respective requester about the failed certificate

management operation.

Note: This form of nesting messages is characterized by the fact

that the transactionID in the header of the nested message is

different to those used in the included messages.

The protection of the nested messages SHOULD NOT be regarded as an

indication of verification or approval of the bundled PKI request

messages.

No specific prerequisites apply in addition to those specified in

Section 3.4.

Message Flow:

5.2.3. Replacing Protection

The following two alternatives can be used by any PKI management

entity forwarding a CMP message with or without changes while

providing its own protection and in this way asserting approval of

the message.

By replacing the existing protection using its own CMP protection

key the PKI management entity provides a proof of verifying and

approving the message as described above. Thus, the PKI management

entity acts as an actual Registration Authority (RA), which

implements important security functionality of the PKI.

Before replacing the existing protection by a new protection, the

PKI management entity MUST

validate the protection of the received message,

check the content of the message,

do any modifications that it may want to perform, and

¶

¶

¶

¶

¶

Step# PKI management entity PKI management entity

 1 format nested

 2 -> nested ->

 3 handle or forward nested

 4 format or receive nested

 5 <- nested <-

 6 handle nested

¶

¶

¶

¶

* ¶

* ¶

* ¶

check that the sender of the original message, as authenticated

by the message protection, is authorized for the given operation.

These message adaptations MUST NOT be applied to kur messages

described in Section 4.1.3 since their original protection using the

key and certificate to be updated needs to be preserved, unless the

regCtrl OldCertId is used to strongly identify the certificate to be

updated.

These message adaptations MUST NOT be applied to certificate request

messages described in Section 4.1.6 for central key generation since

their original protection needs to be preserved up to the Key

Generation Authority, which needs to use it for encrypting the new

private key for the EE.

In both the kur and central key generation cases, if a PKI

management entity needs to state its approval of the original

request message it MUST provide this using a nested message as

specified in Section 5.2.2.1.

When an intermediate PKI management entity modifies a message, it

MUST NOT change the transactionID, the senderNonce, or the

recipNonce - apart from the exception for the recipNonce given in

Section 5.1.5.

5.2.3.1. Not Changing Proof-of-Possession

This variant of forwarding a message means that a PKI management

entity forwards a CMP message with or without modifying the message

header or body while preserving any included proof-of-possession.

Note: A signature-based proof-of-possession of a certificate request

will be broken if any field in the certTemplate structure is

changed.

In case the PKI management entity breaks an existing proof-of-

possession, the message adaptation described in Section 5.2.3.2

needs to be applied instead.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The PKI management entity MUST be able to validate the respective

request and have the authorization to perform approval of the

request according to the PKI policies.

5.2.3.2. Using raVerified

This variant of forwarding a message needs to be used if a PKI

management entity breaks a signature-based proof-of-possession in a

certificate request message, for instance because it forwards an ir

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

or cr message with modifications of the certTemplate, i.e.,

modification, addition, or removal of fields.

The PKI management entity MUST verify the proof-of-possession

contained in the original message using the included public key. If

successful, the PKI management entity MUST change the popo field

value to raVerified.

Specific prerequisites augmenting the prerequisites in Section 3.4:

The PKI management entity MUST be authorized to replace the

proof-of-possession (after verifying it) with raVerified.

The PKI management entity MUST be able to validate the respective

request and have the authorization to perform approval of the

request according to the PKI policies.

Detailed Description of popo Field of certReq Structure:

5.3. Acting on Behalf of other PKI Entities

A PKI management entity may need to request a PKI management

operation on behalf of another PKI entity. In this case the PKI

management entity initiates the respective PKI management operation

as described in Section 4 acting in the role of the EE.

5.3.1. Requesting a Certificate

A PKI management entity may use one of the PKI management operations

described in Section 4.1 to request a certificate on behalf of

another PKI entity. It either generates the key pair itself and

inserts the new public key in the subjectPublicKey field of the

request certTemplate, or it uses a certificate request received from

downstream, e.g., by means of a different protocol. In the latter

case it MUST verify the received proof-of-possession if this proof

breaks, e.g., due to transformation from PKCS#10 [RFC2986] to CRMF

[RFC4211] certificate request format.

No specific prerequisites apply in addition to those specified in

Section 4.1.

Note: An upstream PKI management entity will not be able to

differentiate this PKI management operation from the one described

in Section 5.2.3 because in both cases the message is protected by

the PKI management entity.

¶

¶

¶

*

¶

*

¶

¶

 popo

 raVerified REQUIRED

 -- MUST have the value NULL and indicates that the PKI

 -- management entity verified the popo of the original message

¶

¶

¶

¶

¶

1

2

1

The message sequence for this PKI management operation is identical

to the respective PKI management operation given in Section 4.1,

with the following changes:

The request messages MUST be signed using the CMP protection

key of the PKI management entity taking the role of the EE in

this operation.

If inclusion of a proper proof-of-possession is not possible

the PKI management entity MUST verify the POP provided from

downstream and use "raVerified" in its upstream request.

5.3.2. Revoking a Certificate

A PKI management entity may use the PKI management operation

described in Section 4.2 to revoke a certificate of another PKI

entity. This revocation request message MUST be signed by the PKI

management entity using its own CMP protection key to prove to the

PKI authorization to revoke the certificate on behalf of that PKI

entity.

No specific prerequisites apply in addition to those specified in

Section 4.2.

Note: An upstream PKI management entity will not be able to

differentiate this PKI management operation from the ones described

in Section 5.2.3.

The message sequence for this PKI management operation is identical

to that given in Section 4.2, with the following changes:

The rr message MUST be signed using the CMP protection key of

the PKI management entity acting on behalf of the EE in this

operation.

6. CMP Message Transfer Mechanisms

CMP messages are designed to be self-contained, such that in

principle any reliable transfer mechanism can be used. HTTP SHOULD

be used and CoAP MAY be used for online transfer of CMP messages on

application layer. CMP messages MAY also be piggybacked on any other

reliable transfer protocol. File-based transfer MAY be used in case

offline transfer is required.

Independently of the means of transfer, it can happen that messages

are lost or that a communication partner does not respond. To

prevent waiting indefinitely, each PKI entity that sends CMP

requests SHOULD use a configurable per-request timeout, and each PKI

management entity that handles CMP requests SHOULD use a

configurable per-response timeout in case a further request message

¶

¶

¶

¶

¶

¶

¶

¶

¶

is to be expected from the client side within the same transaction.

In this way a hanging transaction can be closed cleanly with an

error as described in Section 3.6 (failInfo bit: systemUnavail) and

related resources (for instance, any cached extraCerts) can be

freed.

Moreover, there are various situations where the delivery of

messages gets delayed. For instance, a serving PKI management entity

might take longer than expected to form a response due to

administrative processes, resource constraints, or upstream message

delivery delays. The transport layer itself may cause delays, for

instance due to offline transport, network segmentation, or

intermittent network connectivity. Part of these issues can be

detected and handled at CMP level using pollReq and pollRep messages

as described in Section 4.4, while others are better handled at

transfer level. Depending on the transfer protocol and system

architecture, solutions for handling delays at transfer level may be

present and can be used for CMP connections, for instance connection

re-establishment and message retransmission.

Note: Long timeout periods are helpful to maximize chances to handle

minor delays at lower layers without the need for polling.

Note: When using TCP and similar reliable connection-oriented

transport protocols, which is typical in conjunction with HTTP,

there is the option to keep the connection alive over multiple

request-response message pairs. This may improve efficiency.

When conveying CMP messages in HTTP, CoAP, or MIME-based transfer

protocols, the internet media type "application/pkixcmp" MUST be set

for transfer encoding as specified in Section 5.3 of RFC 2510

[RFC2510], Section 2.4 of CMP over CoAP

[I-D.ietf-ace-cmpv2-coap-transport], and Section 3.4 of CMP over

HTTP [RFC6712].

6.1. HTTP Transfer

This transfer mechanism can be used by a PKI entity to transfer CMP

messages over HTTP. If HTTP transfer is used the specifications as

described in [RFC6712] and updated by CMP Updates

[I-D.ietf-lamps-cmp-updates] MUST be followed.

PKI management operations MUST use URI paths consisting of '/.well-

known/cmp/' or '/.well-known/cmp/p/<name>/' as specified in CMP

Updates Section 3.3 [I-D.ietf-lamps-cmp-updates]. It SHOULD be

followed by an operation label depending on the type of PKI

management operation.

¶

¶

¶

¶

¶

¶

¶

PKI Management Operation URI Path Segment Details

Enrolling an End Entity to a

New PKI
initialization Section 4.1.1

Enrolling an End Entity to a

Known PKI
certification Section 4.1.2

Updating a Valid Certificate keyupdate Section 4.1.3

Enrolling an End Entity Using

a PKCS#10 Request
pkcs10 Section 4.1.4

Revoking a Certificate revocation Section 4.2

Get CA Certificates getcacerts Section 4.3.1

Get Root CA Certificate

Update
getrootupdate Section 4.3.2

Get CA Certificates getcertreqtemplate Section 4.3.1

CRL Update Retrieval getcrls Section 4.3.4

Batching Messages

Note: This path element is

applicable only between PKI

management entities.

nested Section 5.2.2.2

Table 1: HTTP URI Path Segment <operation>

Independently of any variants used (see Section 4.1.5,

Section 4.1.6, and Section 4.4) the operation label corresponding to

the PKI management operation SHALL be used.

Any certConf or pollReq messages are sent to the same endpoint as

determined by the PKI management operation.

When a single request message is nested as described in

Section 5.2.2.1, the label to use is the same as for the underlying

PKI management operation.

By sending a request to its preferred endpoint, the PKI entity will

recognize via the HTTP response status code whether a configured URI

is supported by the PKI management entity.

In case a PKI management entity receives an unexpected HTTP status

code from upstream, it MUST respond downstream with an error message

as described in Section 3.6 using a failInfo bit corresponding to

the status code, e.g., systemFailure.

For certificate management the major security goal is integrity and

data origin authentication. For delivery of centrally generated

keys, also confidentiality is a must. These goals are sufficiently

achieved by CMP itself, also in an end-to-end fashion. If a second

line of defense is required or general privacy concerns exist, TLS

can be used to provide confidentiality on a hop-by-hop basis.

TLS SHOULD be used with certificate-based authentication to further

protect the HTTP transfer as described in [RFC9110]. In addition,

¶

¶

¶

¶

¶

¶

¶

¶

the recommendations provided in [I-D.ietf-uta-rfc7525bis] SHOULD be

considered. The CMP transfer via HTTPS MUST use TLS server

authentication and SHOULD use TLS client authentication.

Note: The requirements for checking certificates given in [RFC5280]

and either [RFC5246] or [RFC8446] MUST be followed for the TLS

layer. Certificate status checking SHOULD be used for the TLS

certificates of all communication partners.

TLS with mutual authentication based on shared secret information

MAY be used in case no suitable certificates for certificate-based

authentication are available, e.g., a PKI management operation with

MAC-based protection is used.

Note: The entropy of the shared secret information is crucial for

the level of protection available using shard secret information-

based TLS authentication. A pre-shared key (PSK) mechanism is

acceptable using shared secret information with an entropy of at

least 128 bits. Otherwise, a password-authenticated key exchange

(PAKE) protocol is RECOMMENDED.

Note: The provisioning of client certificates and PSKs is out of

scope of this document.

6.2. CoAP Transfer

This transfer mechanism can be used by a PKI entity to transfer CMP

messages over CoAP [RFC7252], e.g., in constrained environments. If

CoAP transfer is used the specifications as described in CMP over

CoAP [I-D.ietf-ace-cmpv2-coap-transport] MUST be followed.

PKI management operations SHOULD use URI paths consisting of

'/.well-known/cmp/' or '/.well-known/cmp/p/<name>/' as specified in

CMP over CoAP Section 2.1 [I-D.ietf-ace-cmpv2-coap-transport]

followed by an operation label depending on the type of PKI

management operation.

PKI Management Operation
URI Path

Segment
Details

Enrolling an End Entity to a New PKI ir Section 4.1.1

Enrolling an End Entity to a Known

PKI
cr Section 4.1.2

Updating a Valid Certificate kur Section 4.1.3

Enrolling an End Entity Using a

PKCS#10 Request
p10 Section 4.1.4

Revoking a Certificate rr Section 4.2

Get CA Certificates crts Section 4.3.1

Get Root CA Certificate Update rcu Section 4.3.2

¶

¶

¶

¶

¶

¶

¶

PKI Management Operation
URI Path

Segment
Details

Get Certificate Request Template att Section 4.3.3

CRL Update Retrieval crls Section 4.3.4

Batching Messages

Note: This path element is

applicable only between PKI

management entities.

nest Section 5.2.2.2

Table 2: CoAP URI Path Segment <operation>

Independently of any variants used (see Section 4.1.5,

Section 4.1.6, and Section 4.4) the operation label corresponding to

the PKI management operation SHALL be used.

Any certConf or pollReq messages are sent to the same endpoint as

determined by the PKI management operation.

When a single request message is nested as described in

Section 5.2.2.1, the label to use is the same as for the underlying

PKI management operation.

By sending a request to its preferred endpoint, the PKI entity will

recognize via the CoAP response status code whether a configured URI

is supported by the PKI management entity. The CoAP-inherent

discovery mechanisms MAY also be used.

In case a PKI management entity receives an unexpected CoAP status

code from upstream, it MUST respond downstream with an error message

as described in Section 3.6 using a failInfo bit corresponding to

the status code, e.g., systemFailure.

Like for HTTP transfer , to offer a second line of defense or to

provide hop-by-hop privacy protection, DTLS MAY be utilized as

described in CMP over CoAP [I-D.ietf-ace-cmpv2-coap-transport]. If

DTLS is utilized, the same boundary conditions (peer authentication,

etc.) as stated for TLS to protect HTTP transfer in Section 6.1

apply to DTLS likewise.

Note: The provisioning of client certificates and PSKs is out of

scope of this document.

6.3. Piggybacking on Other Reliable Transfer

CMP messages MAY also be transfer on some other reliable protocol,

e.g., EAP or MQTT. Connection, delay, and error handling mechanisms

similar to those specified for HTTP in Section 6.1 need to be

implemented.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A more detailed specification is out of scope of this document and

would need to be given for instance in the scope of the transfer

protocol used.

6.4. Offline Transfer

For transferring CMP messages between PKI entities, any mechanism

can be used that is able to store and forward binary objects of

sufficient length and with sufficient reliability while preserving

the order of messages for each transaction.

The transfer mechanism SHOULD be able to indicate message loss,

excessive delay, and possibly other transmission errors. In such

cases the PKI entities SHOULD report an error as specified in

Section 3.6 as far as possible.

6.4.1. File-Based Transfer

CMP messages MAY be transferred between PKI entities using file-

based mechanisms, for instance when an offline EE or a PKI

management entity performs delayed delivery. Each file MUST contain

the ASN.1 DER encoding of one CMP message only, where the message

may be nested. There MUST be no extraneous header or trailer

information in the file. The file name extension ".pki" MUST be

used.

6.4.2. Other Asynchronous Transfer Protocols

Other asynchronous transfer protocols, e.g., email or website up-/

download, MAY transfer CMP messages between PKI entities. A MIME

wrapping is defined for those environments that are MIME-native. The

MIME wrapping in this section is specified in RFC 8551 Section 3.1

[RFC8551].

The ASN.1 DER encoding of the CMP messages MUST be transferred using

the "application/pkixcmp" content type and base64-encoded content

transfer encoding as specified in RFC 2510 Section 5.3 [RFC2510]. A

filename MUST be included either in a "content-type" or a "content-

disposition" statement. The file name extension ".pki" MUST be used.

7. Conformance Requirements

This section defines which level of support for the various features

specified in this profile is required for which type of PKI entity.

7.1. PKI Management Operations

The following table provides an overview of the PKI management

operations specified in Section 4 and Section 5 and states whether

support by conforming EE, RA, and CA implementations is mandatory,

¶

¶

¶

¶

¶

¶

¶

recommended, optional, or not applicable. Variants amend or change

behavior of base PKI management operations and are therefore also

included.

The PKI management operation specifications in Section 4 assume that

either the RA or CA is the PKI management entity that terminates the

CMP protocol. If the RA terminates the CMP protocol it either

responds directly as described in Section 5.1 or forwards the

certificate management operation towards the CA not using CMP.

Section 5.2 describes different options how an RA can forward a CMP

message using CMP. Section 5.3 offers the option that an RA operates

on behalf on an EE and therefore takes the role of the EE in

Section 4.

ID
PKI Management Operations and

Variants
EE RA CA

Generic

Generic Aspects of PKI Messages

and PKI Management Operations,

Section 3

MUST MUST MUST

IR
Enrolling an End Entity to a

New PKI, Section 4.1.1
MUST MAY MUST

CR
Enrolling an End Entity to a

Known PKI, Section 4.1.2
MAY MAY MAY

KUR
Updating a Valid Certificate,

Section 4.1.3
MUST MAY MUST

P10CR
Enrolling an End Entity Using a

PKCS#10 Request, Section 4.1.4
MAY MAY MAY

MAC

Using MAC-Based Protection for

Enrollment, with IR, CR, KUR,

and P10CR if supported,

Section 4.1.5

SHOULD
SHOULD

1)
SHOULD

CKeyGen

Adding Central Key Pair

Generation to Enrollment, IR,

CR, KUR, and P10CR if

supported, Section 4.1.6

If supported, key agreement key

management technique is

REQUIRED, and key transport and

password-based key management

techniques are OPTIONAL.

MAY MAY MAY

RR
Revoking a Certificate,

Section 4.2
SHOULD

SHOULD

2)

SHOULD

3)

CACerts
Get CA Certificates,

Section 4.3.1
MAY MAY MAY

RootUpd
Get Root CA Certificate Update,

Section 4.3.2
MAY MAY MAY

ReqTempl MAY MAY MAY

¶

¶

¶

¶

ID
PKI Management Operations and

Variants
EE RA CA

Get Certificate Request

Template, Section 4.3.3

CRLUpd
CRL Update Retrieval,

Section 4.3.4
MAY MAY MAY

Polling
Handling Delayed Delivery,

Section 4.4
MAY MAY MAY

CertResp

Responding to a Certificate

Request (IR, CR, KUR, and P10CR

if supported), Section 5.1.1

N/A MAY MUST

CertConf
Responding to a Confirmation

Message, Section 5.1.2
N/A MAY MUST

RevResp
Responding to a Revocation

Request, Section 5.1.3
N/A MAY SHOULD

GenResp

Responding to a Support Message

(CACerts, RootUpd, ReqTempl,

CRLUpd if supported),

Section 5.1.4

N/A MAY MAY

InitPoll
Initiating Delayed Delivery,

Section 5.1.5
N/A MAY MAY

FwdKeep

Forwarding Messages - Not

Changing Protection,

Section 5.2.1

N/A MUST N/A

FwdAddS

Forwarding Messages - Adding

Protection to a Request

Message, Section 5.2.2.1

N/A MUST MUST

FwdAddB
Forwarding Messages - Batching

Messages, Section 5.2.2.2
N/A MAY MAY

FwdRepKP

Forwarding Messages - Not

Changing Proof-of-Possession,

Section 5.2.3.1

N/A
SHOULD

1)
N/A

FwdRepBP
Forwarding Messages - Using

raVerified, Section 5.2.3.2
N/A MAY MAY

CertOnB

Acting on Behalf of other PKI

Entities - Requesting a

Certificate, Section 5.3.1

N/A MAY N/A

RevROnB

Acting on Behalf of other PKI

Entities - Revoking a

Certificate, Section 5.3.2

N/A
SHOULD

2)

SHOULD

3)

Table 3: Level of Support for PKI Management Operations and Variants

1) The RA should be able to change the CMP message protection from

MAC-based to signature-based protection, see Section 5.2.3.1.

2) The RA should be able to request certificate revocation on behalf

of an EE, see Section 5.3.2.

¶

¶

3) An alternative would be to perform revocation at the CA without

using CMP, for instance using a local administration interface.

7.2. Message Transfer

CMP does not have specific needs regarding message transfer, except

that for each request message sent, eventually a sequence of one

response message should be received. Therefore, virtually any

reliable transfer mechanism can be used, such as HTTP, CoAP, and

file-based offline transfer. Thus, this document does not require

any specific transfer protocol to be supported by conforming

implementations.

On different links between PKI entities, e.g., EE-RA and RA-CA,

different transfer mechanisms as specified in Section 6 may be used.

HTTP SHOULD be supported and CoAP MAY be supported at all PKI

entities for maximizing general interoperability at transfer level.

Yet full flexibility is retained to choose whatever transfer

mechanism is suitable, for instance for devices and system

architectures with specific constraints.

The following table lists the name and level of support specified

for each transfer mechanism.

ID Message Transfer Type EE RA CA

HTTP HTTP Transfer, Section 6.1 SHOULD SHOULD SHOULD

CoAP CoAP Transfer, Section 6.2 MAY MAY MAY

Piggyb
Piggybacking on Other Reliable

Transfer, Section 6.3
MAY MAY MAY

Offline Offline Transfer, Section 6.4 MAY MAY MAY

Table 4: Level of Support for Message Transfer Types

8. IANA Considerations

This document defines new entries with the following content in the

"CMP Well-Known URI Path Segments" registry (see https://

www.iana.org/assignments/cmp/) as defined in RFC 8615 [RFC8615].

Path Segment Description Reference

initialization
Enrolling an End Entity to a New

PKI over HTTP
[thisRFC]

certification
Enrolling an End Entity to a Known

PKI over HTTP
[thisRFC]

keyupdate
Updating a Valid Certificate over

HTTP
[thisRFC]

pkcs10 [thisRFC]

¶

¶

¶

¶

¶

¶

Path Segment Description Reference

Enrolling an End Entity Using a

PKCS#10 Request over HTTP

revocation Revoking a Certificate over HTTP [thisRFC]

getcacerts Get CA Certificates over HTTP [thisRFC]

getrootupdate
Get Root CA Certificate Update over

HTTP
[thisRFC]

getcertreqtemplate Get CA Certificates over HTTP [thisRFC]

getcrls CRL Update Retrieval over HTTP [thisRFC]

nested Batching Messages over HTTP [thisRFC]

ir
Enrolling an End Entity to a New

PKI over CoAP
[thisRFC]

cr
Enrolling an End Entity to a Known

PKI over CoAP
[thisRFC]

kur
Updating a Valid Certificate over

CoAP
[thisRFC]

p10
Enrolling an End Entity Using a

PKCS#10 Request over CoAP
[thisRFC]

rr Revoking a Certificate over CoAP [thisRFC]

crts Get CA Certificates over CoAP [thisRFC]

rcu
Get Root CA Certificate Update over

CoAP
[thisRFC]

att
Get Certificate Request Template

over CoAP
[thisRFC]

crls CRL Update Retrieval over CoAP [thisRFC]

nest Batching Messages over CoAP [thisRFC]

Table 5: New "CMP Well-Known URI Path Segments" Registry Entries

< TBD: New entries must be added to the registry "CMP Well-Known URI

Path Segments". >

9. Security Considerations

The security considerations as laid out in CMP [RFC4210] updated by

CMP Updates [I-D.ietf-lamps-cmp-updates] and CMP Algorithms

[I-D.ietf-lamps-cmp-algorithms], CRMF [RFC4211] updated by Algorithm

Requirements Update [RFC9045], CMP over HTTP [RFC6712], and CMP over

CoAP [I-D.ietf-ace-cmpv2-coap-transport] apply.

Trust anchors for chain validations are often provided in the form

of self-signed certificates. All trust anchors MUST be stored on the

device with integrity protection. In some cases, a PKI entity may

not have sufficient storage for the complete certificates. In such

cases it MAY only store, e.g., a hash of each self-signed

certificate and require receiving the certificate in the extraCerts

field as described in Section 3.3. If such self-signed certificates

are provided in-band in the messages, they MUST be verified using

information from the trust store of the PKI entity.

¶

¶

¶

[I-D.ietf-ace-cmpv2-coap-transport]

[I-D.ietf-lamps-cmp-algorithms]

[I-D.ietf-lamps-cmp-updates]

[I-D.ietf-uta-rfc7525bis]

[RFC2119]

For TLS using shared secret information-based authentication, both

PSK and PAKE provide the same amount of protection against a real-

time authentication attack which is directly the amount of entropy

in the shared secret. The difference between a pre-shared key (PSK)

and a password-authenticated key exchange (PAKE) protocol is in the

level of long-term confidentiality of the TLS messages against

brute-force decryption, where a PSK-based cipher suite only provides

security according to the entropy of the shared secret, while a

PAKE-based cipher suite provides full security independent of the

entropy of the shared secret.

10. Acknowledgements

We thank the various reviewers of this document.

11. References

11.1. Normative References

Sahni, M. and S. Tripathi, "CoAP

Transfer for the Certificate Management Protocol", Work

in Progress, Internet-Draft, draft-ietf-ace-cmpv2-coap-

transport-05, 19 September 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-ace-cmpv2-coap-

transport-05>.

Brockhaus, H., Aschauer, H.,

Ounsworth, M., and J. Gray, "Certificate Management

Protocol (CMP) Algorithms", Work in Progress, Internet-

Draft, draft-ietf-lamps-cmp-algorithms-15, 2 June 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-lamps-

cmp-algorithms-15>.

Brockhaus, H., von Oheimb, D., and J.

Gray, "Certificate Management Protocol (CMP) Updates",

Work in Progress, Internet-Draft, draft-ietf-lamps-cmp-

updates-23, 29 June 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-lamps-cmp-updates-23>.

Sheffer, Y., Saint-Andre, P., and T.

Fossati, "Recommendations for Secure Use of Transport

Layer Security (TLS) and Datagram Transport Layer

Security (DTLS)", Work in Progress, Internet-Draft,

draft-ietf-uta-rfc7525bis-11, 16 August 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-uta-

rfc7525bis-11>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ace-cmpv2-coap-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cmpv2-coap-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-ace-cmpv2-coap-transport-05
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-algorithms-15
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-algorithms-15
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-updates-23
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-cmp-updates-23
https://datatracker.ietf.org/doc/html/draft-ietf-uta-rfc7525bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-uta-rfc7525bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-uta-rfc7525bis-11

[RFC2986]

[RFC4210]

[RFC4211]

[RFC5280]

[RFC5652]

[RFC5958]

[RFC6712]

[RFC8174]

[RFC8615]

[RFC8933]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Schaad, J., "Internet X.509 Public Key Infrastructure

Certificate Request Message Format (CRMF)", RFC 4211, DOI

10.17487/RFC4211, September 2005, <https://www.rfc-

editor.org/info/rfc4211>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Turner, S., "Asymmetric Key Packages", RFC 5958, DOI

10.17487/RFC5958, August 2010, <https://www.rfc-

editor.org/info/rfc5958>.

Kause, T. and M. Peylo, "Internet X.509 Public Key

Infrastructure -- HTTP Transfer for the Certificate

Management Protocol (CMP)", RFC 6712, DOI 10.17487/

RFC6712, September 2012, <https://www.rfc-editor.org/

info/rfc6712>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Nottingham, M., "Well-Known Uniform Resource Identifiers

(URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,

<https://www.rfc-editor.org/info/rfc8615>.

Housley, R., "Update to the Cryptographic Message Syntax

(CMS) for Algorithm Identifier Protection", RFC 8933, DOI

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc6712
https://www.rfc-editor.org/info/rfc6712
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8615

[RFC9045]

[RFC9110]

[ETSI-3GPP.33.310]

[ETSI-EN.319411-1]

[I-D.ietf-anima-brski-ae]

[I-D.ietf-anima-brski-prm]

[I-D.ietf-lamps-rfc4210bis]

10.17487/RFC8933, October 2020, <https://www.rfc-

editor.org/info/rfc8933>.

Housley, R., "Algorithm Requirements Update to the

Internet X.509 Public Key Infrastructure Certificate

Request Message Format (CRMF)", RFC 9045, DOI 10.17487/

RFC9045, June 2021, <https://www.rfc-editor.org/info/

rfc9045>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/info/

rfc9110>.

11.2. Informative References

3GPP, "Network Domain Security (NDS);

Authentication Framework (AF)", 3GPP TS 33.310 16.6.0, 16

December 2020, <http://www.3gpp.org/ftp/Specs/html-info/

33310.htm>.

ETSI, "Electronic Signatures and Infrastructures

(ESI); Policy and security requirements for Trust Service

Providers issuing certificates; Part 1: General

requirements", ETSI EN 319 411-1 V1.3.1, May 2021,

<https://www.etsi.org/deliver/etsi_en/

319400_319499/31941101/01.03.01_60/

en_31941101v010301p.pdf>.

von Oheimb, D., Fries, S., and H.

Brockhaus, "BRSKI-AE: Alternative Enrollment Protocols in

BRSKI", Work in Progress, Internet-Draft, draft-ietf-

anima-brski-ae-03, 24 October 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-anima-brski-

ae-03>.

Fries, S., Werner, T., Lear, E., and M.

Richardson, "BRSKI with Pledge in Responder Mode (BRSKI-

PRM)", Work in Progress, Internet-Draft, draft-ietf-

anima-brski-prm-05, 24 October 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-anima-brski-

prm-05>.

Brockhaus, H., von Oheimb, D.,

Ounsworth, M., and J. Gray, "Internet X.509 Public Key

Infrastructure -- Certificate Management Protocol (CMP)",

Work in Progress, Internet-Draft, draft-ietf-lamps-

rfc4210bis-03, 24 October 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-lamps-

rfc4210bis-03>.

https://www.rfc-editor.org/info/rfc8933
https://www.rfc-editor.org/info/rfc8933
https://www.rfc-editor.org/info/rfc9045
https://www.rfc-editor.org/info/rfc9045
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
http://www.3gpp.org/ftp/Specs/html-info/33310.htm
http://www.3gpp.org/ftp/Specs/html-info/33310.htm
https://www.etsi.org/deliver/etsi_en/319400_319499/31941101/01.03.01_60/en_31941101v010301p.pdf
https://www.etsi.org/deliver/etsi_en/319400_319499/31941101/01.03.01_60/en_31941101v010301p.pdf
https://www.etsi.org/deliver/etsi_en/319400_319499/31941101/01.03.01_60/en_31941101v010301p.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-ae-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-ae-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-ae-03
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-prm-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-prm-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-brski-prm-05
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-rfc4210bis-03
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-rfc4210bis-03
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-rfc4210bis-03

[I-D.ietf-lamps-rfc6712bis]

[I-D.ietf-netconf-sztp-csr]

[IEC.62443-3-3]

[IEEE.802.1AR_2018]

[NIST.CSWP.04162018]

[NIST.SP.800-57p1r5]

[RFC2510]

[RFC3647]

Brockhaus, H., von Oheimb, D.,

Ounsworth, M., and J. Gray, "Internet X.509 Public Key

Infrastructure -- HTTP Transfer for the Certificate

Management Protocol (CMP)", Work in Progress, Internet-

Draft, draft-ietf-lamps-rfc6712bis-02, 11 August 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-lamps-

rfc6712bis-02>.

Watsen, K., Housley, R., and S. Turner,

"Conveying a Certificate Signing Request (CSR) in a

Secure Zero Touch Provisioning (SZTP) Bootstrapping

Request", Work in Progress, Internet-Draft, draft-ietf-

netconf-sztp-csr-14, 2 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-

csr-14>.

IEC, "Industrial communication networks - Network

and system security - Part 3-3: System security

requirements and security levels", IEC 62443-3-3, August

2013, <https://webstore.iec.ch/publication/7033>.

IEEE, "IEEE Standard for Local and metropolitan

area networks - Secure Device Identity", IEEE

802.1AR-2018, DOI 10.1109/IEEESTD.2018.8423794, 2 August

2018, <https://ieeexplore.ieee.org/document/8423794>.

National Institute of Standards and Technology

(NIST), "Framework for Improving Critical Infrastructure

Cybersecurity, Version 1.1", NIST NIST.CSWP.04162018, DOI

10.6028/NIST.CSWP.04162018, April 2018, <http://

nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf>.

Barker, E B., "Recommendation for key management, part 1

:general", NIST NIST.SP.800-57pt1r5, DOI 10.6028/NIST.SP.

800-57pt1r5, 2020, <https://doi.org/10.6028/NIST.SP.

800-57pt1r5>.

Adams, C. and S. Farrell, "Internet X.509 Public Key

Infrastructure Certificate Management Protocols", RFC

2510, DOI 10.17487/RFC2510, March 1999, <https://www.rfc-

editor.org/info/rfc2510>.

Chokhani, S., Ford, W., Sabett, R., Merrill, C., and S.

Wu, "Internet X.509 Public Key Infrastructure Certificate

Policy and Certification Practices Framework", RFC 3647,

DOI 10.17487/RFC3647, November 2003, <https://www.rfc-

editor.org/info/rfc3647>.

https://datatracker.ietf.org/doc/html/draft-ietf-lamps-rfc6712bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-rfc6712bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-csr-14
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-csr-14
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-sztp-csr-14
https://webstore.iec.ch/publication/7033
https://ieeexplore.ieee.org/document/8423794
http://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
http://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://www.rfc-editor.org/info/rfc2510
https://www.rfc-editor.org/info/rfc2510
https://www.rfc-editor.org/info/rfc3647
https://www.rfc-editor.org/info/rfc3647

[RFC5246]

[RFC5753]

[RFC7030]

[RFC7252]

[RFC8366]

[RFC8446]

[RFC8551]

[RFC8572]

[RFC8649]

[RFC8995]

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Turner, S. and D. Brown, "Use of Elliptic Curve

Cryptography (ECC) Algorithms in Cryptographic Message

Syntax (CMS)", RFC 5753, DOI 10.17487/RFC5753, January

2010, <https://www.rfc-editor.org/info/rfc5753>.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,

"Enrollment over Secure Transport", RFC 7030, DOI

10.17487/RFC7030, October 2013, <https://www.rfc-

editor.org/info/rfc7030>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,

"A Voucher Artifact for Bootstrapping Protocols", RFC

8366, DOI 10.17487/RFC8366, May 2018, <https://www.rfc-

editor.org/info/rfc8366>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero

Touch Provisioning (SZTP)", RFC 8572, DOI 10.17487/

RFC8572, April 2019, <https://www.rfc-editor.org/info/

rfc8572>.

Housley, R., "Hash Of Root Key Certificate Extension",

RFC 8649, DOI 10.17487/RFC8649, August 2019, <https://

www.rfc-editor.org/info/rfc8649>.

Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

and K. Watsen, "Bootstrapping Remote Secure Key

Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,

May 2021, <https://www.rfc-editor.org/info/rfc8995>.

https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5753
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8649
https://www.rfc-editor.org/info/rfc8649
https://www.rfc-editor.org/info/rfc8995

[UNISIG.Subset-137]
UNISIG, "Subset-137; ERTMS/ETCS On-line Key

Management FFFIS; V1.0.0", December 2015, <https://

www.era.europa.eu/sites/default/files/filesystem/ertms/

ccs_tsi_annex_a_-_mandatory_specifications/

set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-

_subset-137_v100.pdf>.

Appendix A. Example CertReqTemplate

Suppose the server requires that the certTemplate contains

the issuer field with a value to be filled in by the EE,

the subject field with a common name to be filled in by the EE

and two organizational unit fields with given values "myDept" and

"myGroup",

the publicKey field contains an ECC key on curve secp256r1 or an

RSA public key of length 2048,

the subjectAltName extension with DNS name "www.myServer.com" and

an IP address to be filled in,

the keyUsage extension marked critical with the value

digitalSignature and keyAgreement, and

the extKeyUsage extension with values to be filled in by the EE.

Then the infoValue with certTemplate and keySpec fields returned to

the EE will be encoded as follows:

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf

SEQUENCE {

 SEQUENCE {

 [3] {

 SEQUENCE {}

 }

 [5] {

 SEQUENCE {

 SET {

 SEQUENCE {

 OBJECT IDENTIFIER commonName (2 5 4 3)

 UTF8String ""

 }

 }

 SET {

 SEQUENCE {

 OBJECT IDENTIFIER organizationalUnitName (2 5 4 11)

 UTF8String "myDept"

 }

 }

 SET {

 SEQUENCE {

 OBJECT IDENTIFIER organizationalUnitName (2 5 4 11)

 UTF8String "myGroup"

 }

 }

 }

 }

 [9] {

 SEQUENCE {

 OBJECT IDENTIFIER subjectAltName (2 5 29 17)

 OCTET STRING, encapsulates {

 SEQUENCE {

 [2] "www.myServer.com"

 [7] ""

 }

 }

 }

 SEQUENCE {

 OBJECT IDENTIFIER keyUsage (2 5 29 15)

 BOOLEAN TRUE

 OCTET STRING, encapsulates {

 BIT STRING 3 unused bits

 "10001"B

 }

 }

 SEQUENCE {

 OBJECT IDENTIFIER extKeyUsage (2 5 29 37)

 OCTET STRING, encapsulates {

 SEQUENCE {}

 }

 }

 }

 }

 SEQUENCE {

 SEQUENCE {

 OBJECT IDENTIFIER algId (1 3 6 1 5 5 7 5 1 11)

 SEQUENCE {

 OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)

 OBJECT IDENTIFIER secp256r1 (1 2 840 10045 3 1 7)

 }

 }

 SEQUENCE {

 OBJECT IDENTIFIER rsaKeyLen (1 3 6 1 5 5 7 5 1 12)

 INTEGER 2048

 }

 }

 }

¶

Appendix B. History of Changes

Note: This appendix will be deleted in the final version of the

document.

From version 14 -> 15:

Added a reference to HashOfRootKey extension to note in Section

3.3

Addressed comment from Joel (see thread "Genart last call review

of draft-ietf-lamps-lightweight-cmp-profile-14")

Addressed comment from Robert (see thread "Artart last call

review of draft-ietf-lamps-lightweight-cmp-profile-14")

From version 13 -> 14:

Addressed comments from AD Evaluation (see thread "AD Review of

draft-ietf-lamps-lightweight-cmp-profile-13")

Added a note to Section 1 informing about rfc4210bis and

rfc6712bis activity

Added support for constrained PKI entities that can, e.g., only

store a hash of a self-signed certificate as trust anchor and

require the self-signed certificate to be provided in-line in

extraCerts, see Section 3.3 and Section 9

Addressed idnits feedback, specifically changing the following

RFC reference: RFC3278 -> RFC5753

From version 12 -> 13:

Some minor clarifications regarding 'exactly one element' ->

'sequence of one element'

Adding authors contact details

From version 11 -> 12:

Added a note to Section 4.1.6 to clarify the combination of

central key generation with certificate update

Updated Section 4.3.4 for clarification that only one CRL per

round-trip is requested

Updated Section 7.1 to fix a wrong change from the last update in

the first two rows of Table 3

From version 10 -> 11:

Updated Section 3.2, 3.5, and 3.6.4 to define more clearly

signature-based protection as the default and the exception for

not protecting error messages as mentioned at IETF 113

Streamlined headlines in Section 4.1

Updates Section 6.1 and Section 6.2 regarding new well-known path

segment for profile labels as discussed during IETF 113

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

Updated Section 7.1. on the support of PKI management operations

required for EEs, RAs, and CAs as mentioned at IETF 113

Updates Section 8 adding well-known path segments on PKI

management operations to be used with HTTP and CoAP

Capitalized all headlines

From version 09 -> 10:

Resolved some nits reported by I-D nit checker tool

Resolve some wording issues

From version 08 -> 09:

Updated Section 1.1 and 1.2 and converted Section 2.2 and 2.3

into more detailed tables in Section 7 (see thread "WG Last Call

for draft-ietf-lamps-cmp-updates-14 and draft-ietf-lamps-

lightweight-cmp-profile-08")

Updated Section 3.1 and 4.1.1 making implicitConfirm recommended

for ir/cr/p10cr/kur and providing further recommendations on its

use (see thread "certConf - WG Last Call for draft-ietf-lamps-

cmp-updates-14 and draft-ietf-lamps-lightweight-cmp-profile-08")

Updated Section 4.1.6 adding some clarifications regarding

validating the authorization of centrally generated keys

Updated Section 4.3.4 adding some clarifications on CRL update

retrieval (see thread "CRL update retrieval - WG Last Call for

draft-ietf-lamps-cmp-updates-14 and draft-ietf-lamps-lightweight-

cmp-profile-08")

Updated references to CMP Updates pointing to concrete sections

(see thread "CRL update retrieval - WG Last Call for draft-ietf-

lamps-cmp-updates-14 and draft-ietf-lamps-lightweight-cmp-

profile-08"))

Corrected a couple of nits elsewhere

From version 07 -> 08:

Updates Section 4.1.6.1. regarding content of the originator and

keyEncryptionAlgorithm fields (see thread "AD review of draft-

ietf-lamps-cmp-algorithms-07")

Rolled back part of the changes on root CA certificate updates in

Section 4.3.2 (see thread "Allocation of OIDs for CRL update

retrieval (draft-ietf-lamps-cmp-updates-13)")

From version 06 -> 07:

Added references to [draft-ietf-netconf-sztp-csr] in new Section

1.5 and Section 4.1.4

Added reference to [I-D.ietf-anima-brski-ae] in new Section 1.5

and Section 4.1.1

*

¶

*

¶

* ¶

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

¶

*

¶

*

¶

Changed reference in Section 2 to [I-D.ietf-anima-brski-prm] as

the PUSH use case is continued to be discussed in this draft

after the split of BRSKI-AE

Improved note regarding UNISIG Subset-137 in Section 1.6

Removed "rootCaCert" in Section 3.1 and updated the structure of

the genm request for root CA certificate updates in Section

4.3.2.

Simplified handling of sender and recipient nonces in case of

delayed delivery in Sections 3.1, 3.5, 4.4, and 5.1.2

Changed the order of Sections 4.1.4 and 4.1.5

Added reference on RFC 8933 regarding CMS signedAttrs to Section

4.1.6

Added Section 4.3.4 on CRL update retrieval

Generalized delayed enrollment to delayed delivery in Section 4.4

and 5.1.2, updated the state machine in the introduction of

Section 4

Updated Section 6 regarding delayed message transfer

Changed file name extension from ".PKI" to ".pki", deleted

operational path for central key generation, and added an

operational path for CRL update retrieval in Sections 6.1 and 6.2

Shifted many security considerations to CMP Updates

Replaced the term "transport" by "transfer" where appropriate to

prevent confusion regarding TCP vs. HTTP and CoAP

Various editorial changes and language corrections

From version 05 -> 06:

Changed in Section 2.3 the normative requirement in of adding

protection to a single message to mandatory and replacing

protection to optional

Added Section 3.4 specifying generic prerequisites to PKI

management operations

Added Section 3.5 specifying generic message validation

Added Section 3.6 on generic error reporting. This section

replaces the former error handling section from Section 4 and 5.

Added reference to using hashAlg

Updates Section 4.3.2 and Section 4.3.3 to align with CMP Updates

Added Section 5.1 specifying the behavior of PKI management

entities when responding to requests

Reworked Section 5.2.3. on usage of nested messages

Updates Section 5.3 on performing PKI management operation on

behalf of another entity

Updates Section 6.2 on HTTPS transport of CMP messages as

discusses at IETF 110 and email thread "I-D Action: draft-ietf-

lamps-lightweight-cmp-profile-05.txt"

Added CoAP endpoints to Section 6.4

Added security considerations on usage of shared secret

information

Updated the example in Appendix A

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

Added newly registered OIDs to the example in Appendix A

Updated new RFC numbers for I-D.ietf-lamps-crmf-update-algs

Multiple language corrections, clarifications, and changes in

wording

From version 04 -> 05:

Changed to XML V3

Added algorithm names introduced in CMP Algorithms Section 7.3 to

Section 4 of this document

Updates Syntax in Section 4.4.3 due to changes made in CMP

Updates

Deleted the text on HTTP-based discovery as discussed in Section

6.1

Updates Appendix A due to change syntax in Section 4.4.3

Many clarifications and changes in wording thanks to David's

extensive review

From version 03 -> 04:

Deleted normative text sections on algorithms and refer to CMP

Algorithms and CRMF Algorithm Requirements Update instead

Some clarifications and changes in wording

From version 02 -> 03:

Updated the interoperability with [UNISIG.Subset-137] in Section

1.4.

Changed Section 2.3 to a tabular layout to enhanced readability

Added a ToDo to section 3.1 on aligning with the CMP Algorithms

draft that will be set up as decided in IETF 108

Updated section 4.1.6 to add the AsymmetricKey Package structure

to transport a newly generated private key as decided in IETF 108

Added a ToDo to section 4.1.7 on required review of the nonce

handling in case an offline LRA responds and not forwards the

pollReq messages

Updated Section 4 due to the definition of the new ITAV OIDs in

CMP Updates

Updated Section 4.4.4 to utilize controls instead of rsaKeyLen

(see thread "dtaft-ietf-lamps-cmp-updates and rsaKeyLen")

Deleted the section on definition and discovery of HTTP URIs and

copied the text to the HTTP transport section and to CMP Updates

section 3.2

Added some explanation to Section 5.1.2 and Section 5.1.3 on

using nested messages when a protection by the RA is required.

Deleted the section on HTTP URI definition and discovery as some

content was moved to CMP Updates. The rest of the content was

moved back to the HTTP transport section

* ¶

* ¶

*

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

*

¶

* ¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Deleted the ASN.1 module after moving the new OIDs id-it-caCerts,

id-it-rootCaKeyUpdate, and id-it-certReqTemplate to CMP Updates

Minor changes in wording and addition of some open ToDos

From version 01 -> 02:

Extend Section 1.6 with regard to conflicts with UNISIG

Subset-137.

Minor clarifications on extraCerts in Section 3.3 and

Section 4.1.1.

Complete specification of requesting a certificate from a trusted

PKI with signature protection in Section 4.1.2.

Changed from symmetric key-encryption to password-based key

management technique in Section 4.1.6.3 as discussed on the

mailing list (see thread "draft-ietf-lamps-lightweight-cmp-

profile-01, section 5.1.6.1")

Changed delayed enrollment described in Section 4.4 from

recommended to optional as decided at IETF 107

Introduced the new RootCAKeyUpdate structure for root CA

certificate update in Section 4.3.2 as decided at IETF 107 (also

see email thread "draft-ietf-lamps-lightweight-cmp-profile-01,

section 5.4.3")

Extend the description of the CertReqTemplate PKI management

operation, including an example added in the Appendix. Keep

rsaKeyLen as a single integer value in Section 4.3.3 as discussed

on the mailing list (see thread "draft-ietf-lamps-lightweight-

cmp-profile-01, section 5.4.4")

Deleted Sections "Get certificate management configuration" and

"Get enrollment voucher" as decided at IETF 107

Complete specification of adding an additional protection by an

PKI management entity in Section 5.2.2.

Added a section on HTTP URI definition and discovery and extended

Section 6.1 on definition and discovery of supported HTTP URIs

and content types, add a path for nested messages as specified in

Section 5.2.2 and delete the paths for /getCertMgtConfig and /

getVoucher

Changed Section 6.4 to address offline transport and added more

detailed specification file-based transport of CMP

Added a reference to the new I-D of Mohit Sahni on "CoAP

Transport for CMPV2" in Section 6.2; thanks to Mohit supporting

the effort to ease utilization of CMP

Moved the change history to the Appendix

Minor changes in wording

*

¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

From version 00 -> 01:

Harmonize terminology with CMP [RFC4210], e.g.,

transaction, message sequence, exchange, use case -> PKI

management operation

PKI component, (L)RA/CA -> PKI management entity

Minor changes in wording

From draft-brockhaus-lamps-lightweight-cmp-profile-03 -> draft-ietf-

lamps-lightweight-cmp-profile-00:

Changes required to reflect WG adoption

Minor changes in wording

From version 02 -> 03:

Added a short summary of [RFC4210] Appendix D and E in

Section 1.4.

Clarified some references to different sections and added some

clarification in response to feedback from Michael Richardson and

Tomas Gustavsson.

Added an additional label to the operational path to address

multiple CAs or certificate profiles in Section 6.1.

From version 01 -> 02:

Added some clarification on the key management techniques for

protection of centrally generated keys in Section 4.1.6.

Added some clarifications on the certificates for root CA

certificate update in Section 4.3.2.

Added a section to specify the usage of nested messages for RAs

to add an additional protection for further discussion, see

Section 5.2.2.

Added a table containing endpoints for HTTP transport in

Section 6.1 to simplify addressing PKI management entities.

Added some ToDos resulting from discussion with Tomas Gustavsson.

Minor clarifications and changes in wording.

From version 00 -> 01:

Added a section to specify the enrollment with an already trusted

PKI for further discussion, see Section 4.1.2.

Complete specification of requesting a certificate from a legacy

PKI using a PKCS#10 [RFC2986] request in Section 4.1.4.

Complete specification of adding central generation of a key pair

on behalf of an end entity in Section 4.1.6.

Complete specification of handling delayed enrollment due to

asynchronous message delivery in Section 4.4.

¶

* ¶

-

¶

- ¶

* ¶

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

Complete specification of additional support messages, e.g., to

update a Root CA certificate or to request an RFC 8366 [RFC8366]

voucher, in Section 4.3.

Minor changes in wording.

From draft-brockhaus-lamps-industrial-cmp-profile-00 -> draft-

brockhaus-lamps-lightweight-cmp-profile-00:

Change focus from industrial to more multi-purpose use cases and

lightweight CMP profile.

Incorporate the omitted confirmation into the header specified in

Section 3.1 and described in the standard enrollment use case in

Section 4.1.1 due to discussion with Tomas Gustavsson.

Change from OPTIONAL to RECOMMENDED for use case 'Revoke

another's entities certificate' in Section 5.3.2, because it is

regarded as important functionality in many environments to

enable the management station to revoke EE certificates.

Complete the specification of the revocation message flow in

Section 4.2 and Section 5.3.2.

The CoAP based transport mechanism and piggybacking of CMP

messages on top of other reliable transport protocols is out of

scope of this document and would need to be specified in another

document.

Further minor changes in wording.

Authors' Addresses

Hendrik Brockhaus

Siemens

Werner-von-Siemens-Strasse 1

80333 Munich

Germany

Email: hendrik.brockhaus@siemens.com

URI: https://www.siemens.com

David von Oheimb

Siemens

Werner-von-Siemens-Strasse 1

80333 Munich

Germany

Email: david.von.oheimb@siemens.com

URI: https://www.siemens.com

Steffen Fries

Siemens AG

Werner-von-Siemens-Strasse 1

80333 Munich

Germany

*

¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

mailto:hendrik.brockhaus@siemens.com
https://www.siemens.com
mailto:david.von.oheimb@siemens.com
https://www.siemens.com

Email: steffen.fries@siemens.com

URI: https://www.siemens.com

mailto:steffen.fries@siemens.com
https://www.siemens.com

	Lightweight Certificate Management Protocol (CMP) Profile
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. How to Read This Document
	1.2. Motivation for a Lightweight Profile of CMP
	1.3. Special Requirements of Industrial and IoT Scenarios
	1.4. Existing CMP Profiles
	1.5. Use of CMP in SZTP and BRSKI Environments
	1.6. Compatibility with Existing CMP Profiles
	1.7. Scope of this Document
	1.8. Structure of this Document
	1.9. Convention and Terminology

	2. Solution Architecture
	3. Generic Aspects of PKI Messages and PKI Management Operations
	3.1. General Description of the CMP Message Header
	3.2. General Description of the CMP Message Protection
	3.3. General Description of CMP Message ExtraCerts
	3.4. Generic PKI Management Operation Prerequisites
	3.5. Generic Validation of a PKI Message
	3.6. Error Handling
	3.6.1. Reporting Error Conditions Upstream
	3.6.2. Reporting Error Conditions Downstream
	3.6.3. Handling Error Conditions on Nested Messages Used for Batching
	3.6.4. PKIStatusInfo and Error Messages

	4. PKI Management Operations
	4.1. Enrolling End Entities
	4.1.1. Enrolling an End Entity to a New PKI
	4.1.2. Enrolling an End Entity to a Known PKI
	4.1.3. Updating a Valid Certificate
	4.1.4. Enrolling an End Entity Using a PKCS#10 Request
	4.1.5. Using MAC-Based Protection for Enrollment
	4.1.6. Adding Central Key Pair Generation to Enrollment
	4.1.6.1. Using Key Agreement Key Management Technique
	4.1.6.2. Using Key Transport Key Management Technique
	4.1.6.3. Using Password-Based Key Management Technique

	4.2. Revoking a Certificate
	4.3. Support Messages
	4.3.1. Get CA Certificates
	4.3.2. Get Root CA Certificate Update
	4.3.3. Get Certificate Request Template
	4.3.4. CRL Update Retrieval

	4.4. Handling Delayed Delivery

	5. PKI Management Entity Operations
	5.1. Responding to Requests
	5.1.1. Responding to a Certificate Request
	5.1.2. Responding to a Confirmation Message
	5.1.3. Responding to a Revocation Request
	5.1.4. Responding to a Support Message
	5.1.5. Initiating Delayed Delivery

	5.2. Forwarding Messages
	5.2.1. Not Changing Protection
	5.2.2. Adding Protection and Batching of Messages
	5.2.2.1. Adding Protection to a Request Message
	5.2.2.2. Batching Messages

	5.2.3. Replacing Protection
	5.2.3.1. Not Changing Proof-of-Possession
	5.2.3.2. Using raVerified

	5.3. Acting on Behalf of other PKI Entities
	5.3.1. Requesting a Certificate
	5.3.2. Revoking a Certificate

	6. CMP Message Transfer Mechanisms
	6.1. HTTP Transfer
	6.2. CoAP Transfer
	6.3. Piggybacking on Other Reliable Transfer
	6.4. Offline Transfer
	6.4.1. File-Based Transfer
	6.4.2. Other Asynchronous Transfer Protocols

	7. Conformance Requirements
	7.1. PKI Management Operations
	7.2. Message Transfer

	8. IANA Considerations
	9. Security Considerations
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Example CertReqTemplate
	Appendix B. History of Changes
	Authors' Addresses

