
Internet-Draft Editor: J. Sermersheim
Intended Category: Standard Track Novell, Inc
Document: draft-ietf-ldapbis-protocol-11.txt Nov 2002
Obsoletes: RFC 2251

LDAP: The Protocol

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.
 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited. Technical discussion of this
 document will take place on the IETF LDAP Revision Working Group
 (LDAPbis) mailing list <ietf-ldapbis@openldap.org>. Please send
 editorial comments directly to the editor <jimse@novell.com>.

Abstract

 This document describes the protocol elements, along with their
 semantics and encodings, for the Lightweight Directory Access
 Protocol (LDAP). LDAP provides access to distributed directory
 services that act in accordance with X.500 data and service models.
 These protocol elements are based on those described in the X.500
 Directory Access Protocol (DAP).

Table of Contents

1. Introduction...2
2. Conventions..3
3. Protocol Model...3
4. Elements of Protocol...3
4.1. Common Elements..4
4.1.1. Message Envelope...4

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-11.txt
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

4.1.2. String Types...5
4.1.3. Distinguished Name and Relative Distinguished Name...........6

Sermersheim Internet-Draft - Expires May 2003 Page 1
 Lightweight Directory Access Protocol Version 3

4.1.4. Attribute Descriptions.......................................6
4.1.5. Attribute Value..7
4.1.6. Attribute Value Assertion....................................7
4.1.7. Attribute..7
4.1.8. Matching Rule Identifier.....................................8
4.1.9. Result Message...8
4.1.10. Referral...10
4.1.11. Controls...11
4.2. Bind Operation..12
4.3. Unbind Operation..15
4.4. Unsolicited Notification......................................15
4.5. Search Operation..16
4.6. Modify Operation..23
4.7. Add Operation...25
4.8. Delete Operation..26
4.9. Modify DN Operation...26
4.10. Compare Operation..27
4.11. Abandon Operation..28
4.12. Extended Operation...29
4.13. Start TLS Operation..29
5. Protocol Element Encodings and Transfer.........................31
5.1. Protocol Encoding...31
5.2. Transfer Protocols..32
6. Implementation Guidelines.......................................32
6.1. Server Implementations..32
6.2. Client Implementations..32
7. Security Considerations...33
8. Acknowledgements..33
9. Normative References..33
10. Editor's Address...34
Appendix A - LDAP Result Codes.....................................35
A.1 Non-Error Result Codes...35
A.2 Error Result Codes...35
A.3 Classes and Precedence of Error Result Codes...................35
Appendix C - Change History..46
C.1 Changes made to RFC 2251:......................................46
C.2 Changes made to draft-ietf-ldapbis-protocol-00.txt:............46
C.3 Changes made to draft-ietf-ldapbis-protocol-01.txt:............47
C.4 Changes made to draft-ietf-ldapbis-protocol-02.txt:............47
C.5 Changes made to draft-ietf-ldapbis-protocol-03.txt:............49
C.6 Changes made to draft-ietf-ldapbis-protocol-04.txt:............51
C.7 Changes made to draft-ietf-ldapbis-protocol-05.txt:............51
C.8 Changes made to draft-ietf-ldapbis-protocol-06.txt:............52
C.9 Changes made to draft-ietf-ldapbis-protocol-07.txt:............55
C.10 Changes made to draft-ietf-ldapbis-protocol-08.txt:...........55

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-08.txt

C.11 Changes made to draft-ietf-ldapbis-protocol-09.txt:...........55
C.12 Changes made to draft-ietf-ldapbis-protocol-10.txt:...........55
Appendix D - Outstanding Work Items................................56

1. Introduction

 The Directory is "a collection of open systems cooperating to provide
 directory services" [X.500]. A Directory user, which may be a human

Sermersheim Internet-Draft - Expires May 2003 Page 2
 Lightweight Directory Access Protocol Version 3

 or other entity, accesses the Directory through a client (or
 Directory User Agent (DUA)). The client, on behalf of the directory
 user, interacts with one or more servers (or Directory System Agents
 (DSA)). Clients interact with servers using a directory access
 protocol.

 This document details the protocol elements of Lightweight Directory
 Access Protocol, along with their semantic meanings. Following the
 description of protocol elements, it describes the way in which the
 protocol is encoded and transferred.

 This document is an integral part of the LDAP Technical Specification
 [Roadmap].

 This document replaces RFC 2251. Appendix C holds a detailed log of
 changes to RFC 2251. At publication time, this appendix will be
 distilled to a summary of changes to RFC 2251.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document
 are to be interpreted as described in [RFC2119].

3. Protocol Model

 The general model adopted by this protocol is one of clients
 performing protocol operations against servers. In this model, a
 client transmits a protocol request describing the operation to be
 performed to a server. The server is then responsible for performing
 the necessary operation(s) in the directory. Upon completion of the
 operation(s), the server returns a response containing any results or
 errors to the requesting client.

 Note that although servers are required to return responses whenever
 such responses are defined in the protocol, there is no requirement
 for synchronous behavior on the part of either clients or servers.

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-10.txt
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2119

 Requests and responses for multiple operations may be exchanged
 between a client and server in any order, provided the client
 eventually receives a response for every request that requires one.

 Note that the core protocol operations defined in this document can
 be mapped to a subset of the X.500(1997) directory abstract service.
 However there is not a one-to-one mapping between LDAP protocol
 operations and DAP operations. Server implementations acting as a
 gateway to X.500 directories may need to make multiple DAP requests.

4. Elements of Protocol

 The LDAP protocol is described using Abstract Syntax Notation 1
 (ASN.1) [X.680], and is transferred using a subset of ASN.1 Basic

Sermersheim Internet-Draft - Expires May 2003 Page 3
 Lightweight Directory Access Protocol Version 3

 Encoding Rules [X.690]. Section 5.1 specifies how the protocol is
 encoded and transferred.

 In order to support future Standards Track extensions to this
 protocol, extensibility is implied where it is allowed (per ASN.1).
 In addition, ellipses (...) have been supplied in ASN.1 types that
 are explicitly extensible as discussed in [LDAPIANA]. Because of the
 implied extensibility, clients and servers MUST ignore trailing
 SEQUENCE elements whose tags they do not recognize.

 Changes to the LDAP protocol other than those described in [LDAPIANA]
 require a different version number. A client indicates the version it
 is using as part of the bind request, described in section 4.2. If a
 client has not sent a bind, the server MUST assume the client is
 using version 3 or later.

 Clients may determine the protocol versions a server supports by
 reading the supportedLDAPVersion attribute from the root DSE
 [Models]. Servers which implement version 3 or later MUST provide
 this attribute.

4.1. Common Elements

 This section describes the LDAPMessage envelope PDU (Protocol Data
 Unit) format, as well as data type definitions, which are used in the
 protocol operations.

4.1.1. Message Envelope

 For the purposes of protocol exchanges, all protocol operations are
 encapsulated in a common envelope, the LDAPMessage, which is defined

 as follows:

 LDAPMessage ::= SEQUENCE {
 messageID MessageID,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindResponse BindResponse,
 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,
 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,

Sermersheim Internet-Draft - Expires May 2003 Page 4
 Lightweight Directory Access Protocol Version 3

 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse,
 ... },
 controls [0] Controls OPTIONAL }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 The function of the LDAPMessage is to provide an envelope containing
 common fields required in all protocol exchanges. At this time the
 only common fields are the message ID and the controls.

 If the server receives a PDU from the client in which the LDAPMessage
 SEQUENCE tag cannot be recognized, the messageID cannot be parsed,
 the tag of the protocolOp is not recognized as a request, or the
 encoding structures or lengths of data fields are found to be
 incorrect, then the server MAY return the Notice of Disconnection
 described in section 4.4.1, with resultCode protocolError, and MUST
 immediately close the connection.

 In other cases where the client or server cannot parse a PDU, it
 SHOULD abruptly close the connection where further communication
 (including providing notice) would be pernicious. Otherwise, server

 implementations MUST return an appropriate response to the request,
 with the resultCode set to protocolError.

 The ASN.1 type Controls is defined in section 4.1.11.

4.1.1.1. Message ID

 All LDAPMessage envelopes encapsulating responses contain the
 messageID value of the corresponding request LDAPMessage.

 The message ID of a request MUST have a non-zero value different from
 the values of any other requests outstanding in the LDAP session of
 which this message is a part. The zero value is reserved for the
 unsolicited notification message.

 Typical clients increment a counter for each request.

 A client MUST NOT send a request with the same message ID as an
 earlier request on the same connection unless it can be determined
 that the server is no longer servicing the earlier request. Otherwise
 the behavior is undefined. For operations that do not return
 responses (unbind, abandon, and abandoned operations), the client
 SHOULD assumes the operation is in progress until a subsequent bind
 request completes.

4.1.2. String Types

Sermersheim Internet-Draft - Expires May 2003 Page 5
 Lightweight Directory Access Protocol Version 3

 The LDAPString is a notational convenience to indicate that, although
 strings of LDAPString type encode as OCTET STRING types, the
 [ISO10646] character set (a superset of Unicode) is used, encoded
 following the UTF-8 algorithm [RFC2044]. Note that in the UTF-8
 algorithm characters which are the same as ASCII (0x0000 through
 0x007F) are represented as that same ASCII character in a single
 byte. The other byte values are used to form a variable-length
 encoding of an arbitrary character.

 LDAPString ::= OCTET STRING -- UTF-8 encoded,
 -- ISO 10646 characters

 The LDAPOID is a notational convenience to indicate that the
 permitted value of this string is a (UTF-8 encoded) dotted-decimal
 representation of an OBJECT IDENTIFIER. Although an LDAPOID is
 encoded as an OCTET STRING, values are limited to the definition of
 numericoid given in Section 1.3 of [Models].

 LDAPOID ::= OCTET STRING -- Constrained to numericoid [Models]

https://datatracker.ietf.org/doc/html/rfc2044

 For example,

 1.3.6.1.4.1.1466.1.2.3

4.1.3. Distinguished Name and Relative Distinguished Name

 An LDAPDN and a RelativeLDAPDN are respectively defined to be the
 representation of a distinguished-name and a relative-distinguished-
 name after encoding according to the specification in [LDAPDN].

 LDAPDN ::= LDAPString
 -- Constrained to distinguishedName [LDAPDN]

 RelativeLDAPDN ::= LDAPString
 -- Constrained to name-component [LDAPDN]

4.1.4. Attribute Descriptions

 The definition and encoding rules for attribute descriptions are
 defined in Section 2.5 of [Models]. Briefly, an attribute description
 is an attribute type and zero or more options.

 AttributeDescription ::= LDAPString
 -- Constrained to attributedescription
 -- [Models]

 An AttributeDescriptionList describes a list of 0 or more attribute
 descriptions. (A list of zero elements has special significance in
 the Search request.)

 AttributeDescriptionList ::= SEQUENCE OF

Sermersheim Internet-Draft - Expires May 2003 Page 6
 Lightweight Directory Access Protocol Version 3

 AttributeDescription

4.1.5. Attribute Value

 A field of type AttributeValue is an OCTET STRING containing an
 encoded attribute value data type. The value is encoded according to
 its LDAP-specific encoding definition. The LDAP-specific encoding
 definitions for different syntaxes and attribute types may be found
 in other documents, and in particular [Syntaxes].

 AttributeValue ::= OCTET STRING

 Note that there is no defined limit on the size of this encoding;

 thus protocol values may include multi-megabyte attributes (e.g.
 photographs).

 Attributes may be defined which have arbitrary and non-printable
 syntax. Implementations MUST NOT display nor attempt to decode as
 ASN.1, a value if its syntax is not known. The implementation may
 attempt to discover the subschema of the source entry, and retrieve
 the values of attributeTypes from it.

 Clients MUST NOT send attribute values in a request that are not
 valid according to the syntax defined for the attributes.

4.1.6. Attribute Value Assertion

 The AttributeValueAssertion type definition is similar to the one in
 the X.500 directory standards. It contains an attribute description
 and a matching rule assertion value suitable for that type.

 AttributeValueAssertion ::= SEQUENCE {
 attributeDesc AttributeDescription,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 The syntax of the AssertionValue depends on the context of the LDAP
 operation being performed. For example, the syntax of the EQUALITY
 matching rule for an attribute is used when performing a Compare
 operation. Often this is the same syntax used for values of the
 attribute type, but in some cases the assertion syntax differs from
 the value syntax. See objectIdentiferFirstComponentMatch in
 [Syntaxes] for an example.

4.1.7. Attribute

 An attribute consists of an attribute description and one or more
 values of that attribute description. (Though attributes MUST have at
 least one value when stored, due to access control restrictions the
 set may be empty when transferred from the server to the client. This

Sermersheim Internet-Draft - Expires May 2003 Page 7
 Lightweight Directory Access Protocol Version 3

 is described in section 4.5.2, concerning the PartialAttributeList
 type.)

 Attribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Each attribute value is distinct in the set (no duplicates). The set

 of attribute values is unordered. Implementations MUST NOT reply upon
 any apparent ordering being repeatable.

4.1.8. Matching Rule Identifier

 Matching rules are defined in 4.1.3 of [Models]. A matching rule is
 identified in the LDAP protocol by the printable representation of
 either its numericoid, or one of its short name descriptors, e.g.
 "caseIgnoreIA5Match" or "1.3.6.1.4.1.453.33.33".

 MatchingRuleId ::= LDAPString

 Servers which support matching rules for use in the extensibleMatch
 search filter MUST list the matching rules they implement in
 subschema entries, using the matchingRules attributes. The server
 SHOULD also list there, using the matchingRuleUse attribute, the
 attribute types with which each matching rule can be used. More
 information is given in section 4.5 of [Syntaxes].

4.1.9. Result Message

 The LDAPResult is the construct used in this protocol to return
 success or failure indications from servers to clients. To various
 requests, servers will return responses of LDAPResult or responses
 containing the components of LDAPResponse to indicate the final
 status of a protocol operation request.

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),
 compareTrue (6),
 authMethodNotSupported (7),
 strongAuthRequired (8),
 -- 9 reserved --
 referral (10),
 adminLimitExceeded (11),
 unavailableCriticalExtension (12),
 confidentialityRequired (13),
 saslBindInProgress (14),

Sermersheim Internet-Draft - Expires May 2003 Page 8
 Lightweight Directory Access Protocol Version 3

 noSuchAttribute (16),
 undefinedAttributeType (17),

 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 -- 22-31 unused --
 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 -- 35 reserved for undefined isLeaf --
 aliasDereferencingProblem (36),
 -- 37-47 unused --
 inappropriateAuthentication (48),
 invalidCredentials (49),
 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --
 namingViolation (64),
 objectClassViolation (65),
 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 -- 70 reserved for CLDAP --
 affectsMultipleDSAs (71),
 -- 72-79 unused --
 other (80),
 ... },
 -- 81-90 reserved for APIs --
 matchedDN LDAPDN,
 errorMessage LDAPString,
 referral [3] Referral OPTIONAL }

 The result codes enumeration is extensible as defined in Section 3.5
 of [LDAPIANA]. The meanings of the result codes are given in Appendix

A.

 The errorMessage field of this construct may, at the server's option,
 be used to return a string containing a textual, human-readable
 (terminal control and page formatting characters should be avoided)
 error diagnostic. As this error diagnostic is not standardized,
 implementations MUST NOT rely on the values returned. If the server
 chooses not to return a textual diagnostic, the errorMessage field of
 the LDAPResult type MUST contain a zero length string.

 For result codes of noSuchObject, aliasProblem, invalidDNSyntax and
 aliasDereferencingProblem, the matchedDN field is set to the name of
 the lowest entry (object or alias) in the directory that was matched.
 If no aliases were dereferenced while attempting to locate the entry,

 this will be a truncated form of the name provided, or if aliases

Sermersheim Internet-Draft - Expires May 2003 Page 9
 Lightweight Directory Access Protocol Version 3

 were dereferenced, of the resulting name, as defined in section 12.5
 of [X.511]. The matchedDN field contains a zero length string with
 all other result codes.

4.1.10. Referral

 The referral result code indicates that the contacted server does not
 hold the target entry of the request. The referral field is present
 in an LDAPResult if the LDAPResult.resultCode field value is
 referral, and absent with all other result codes. It contains one or
 more references to one or more servers or services that may be
 accessed via LDAP or other protocols. Referrals can be returned in
 response to any operation request (except unbind and abandon which do
 not have responses). At least one URL MUST be present in the
 Referral.

 During a search operation, after the baseObject is located, and
 entries are being evaluated, the referral is not returned. Instead,
 continuation references, described in section 4.5.3, are returned
 when the search scope spans multiple naming contexts, and several
 different servers would need to be contacted to complete the
 operation.

 Referral ::= SEQUENCE OF LDAPURL -- one or more

 LDAPURL ::= LDAPString -- limited to characters permitted in
 -- URLs

 If the client wishes to progress the operation, it MUST follow the
 referral by contacting one of the servers. If multiple URLs are
 present, the client assumes that any URL may be used to progress the
 operation.

 URLs for servers implementing the LDAP protocol are written according
 to [LDAPDN]. If an alias was dereferenced, the <dn> part of the URL
 MUST be present, with the new target object name. If the <dn> part is
 present, the client MUST use this name in its next request to
 progress the operation, and if it is not present the client will use
 the same name as in the original request. Some servers (e.g.
 participating in distributed indexing) may provide a different filter
 in a referral for a search operation. If the filter part of the URL
 is present in an LDAPURL, the client MUST use this filter in its next
 request to progress this search, and if it is not present the client
 MUST use the same filter as it used for that search. Other aspects of
 the new request may be the same or different as the request which
 generated the referral.

 Note that UTF-8 characters appearing in a DN or search filter may not
 be legal for URLs (e.g. spaces) and MUST be escaped using the %
 method in [RFC2396].

 Other kinds of URLs may be returned, so long as the operation could
 be performed using that protocol.

Sermersheim Internet-Draft - Expires May 2003 Page 10
 Lightweight Directory Access Protocol Version 3

4.1.11. Controls

 A control is a way to specify extension information for an LDAP
 message. A control only alters the semantics of the message it is
 attached to.

 Controls ::= SEQUENCE OF Control

 Control ::= SEQUENCE {
 controlType LDAPOID,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL }

 The controlType field MUST be a UTF-8 encoded dotted-decimal
 representation of an OBJECT IDENTIFIER which uniquely identifies the
 control. This prevents conflicts between control names.

 The criticality field is either TRUE or FALSE and only applies to
 request messages that have a corresponding response message. For all
 other messages (such as abandonRequest, unbindRequest and all
 response messages), the criticality field is treated as FALSE.

 If the server recognizes the control type and it is appropriate for
 the operation, the server will make use of the control when
 performing the operation.

 If the server does not recognize the control type or it is not
 appropriate for the operation, and the criticality field is TRUE, the
 server MUST NOT perform the operation, and MUST instead return the
 resultCode unavailableCriticalExtension.

 If the control is unrecognized or inappropriate but the criticality
 field is FALSE, the server MUST ignore the control.

 The controlValue contains any information associated with the
 control, and its format is defined for the control. Implementations
 MUST be prepared to handle arbitrary contents of the controlValue
 octet string, including zero bytes. It is absent only if there is no
 value information which is associated with a control of its type.

https://datatracker.ietf.org/doc/html/rfc2396

 This document does not specify any controls. Controls may be
 specified in other documents. The specification of a control consists
 of:

 - the OBJECT IDENTIFIER assigned to the control,

 - whether the control is always noncritical, always critical, or
 critical at the client's option,

 - the format of the controlValue contents of the control,

 - the semantics of the control,

Sermersheim Internet-Draft - Expires May 2003 Page 11
 Lightweight Directory Access Protocol Version 3

 - and optionally, semantics regarding the combination of the control
 with other controls.

 Servers list the controlType of all controls they recognize in the
 supportedControl attribute [Models] in the root DSE.

 Controls should not be combined unless the semantics of the
 combination has been specified. The semantics of control
 combinations, if specified, are generally found in the control
 specification most recently published. In the absence of combination
 semantics, the behavior of the operation is undefined.
 Additionally, the order of a combination of controls in the SEQUENCE
 is ignored unless the control specification(s) describe(s)
 combination semantics.

4.2. Bind Operation

 The function of the Bind Operation is to allow authentication
 information to be exchanged between the client and server. Prior to
 the BindRequest, the implied identity is anonymous. Refer to
 [AuthMeth] for the authentication-related semantics of this
 operation.

 The Bind Request is defined as follows:

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),
 name LDAPDN,
 authentication AuthenticationChoice }

 AuthenticationChoice ::= CHOICE {
 simple [0] OCTET STRING,
 -- 1 and 2 reserved

 sasl [3] SaslCredentials,
 ... }

 SaslCredentials ::= SEQUENCE {
 mechanism LDAPString,
 credentials OCTET STRING OPTIONAL }

 Parameters of the Bind Request are:

 - version: A version number indicating the version of the protocol
 to be used in this protocol session. This document describes
 version 3 of the LDAP protocol. Note that there is no version
 negotiation, and the client just sets this parameter to the
 version it desires. If the server does not support the specified
 version, it responds with protocolError in the resultCode field of
 the BindResponse.

 - name: The name of the directory object that the client wishes to
 bind as. This field may take on a null value (a zero length

Sermersheim Internet-Draft - Expires May 2003 Page 12
 Lightweight Directory Access Protocol Version 3

 string) for the purposes of anonymous binds, when authentication
 has been performed at a lower layer, or when using SASL
 credentials with a mechanism that includes the name in the
 credentials. Server behavior is undefined when the name is a null
 value, simple authentication is used, and a password is specified.
 The server SHOULD NOT perform any alias dereferencing in
 determining the object to bind as.

 - authentication: information used to authenticate the name, if any,
 provided in the Bind Request. This type is extensible as defined
 in Section 3.6 of [LDAPIANA]. Servers that do not support a choice
 supplied by a client will return authMethodNotSupported in the
 result code of the BindResponse.

 Upon receipt of a Bind Request, a protocol server will authenticate
 the requesting client, if necessary. The server will then return a
 Bind Response to the client indicating the status of the
 authentication.

 Authorization is the use of this authentication information when
 performing operations. Authorization MAY be affected by factors
 outside of the LDAP Bind request, such as lower layer security
 services.

4.2.1. Sequencing of the Bind Request

 For some SASL authentication mechanisms, it may be necessary for the
 client to invoke the BindRequest multiple times. If at any stage the

 client wishes to abort the bind process it MAY unbind and then drop
 the underlying connection. Clients MUST NOT invoke operations between
 two Bind requests made as part of a multi-stage bind.

 A client may abort a SASL bind negotiation by sending a BindRequest
 with a different value in the mechanism field of SaslCredentials, or
 an AuthenticationChoice other than sasl.

 If the client sends a BindRequest with the sasl mechanism field as an
 empty string, the server MUST return a BindResponse with
 authMethodNotSupported as the resultCode. This will allow clients to
 abort a negotiation if it wishes to try again with the same SASL
 mechanism.

 If the client did not bind before sending a request and receives an
 operationsError, it may then send a Bind Request. If this also fails
 or the client chooses not to bind on the existing connection, it will
 close the connection, reopen it and begin again by first sending a
 PDU with a Bind Request. This will aid in interoperating with servers
 implementing other versions of LDAP.

 Clients MAY send multiple bind requests on a connection to change
 their credentials. A subsequent bind process has the effect of
 abandoning all operations outstanding on the connection. (This
 simplifies server implementation.) Authentication from earlier binds

Sermersheim Internet-Draft - Expires May 2003 Page 13
 Lightweight Directory Access Protocol Version 3

 are subsequently ignored, and so if the bind fails, the connection
 will be treated as anonymous. If a SASL transfer encryption or
 integrity mechanism has been negotiated, and that mechanism does not
 support the changing of credentials from one identity to another,
 then the client MUST instead establish a new connection.

4.2.2. Bind Response

 The Bind Response is defined as follows.

 BindResponse ::= [APPLICATION 1] SEQUENCE {
 COMPONENTS OF LDAPResult,
 serverSaslCreds [7] OCTET STRING OPTIONAL }

 BindResponse consists simply of an indication from the server of the
 status of the client's request for authentication.

 If the bind was successful, the resultCode will be success, otherwise
 it MAY be one of:

 - operationsError: server encountered an internal error.

 - protocolError: unrecognized version number or incorrect PDU

 structure.

 - authMethodNotSupported: unrecognized SASL mechanism name.

 - strongAuthRequired: the server requires authentication be
 performed with a SASL mechanism.

 - referral: this server cannot accept this bind and the client
 should try another.

 - saslBindInProgress: the server requires the client to send a new
 bind request, with the same sasl mechanism, to continue the
 authentication process.

 - inappropriateAuthentication: the server requires the client which
 had attempted to bind anonymously or without supplying credentials
 to provide some form of credentials.

 - invalidCredentials: the wrong password was supplied or the SASL
 credentials could not be processed.

 - unavailable: the server is shutting down.

 If the server does not support the client's requested protocol
 version, it MUST set the resultCode to protocolError.

 If the client receives a BindResponse response where the resultCode
 was protocolError, it MUST close the connection as the server will be
 unwilling to accept further operations. (This is for compatibility
 with earlier versions of LDAP, in which the bind was always the first
 operation, and there was no negotiation.)

Sermersheim Internet-Draft - Expires May 2003 Page 14
 Lightweight Directory Access Protocol Version 3

 The serverSaslCreds are used as part of a SASL-defined bind mechanism
 to allow the client to authenticate the server to which it is
 communicating, or to perform "challenge-response" authentication. If
 the client bound with the simple choice, or the SASL mechanism does
 not require the server to return information to the client, then this
 field is not to be included in the result.

4.3. Unbind Operation

 The function of the Unbind Operation is to terminate a protocol
 session. The Unbind Operation is defined as follows:

 UnbindRequest ::= [APPLICATION 2] NULL

 The Unbind Operation has no response defined. Upon transmission of an

 UnbindRequest, a protocol client MUST assume that the protocol
 session is terminated. Upon receipt of an UnbindRequest, a protocol
 server MUST assume that the requesting client has terminated the
 session and that all outstanding requests may be discarded, and MUST
 close the connection.

4.4. Unsolicited Notification

 An unsolicited notification is an LDAPMessage sent from the server to
 the client which is not in response to any LDAPMessage received by
 the server. It is used to signal an extraordinary condition in the
 server or in the connection between the client and the server. The
 notification is of an advisory nature, and the server will not expect
 any response to be returned from the client.

 The unsolicited notification is structured as an LDAPMessage in which
 the messageID is 0 and protocolOp is of the extendedResp form. The
 responseName field of the ExtendedResponse is present. The LDAPOID
 value MUST be unique for this notification, and not be used in any
 other situation.

 One unsolicited notification (Notice of Disconnection) is defined in
 this document.

4.4.1. Notice of Disconnection

 This notification may be used by the server to advise the client that
 the server is about to close the connection due to an error
 condition. Note that this notification is NOT a response to an unbind
 requested by the client: the server MUST follow the procedures of

section 4.3. This notification is intended to assist clients in
 distinguishing between an error condition and a transient network
 failure. As with a connection close due to network failure, the
 client MUST NOT assume that any outstanding requests which modified
 the directory have succeeded or failed.

Sermersheim Internet-Draft - Expires May 2003 Page 15
 Lightweight Directory Access Protocol Version 3

 The responseName is 1.3.6.1.4.1.1466.20036, the response field is
 absent, and the resultCode is used to indicate the reason for the
 disconnection.

 The following resultCode values are to be used in this notification:

 - protocolError: The server has received data from the client in
 which the LDAPMessage structure could not be parsed.

 - strongAuthRequired: The server has detected that an established

 underlying security association protecting communication between
 the client and server has unexpectedly failed or been compromised.

 - unavailable: This server will stop accepting new connections and
 operations on all existing connections, and be unavailable for an
 extended period of time. The client may make use of an alternative
 server.

 After sending this notice, the server MUST close the connection.
 After receiving this notice, the client MUST NOT transmit any further
 on the connection, and may abruptly close the connection.

4.5. Search Operation

 The Search Operation allows a client to request that a search be
 performed on its behalf by a server. This can be used to read
 attributes from a single entry, from entries immediately below a
 particular entry, or a whole subtree of entries.

4.5.1. Search Request

 The Search Request is defined as follows:

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),
 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeDescriptionList }

 Filter ::= CHOICE {

Sermersheim Internet-Draft - Expires May 2003 Page 16
 Lightweight Directory Access Protocol Version 3

 and [0] SET SIZE (1..MAX) OF Filter,
 or [1] SET SIZE (1..MAX) OF Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,

 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeDescription,
 -- at least one must be present,
 -- initial and final can occur at most once
 substrings SEQUENCE OF CHOICE {
 initial [0] AssertionValue,
 any [1] AssertionValue,
 final [2] AssertionValue } }

 MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
 matchValue [3] AssertionValue,
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

 Parameters of the Search Request are:

 - baseObject: An LDAPDN that is the base object entry relative to
 which the search is to be performed.

 - scope: An indicator of the scope of the search to be performed.
 The semantics of the possible values of this field are identical
 to the semantics of the scope field in the X.511 Search Operation.

 - derefAliases: An indicator as to how alias objects (as defined in
 X.501) are to be handled in searching. The semantics of the
 possible values of this field are:

 neverDerefAliases: do not dereference aliases in searching
 or in locating the base object of the search;

 derefInSearching: dereference aliases in subordinates of
 the base object in searching, but not in locating the base
 object of the search;

 derefFindingBaseObj: dereference aliases in locating the
 base object of the search, but not when searching
 subordinates of the base object;

 derefAlways: dereference aliases both in searching and in
 locating the base object of the search.

Sermersheim Internet-Draft - Expires May 2003 Page 17
 Lightweight Directory Access Protocol Version 3

 - sizeLimit: A size limit that restricts the maximum number of
 entries to be returned as a result of the search. A value of 0 in
 this field indicates that no client-requested size limit
 restrictions are in effect for the search. Servers may enforce a
 maximum number of entries to return.

 - timeLimit: A time limit that restricts the maximum time (in
 seconds) allowed for a search. A value of 0 in this field
 indicates that no client-requested time limit restrictions are in
 effect for the search.

 - typesOnly: An indicator as to whether search results will contain
 both attribute types and values, or just attribute types. Setting
 this field to TRUE causes only attribute types (no values) to be
 returned. Setting this field to FALSE causes both attribute types
 and values to be returned.

 - filter: A filter that defines the conditions that must be
 fulfilled in order for the search to match a given entry.

 The 'and', 'or' and 'not' choices can be used to form combinations
 of filters. At least one filter element MUST be present in an
 'and' or 'or' choice. The others match against individual
 attribute values of entries in the scope of the search.
 (Implementor's note: the 'not' filter is an example of a tagged
 choice in an implicitly-tagged module. In BER this is treated as
 if the tag was explicit.)

 A server MUST evaluate filters according to the three-valued logic
 of X.511 (1993) section 7.8.1. In summary, a filter is evaluated
 to either "TRUE", "FALSE" or "Undefined". If the filter evaluates
 to TRUE for a particular entry, then the attributes of that entry
 are returned as part of the search result (subject to any
 applicable access control restrictions). If the filter evaluates
 to FALSE or Undefined, then the entry is ignored for the search.

 A filter of the "and" choice is TRUE if all the filters in the SET
 OF evaluate to TRUE, FALSE if at least one filter is FALSE, and
 otherwise Undefined. A filter of the "or" choice is FALSE if all
 of the filters in the SET OF evaluate to FALSE, TRUE if at least
 one filter is TRUE, and Undefined otherwise. A filter of the "not"
 choice is TRUE if the filter being negated is FALSE, FALSE if it
 is TRUE, and Undefined if it is Undefined.

 The present match evaluates to TRUE where there is an attribute or
 subtype of the specified attribute description present in an
 entry, and FALSE otherwise (including a presence test with an
 unrecognized attribute description.)

 The matching rule and assertion syntax for equalityMatch filter

 items is defined by the EQUALITY matching rule for the attribute
 type.

Sermersheim Internet-Draft - Expires May 2003 Page 18
 Lightweight Directory Access Protocol Version 3

 The matching rule and assertion syntax for AssertionValues in a
 substrings filter item is defined by the SUBSTR matching rule for
 the attribute type.

 The matching rule and assertion syntax for greaterOrEqual and
 lessOrEqual filter items is defined by the ORDERING matching rule
 for the attribute type.

 The matching rule and assertion syntax for approxMatch filter
 items is implementation-defined. If approximate matching is not
 supported by the server, the filter item should be treated as an
 equalityMatch.

 The extensibleMatch is new in this version of LDAP. If the
 matchingRule field is absent, the type field MUST be present, and
 the equality match is performed for that type. If the type field
 is absent and matchingRule is present, the matchValue is compared
 against all attributes in an entry which support that
 matchingRule, and the matchingRule determines the syntax for the
 assertion value (the filter item evaluates to TRUE if it matches
 with at least one attribute in the entry, FALSE if it does not
 match any attribute in the entry, and Undefined if the
 matchingRule is not recognized or the assertionValue cannot be
 parsed.) If the type field is present and matchingRule is present,
 the matchingRule MUST be one permitted for use with that type,
 otherwise the filter item is undefined. If the dnAttributes field
 is set to TRUE, the match is applied against all the attributes in
 an entry's distinguished name as well, and also evaluates to TRUE
 if there is at least one attribute in the distinguished name for
 which the filter item evaluates to TRUE. (Editors note: The
 dnAttributes field is present so that there does not need to be
 multiple versions of generic matching rules such as for word
 matching, one to apply to entries and another to apply to entries
 and dn attributes as well).

 A filter item evaluates to Undefined when the server would not be
 able to determine whether the assertion value matches an entry. If
 an attribute description in an equalityMatch, substrings,
 greaterOrEqual, lessOrEqual, approxMatch or extensibleMatch filter
 is not recognized by the server, a matching rule id in the
 extensibleMatch is not recognized by the server, the assertion
 value cannot be parsed, or the type of filtering requested is not
 implemented, then the filter is Undefined. Thus for example if a

 server did not recognize the attribute type shoeSize, a filter of
 (shoeSize=*) would evaluate to FALSE, and the filters
 (shoeSize=12), (shoeSize>=12) and (shoeSize<=12) would evaluate to
 Undefined.

 Servers MUST NOT return errors if attribute descriptions or
 matching rule ids are not recognized, or assertion values cannot
 be parsed. More details of filter processing are given in section

7.8 of [X.511].

Sermersheim Internet-Draft - Expires May 2003 Page 19
 Lightweight Directory Access Protocol Version 3

 - attributes: A list of the attributes to be returned from each
 entry which matches the search filter. There are two special
 values which may be used: an empty list with no attributes, and
 the attribute description string "*". Both of these signify that
 all user attributes are to be returned. (The "*" allows the client
 to request all user attributes in addition to any specified
 operational attributes).

 Attributes MUST be named at most once in the list, and are
 returned at most once in an entry. If there are attribute
 descriptions in the list which are not recognized, they are
 ignored by the server.

 If the client does not want any attributes returned, it can
 specify a list containing only the attribute with OID "1.1". This
 OID was chosen arbitrarily and does not correspond to any
 attribute in use.

 Client implementors should note that even if all user attributes
 are requested, some attributes of the entry may not be included in
 search results due to access controls or other restrictions.
 Furthermore, servers will not return operational attributes, such
 as objectClasses or attributeTypes, unless they are listed by
 name, since there may be extremely large number of values for
 certain operational attributes. (A list of operational attributes
 for use in LDAP is given in [Syntaxes].)

 Note that an X.500 "list"-like operation can be emulated by the
 client requesting a one-level LDAP search operation with a filter
 checking for the presence of the objectClass attribute, and that an
 X.500 "read"-like operation can be emulated by a base object LDAP
 search operation with the same filter. A server which provides a
 gateway to X.500 is not required to use the Read or List operations,
 although it may choose to do so, and if it does, it must provide the
 same semantics as the X.500 search operation.

4.5.2. Search Result

 The results of the search attempted by the server upon receipt of a
 Search Request are returned in Search Responses, which are LDAP
 messages containing either SearchResultEntry, SearchResultReference,
 or SearchResultDone data types.

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,
 attributes PartialAttributeList }

 PartialAttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }
 -- implementors should note that the PartialAttributeList may
 -- have zero elements (if none of the attributes of that entry
 -- were requested, or could be returned), and that the vals set

Sermersheim Internet-Draft - Expires May 2003 Page 20
 Lightweight Directory Access Protocol Version 3

 -- may also have zero elements (if types only was requested, or
 -- all values were excluded from the result.)

 SearchResultReference ::= [APPLICATION 19] SEQUENCE OF LDAPURL
 -- at least one LDAPURL element must be present

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 Upon receipt of a Search Request, a server will perform the necessary
 search of the DIT.

 If the LDAP session is operating over a connection-oriented transport
 such as TCP, the server will return to the client a sequence of
 responses in separate LDAP messages. There may be zero or more
 responses containing SearchResultEntry, one for each entry found
 during the search. There may also be zero or more responses
 containing SearchResultReference, one for each area not explored by
 this server during the search. The SearchResultEntry and
 SearchResultReference PDUs may come in any order. Following all the
 SearchResultReference responses and all SearchResultEntry responses
 to be returned by the server, the server will return a response
 containing the SearchResultDone, which contains an indication of
 success, or detailing any errors that have occurred.

 Each entry returned in a SearchResultEntry will contain all
 attributes, complete with associated values if necessary, as
 specified in the attributes field of the Search Request. Return of
 attributes is subject to access control and other administrative
 policy.

 Some attributes may be constructed by the server and appear in a

 SearchResultEntry attribute list, although they are not stored
 attributes of an entry. Clients SHOULD NOT assume that all attributes
 can be modified, even if permitted by access control.

 If the serverÆs schema defines a textual name for an attribute type,
 it MUST use a textual name for attributes of that attribute type by
 specifying one of the textual names as the value of the attribute
 type. Otherwise, the server uses the object identifier for the
 attribute type by specifying the object identifier, in ldapOID form,
 as the value of attribute type.

4.5.3. Continuation References in the Search Result

 If the server was able to locate the entry referred to by the
 baseObject but was unable to search all the entries in the scope at
 and under the baseObject, the server may return one or more
 SearchResultReference entries, each containing a reference to another
 set of servers for continuing the operation. A server MUST NOT return
 any SearchResultReference if it has not located the baseObject and
 thus has not searched any entries; in this case it would return a
 SearchResultDone containing a referral resultCode.

Sermersheim Internet-Draft - Expires May 2003 Page 21
 Lightweight Directory Access Protocol Version 3

 In the absence of indexing information provided to a server from
 servers holding subordinate naming contexts, SearchResultReference
 responses are not affected by search filters and are always returned
 when in scope.

 The SearchResultReference is of the same data type as the Referral.
 URLs for servers implementing the LDAP protocol are written according
 to [LDAPDN]. The <dn> part MUST be present in the URL, with the new
 target object name. The client MUST use this name in its next
 request. Some servers (e.g. part of a distributed index exchange
 system) may provide a different filter in the URLs of the
 SearchResultReference. If the filter part of the URL is present in an
 LDAP URL, the client MUST use the new filter in its next request to
 progress the search, and if the filter part is absent the client will
 use again the same filter. If the originating search scope was
 singleLevel, the scope part of the URL will be baseObject. Other
 aspects of the new search request may be the same or different as the
 search which generated the continuation references.
 Other kinds of URLs may be returned so long as the operation could be
 performed using that protocol.

 The name of an unexplored subtree in a SearchResultReference need not
 be subordinate to the base object.

 In order to complete the search, the client MUST issue a new search

 operation for each SearchResultReference that is returned. Note that
 the abandon operation described in section 4.11 applies only to a
 particular operation sent on a connection between a client and
 server, and if the client has multiple outstanding search operations,
 it MUST abandon each operation individually.

4.5.3.1. Example

 For example, suppose the contacted server (hosta) holds the entry
 "DC=Example,DC=NET" and the entry "CN=Manager,DC=Example,DC=NET". It
 knows that either LDAP-capable servers (hostb) or (hostc) hold
 "OU=People,DC=Example,DC=NET" (one is the master and the other server
 a shadow), and that LDAP-capable server (hostd) holds the subtree
 "OU=Roles,DC=Example,DC=NET". If a subtree search of
 "DC=Example,DC=NET" is requested to the contacted server, it may
 return the following:

 SearchResultEntry for DC=Example,DC=NET
 SearchResultEntry for CN=Manager,DC=Example,DC=NET
 SearchResultReference {
 ldap://hostb/OU=People,DC=Example,DC=NET
 ldap://hostc/OU=People,DC=Example,DC=NET
 }
 SearchResultReference {
 ldap://hostd/OU=Roles,DC=Example,DC=NET
 }
 SearchResultDone (success)

Sermersheim Internet-Draft - Expires May 2003 Page 22
 Lightweight Directory Access Protocol Version 3

 Client implementors should note that when following a
 SearchResultReference, additional SearchResultReference may be
 generated. Continuing the example, if the client contacted the server
 (hostb) and issued the search for the subtree
 "OU=People,DC=Example,DC=NET", the server might respond as follows:

 SearchResultEntry for OU=People,DC=Example,DC=NET
 SearchResultReference {
 ldap://hoste/OU=Managers,OU=People,DC=Example,DC=NET
 }
 SearchResultReference {
 ldap://hostf/OU=Consultants,OU=People,DC=Example,DC=NET
 }
 SearchResultDone (success)

 If the contacted server does not hold the base object for the search,
 then it will return a referral to the client. For example, if the
 client requests a subtree search of "DC=Example,DC=ORG" to hosta, the

 server may return only a SearchResultDone containing a referral.

 SearchResultDone (referral) {
 ldap://hostg/
 }

4.6. Modify Operation

 The Modify Operation allows a client to request that a modification
 of an entry be performed on its behalf by a server. The Modify
 Request is defined as follows:

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 modification SEQUENCE OF SEQUENCE {
 operation ENUMERATED {
 add (0),
 delete (1),
 replace (2) },
 modification AttributeTypeAndValues } }

 AttributeTypeAndValues ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Parameters of the Modify Request are:

 - object: The object to be modified. The value of this field
 contains the DN of the entry to be modified. The server will not
 perform any alias dereferencing in determining the object to be
 modified.

 - modification: A list of modifications to be performed on the
 entry. The entire list of entry modifications MUST be performed in
 the order they are listed, as a single atomic operation. While

Sermersheim Internet-Draft - Expires May 2003 Page 23
 Lightweight Directory Access Protocol Version 3

 individual modifications may violate the directory schema, the
 resulting entry after the entire list of modifications is
 performed MUST conform to the requirements of the directory
 schema. The values that may be taken on by the 'operation' field
 in each modification construct have the following semantics
 respectively:

 add: add values listed to the given attribute, creating the
 attribute if necessary;

 delete: delete values listed from the given attribute,
 removing the entire attribute if no values are listed, or

 if all current values of the attribute are listed for
 deletion;

 replace: replace all existing values of the given attribute
 with the new values listed, creating the attribute if it
 did not already exist. A replace with no value will delete
 the entire attribute if it exists, and is ignored if the
 attribute does not exist.

 The result of the modification attempted by the server upon receipt
 of a Modify Request is returned in a Modify Response, defined as
 follows:

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 Upon receipt of a Modify Request, a server will perform the necessary
 modifications to the DIT.

 The server will return to the client a single Modify Response
 indicating either the successful completion of the DIT modification,
 or the reason that the modification failed. Note that due to the
 requirement for atomicity in applying the list of modifications in
 the Modify Request, the client may expect that no modifications of
 the DIT have been performed if the Modify Response received indicates
 any sort of error, and that all requested modifications have been
 performed if the Modify Response indicates successful completion of
 the Modify Operation. If the connection fails, whether the
 modification occurred or not is indeterminate.

 The Modify Operation cannot be used to remove from an entry any of
 its distinguished values, those values which form the entry's
 relative distinguished name. An attempt to do so will result in the
 server returning the error notAllowedOnRDN. The Modify DN Operation
 described in section 4.9 is used to rename an entry.

 If an EQUALITY matching rule has not been defined for an attribute
 type, clients MUST NOT attempt to add or delete individual values of
 that attribute from an entry using the "add" or "delete" form of a
 modification, and MUST instead use the "replace" form.

 Note that due to the simplifications made in LDAP, there is not a
 direct mapping of the modifications in an LDAP ModifyRequest onto the

Sermersheim Internet-Draft - Expires May 2003 Page 24
 Lightweight Directory Access Protocol Version 3

 EntryModifications of a DAP ModifyEntry operation, and different
 implementations of LDAP-DAP gateways may use different means of
 representing the change. If successful, the final effect of the
 operations on the entry MUST be identical.

4.7. Add Operation

 The Add Operation allows a client to request the addition of an entry
 into the directory. The Add Request is defined as follows:

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList }

 AttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 Parameters of the Add Request are:

 - entry: the Distinguished Name of the entry to be added. Note that
 the server will not dereference any aliases in locating the entry
 to be added.

 - attributes: the list of attributes that make up the content of the
 entry being added. Clients MUST include distinguished values
 (those forming the entry's own RDN) in this list, the objectClass
 attribute, and values of any mandatory attributes of the listed
 object classes. Clients MUST NOT supply NO-USER-MODIFICATION
 attributes such as the createTimestamp or creatorsName attributes,
 since the server maintains these automatically.

 The entry named in the entry field of the AddRequest MUST NOT exist
 for the AddRequest to succeed. The parent of the entry to be added
 MUST exist. For example, if the client attempted to add
 "CN=JS,DC=Example,DC=NET", the "DC=Example,DC=NET" entry did not
 exist, and the "DC=NET" entry did exist, then the server would return
 the error noSuchObject with the matchedDN field containing "DC=NET".
 If the parent entry exists but is not in a naming context held by the
 server, the server SHOULD return a referral to the server holding the
 parent entry.

 Servers implementations SHOULD NOT restrict where entries can be
 located in the directory unless DIT structure rules are in place.
 Some servers MAY allow the administrator to restrict the classes of
 entries which can be added to the directory.

 Upon receipt of an Add Request, a server will attempt to perform the
 add requested. The result of the add attempt will be returned to the
 client in the Add Response, defined as follows:

 AddResponse ::= [APPLICATION 9] LDAPResult

Sermersheim Internet-Draft - Expires May 2003 Page 25
 Lightweight Directory Access Protocol Version 3

 A response of success indicates that the new entry is present in the
 directory.

4.8. Delete Operation

 The Delete Operation allows a client to request the removal of an
 entry from the directory. The Delete Request is defined as follows:

 DelRequest ::= [APPLICATION 10] LDAPDN

 The Delete Request consists of the Distinguished Name of the entry to
 be deleted. Note that the server will not dereference aliases while
 resolving the name of the target entry to be removed, and that only
 leaf entries (those with no subordinate entries) can be deleted with
 this operation.

 The result of the delete attempted by the server upon receipt of a
 Delete Request is returned in the Delete Response, defined as
 follows:

 DelResponse ::= [APPLICATION 11] LDAPResult

 Upon receipt of a Delete Request, a server will attempt to perform
 the entry removal requested. The result of the delete attempt will be
 returned to the client in the Delete Response.

4.9. Modify DN Operation

 The Modify DN Operation allows a client to change the leftmost (least
 significant) component of the name of an entry in the directory, or
 to move a subtree of entries to a new location in the directory. The
 Modify DN Request is defined as follows:

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 Parameters of the Modify DN Request are:

 - entry: the Distinguished Name of the entry to be changed. This
 entry may or may not have subordinate entries. Note that the
 server will not dereference any aliases in locating the entry to
 be changed.

 - newrdn: the RDN that will form the leftmost component of the new
 name of the entry.

 - deleteoldrdn: a boolean parameter that controls whether the old

 RDN attribute values are to be retained as attributes of the
 entry, or deleted from the entry.

Sermersheim Internet-Draft - Expires May 2003 Page 26
 Lightweight Directory Access Protocol Version 3

 - newSuperior: if present, this is the Distinguished Name of the
 entry which becomes the immediate superior of the existing entry.

 The result of the name change attempted by the server upon receipt of
 a Modify DN Request is returned in the Modify DN Response, defined as
 follows:

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

 Upon receipt of a ModifyDNRequest, a server will attempt to perform
 the name change. The result of the name change attempt will be
 returned to the client in the Modify DN Response.

 For example, if the entry named in the "entry" parameter was "cn=John
 Smith,c=US", the newrdn parameter was "cn=John Cougar Smith", and the
 newSuperior parameter was absent, then this operation would attempt
 to rename the entry to be "cn=John Cougar Smith,c=US". If there was
 already an entry with that name, the operation would fail with error
 code entryAlreadyExists.

 If the deleteoldrdn parameter is TRUE, the values forming the old RDN
 are deleted from the entry. If the deleteoldrdn parameter is FALSE,
 the values forming the old RDN will be retained as non-distinguished
 attribute values of the entry. The server may not perform the
 operation and return an error code if the setting of the deleteoldrdn
 parameter would cause a schema inconsistency in the entry.

 Note that X.500 restricts the ModifyDN operation to only affect
 entries that are contained within a single server. If the LDAP server
 is mapped onto DAP, then this restriction will apply, and the
 resultCode affectsMultipleDSAs will be returned if this error
 occurred. In general clients MUST NOT expect to be able to perform
 arbitrary movements of entries and subtrees between servers.

4.10. Compare Operation

 The Compare Operation allows a client to compare an assertion
 provided with an entry in the directory. The Compare Request is
 defined as follows:

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion }

 Parameters of the Compare Request are:

 - entry: the name of the entry to be compared with. Note that the
 server SHOULD NOT dereference any aliases in locating the entry to
 be compared with.

 - ava: the assertion with which an attribute in the entry is to be
 compared.

Sermersheim Internet-Draft - Expires May 2003 Page 27
 Lightweight Directory Access Protocol Version 3

 The result of the compare attempted by the server upon receipt of a
 Compare Request is returned in the Compare Response, defined as
 follows:

 CompareResponse ::= [APPLICATION 15] LDAPResult

 Upon receipt of a Compare Request, a server will attempt to perform
 the requested comparison using the EQUALITY matching rule for the
 attribute type. The result of the comparison will be returned to the
 client in the Compare Response. Note that errors and the result of
 comparison are all returned in the same construct.

 Note that some directory systems may establish access controls which
 permit the values of certain attributes (such as userPassword) to be
 compared but not read.

4.11. Abandon Operation

 The function of the Abandon Operation is to allow a client to request
 that the server abandon an outstanding operation. The Abandon Request
 is defined as follows:

 AbandonRequest ::= [APPLICATION 16] MessageID

 The MessageID MUST be that of an operation which was requested
 earlier in this connection. The abandon request itself has its own
 message id. This is distinct from the id of the earlier operation
 being abandoned.

 There is no response defined in the Abandon Operation. Upon
 transmission of an Abandon Operation, the server MAY abandon the
 operation identified by the Message ID in the Abandon Request.
 Operation responses are not sent for successfully abandoned
 operations. Clients can determine that an operation has been
 abandoned by performing a subsequent bind operation.

 Abandon and Unbind operations cannot be abandoned. The ability to
 abandon other (particularly update) operations is at the discretion

 of the server.

 In the event that a server receives an Abandon Request on a Search
 Operation in the midst of transmitting responses to the search, that
 server MUST cease transmitting entry responses to the abandoned
 request immediately, and MUST NOT send the SearchResponseDone. Of
 course, the server MUST ensure that only properly encoded LDAPMessage
 PDUs are transmitted.

 Clients MUST NOT send abandon requests for the same operation
 multiple times, and MUST also be prepared to receive results from
 operations it has abandoned (since these may have been in transit
 when the abandon was requested, or are not able to be abandoned).

Sermersheim Internet-Draft - Expires May 2003 Page 28
 Lightweight Directory Access Protocol Version 3

 Servers MUST discard abandon requests for message IDs they do not
 recognize, for operations which cannot be abandoned, and for
 operations which have already been abandoned.

4.12. Extended Operation

 An extension mechanism has been added in this version of LDAP, in
 order to allow additional operations to be defined for services not
 available elsewhere in this protocol, for instance digitally signed
 operations and results.

 The extended operation allows clients to make requests and receive
 responses with predefined syntaxes and semantics. These may be
 defined in RFCs or be private to particular implementations. Each
 request MUST have a unique OBJECT IDENTIFIER assigned to it.

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 The requestName is a dotted-decimal representation of the OBJECT
 IDENTIFIER corresponding to the request. The requestValue is
 information in a form defined by that request, encapsulated inside an
 OCTET STRING.

 The server will respond to this with an LDAPMessage containing the
 ExtendedResponse.

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 response [11] OCTET STRING OPTIONAL }

 If the server does not recognize the request name, it MUST return
 only the response fields from LDAPResult, containing the
 protocolError result code.

4.13. Start TLS Operation

 The Start Transport Layer Security (StartTLS) operation provides the
 ability to establish Transport Layer Security [RFC2246] on an LDAP
 connection.

4.13.1. Start TLS Request

 A client requests TLS establishment by transmitting a Start TLS
 request PDU to the server. The Start TLS request is defined in terms
 of an ExtendedRequest. The requestName is "1.3.6.1.4.1.1466.20037",
 and the requestValue field is absent.

 The client MUST NOT send any PDUs on this connection following this
 request until it receives a Start TLS extended response.

Sermersheim Internet-Draft - Expires May 2003 Page 29
 Lightweight Directory Access Protocol Version 3

4.13.2. Start TLS Response

 When a Start TLS request is made, servers supporting the operation
 MUST return a Start TLS response PDU to the requestor. The Start TLS
 response responseName is also "1.3.6.1.4.1.1466.20037", and the
 response field is absent.

 The server MUST set the resultCode field to either success or one of
 the other values outlined in section 4.13.2.2.

4.13.2.1. "Success" Response

 If the Start TLS Response contains a resultCode of success, this
 indicates that the server is willing and able to negotiate TLS. Refer
 to section 5.3 of [AuthMeth] for details.

4.13.2.2. Response other than "success"

 If the ExtendedResponse contains a resultCode other than success,
 this indicates that the server is unwilling or unable to negotiate
 TLS.

 If the Start TLS extended request was not successful, the resultCode
 will be one of:

 operationsError (operations sequencing incorrect; e.g. TLS already
 established)

https://datatracker.ietf.org/doc/html/rfc2246

 protocolError (TLS not supported or incorrect PDU structure)

 referral (this server doesn't do TLS, try this one)

 unavailable (e.g. some major problem with TLS, or server is
 shutting down)

 The server MUST return operationsError if the client violates any of
 the Start TLS extended operation sequencing requirements described in
 section 5.3 of [AuthMeth].

 If the server does not support TLS (whether by design or by current
 configuration), it MUST set the resultCode to protocolError, or to
 referral. The server MUST include an actual referral value in the
 LDAP Result if it returns a resultCode of referral. The client's
 current session is unaffected if the server does not support TLS. The
 client MAY proceed with any LDAP operation, or it MAY close the
 connection.

 The server MUST return unavailable if it supports TLS but cannot
 establish a TLS connection for some reason, e.g. the certificate
 server not responding, it cannot contact its TLS implementation, or
 if the server is in process of shutting down. The client MAY retry

Sermersheim Internet-Draft - Expires May 2003 Page 30
 Lightweight Directory Access Protocol Version 3

 the StartTLS operation, or it MAY proceed with any other LDAP
 operation, or it MAY close the connection.

4.13.3. Closing a TLS Connection

 Two forms of TLS connection closure--graceful and abrupt--are
 supported.

4.13.3.1. Graceful Closure

 Either the client or server MAY terminate the TLS connection on an
 LDAP association by sending a TLS closure alert.

 Before closing a TLS connection, the client MUST either wait for any
 outstanding LDAP operations to complete, or explicitly abandon them.

 After the initiator of a close has sent a TLS closure alert, it MUST
 discard any TLS messages until it has received a TLS closure alert
 from the other party. It will cease to send TLS Record Protocol
 PDUs, and following the receipt of the alert, MAY send and receive
 LDAP PDUs.

 The other party, if it receives a TLS closure alert, MUST immediately
 transmit a TLS closure alert. It will subsequently cease to send TLS

 Record Protocol PDUs, and MAY send and receive LDAP PDUs.

4.13.3.2. Abrupt Closure

 Either the client or server MAY abruptly close the entire LDAP
 association and any TLS connection established on it by dropping the
 underlying TCP connection. In this circumstance, a server MAY send
 the client a Notice of Disconnection before dropping the TCP
 connection.

5. Protocol Element Encodings and Transfer

 One underlying service is defined here. Clients and servers SHOULD
 implement the mapping of LDAP over TCP described in 5.2.1.

5.1. Protocol Encoding

 The protocol elements of LDAP are encoded for exchange using the
 Basic Encoding Rules (BER) [X.690] of ASN.1 [X.680]. However, due to
 the high overhead involved in using certain elements of the BER, the
 following additional restrictions are placed on BER-encodings of LDAP
 protocol elements:

 (1) Only the definite form of length encoding will be used.

 (2) OCTET STRING values will be encoded in the primitive form only.

Sermersheim Internet-Draft - Expires May 2003 Page 31
 Lightweight Directory Access Protocol Version 3

 (3) If the value of a BOOLEAN type is true, the encoding MUST have
 its contents octets set to hex "FF".

 (4) If a value of a type is its default value, it MUST be absent.
 Only some BOOLEAN and INTEGER types have default values in this
 protocol definition.

 These restrictions do not apply to ASN.1 types encapsulated inside of
 OCTET STRING values, such as attribute values, unless otherwise
 noted.

5.2. Transfer Protocols

 This protocol is designed to run over connection-oriented, reliable
 transports, with all 8 bits in an octet being significant in the data
 stream.

5.2.1. Transmission Control Protocol (TCP)

 The encoded LDAPMessage PDUs are mapped directly onto the TCP
 bytestream using the BER-based encoding described in section 5.1. It
 is recommended that server implementations running over the TCP
 provide a protocol listener on the assigned port, 389. Servers may
 instead provide a listener on a different port number. Clients MUST
 support contacting servers on any valid TCP port.

6. Implementation Guidelines

 This document describes an Internet protocol.

6.1. Server Implementations

 The server MUST be capable of recognizing all the mandatory attribute
 type names and implement the syntaxes specified in [Syntaxes].
 Servers MAY also recognize additional attribute type names.

6.2. Client Implementations

 Clients which request referrals MUST ensure that they do not loop
 between servers. They MUST NOT repeatedly contact the same server for
 the same request with the same target entry name, scope and filter.
 Some clients may be using a counter that is incremented each time
 referral handling occurs for an operation, and these kinds of clients
 MUST be able to handle a DIT with at least ten layers of naming
 contexts between the root and a leaf entry.

 In the absence of prior agreements with servers, clients SHOULD NOT
 assume that servers support any particular schemas beyond those
 referenced in section 6.1. Different schemas can have different

Sermersheim Internet-Draft - Expires May 2003 Page 32
 Lightweight Directory Access Protocol Version 3

 attribute types with the same names. The client can retrieve the
 subschema entries referenced by the subschemaSubentry attribute in
 the server's root DSE or in entries held by the server.

7. Security Considerations

 When used with a connection-oriented transport, this version of the
 protocol provides facilities for simple authentication using a
 cleartext password, as well as any SASL mechanism [RFC2222]. SASL
 allows for integrity and privacy services to be negotiated.

 It is also permitted that the server can return its credentials to
 the client, if it chooses to do so.

https://datatracker.ietf.org/doc/html/rfc2222

 Use of cleartext password is strongly discouraged where the
 underlying transport service cannot guarantee confidentiality and may
 result in disclosure of the password to unauthorized parties.

 When used with SASL, it should be noted that the name field of the
 BindRequest is not protected against modification. Thus if the
 distinguished name of the client (an LDAPDN) is agreed through the
 negotiation of the credentials, it takes precedence over any value in
 the unprotected name field.

 Implementations which cache attributes and entries obtained via LDAP
 MUST ensure that access controls are maintained if that information
 is to be provided to multiple clients, since servers may have access
 control policies which prevent the return of entries or attributes in
 search results except to particular authenticated clients. For
 example, caches could serve result information only to the client
 whose request caused it to be in the cache.

8. Acknowledgements

 This document is an update to RFC 2251, by Mark Wahl, Tim Howes, and
 Steve Kille. Their work along with the input of individuals of the
 IETF LDAPEXT, LDUP, LDAPBIS, and other Working Groups is gratefully
 acknowledged.

9. Normative References

 [X.500] ITU-T Rec. X.500, "The Directory: Overview of Concepts,
 Models and Service", 1993.

 [Roadmap] K. Zeilenga (editor), "LDAP: Technical Specification Road
 Map", draft-ietf-ldapbis-roadmap-xx.txt (a work in
 progress).

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

Sermersheim Internet-Draft - Expires May 2003 Page 33
 Lightweight Directory Access Protocol Version 3

 [X.680] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998
 Information Technology - Abstract Syntax Notation One
 (ASN.1): Specification of basic notation

 [X.690] ITU-T Rec. X.690, "Specification of ASN.1 encoding rules:
 Basic, Canonical, and Distinguished Encoding Rules", 1994.

 [LDAPIANA] K. Zeilenga, "IANA Considerations for LDAP", draft-ietf-

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-roadmap-xx.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-xx.txt

ldapbis-xx.txt (a work in progress).

 [ISO10646] Universal Multiple-Octet Coded Character Set (UCS) -
 Architecture and Basic Multilingual Plane, ISO/IEC 10646-1
 : 1993.

 [RFC2044] Yergeau, F., "UTF-8, a transformation format of Unicode
 and ISO 10646", RFC 2044, October 1996.

 [Models] K. Zeilenga, "LDAP: The Models", draft-ietf-ldapbis-
models-xx.txt (a work in progress).

 [LDAPDN] K. Zeilenga (editor), "LDAP: String Representation of
 Distinguished Names", draft-ietf-ldapbis-dn-xx.txt, (a
 work in progress).

 [Syntaxes] K. Dally (editor), "LDAP: Syntaxes", draft-ietf-ldapbis-
syntaxes-xx.txt, (a work in progress).

 [X.501] ITU-T Rec. X.501, "The Directory: Models", 1993.

 [X.511] ITU-T Rec. X.511, "The Directory: Abstract Service
 Definition", 1993.

 [RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [AuthMeth] R. Harrison (editor), "LDAP: Authentication Methods",
draft-ietf-ldapbis-authmeth-xx.txt, (a work in progress).

 [RFC2222] Meyers, J., "Simple Authentication and Security Layer",
RFC 2222, October 1997.

10. Editor's Address

 Jim Sermersheim
 Novell, Inc.
 1800 South Novell Place
 Provo, Utah 84606, USA
 jimse@novell.com
 +1 801 861-3088

Sermersheim Internet-Draft - Expires May 2003 Page 34
 Lightweight Directory Access Protocol Version 3

Appendix A - LDAP Result Codes

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-xx.txt
https://datatracker.ietf.org/doc/html/rfc2044
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-models-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-models-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-dn-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-syntaxes-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-syntaxes-xx.txt
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-authmeth-xx.txt
https://datatracker.ietf.org/doc/html/rfc2222

 This normative appendix details additional considerations regarding
 LDAP result codes and provides a brief, general description of each
 LDAP result code enumerated in Section 4.1.10.

 Additional result codes MAY be defined for use with extensions.
 Client implementations SHALL treat any result code which they do not
 recognize as an unknown error condition.

A.1 Non-Error Result Codes
 These result codes (called "non-error" result codes) do not indicate
 an error condition:
 success(0),
 compareTrue(6),
 compareFalse(7),
 referral(10), and
 saslBindInProgress(14).

 The success(0), compareTrue(6), and compare(7) result codes indicate
 successful completion (and, hence, are called to as "successful"
 result codes).

 The referral(10) and saslBindInProgress(14) indicate the client is
 required to take additional action to complete the operation

A.2 Error Result Codes

A.3 Classes and Precedence of Error Result Codes

 Result codes that indicate error conditions (and, hence, are called
 "error" result codes) fall into 6 classes. The following list
 specifies the precedence of error classes to be used when more than
 one error is detected [X511]:
 1) Name Errors (codes 32 - 34, 36)
 - a problem related to a name (DN or RDN),
 2) Update Errors (codes 64 - 69, 71)
 - a problem related to an update operation,
 3) Attribute Errors (codes 16 - 21)
 - a problem related to a supplied attribute,
 4) Security Errors (codes 8, 13, 48 - 50)
 - a security related problem,
 5) Service Problem (codes 3, 4, 7, 11, 12, 51 - 54, 80)
 - a problem related to the provision of the service, and
 6) Protocol Problem (codes 1, 2)
 - a problem related to protocol structure or semantics.

 Server implementations SHALL NOT continue processing an operation
 after it has determined that an error is to be reported. If the
 server detects multiple errors simultaneously, the server SHOULD
 report the error with the highest precedence.

 Existing LDAP result codes are described as follows:

Sermersheim Internet-Draft - Expires May 2003 Page 35
 Lightweight Directory Access Protocol Version 3

 success (0)

 Indicates successful completion of an operation.

 This result code is normally not returned by the compare
 operation, see compareFalse (5) and compareTrue (6).

 operationsError (1)

 Indicates that the operation is not properly sequenced with
 relation to other operations (of same or different type).

 For example, this code is returned if the client attempts to
 Start TLS [RFC2830] while there are other operations
 outstanding or if TLS was already established.

 For the bind operation only, the code indicates the server
 encountered an internal error.

 protocolError (2)

 Indicates the server received data which has incorrect
 structure.

 For bind operation only, the code may be resulted to indicate
 the server does not support the requested protocol version.

 timeLimitExceeded (3)

 Indicates that the time limit specified by the client was
 exceeded before the operation could be completed.

 sizeLimitExceeded (4)

 Indicates that the size limit specified by the client was
 exceeded before the operation could be completed.

 compareFalse (5)

 Indicates that the operation successfully completes and the
 assertion has evaluated to TRUE.

 This result code is normally only returned by the compare

https://datatracker.ietf.org/doc/html/rfc2830

 operation.

 compareTrue (6)

Sermersheim Internet-Draft - Expires May 2003 Page 36
 Lightweight Directory Access Protocol Version 3

 Indicates that the operation successfully completes and the
 assertion has evaluated to FALSE.

 This result code is normally only returned by the compare
 operation.

 authMethodNotSupported (7)

 Indicates that authentication method or mechanism is not
 supported.

 strongAuthRequired (8)

 Except when returned in a Notice of Disconnect (see section
4.4.1), this indicates that the server requires the client to

 authentication using a strong(er) mechanism.

 referral (10)

 Indicates that a referral needs to be chased to complete the
 operation (see section 4.1.11).

 adminLimitExceeded (11)

 Indicates that an admnistrative limit has been exceeded.

 unavailableCriticalExtension (12)

 Indicates that server cannot perform a critical extension
 (see section 4.1.12).

 confidentialityRequired (13)

 Indicates that data confidentiality protections are required.

 saslBindInProgress (14)

 Indicates the server requires the client to send a new bind
 request, with the same sasl mechanism, to continue the
 authentication process (see section 4.2).

 noSuchAttribute (16)

 Indicates that the named entry does not contain the specified
 attribute or attribute value.

Sermersheim Internet-Draft - Expires May 2003 Page 37
 Lightweight Directory Access Protocol Version 3

 undefinedAttributeType (17)

 Indicates that a request field contains an undefined
 attribute type.

 inappropriateMatching (18)

 Indicates that a request cannot be completed due to an
 inappropriate matching.

 constraintViolation (19)

 Indicates that the client supplied an attribute value which
 does not conform to constraints placed upon it by the data
 model.

 For example, this code is returned when the multiple values
 are supplied to an attribute which has a SINGLE-VALUE
 constraint.

 attributeOrValueExists (20)

 Indicates that the client supplied an attribute or value to
 be added to an entry already exists.

 invalidAttributeSyntax (21)

 Indicates that a purported attribute value does not conform
 to the syntax of the attribute.

 noSuchObject (32)

 Indicates that the object does not exist in the DIT.

 aliasProblem (33)

 Indicates that an alias problem has occurred.

 invalidDNSyntax (34)

 Indicates that a LDAPDN or RelativeLDAPDN field (e.g. search
 base, target entry, ModifyDN newrdn, etc.) of a request does
 not conform to the required syntax or contains attribute
 values which do not conform to the syntax of the attribute's
 type.

Sermersheim Internet-Draft - Expires May 2003 Page 38
 Lightweight Directory Access Protocol Version 3

 aliasDereferencingProblem (36)

 Indicates that a problem in dereferencing an alias.

 inappropriateAuthentication (48)

 Indicates the server requires the client which had attempted
 to bind anonymously or without supplying credentials to
 provide some form of credentials,

 invalidCredentials (49)

 Indicates the supplied credentials are invalid.

 insufficientAccessRights (50)

 Indicates that the client does not have sufficient access
 rights to perform the operation.

 busy (51)

 Indicates that the server is busy.

 unavailable (52)

 Indicates that the server is shutting down or a subsystem
 necessary to complete the operation is offline.

 unwillingToPerform (53)

 Indicates that the server is unwilling to perform the
 operation.

 loopDetect (54)

 Indicates that the server has detected an internal loop.

 namingViolation (64)

 Indicates that the entry name violates naming restrictions.

 objectClassViolation (65)

 Indicates that the entry violates object class restrictions.

Sermersheim Internet-Draft - Expires May 2003 Page 39
 Lightweight Directory Access Protocol Version 3

 notAllowedOnNonLeaf (66)

 Indicates that operation is inappropriately acting upon a
 non-leaf entry.

 notAllowedOnRDN (67)

 Indicates that the operation is inappropriately attempting to
 remove a value which forms the entry's relative distinguished
 name.

 entryAlreadyExists (68)

 Indicates that the request cannot be added fulfilled as the
 entry already exists.

 objectClassModsProhibited (69)

 Indicates that the attempt to modify the object class(es) of
 an entry objectClass attribute is prohibited.

 For example, this code is returned when a when a client
 attempts to modify the structural object class of an entry.

 affectsMultipleDSAs (71)

 Indicates that the operation cannot be completed as it
 affects multiple servers (DSAs).

 other (80)

 Indicates the server has encountered an internal error.

Sermersheim Internet-Draft - Expires May 2003 Page 40
 Lightweight Directory Access Protocol Version 3

Appendix B - Complete ASN.1 Definition

 This appendix is normative.

 Lightweight-Directory-Access-Protocol-V3 DEFINITIONS
 IMPLICIT TAGS
 EXTENSIBILITY IMPLIED ::=

 BEGIN

 LDAPMessage ::= SEQUENCE {
 messageID MessageID,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindResponse BindResponse,
 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,

 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,
 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse,
 ... },
 controls [0] Controls OPTIONAL }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 LDAPString ::= OCTET STRING -- UTF-8 encoded,
 -- [ISO10646] characters

 LDAPOID ::= OCTET STRING -- Constrained to numericoid [Models]

 LDAPDN ::= LDAPString

 RelativeLDAPDN ::= LDAPString

 AttributeDescription ::= LDAPString
 -- Constrained to attributedescription
 -- [Models]

 AttributeDescriptionList ::= SEQUENCE OF

Sermersheim Internet-Draft - Expires May 2003 Page 41
 Lightweight Directory Access Protocol Version 3

 AttributeDescription

 AttributeValue ::= OCTET STRING

 AttributeValueAssertion ::= SEQUENCE {
 attributeDesc AttributeDescription,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 Attribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 MatchingRuleId ::= LDAPString

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {

 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),
 compareTrue (6),
 authMethodNotSupported (7),
 strongAuthRequired (8),
 -- 9 reserved --
 referral (10),
 adminLimitExceeded (11),
 unavailableCriticalExtension (12),
 confidentialityRequired (13),
 saslBindInProgress (14),
 noSuchAttribute (16),
 undefinedAttributeType (17),
 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 -- 22-31 unused --
 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 -- 35 reserved for undefined isLeaf --
 aliasDereferencingProblem (36),
 -- 37-47 unused --
 inappropriateAuthentication (48),
 invalidCredentials (49),
 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --

Sermersheim Internet-Draft - Expires May 2003 Page 42
 Lightweight Directory Access Protocol Version 3

 namingViolation (64),
 objectClassViolation (65),
 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 -- 70 reserved for CLDAP --
 affectsMultipleDSAs (71),
 -- 72-79 unused --
 other (80),
 ... },

 -- 81-90 reserved for APIs --
 matchedDN LDAPDN,
 errorMessage LDAPString,
 referral [3] Referral OPTIONAL }

 Referral ::= SEQUENCE OF LDAPURL

 LDAPURL ::= LDAPString -- limited to characters permitted in
 -- URLs

 Controls ::= SEQUENCE OF Control

 Control ::= SEQUENCE {
 controlType LDAPOID,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL }

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),
 name LDAPDN,
 authentication AuthenticationChoice }

 AuthenticationChoice ::= CHOICE {
 simple [0] OCTET STRING,
 -- 1 and 2 reserved
 sasl [3] SaslCredentials,
 ... }

 SaslCredentials ::= SEQUENCE {
 mechanism LDAPString,
 credentials OCTET STRING OPTIONAL }

 BindResponse ::= [APPLICATION 1] SEQUENCE {
 COMPONENTS OF LDAPResult,
 serverSaslCreds [7] OCTET STRING OPTIONAL }

 UnbindRequest ::= [APPLICATION 2] NULL

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),

Sermersheim Internet-Draft - Expires May 2003 Page 43
 Lightweight Directory Access Protocol Version 3

 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),

 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeDescriptionList }

 Filter ::= CHOICE {
 and [0] SET SIZE (1..MAX) OF Filter,
 or [1] SET SIZE (1..MAX) OF Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeDescription,
 -- at least one must be present,
 -- initial and final can occur at most once
 substrings SEQUENCE OF CHOICE {
 initial [0] AssertionValue,
 any [1] AssertionValue,
 final [2] AssertionValue } }

 MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
 matchValue [3] AssertionValue,
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,
 attributes PartialAttributeList }

 PartialAttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 SearchResultReference ::= [APPLICATION 19] SEQUENCE OF LDAPURL

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 modification SEQUENCE OF SEQUENCE {

Sermersheim Internet-Draft - Expires May 2003 Page 44

 Lightweight Directory Access Protocol Version 3

 operation ENUMERATED {
 add (0),
 delete (1),
 replace (2) },
 modification AttributeTypeAndValues } }

 AttributeTypeAndValues ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList }

 AttributeList ::= SEQUENCE OF SEQUENCE {
 type AttributeDescription,
 vals SET OF AttributeValue }

 AddResponse ::= [APPLICATION 9] LDAPResult

 DelRequest ::= [APPLICATION 10] LDAPDN

 DelResponse ::= [APPLICATION 11] LDAPResult

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion }

 CompareResponse ::= [APPLICATION 15] LDAPResult

 AbandonRequest ::= [APPLICATION 16] MessageID

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 response [11] OCTET STRING OPTIONAL }

 END

Sermersheim Internet-Draft - Expires May 2003 Page 45
 Lightweight Directory Access Protocol Version 3

Appendix C - Change History
 <Note to RFC editor: This section is to be removed prior to RFC
 publication>

C.1 Changes made to RFC 2251:

C.1.1 Editorial

 - Bibliography References: Changed all bibliography references to
 use a long name form for readability.
 - Changed occurrences of "unsupportedCriticalExtension"
 "unavailableCriticalExtension"
 - Fixed a small number of misspellings (mostly dropped letters).

C.1.2 Section 1

 - Removed IESG note.

C.1.3 Section 9

 - Added references to RFCs 1823, 2234, 2829 and 2830.

C.2 Changes made to draft-ietf-ldapbis-protocol-00.txt:

C.2.1 Section 4.1.6

 - In the first paragraph, clarified what the contents of an
 AttributeValue are. There was confusion regarding whether or not
 an AttributeValue that is BER encoded (due to the "binary" option)
 is to be wrapped in an extra OCTET STRING.
 - To the first paragraph, added wording that doesn't restrict other
 transfer encoding specifiers from being used. The previous wording
 only allowed for the string encoding and the ;binary encoding.
 - To the first paragraph, added a statement restricting multiple
 options that specify transfer encoding from being present. This
 was never specified in the previous version and was seen as a
 potential interoperability problem.
 - Added a third paragraph stating that the ;binary option is
 currently the only option defined that specifies the transfer
 encoding. This is for completeness.

C.2.2 Section 4.1.7

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-00.txt

 - Generalized the second paragraph to read "If an option specifying
 the transfer encoding is present in attributeDesc, the
 AssertionValue is encoded as specified by the option...".
 Previously, only the ;binary option was mentioned.

C.2.3 Sections 4.2, 4.9, 4.10

 - Added alias dereferencing specifications. In the case of modDN,
 followed precedent set on other update operations (... alias is
 not dereferenced...) In the case of bind and compare stated that

Sermersheim Internet-Draft - Expires May 2003 Page 46
 Lightweight Directory Access Protocol Version 3

 servers SHOULD NOT dereference aliases. Specifications were added
 because they were missing from the previous version and caused
 interoperability problems. Concessions were made for bind and
 compare (neither should have ever allowed alias dereferencing) by
 using SHOULD NOT language, due to the behavior of some existing
 implementations.

C.2.4 Sections 4.5 and Appendix A

 - Changed SubstringFilter.substrings.initial, any, and all from
 LDAPString to AssertionValue. This was causing an incompatibility
 with X.500 and confusion among other TS RFCs.

C.3 Changes made to draft-ietf-ldapbis-protocol-01.txt:

C.3.1 Section 3.4

 - Reworded text surrounding subschemaSubentry to reflect that it is
 a single-valued attribute that holds the schema for the root DSE.
 Also noted that if the server masters entries that use differing
 schema, each entry's subschemaSubentry attribute must be
 interrogated. This may change as further fine-tuning is done to
 the data model.

C.3.2 Section 4.1.12

 - Specified that the criticality field is only used for requests and
 not for unbind or abandon. Noted that it is ignored for all other
 operations.

C.3.3 Section 4.2

 - Noted that Server behavior is undefined when the name is a null
 value, simple authentication is used, and a password is specified.

C.3.4 Section 4.2.(various)

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-01.txt

 - Changed "unauthenticated" to "anonymous" and "DN" and "LDAPDN" to
 "name"

C.3.5 Section 4.2.2

 - Changed "there is no authentication or encryption being performed
 by a lower layer" to "the underlying transport service cannot
 guarantee confidentiality"

C.3.6 Section 4.5.2

 - Removed all mention of ExtendedResponse due to lack of
 implementation.

C.4 Changes made to draft-ietf-ldapbis-protocol-02.txt:

Sermersheim Internet-Draft - Expires May 2003 Page 47
 Lightweight Directory Access Protocol Version 3

C.4.1 Section 4

 - Removed "typically" from "and is typically transferred" in the
 first paragraph. We know of no (and can conceive of no) case where
 this isn't true.
 - Added "Section 5.1 specifies how the LDAP protocol is encoded." To
 the first paragraph. Added this cross reference for readability.
 - Changed "version 3 " to "version 3 or later" in the second
 paragraph. This was added to clarify the original intent.
 - Changed "protocol version" to "protocol versions" in the third
 paragraph. This attribute is multi-valued with the intent of
 holding all supported versions, not just one.

C.4.2 Section 4.1.8

 - Changed "when transferred in protocol" to "when transferred from
 the server to the client" in the first paragraph. This is to
 clarify that this behavior only happens when attributes are being
 sent from the server.

C.4.3 Section 4.1.10

 - Changed "servers will return responses containing fields of type
 LDAPResult" to "servers will return responses of LDAPResult or
 responses containing the components of LDAPResponse". This
 statement was incorrect and at odds with the ASN.1. The fix here
 reflects the original intent.
 - Dropped '--new' from result codes ASN.1. This simplification in
 comments just reduces unneeded verbiage.

C.4.4 Section 4.1.11

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-02.txt

 - Changed "It contains a reference to another server (or set of
 servers)" to "It contains one or more references to one or more
 servers or services" in the first paragraph. This reflects the
 original intent and clarifies that the URL may point to non-LDAP
 services.

C.4.5 Section 4.1.12

 - Changed "The server MUST be prepared" to "Implementations MUST be
 prepared" in the eighth paragraph to reflect that both client and
 server implementations must be able to handle this (as both parse
 controls).

C.4.6 Section 4.4

 - Changed "One unsolicited notification is defined" to "One
 unsolicited notification (Notice of Disconnection) is defined" in
 the third paragraph. For clarity and readability.

C.4.7 Section 4.5.1

Sermersheim Internet-Draft - Expires May 2003 Page 48
 Lightweight Directory Access Protocol Version 3

 - Changed "checking for the existence of the objectClass attribute"
 to "checking for the presence of the objectClass attribute" in the
 last paragraph. This was done as a measure of consistency (we use
 the terms present and presence rather than exists and existence in
 search filters).

C.4.8 Section 4.5.3

 - Changed "outstanding search operations to different servers," to
 "outstanding search operations" in the fifth paragraph as they may
 be to the same server. This is a point of clarification.

C.4.9 Section 4.6

 - Changed "clients MUST NOT attempt to delete" to "clients MUST NOT
 attempt to add or delete" in the second to last paragraph.
 - Change "using the "delete" form" to "using the "add" or "delete"
 form" in the second to last paragraph.

C.4.10 Section 4.7

 - Changed "Clients MUST NOT supply the createTimestamp or
 creatorsName attributes, since these will be generated
 automatically by the server." to "Clients MUST NOT supply NO-USER-
 MODIFICATION attributes such as createTimestamp or creatorsName
 attributes, since these are provided by the server." in the

 definition of the attributes field. This tightens the language to
 reflect the original intent and to not leave a hole in which one
 could interpret the two attributes mentioned as the only non-
 writable attributes.

C.4.11 Section 4.11

 - Changed "has been" to "will be" in the fourth paragraph. This
 clarifies that the server will (not has) abandon the operation.

C.5 Changes made to draft-ietf-ldapbis-protocol-03.txt:

C.5.1 Section 3.2.1

 - Changed "An attribute is a type with one or more associated
 values. The attribute type is identified by a short descriptive
 name and an OID (object identifier). The attribute type governs
 whether there can be more than one value of an attribute of that
 type in an entry, the syntax to which the values must conform, the
 kinds of matching which can be performed on values of that
 attribute, and other functions." to " An attribute is a
 description (a type and zero or more options) with one or more
 associated values. The attribute type governs whether the
 attribute can have multiple values, the syntax and matching rules
 used to construct and compare values of that attribute, and other
 functions. Options indicate modes of transfer and other

Sermersheim Internet-Draft - Expires May 2003 Page 49
 Lightweight Directory Access Protocol Version 3

 functions.". This points out that an attribute consists of both
 the type and options.

C.5.2 Section 4

 - Changed "Section 5.1 specifies the encoding rules for the LDAP
 protocol" to "Section 5.1 specifies how the protocol is encoded
 and transferred."

C.5.3 Section 4.1.2

 - Added ABNF for the textual representation of LDAPOID. Previously,
 there was no formal BNF for this construct.

C.5.4 Section 4.1.4

 - Changed "This identifier may be written as decimal digits with
 components separated by periods, e.g. "2.5.4.10"" to "may be
 written as defined by ldapOID in section 4.1.2" in the second
 paragraph. This was done because we now have a formal BNF

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-03.txt

 definition of an oid.

C.5.5 Section 4.1.5

 - Changed the BNF for AttributeDescription to ABNF. This was done
 for readability and consistency (no functional changes involved).
 - Changed "Options present in an AttributeDescription are never
 mutually exclusive." to "Options MAY be mutually exclusive. An
 AttributeDescription with mutually exclusive options is treated as
 an undefined attribute type." for clarity. It is generally
 understood that this is the original intent, but the wording could
 be easily misinterpreted.
 - Changed "Any option could be associated with any AttributeType,
 although not all combinations may be supported by a server." to
 "Though any option or set of options could be associated with any
 AttributeType, the server support for certain combinations may be
 restricted by attribute type, syntaxes, or other factors.". This
 is to clarify the meaning of 'combination' (it applies both to
 combination of attribute type and options, and combination of
 options). It also gives examples of *why* they might be
 unsupported.

C.5.6 Section 4.1.11

 - Changed the wording regarding 'equally capable' referrals to "If
 multiple URLs are present, the client assumes that any URL may be
 used to progress the operation.". The previous language implied
 that the server MUST enforce rules that it was practically
 incapable of. The new language highlights the original intent--
 that is, that any of the referrals may be used to progress the
 operation, there is no inherent 'weighting' mechanism.

C.5.7 Section 4.5.1 and Appendix A

Sermersheim Internet-Draft - Expires May 2003 Page 50
 Lightweight Directory Access Protocol Version 3

 - Added the comment "-- initial and final can occur at most once",
 to clarify this restriction.

C.5.8 Section 5.1

 - Changed heading from "Mapping Onto BER-based Transport Services"
 to "Protocol Encoding".

C.5.9 Section 5.2.1

 - Changed "The LDAPMessage PDUs" to "The encoded LDAPMessage PDUs"
 to point out that the PDUs are encoded before being streamed to
 TCP.

C.6 Changes made to draft-ietf-ldapbis-protocol-04.txt:

C.6.1 Section 4.5.1 and Appendix A

 - Changed the ASN.1 for the and and or choices of Filter to have a
 lower range of 1. This was an omission in the original ASN.1

C.6.2 Various

 - Fixed various typo's

C.7 Changes made to draft-ietf-ldapbis-protocol-05.txt:

C.7.1 Section 3.2.1

 - Added "(as defined in Section 12.4.1 of [X.501])" to the fifth
 paragraph when talking about "operational attributes". This is
 because the term "operational attributes" is never defined.
 Alternately, we could drag a definition into the spec, for now,
 I'm just pointing to the reference in X.501.

C.7.2 Section 4.1.5

 - Changed "And is also case insensitive" to "The entire
 AttributeDescription is case insensitive". This is to clarify
 whether we're talking about the entire attribute description, or
 just the options.

 - Expounded on the definition of attribute description options. This
 doc now specifies a difference between transfer and tagging
 options and describes the semantics of each, and how and when
 subtyping rules apply. Now allow options to be transmitted in any
 order but disallow any ordering semantics to be implied. These
 changes are the result of ongoing input from an engineering team
 designed to deal with ambiguity issues surrounding attribute
 options.

C.7.3 Sections 4.1.5.1 and 4.1.6

Sermersheim Internet-Draft - Expires May 2003 Page 51
 Lightweight Directory Access Protocol Version 3

 - Refer to non "binary" transfer encodings as "native encoding"
 rather than "string" encoding to clarify and avoid confusion.

C.8 Changes made to draft-ietf-ldapbis-protocol-06.txt:

C.8.1 Title

 - Changed to "LDAP: The Protocol" to be consisted with other working

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-06.txt

 group documents

C.8.2 Abstract

 - Moved above TOC to conform to new guidelines

 - Reworded to make consistent with other WG documents.

 - Moved 2119 conventions to "Conventions" section

C.8.3 Introduction

 - Created to conform to new guidelines

C.8.4 Models

 - Removed section. There is only one model in this document
 (Protocol Model)

C.8.5 Protocol Model

 - Removed antiquated paragraph: "In keeping with the goal of easing
 the costs associated with use of the directory, it is an objective
 of this protocol to minimize the complexity of clients so as to
 facilitate widespread deployment of applications capable of using
 the directory."

 - Removed antiquated paragraph concerning LDAP v1 and v2 and
 referrals.

C.8.6 Data Model

 - Removed Section 3.2 and subsections. These have been moved to
 [Models]

C.8.7 Relationship to X.500

 - Removed section. It has been moved to [Roadmap]

C.8.8 Server Specific Data Requirements

 - Removed section. It has been moved to [Models]

C.8.9 Elements of Protocol

Sermersheim Internet-Draft - Expires May 2003 Page 52
 Lightweight Directory Access Protocol Version 3

 - Added "Section 5.1 specifies how the protocol is encoded and
 transferred." to the end of the first paragraph for reference.

 - Reworded notes about extensibility, and now talk about implied
 extensibility and the use of ellipses in the ASN.1

 - Removed references to LDAPv2 in third and fourth paragraphs.

C.8.10 Message ID

 - Reworded second paragraph to "The message ID of a request MUST
 have a non-zero value different from the values of any other
 requests outstanding in the LDAP session of which this message is
 a part. The zero value is reserved for the unsolicited
 notification message." (Added notes about non-zero and the zero
 value).

C.8.11 String Types

 - Removed ABNF for LDAPOID and added "Although an LDAPOID is encoded
 as an OCTET STRING, values are limited to the definition of
 numericoid given in Section 1.3 of [Models]."

C.8.12 Distinguished Name and Relative Distinguished Name

 - Removed ABNF and referred to [Models] and [LDAPDN] where this is
 defined.

C.8.13 Attribute Type

 - Removed sections. It's now in the [Models] doc.

C.8.14 Attribute Description

 - Removed ABNF and aligned section with [Models]

 - Moved AttributeDescriptionList here.

C.8.15 Transfer Options

 - Added section and consumed much of old options language (while
 aligning with [Models]

C.8.16 Binary Transfer Option

 - Clarified intent regarding exactly what is to be BER encoded.

 - Clarified that clients must not expect ;binary when not asking for
 it (;binary, as opposed to ber encoded data).

C.8.17 Attribute

 - Use the term "attribute description" in lieu of "type"

Sermersheim Internet-Draft - Expires May 2003 Page 53

 Lightweight Directory Access Protocol Version 3

 - Clarified the fact that clients cannot rely on any apparent
 ordering of attribute values.

C.8.18 LDAPResult

 - To resultCode, added ellipses "..." to the enumeration to indicate
 extensibility. and added a note, pointing to [LDAPIANA]

 - Removed error groupings ad refer to Appendix A.

C.8.19 Bind Operation

 - Added "Prior to the BindRequest, the implied identity is
 anonymous. Refer to [AuthMeth] for the authentication-related
 semantics of this operation." to the first paragraph.

 - Added ellipses "..." to AuthenticationChoice and added a note
 "This type is extensible as defined in Section 3.6 of [LDAPIANA].
 Servers that do not support a choice supplied by a client will
 return authMethodNotSupported in the result code of the
 BindResponse."

 - Simplified text regarding how the server handles unknown versions.
 Removed references to LDAPv2

C.8.20 Sequencing of the Bind Request

 - Aligned with [AuthMeth] In particular, paragraphs 4 and 6 were
 removed, while a portion of 4 was retained (see C.8.9)

C.8.21 Authentication and other Security Service

 - Section was removed. Now in [AuthMeth]

C.8.22 Continuation References in the Search Result

 - Added "If the originating search scope was singleLevel, the scope
 part of the URL will be baseObject."

C.8.23 Security Considerations

 - Removed reference to LDAPv2

C.8.24 Result Codes

 - Added as normative appendix A

C.8.25 ASN.1

 - Added EXTENSIBILITY IMPLIED

 - Added a number of comments holding referenced to [Models] and
 [ISO10646].

Sermersheim Internet-Draft - Expires May 2003 Page 54
 Lightweight Directory Access Protocol Version 3

 - Removed AttributeType. It is not used.

C.9 Changes made to draft-ietf-ldapbis-protocol-07.txt:

 - Removed all mention of transfer encodings and the binary attribute
 option

 - Further alignment with [Models].

 - Added extensibility ellipsis to protocol op choice

 - In 4.1.1, clarified when connections may be dropped due to
 malformed PDUs

 - Specified which matching rules and syntaxes are used for various
 filter items

C.10 Changes made to draft-ietf-ldapbis-protocol-08.txt:

C.10.1 Section 4.1.1.1:

 - Clarified when it is and isn't appropriate to return an already
 used result code.

C.10.2 Section 4.1.11:

 - Clarified that a control only applies to the message it's attached
 to.

 - Explained that the criticality field is only applicable to certain
 request messages.

 - Added language regarding the combination of controls.

C.10.3 Section 4.11:

 - Explained that Abandon and Unbind cannot be abandoned, and
 illustrated how to determine whether an operation has been
 abandoned.

C.11 Changes made to draft-ietf-ldapbis-protocol-09.txt:

 - Fixed formatting

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-09.txt

C.12 Changes made to draft-ietf-ldapbis-protocol-10.txt:

C.12.1 Section 4.1.4:

 - Removed second paragraph as this language exists in MODELS

Sermersheim Internet-Draft - Expires May 2003 Page 55
 Lightweight Directory Access Protocol Version 3

C.12.2 Section 4.2.1:

 - Replaced fourth paragraph. It was accidentally removed in an
 earlier edit.

C.12.2 Section 4.13:

 - Added section describing the StartTLS operation (moved from
 authmeth)

Appendix D - Outstanding Work Items

D.0 Integrate notational consistency agreements
 - WG will discuss notation consistency. Once agreement happens,
 reconcile draft.

D.1 Integrate result codes draft.

 - The result codes draft should be reconciled with this draft.
 Operation-specific instructions will reside with operations while
 the error-specific sections will be added as an appendix. Note
 that there is a result codes appendix now. Still need to reconcile
 with each operation.

D.2 Verify references.

 - Many referenced documents have changed. Ensure references and
 section numbers are correct.

D.3 Usage of Naming Context

 - Make sure occurrences of "namingcontext" and "naming context" are
 consistent with [Models].

D.14 Section 4.1.12

 - Specify whether or not servers are to advertise the OIDs of known
 response controls.

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-10.txt

D.18 Section 4.2.3

 - Change "operationsError" to "other" as a bind result code.

D.21 Section 4.5.1

 - Make sure the use of "subordinates" in the derefInSearching
 definition is correct. See "derefInSearching" on list.

D.23 Section 4.5.3

Sermersheim Internet-Draft - Expires May 2003 Page 56
 Lightweight Directory Access Protocol Version 3

 - Add "Similarly, a server MUST NOT return a SearchResultReference
 when the scope of the search is baseObject. If a client receives
 such a SearchResultReference it MUST interpret is as a protocol
 error and MUST NOT follow it." to the first paragraph.

 - Add "If the scope part of the LDAP URL is present, the client MUST
 use the new scope in its next request to progress the search. If
 the scope part is absent the client MUST use subtree scope to
 complete subtree searches and base scope to complete one level
 searches." to the third paragraph.

D.25 Section 4.6

 - Resolve the meaning of "and is ignored if the attribute does not
 exist". See "modify: "non-existent attribute"" on the list.

D.27 Section 4.10

 - Specify what happens when the attr is missing vs. attr isn't in
 schema. Also what happens if there's no equality matching rule.

D.30 Section 5.1

 - Add "control and extended operation values" to last paragraph. See
 "LBER (BER Restrictions)" on list.

D.32 Section 6.1

 - Add "that are used by those attributes" to the first paragraph.
 - Add "Servers which support update operations MUST, and other
 servers SHOULD, support strong authentication mechanisms described
 in [RFC2829]." as a second paragraph.
 - Add "Servers which provide access to sensitive information MUST,
 and other servers SHOULD support privacy protections such as those
 described in [RFC2829] and [RFC2830]." as a third paragraph.

https://datatracker.ietf.org/doc/html/rfc2829
https://datatracker.ietf.org/doc/html/rfc2829
https://datatracker.ietf.org/doc/html/rfc2830

D.33 Section 7

 - Add "Servers which support update operations MUST, and other
 servers SHOULD, support strong authentication mechanisms described
 in [RFC2829]." as a fourth paragraph.
 - Add "In order to automatically follow referrals, clients may need
 to hold authentication secrets. This poses significant privacy and
 security concerns and SHOULD be avoided." as a sixth paragraph.
 - Add "This document provides a mechanism which clients may use to
 discover operational attributes. Those relying on security by
 obscurity should implement appropriate access controls to
 restricts access to operational attributes per local policy." as
 an eighth paragraph.
 - Add "This document provides a mechanism which clients may use to
 discover operational attributes. Those relying on security by
 obscurity should implement appropriate access controls to
 restricts access to operational attributes per local policy." as
 an eighth paragraph.

Sermersheim Internet-Draft - Expires May 2003 Page 57
 Lightweight Directory Access Protocol Version 3

 - Add notes regarding DoS attack found by CERT advisories.

https://datatracker.ietf.org/doc/html/rfc2829

Sermersheim Internet-Draft - Expires May 2003 Page 58
 Lightweight Directory Access Protocol Version 3

 Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Sermersheim Internet-Draft - Expires May 2003 Page 59

