
Internet-Draft Editor: J. Sermersheim
Intended Category: Standard Track Novell, Inc
Document: draft-ietf-ldapbis-protocol-23.txt Apr 2004
Obsoletes: RFC 2251, 2830, [LIMR]

LDAP: The Protocol

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.
 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited. Technical discussion of this
 document will take place on the IETF LDAP Revision Working Group
 (LDAPbis) mailing list <ietf-ldapbis@openldap.org>. Please send
 editorial comments directly to the editor <jimse@novell.com>.

Abstract

 This document describes the protocol elements, along with their
 semantics and encodings, of the Lightweight Directory Access Protocol
 (LDAP). LDAP provides access to distributed directory services that
 act in accordance with X.500 data and service models. These protocol
 elements are based on those described in the X.500 Directory Access
 Protocol (DAP).

Table of Contents

1. Introduction..2
1.1. Relationship to Obsolete Specifications.......................3
2. Conventions...3
3. Protocol Model..4
4. Elements of Protocol..4
4.1. Common Elements...5

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-protocol-23.txt
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

4.1.1. Message Envelope..5
4.1.2. String Types..6

Sermersheim Internet-Draft - Expires Oct 2004 Page 1

 Lightweight Directory Access Protocol Version 3

4.1.3. Distinguished Name and Relative Distinguished Name..........7
4.1.4. Attribute Descriptions......................................7
4.1.5. Attribute Value...7
4.1.6. Attribute Value Assertion...................................8
4.1.7. Attribute and PartialAttribute..............................8
4.1.8. Matching Rule Identifier....................................8
4.1.9. Result Message..9
4.1.10. Referral..10
4.1.11. Controls..12
4.2. Bind Operation...13
4.3. Unbind Operation...16
4.4. Unsolicited Notification.....................................16
4.5. Search Operation...17
4.6. Modify Operation...26
4.7. Add Operation..28
4.8. Delete Operation...29
4.9. Modify DN Operation..29
4.10. Compare Operation...30
4.11. Abandon Operation...31
4.12. Extended Operation..32
4.13. IntermediateResponse Message................................33
4.13.1. Usage with LDAP ExtendedRequest and ExtendedResponse......34
4.13.2. Usage with LDAP Request Controls..........................34
4.14. StartTLS Operation..34
5. Protocol Encoding, Connection, and Transfer....................37
5.1 Operation and Connection Relationship.........................37
5.2. Protocol Encoding..37
5.3. Transmission Control Protocol (TCP)..........................38
6. Security Considerations..38
7. Acknowledgements...39
8. Normative References...40
9. Informative References...41
10. IANA Considerations...41
11. Editor's Address..42
Appendix A - LDAP Result Codes....................................43
A.1 Non-Error Result Codes..43
A.2 Result Codes..43
Appendix B - Complete ASN.1 Definition............................48
Appendix C - Changes..54
C.1 Changes made to RFC 2251:.....................................54
C.2 Changes made to RFC 2830:.....................................59
C.3 Changes made to [LIMR]:.......................................60

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2830

1. Introduction

 The Directory is "a collection of open systems cooperating to provide
 directory services" [X.500]. A directory user, which may be a human
 or other entity, accesses the Directory through a client (or
 Directory User Agent (DUA)). The client, on behalf of the directory
 user, interacts with one or more servers (or Directory System Agents
 (DSA)). Clients interact with servers using a directory access
 protocol.

Sermersheim Internet-Draft - Expires Oct 2004 Page 2

 Lightweight Directory Access Protocol Version 3

 This document details the protocol elements of the Lightweight
 Directory Access Protocol (LDAP), along with their semantics.
 Following the description of protocol elements, it describes the way
 in which the protocol elements are encoded and transferred.

1.1. Relationship to Obsolete Specifications

 This document is an integral part of the LDAP Technical Specification
 [Roadmap] which obsoletes the previously defined LDAP technical
 specification, RFC 3377, in its entirety.

 This document obsoletes all of RFC 2251 except the following:
 Sections 3.2, 3.4, 4.1.3 (last paragraph), 4.1.4, 4.1.5, 4.1.5.1,
 4.1.9 (last paragraph), 5.1, 6.1, and 6.2 (last paragraph) are
 obsoleted by [Models].

Section 3.3 is obsoleted by [Roadmap].
 Sections 4.2.1 (portions), and 4.2.2 are obsoleted by [AuthMeth].

Appendix C.1 summarizes substantive changes to the remaining
 sections.

 This document obsoletes RFC 2830, Sections 2 and 4 in entirety. The
 remainder of RFC 2830 is obsoleted by [AuthMeth]. Appendix C.2
 summarizes substantive changes to the remaining sections.

 This document also obsoletes [LIMR] in entirety.
 <<Note to RFC Editor: [LIMR] is to be replaced with the RFC
 number assigned to draft-rharrison-ldap-intermediate-resp-

xx.txt, an RFC-to-be.>>

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", and "MAY" in this document are
 to be interpreted as described in [Keyword].

https://datatracker.ietf.org/doc/html/rfc3377
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/draft-rharrison-ldap-intermediate-resp-xx.txt
https://datatracker.ietf.org/doc/html/draft-rharrison-ldap-intermediate-resp-xx.txt

 The term "stream" refers to the underlying transport service used to
 carry the protocol exchange.

 The term "connection" refers to application layer where LDAP PDUs are
 exchanged between protocol peers.

 The term "TLS layer" refers to a layer inserted between the stream
 and the connection that utilizes [TLS] to protect the exchange of
 LDAP PDUs.

 The term "SASL layer" refers to a layer inserted between the stream
 and the connection that utilizes [SASL] to protect the exchange of
 LDAP PDUs.

 See the table in Section 5 for an illustration of these four terms.

Sermersheim Internet-Draft - Expires Oct 2004 Page 3

 Lightweight Directory Access Protocol Version 3

 The term "TLS-protected connection" refers to a connection protected
 by a TLS-layer.

 The term "association" refers to the association of the connection
 and its current authentication and authorization state.

3. Protocol Model

 The general model adopted by this protocol is one of clients
 performing protocol operations against servers. In this model, a
 client transmits a protocol request describing the operation to be
 performed to a server. The server is then responsible for performing
 the necessary operation(s) in the Directory. Upon completion of an
 operation, the server typically returns a response containing
 appropriate data to the requesting client.

 Although servers are required to return responses whenever such
 responses are defined in the protocol, there is no requirement for
 synchronous behavior on the part of either clients or servers.
 Requests and responses for multiple operations generally may be
 exchanged between a client and server in any order, provided the
 client eventually receives a response for every request that requires
 one.

 The core protocol operations defined in this document can be mapped
 to a subset of the X.500 (1993) Directory Abstract Service [X.511].
 However there is not a one-to-one mapping between LDAP operations and
 X.500 Directory Access Protocol (DAP) operations. Server
 implementations acting as a gateway to X.500 directories may need to

 make multiple DAP requests to service a single LDAP request.

4. Elements of Protocol

 The protocol is described using Abstract Syntax Notation One
 ([ASN.1]), and is transferred using a subset of ASN.1 Basic Encoding
 Rules ([BER]). Section 5 specifies how the protocol elements are
 encoded and transferred.

 In order to support future extensions to this protocol, extensibility
 is implied where it is allowed per ASN.1 (i.e. sequence, set, choice,
 and enumerated types are extensible). In addition, ellipses (...)
 have been supplied in ASN.1 types that are explicitly extensible as
 discussed in [LDAPIANA]. Because of the implied extensibility,
 clients and servers MUST (unless otherwise specified) ignore trailing
 SEQUENCE components whose tags they do not recognize.

 Changes to the protocol other than through the extension mechanisms
 described here require a different version number. A client indicates
 the version it is using as part of the bind request, described in

Section 4.2. If a client has not sent a bind, the server MUST assume
 the client is using version 3 or later.

Sermersheim Internet-Draft - Expires Oct 2004 Page 4

 Lightweight Directory Access Protocol Version 3

 Clients may determine the protocol versions a server supports by
 reading the 'supportedLDAPVersion' attribute from the root DSE (DSA-
 Specific Entry) [Models].

4.1. Common Elements

 This section describes the LDAPMessage envelope Protocol Data Unit
 (PDU) format, as well as data type definitions, which are used in the
 protocol operations.

4.1.1. Message Envelope

 For the purposes of protocol exchanges, all protocol operations are
 encapsulated in a common envelope, the LDAPMessage, which is defined
 as follows:

 LDAPMessage ::= SEQUENCE {
 messageID MessageID,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindResponse BindResponse,

 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,
 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,
 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse,
 intermediateResponse IntermediateResponse
 ... },
 controls [0] Controls OPTIONAL }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 The ASN.1 type Controls is defined in Section 4.1.11.

 The function of the LDAPMessage is to provide an envelope containing
 common fields required in all protocol exchanges. At this time the
 only common fields are the message ID and the controls.

Sermersheim Internet-Draft - Expires Oct 2004 Page 5

 Lightweight Directory Access Protocol Version 3

 If the server receives a PDU from the client in which the LDAPMessage
 SEQUENCE tag cannot be recognized, the messageID cannot be parsed,
 the tag of the protocolOp is not recognized as a request, or the
 encoding structures or lengths of data fields are found to be
 incorrect, then the server SHOULD return the Notice of Disconnection
 described in Section 4.4.1, with the resultCode set to protocolError,
 and MUST immediately close the stream.

 In other cases where the client or server cannot parse a PDU, it
 SHOULD abruptly close the stream where further communication
 (including providing notice) would be pernicious. Otherwise, server
 implementations MUST return an appropriate response to the request,
 with the resultCode set to protocolError.

4.1.1.1. Message ID

 All LDAPMessage envelopes encapsulating responses contain the
 messageID value of the corresponding request LDAPMessage.

 The message ID of a request MUST have a non-zero value different from
 the values of any other requests outstanding in the LDAP association
 of which this message is a part. The zero value is reserved for the
 unsolicited notification message.

 Typical clients increment a counter for each request.

 A client MUST NOT send a request with the same message ID as an
 earlier request on the same LDAP association unless it can be
 determined that the server is no longer servicing the earlier request
 (e.g. after the final response is received, or a subsequent bind
 completes). Otherwise the behavior is undefined. For this purpose,
 note that abandon and abandoned operations do not send responses.

4.1.2. String Types

 The LDAPString is a notational convenience to indicate that, although
 strings of LDAPString type encode as ASN.1 OCTET STRING types, the
 [ISO10646] character set (a superset of [Unicode]) is used, encoded
 following the [UTF-8] algorithm. Note that Unicode characters U+0000
 through U+007F are the same as ASCII 0 through 127, respectively, and
 have the same single octet UTF-8 encoding. Other Unicode characters
 have a multiple octet UTF-8 encoding.

 LDAPString ::= OCTET STRING -- UTF-8 encoded,
 -- [ISO10646] characters

 The LDAPOID is a notational convenience to indicate that the
 permitted value of this string is a (UTF-8 encoded) dotted-decimal
 representation of an OBJECT IDENTIFIER. Although an LDAPOID is
 encoded as an OCTET STRING, values are limited to the definition of
 <numericoid> given in Section 1.4 of [Models].

Sermersheim Internet-Draft - Expires Oct 2004 Page 6

 Lightweight Directory Access Protocol Version 3

 LDAPOID ::= OCTET STRING -- Constrained to <numericoid> [Models]

 For example,

 1.3.6.1.4.1.1466.1.2.3

4.1.3. Distinguished Name and Relative Distinguished Name

 An LDAPDN is defined to be the representation of a Distinguished Name
 (DN) after encoding according to the specification in [LDAPDN].

 LDAPDN ::= LDAPString
 -- Constrained to <distinguishedName> [LDAPDN]

 A RelativeLDAPDN is defined to be the representation of a Relative
 Distinguished Name (RDN) after encoding according to the
 specification in [LDAPDN].

 RelativeLDAPDN ::= LDAPString
 -- Constrained to <name-component> [LDAPDN]

4.1.4. Attribute Descriptions

 The definition and encoding rules for attribute descriptions are
 defined in Section 2.5 of [Models]. Briefly, an attribute description
 is an attribute type and zero or more options.

 AttributeDescription ::= LDAPString
 -- Constrained to <attributedescription>
 -- [Models]

4.1.5. Attribute Value

 A field of type AttributeValue is an OCTET STRING containing an
 encoded attribute value. The attribute value is encoded according to
 the LDAP-specific encoding definition of its corresponding syntax.
 The LDAP-specific encoding definitions for different syntaxes and
 attribute types may be found in other documents and in particular
 [Syntaxes].

 AttributeValue ::= OCTET STRING

 Note that there is no defined limit on the size of this encoding;
 thus protocol values may include multi-megabyte attribute values
 (e.g. photographs).

 Attribute values may be defined which have arbitrary and non-
 printable syntax. Implementations MUST NOT display nor attempt to
 decode an attribute value if its syntax is not known. The
 implementation may attempt to discover the subschema of the source

Sermersheim Internet-Draft - Expires Oct 2004 Page 7

 Lightweight Directory Access Protocol Version 3

 entry, and retrieve the descriptions of 'attributeTypes' from it
 [Models].

 Clients MUST only send attribute values in a request that are valid
 according to the syntax defined for the attributes.

4.1.6. Attribute Value Assertion

 The AttributeValueAssertion (AVA) type definition is similar to the
 one in the X.500 Directory standards. It contains an attribute
 description and a matching rule ([Models Section 4.1.3) assertion
 value suitable for that type. Elements of this type are typically
 used to assert that the value in assertionValue matches a value of an
 attribute.

 AttributeValueAssertion ::= SEQUENCE {
 attributeDesc AttributeDescription,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 The syntax of the AssertionValue depends on the context of the LDAP
 operation being performed. For example, the syntax of the EQUALITY
 matching rule for an attribute is used when performing a Compare
 operation. Often this is the same syntax used for values of the
 attribute type, but in some cases the assertion syntax differs from
 the value syntax. See objectIdentiferFirstComponentMatch in
 [Syntaxes] for an example.

4.1.7. Attribute and PartialAttribute

 Attributes and partial attributes consist of an attribute description
 and attribute values. A PartialAttribute allows zero values, while
 Attribute requires at least one value.

 PartialAttribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF value AttributeValue }

 Attribute ::= PartialAttribute(WITH COMPONENTS {
 ...,
 vals (SIZE(1..MAX))})

 No two attribute values may be equivalent as described by Section 2.3
 of [Models]. The set of attribute values is unordered.
 Implementations MUST NOT rely upon the ordering being repeatable.

4.1.8. Matching Rule Identifier

 Matching rules are defined in Section 4.1.3 of [Models]. A matching
 rule is identified in the protocol by the printable representation of

Sermersheim Internet-Draft - Expires Oct 2004 Page 8

 Lightweight Directory Access Protocol Version 3

 either its <numericoid>, or one of its short name descriptors
 [Models], e.g. 'caseIgnoreMatch' or '2.5.13.2'.

 MatchingRuleId ::= LDAPString

4.1.9. Result Message

 The LDAPResult is the construct used in this protocol to return
 success or failure indications from servers to clients. To various
 requests, servers will return responses of LDAPResult or responses
 containing the components of LDAPResult to indicate the final status
 of a protocol operation request.

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),
 compareTrue (6),
 authMethodNotSupported (7),
 strongAuthRequired (8),
 -- 9 reserved --
 referral (10),
 adminLimitExceeded (11),
 unavailableCriticalExtension (12),
 confidentialityRequired (13),
 saslBindInProgress (14),
 noSuchAttribute (16),
 undefinedAttributeType (17),
 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 -- 22-31 unused --
 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 -- 35 reserved for undefined isLeaf --
 aliasDereferencingProblem (36),
 -- 37-47 unused --
 inappropriateAuthentication (48),
 invalidCredentials (49),

 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --
 namingViolation (64),
 objectClassViolation (65),

Sermersheim Internet-Draft - Expires Oct 2004 Page 9

 Lightweight Directory Access Protocol Version 3

 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 -- 70 reserved for CLDAP --
 affectsMultipleDSAs (71),
 -- 72-79 unused --
 other (80),
 ... },
 matchedDN LDAPDN,
 diagnosticMessage LDAPString,
 referral [3] Referral OPTIONAL }

 The resultCode enumeration is extensible as defined in Section 3.6 of
 [LDAPIANA]. The meanings of the listed result codes are given in

Appendix A. If a server detects multiple errors for an operation,
 only one result code is returned. The server should return the result
 code that best indicates the nature of the error encountered.

 The diagnosticMessage field of this construct may, at the server's
 option, be used to return a string containing a textual, human-
 readable (terminal control and page formatting characters should be
 avoided) diagnostic message. As this diagnostic message is not
 standardized, implementations MUST NOT rely on the values returned.
 If the server chooses not to return a textual diagnostic, the
 diagnosticMessage field MUST be empty.

 For certain result codes (typically, but not restricted to
 noSuchObject, aliasProblem, invalidDNSyntax and
 aliasDereferencingProblem), the matchedDN field is set to the name of
 the lowest entry (object or alias) in the Directory that was matched.
 If no aliases were dereferenced while attempting to locate the entry,
 this will be a truncated form of the name provided, or if aliases
 were dereferenced, of the resulting name, as defined in Section 12.5
 of [X.511]. Otherwise the matchedDN field is empty.

4.1.10. Referral

 The referral result code indicates that the contacted server cannot
 or will not perform the operation and that one or more other servers
 may be able to. Reasons for this include:

 - The target entry of the request is not held locally, but the
 server has knowledge of its possible existence elsewhere.

 - The operation is restricted on this server -- perhaps due to a
 read-only copy of an entry to be modified.

 The referral field is present in an LDAPResult if the resultCode
 field value is referral, and absent with all other result codes. It
 contains one or more references to one or more servers or services
 that may be accessed via LDAP or other protocols. Referrals can be
 returned in response to any operation request (except unbind and

Sermersheim Internet-Draft - Expires Oct 2004 Page 10

 Lightweight Directory Access Protocol Version 3

 abandon which do not have responses). At least one URI MUST be
 present in the Referral.

 During a search operation, after the baseObject is located, and
 entries are being evaluated, the referral is not returned. Instead,
 continuation references, described in Section 4.5.3, are returned
 when other servers would need to be contacted to complete the
 operation.

 Referral ::= SEQUENCE SIZE (1..MAX) OF uri URI

 URI ::= LDAPString -- limited to characters permitted in
 -- URIs

 If the client wishes to progress the operation, it MUST follow the
 referral by contacting one of the supported services. If multiple
 URIs are present, the client assumes that any supported URI may be
 used to progress the operation.

 Protocol peers that follow referrals MUST ensure that they do not
 loop between servers. They MUST NOT repeatedly contact the same
 server for the same request with the same target entry name, scope
 and filter. Some implementations use a counter that is incremented
 each time referral handling occurs for an operation, and these kinds
 of implementations MUST be able to handle at least ten nested
 referrals between the root and a leaf entry.

 A URI for a server implementing LDAP and accessible via [TCP]/[IP]
 (v4 or v6) is written as an LDAP URL according to [LDAPURL].

 When an LDAP URL is used, the following instructions are followed:

 - If an alias was dereferenced, the <dn> part of the URL MUST be
 present, with the new target object name. UTF-8 encoded characters
 appearing in the string representation of a DN or search filter
 may not be legal for URLs (e.g. spaces) and MUST be escaped using
 the % method in [URI].

 - It is RECOMMENDED that the <dn> part be present to avoid
 ambiguity.

 - If the <dn> part is present, the client MUST use this name in its
 next request to progress the operation, and if it is not present
 the client will use the same name as in the original request.

 - Some servers (e.g. participating in distributed indexing) may
 provide a different filter in a URL of a referral for a search
 operation.

 - If the <filter> part of the LDAP URL is present, the client MUST
 use this filter in its next request to progress this search, and
 if it is not present the client MUST use the same filter as it
 used for that search.

Sermersheim Internet-Draft - Expires Oct 2004 Page 11

 Lightweight Directory Access Protocol Version 3

 - For search, it is RECOMMENDED that the <scope> part be present to
 avoid ambiguity.

 - If the <scope> part is missing, the scope of the original search
 is used by the client to progress the operation.

 - Other aspects of the new request may be the same as or different
 from the request which generated the referral.

 Other kinds of URIs may be returned. The syntax and semantics of such
 URIs is left to future specifications. Clients may ignore URIs that
 they do not support.

4.1.11. Controls

 Controls provide a mechanism whereby the semantics and arguments of
 existing LDAP operations may be extended. One or more controls may be
 attached to a single LDAP message. A control only affects the
 semantics of the message it is attached to.

 Controls sent by clients are termed 'request controls' and those sent
 by servers are termed 'response controls'.

 Controls ::= SEQUENCE OF control Control

 Control ::= SEQUENCE {
 controlType LDAPOID,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL }

 The controlType field is the dotted-decimal representation of an
 OBJECT IDENTIFIER which uniquely identifies the control. This
 provides unambiguous naming of controls. Often, response control(s)
 solicited by a request control share controlType values with the
 request control.

 The criticality field only has meaning in controls attached to
 request messages (except unbindRequest). For controls attached to
 response messages and the unbindRequest, the criticality field SHOULD
 be FALSE, and MUST be ignored by the receiving protocol peer. A value
 of TRUE indicates that it is unacceptable to perform the operation
 without applying the semantics of the control and FALSE otherwise.
 Specifically, the criticality field is applied as follows:

 - Regardless of the value of the criticality field, if the server
 recognizes the control type and it is appropriate for the
 operation, the server is to make use of the control when
 performing the operation.

 - If the server does not recognize the control type or it is not
 appropriate for the operation, and the criticality field is TRUE,
 the server MUST NOT perform the operation, and for operations that

Sermersheim Internet-Draft - Expires Oct 2004 Page 12

 Lightweight Directory Access Protocol Version 3

 have a response message, MUST return unavailableCriticalExtension
 in the resultCode.

 - If the server does not recognize the control type or it is not
 appropriate for the operation, and the criticality field is FALSE,
 the server MUST ignore the control.

 The controlValue may contain information associated with the
 controlType. Its format is defined by the specification of the
 control. Implementations MUST be prepared to handle arbitrary
 contents of the controlValue octet string, including zero bytes. It
 is absent only if there is no value information which is associated
 with a control of its type. When a controlValue is defined in terms
 of ASN.1, and BER encoded according to Section 5.2, it also follows
 the extensibility rules in Section 4.

 Servers list the controlType of all request controls they recognize

 in the supportedControl attribute in the root DSE (Section 5.1 of
 [Models]).

 Controls SHOULD NOT be combined unless the semantics of the
 combination has been specified. The semantics of control
 combinations, if specified, are generally found in the control
 specification most recently published. In the absence of combination
 semantics, the behavior of the operation is undefined.
 Additionally, unless order-dependent semantics are given in a
 specification, the order of a combination of controls in the SEQUENCE
 is ignored. Where the order is to be ignored but cannot be ignored by
 the server, the operation fails with protocolError.

 This document does not specify any controls. Controls may be
 specified in other documents. Documents detailing control extensions
 are to provide for each control:

 - the OBJECT IDENTIFIER assigned to the control,

 - direction as to what value the sender should provide for the
 criticality field (note: the semantics of the criticality field
 are defined above should not be altered by the control's
 specification),

 - whether information is to be present in the controlValue field,
 and if so, the format of the controlValue contents,

 - the semantics of the control, and

 - optionally, semantics regarding the combination of the control
 with other controls.

4.2. Bind Operation

 The function of the Bind Operation is to allow authentication
 information to be exchanged between the client and server. The Bind

Sermersheim Internet-Draft - Expires Oct 2004 Page 13

 Lightweight Directory Access Protocol Version 3

 operation should be thought of as the "authenticate" operation.
 Operational, authentication, and security-related semantics of this
 operation are given in [AuthMeth].

 The Bind Request is defined as follows:

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),
 name LDAPDN,
 authentication AuthenticationChoice }

 AuthenticationChoice ::= CHOICE {
 simple [0] OCTET STRING,
 -- 1 and 2 reserved
 sasl [3] SaslCredentials,
 ... }

 SaslCredentials ::= SEQUENCE {
 mechanism LDAPString,
 credentials OCTET STRING OPTIONAL }

 Fields of the Bind Request are:

 - version: A version number indicating the version of the protocol
 to be used in this LDAP association. This document describes
 version 3 of the protocol. There is no version negotiation. The
 client sets this field to the version it desires. If the server
 does not support the specified version, it MUST respond with
 protocolError in the resultCode field of the BindResponse.

 - name: The name of the Directory object that the client wishes to
 bind as. This field may take on a null value (a zero length
 string) for the purposes of anonymous binds ([AuthMeth] Section

5.1) or when using Simple Authentication and Security Layer [SASL]
 authentication ([AuthMeth] Section 3.3.2). Where the server
 attempts to locate the named object, it SHALL NOT perform alias
 dereferencing.

 - authentication: information used in authentication. This type is
 extensible as defined in Section 3.7 of [LDAPIANA]. Servers that
 do not support a choice supplied by a client return
 authMethodNotSupported in the resultCode field of the
 BindResponse.

 Textual passwords (consisting of a character sequence with a known
 character set and encoding) transferred to the server using the
 simple AuthenticationChoice SHALL be transferred as [UTF-8]
 encoded [Unicode]. Prior to transfer, clients SHOULD prepare text
 passwords by applying the [SASLprep] profile of the [Stringprep]
 algorithm. Passwords consisting of other data (such as random
 octets) MUST NOT be altered. The determination of whether a
 password is textual is a local client matter.

Sermersheim Internet-Draft - Expires Oct 2004 Page 14

 Lightweight Directory Access Protocol Version 3

 Authorization is the process of enforcing policy while performing
 operations. Among other things, the process of authorization takes as
 input authentication information obtained during the bind operation

 and/or other acts of authentication (such as lower layer security
 services).

4.2.1. Processing of the Bind Request

 Before processing a BindRequest, all outstanding operations MUST
 either complete or be abandoned. The server may either wait for the
 outstanding operations to complete, or abandon them. The server then
 proceeds to authenticate the client in either a single-step, or
 multi-step bind process. Each step requires the server to return a
 BindResponse to indicate the status of authentication.

 If the client did not bind before sending a request and receives an
 operationsError to that request, it may then send a Bind Request. If
 this also fails or the client chooses not to bind on the existing
 connection, it may close the stream, reopen it and begin again by
 first sending a PDU with a Bind Request. This will aid in
 interoperating with servers implementing other versions of LDAP.

 Clients may send multiple Bind Requests on a connection to change the
 authentication and/or security associations or to complete a multi-
 stage bind process. Authentication from earlier binds is subsequently
 ignored.

 For some SASL authentication mechanisms, it may be necessary for the
 client to invoke the BindRequest multiple times ([AuthMeth] Section

8.2). Clients MUST NOT invoke operations between two Bind Requests
 made as part of a multi-stage bind.

 A client may abort a SASL bind negotiation by sending a BindRequest
 with a different value in the mechanism field of SaslCredentials, or
 an AuthenticationChoice other than sasl.

 If the client sends a BindRequest with the sasl mechanism field as an
 empty string, the server MUST return a BindResponse with
 authMethodNotSupported as the resultCode. This will allow clients to
 abort a negotiation if it wishes to try again with the same SASL
 mechanism.

4.2.2. Bind Response

 The Bind Response is defined as follows.

 BindResponse ::= [APPLICATION 1] SEQUENCE {
 COMPONENTS OF LDAPResult,
 serverSaslCreds [7] OCTET STRING OPTIONAL }

 BindResponse consists simply of an indication from the server of the
 status of the client's request for authentication.

Sermersheim Internet-Draft - Expires Oct 2004 Page 15

 Lightweight Directory Access Protocol Version 3

 A successful bind operation is indicated by a BindResponse with a
 resultCode set to success. Otherwise, an appropriate result code is
 set in the BindResponse. For bind, the protocolError result code may
 be used to indicate that the version number supplied by the client is
 unsupported.

 If the client receives a BindResponse where the resultCode field is
 protocolError, it is to assume that the server does not support this
 version of LDAP. While the client may be able proceed with another
 version of this protocol (this may or may not require closing and re-
 establishing the stream), how to proceed with another version of this
 protocol is beyond the scope of this document. Clients which are
 unable or unwilling to proceed SHOULD close the underlying stream.

 The serverSaslCreds field is used as part of a SASL-defined bind
 mechanism to allow the client to authenticate the server to which it
 is communicating, or to perform "challenge-response" authentication.
 If the client bound with the simple choice, or the SASL mechanism
 does not require the server to return information to the client, then
 this field SHALL NOT be included in the BindResponse.

4.3. Unbind Operation

 The function of the Unbind Operation is to terminate an LDAP
 association and close the stream. The Unbind operation is not the
 antithesis of the Bind operation as the name implies. The naming of
 these operations is historical. The Unbind operation should be
 thought of as the "quit" operation.

 The Unbind Operation is defined as follows:

 UnbindRequest ::= [APPLICATION 2] NULL

 The Unbind Operation has no response defined. Upon transmission of
 the UnbindRequest, each protocol peer is to consider the LDAP
 association terminated, MUST cease transmission of messages to the
 other peer, and MUST close the stream. Outstanding operations are
 handled as specified in Section 5.1.

4.4. Unsolicited Notification

 An unsolicited notification is an LDAPMessage sent from the server to
 the client which is not in response to any LDAPMessage received by
 the server. It is used to signal an extraordinary condition in the
 server or in the connection between the client and the server. The

 notification is of an advisory nature, and the server will not expect
 any response to be returned from the client.

 The unsolicited notification is structured as an LDAPMessage in which
 the messageID is zero and protocolOp is of the extendedResp form (See

Sermersheim Internet-Draft - Expires Oct 2004 Page 16

 Lightweight Directory Access Protocol Version 3

Section 4.12). The responseName field of the ExtendedResponse always
 contains an LDAPOID which is unique for this notification.

 One unsolicited notification (Notice of Disconnection) is defined in
 this document. The specification of an unsolicited notification
 consists of:

 - the OBJECT IDENTIFIER assigned to the notification (to be
 specified in the responseName,

 - the format of the contents (if any) of the responseValue,

 - the circumstances which will cause the notification to be
 returned, and

 - the semantics of the operation.

4.4.1. Notice of Disconnection

 This notification may be used by the server to advise the client that
 the server is about to close the stream due to an error condition.
 This notification is intended to assist clients in distinguishing
 between an error condition and a transient network failure. Note that
 this notification is not a response to an unbind requested by the
 client. Outstanding operations are handled as specified in Section

5.1.

 The responseName is 1.3.6.1.4.1.1466.20036, the response field is
 absent, and the resultCode is used to indicate the reason for the
 disconnection.

 The following result codes have these meanings when used in this
 notification:

 - protocolError: The server has received data from the client in
 which the LDAPMessage structure could not be parsed.

 - strongAuthRequired: The server has detected that an established
 security association between the client and server has
 unexpectedly failed or been compromised, or that the server now

 requires the client to authenticate using a strong(er) mechanism.

 - unavailable: This server will stop accepting new connections and
 operations on all existing connections, and be unavailable for an
 extended period of time. The client may make use of an alternative
 server.

 Upon transmission of the Notice of Disconnection, the server is to
 consider the LDAP association terminated, MUST cease transmission of
 messages to the client, and MUST close the stream.

4.5. Search Operation

Sermersheim Internet-Draft - Expires Oct 2004 Page 17

 Lightweight Directory Access Protocol Version 3

 The Search Operation is used to request a server to return, subject
 to access controls and other restrictions, a set of entries matching
 a complex search criterion. This can be used to read attributes from
 a single entry, from entries immediately subordinate to a particular
 entry, or a whole subtree of entries.

4.5.1. Search Request

 The Search Request is defined as follows:

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),
 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeSelection }

 AttributeSelection ::= SEQUENCE OF selector LDAPString
 -- The LDAPString is constrained to
 -- <attributeSelector> below

 Filter ::= CHOICE {

 and [0] SET SIZE (1..MAX) OF filter Filter,
 or [1] SET SIZE (1..MAX) OF filter Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeDescription,
 -- initial and final can occur at most once
 substrings SEQUENCE SIZE (1..MAX) OF substring CHOICE {
 initial [0] AssertionValue,
 any [1] AssertionValue,
 final [2] AssertionValue } }

 MatchingRuleAssertion ::= SEQUENCE {

Sermersheim Internet-Draft - Expires Oct 2004 Page 18

 Lightweight Directory Access Protocol Version 3

 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
 matchValue [3] AssertionValue,
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

 Fields of the Search Request are:

 - baseObject: The name of the base object entry relative to which
 the search is to be performed.

 - scope: Specifies the scope of the search to be performed. The
 semantics (as described in [X.511]) of the possible values of this
 field are:

 baseObject: The scope is constrained to the entry named by
 baseObject.

 singleLevel: The scope is constrained to the immediate
 subordinates of the entry named by baseObject.

 wholeSubtree: the scope is constrained to the entry named by
 the baseObject, and all its subordinates.

 - derefAliases: An indicator as to how alias entries (as defined in
 [Models]) are to be handled in searching. The semantics of the
 possible values of this field are:

 neverDerefAliases: Do not dereference aliases in searching or
 in locating the base object of the search.

 derefInSearching: While searching, dereference any alias entry
 subordinate to the base object which is also in the search
 scope. The filter is applied to the dereferenced object(s). If
 the search scope is wholeSubtree, the search continues in the
 subtree of any dereferenced object. Aliases in that subtree are
 also dereferenced. Servers SHOULD eliminate duplicate entries
 that arise due to alias dereferencing while searching.

 derefFindingBaseObj: Dereference aliases in locating the base
 object of the search, but not when searching subordinates of
 the base object.

 derefAlways: Dereference aliases both in searching and in
 locating the base object of the search.
 Servers MUST detect looping while dereferencing aliases in order
 to prevent denial of service attacks of this nature.

 - sizeLimit: A size limit that restricts the maximum number of
 entries to be returned as a result of the search. A value of zero
 in this field indicates that no client-requested size limit
 restrictions are in effect for the search. Servers may also
 enforce a maximum number of entries to return.

Sermersheim Internet-Draft - Expires Oct 2004 Page 19

 Lightweight Directory Access Protocol Version 3

 - timeLimit: A time limit that restricts the maximum time (in
 seconds) allowed for a search. A value of zero in this field
 indicates that no client-requested time limit restrictions are in
 effect for the search. Servers may also enforce a maximum time
 limit for the search.

 - typesOnly: An indicator as to whether search results are to
 contain both attribute descriptions and values, or just attribute
 descriptions. Setting this field to TRUE causes only attribute
 descriptions (no values) to be returned. Setting this field to
 FALSE causes both attribute descriptions and values to be
 returned.

 - filter: A filter that defines the conditions that must be
 fulfilled in order for the search to match a given entry.

 The 'and', 'or' and 'not' choices can be used to form combinations
 of filters. At least one filter element MUST be present in an
 'and' or 'or' choice. The others match against individual
 attribute values of entries in the scope of the search.

 (Implementor's note: the 'not' filter is an example of a tagged
 choice in an implicitly-tagged module. In BER this is treated as
 if the tag was explicit.)

 A server MUST evaluate filters according to the three-valued logic
 of X.511 (1993) Section 7.8.1. In summary, a filter is evaluated
 to either "TRUE", "FALSE" or "Undefined". If the filter evaluates
 to TRUE for a particular entry, then the attributes of that entry
 are returned as part of the search result (subject to any
 applicable access control restrictions). If the filter evaluates
 to FALSE or Undefined, then the entry is ignored for the search.

 A filter of the "and" choice is TRUE if all the filters in the SET
 OF evaluate to TRUE, FALSE if at least one filter is FALSE, and
 otherwise Undefined. A filter of the "or" choice is FALSE if all
 of the filters in the SET OF evaluate to FALSE, TRUE if at least
 one filter is TRUE, and Undefined otherwise. A filter of the 'not'
 choice is TRUE if the filter being negated is FALSE, FALSE if it
 is TRUE, and Undefined if it is Undefined.

 The present match evaluates to TRUE where there is an attribute or
 subtype of the specified attribute description present in an
 entry, and FALSE otherwise (including a presence test with an
 unrecognized attribute description.)

 The matching rule for equalityMatch filter items is defined by the
 EQUALITY matching rule for the attribute type.

 There SHALL be at most one 'initial', and at most one 'final' in
 the 'substrings' of a SubstringFilter. If 'initial' is present, it
 SHALL be the first element of 'substrings'. If 'final' is present,
 it SHALL be the last element of 'substrings'.
 The matching rule for AssertionValues in a substrings filter item
 is defined by the SUBSTR matching rule for the attribute type.

Sermersheim Internet-Draft - Expires Oct 2004 Page 20

 Lightweight Directory Access Protocol Version 3

 Note that the AssertionValue in a substrings filter item conforms
 to the assertion syntax of the EQUALITY matching rule for the
 attribute type rather than the assertion syntax of the SUBSTR
 matching rule for the attribute type. Conceptually, the entire
 SubstringFilter is converted into an assertion value of the
 substrings matching rule prior to applying the rule.

 The matching rule for the greaterOrEqual filter item is defined by
 the ORDERING and EQUALITY matching rules for the attribute type.

 The matching rule for the lessOrEqual filter item is defined by
 the ORDERING matching rule for the attribute type.

 An approxMatch filter item evaluates to TRUE when there is a value
 of the attribute or subtype for which some locally-defined
 approximate matching algorithm (e.g. spelling variations, phonetic
 match, etc.) returns TRUE. If an item matches for equality, it
 also satisfies an approximate match. If approximate matching is
 not supported, this filter item should be treated as an
 equalityMatch.

 An extensibleMatch filter item is evaluated as follows:

 If the matchingRule field is absent, the type field MUST be
 present, and an equality match is performed for that type.

 If the type field is absent and the matchingRule is present, the
 matchValue is compared against all attributes in an entry which
 support that matchingRule. The matchingRule determines the
 syntax for the assertion value. The filter item evaluates to
 TRUE if it matches with at least one attribute in the entry,
 FALSE if it does not match any attribute in the entry, and
 Undefined if the matchingRule is not recognized or the
 assertionValue is invalid.

 If the type field is present and the matchingRule is present,
 the matchValue is compared against entry attributes of the
 specified type. In this case, the matchingRule MUST be one
 suitable for use with the specified type (see [Syntaxes]),
 otherwise the filter item is Undefined.

 If the dnAttributes field is set to TRUE, the match is
 additionally applied against all the AttributeValueAssertions in
 an entry's distinguished name, and evaluates to TRUE if there is
 at least one attribute in the distinguished name for which the
 filter item evaluates to TRUE. The dnAttributes field is present
 to alleviate the need for multiple versions of generic matching
 rules (such as word matching), where one applies to entries and
 another applies to entries and dn attributes as well.

 A filter item evaluates to Undefined when the server would not be
 able to determine whether the assertion value matches an entry. If
 an attribute description in an equalityMatch, substrings,
 greaterOrEqual, lessOrEqual, approxMatch or extensibleMatch filter

Sermersheim Internet-Draft - Expires Oct 2004 Page 21

 Lightweight Directory Access Protocol Version 3

 is not recognized by the server, a matching rule id in the
 extensibleMatch is not recognized by the server, the assertion
 value is invalid, or the type of filtering requested is not
 implemented, then the filter is Undefined. Thus for example if a
 server did not recognize the attribute type shoeSize, a filter of

 (shoeSize=*) would evaluate to FALSE, and the filters
 (shoeSize=12), (shoeSize>=12) and (shoeSize<=12) would evaluate to
 Undefined.

 Servers MUST NOT return errors if attribute descriptions or
 matching rule ids are not recognized, assertion values are
 invalid, or the assertion syntax is not supported. More details of
 filter processing are given in Section 7.8 of [X.511].

 - attributes: A selection list of the attributes to be returned from
 each entry which matches the search filter. LDAPString values of
 this field are constrained to the following Augmented Backus-Naur
 Form ([ABNF]):

 attributeSelector = attributedescription / selectorpecial

 selectorspecial = noattrs / alluserattrs

 noattrs = %x31.2E.31 ; "1.1"

 alluserattrs = %x2A ; asterisk ("*")

 The <attributedescription> production is defined in Section 2.5 of
 [Models].

 There are three special cases which may exist in the attribute
 selection:

 - an empty list with no attributes,

 - a list containing "*" (with zero or more attribute
 descriptions), and

 - a list containing only "1.1".

 An empty list requests the return of all user attributes.

 A list containing "*" requests all user attributes in addition to
 other listed (operational) attributes.

 A list containing only the OID "1.1" indicates that no values are
 to be returned. If "1.1" is provided with other values, the "1.1"
 value is ignored. This OID was chosen because it does not (and can
 not) correspond to any attribute in use.

 Client implementors should note that even if all user attributes
 are requested, some attributes and/or attribute values of the
 entry may not be included in search results due to access controls
 or other restrictions. Furthermore, servers will not return

Sermersheim Internet-Draft - Expires Oct 2004 Page 22

 Lightweight Directory Access Protocol Version 3

 operational attributes, such as objectClasses or attributeTypes,
 unless they are listed by name. Operational attributes are
 described in [Models].

 Attributes are returned at most once in an entry. If an attribute
 description is named more than once in the list, the subsequent
 names are ignored. If an attribute description in the list is not
 recognized, it is ignored by the server.

 Note that an X.500 "list"-like operation can be emulated by the
 client requesting a one-level LDAP search operation with a filter
 checking for the presence of the 'objectClass' attribute, and that an
 X.500 "read"-like operation can be emulated by a base object LDAP
 search operation with the same filter. A server which provides a
 gateway to X.500 is not required to use the Read or List operations,
 although it may choose to do so, and if it does, it must provide the
 same semantics as the X.500 search operation.

4.5.2. Search Result

 The results of the search operation are returned as zero or more
 searchResultEntry messages, zero or more SearchResultReference
 messages, followed by a single searchResultDone message.

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,
 attributes PartialAttributeList }

 PartialAttributeList ::= SEQUENCE OF
 partialAttribute PartialAttribute
 -- Note that the PartialAttributeList may hold zero elements.
 -- This may happen when none of the attributes of an entry
 -- were requested, or could be returned.
 -- Note also that the partialAttribute vals set may hold zero
 -- elements. This may happen when typesOnly is requested, access
 -- controls prevent the return of values, or other reasons.

 SearchResultReference ::= [APPLICATION 19] SEQUENCE
 SIZE (1..MAX) OF uri URI

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 Each SearchResultEntry represents an entry found during the search.
 Each SearchResultReference represents an area not yet explored during
 the search. The SearchResultEntry and SearchResultReference PDUs may
 come in any order. Following all the SearchResultReference and
 SearchResultEntry responses, the server returns a SearchResultDone
 response, which contains an indication of success, or detailing any
 errors that have occurred.

 Each entry returned in a SearchResultEntry will contain all
 appropriate attributes as specified in the attributes field of the

Sermersheim Internet-Draft - Expires Oct 2004 Page 23

 Lightweight Directory Access Protocol Version 3

 Search Request. Return of attributes is subject to access control and
 other administrative policy.

 Some attributes may be constructed by the server and appear in a
 SearchResultEntry attribute list, although they are not stored
 attributes of an entry. Clients SHOULD NOT assume that all attributes
 can be modified, even if permitted by access control.

 If the server's schema defines short names [Models] for an attribute
 type then the server SHOULD use one of those names in attribute
 descriptions for that attribute type (in preference to using the
 <numericoid> [Models] format of the attribute type's object
 identifier). The server SHOULD NOT use the short name if that name is
 known by the server to be ambiguous, or otherwise likely to cause
 interoperability problems.

4.5.3. Continuation References in the Search Result

 If the server was able to locate the entry referred to by the
 baseObject but was unable to search one or more non-local entries,
 the server may return one or more SearchResultReference entries, each
 containing a reference to another set of servers for continuing the
 operation. A server MUST NOT return any SearchResultReference if it
 has not located the baseObject and thus has not searched any entries;
 in this case it would return a SearchResultDone containing either a
 referral or noSuchObject result code (depending on the server's
 knowledge of the entry named in the baseObject).

 If a server holds a copy or partial copy of the subordinate naming
 context [Section 5 of Models], it may use the search filter to
 determine whether or not to return a SearchResultReference response.
 Otherwise SearchResultReference responses are always returned when in
 scope.

 The SearchResultReference is of the same data type as the Referral.

 A URI for a server implementing LDAP and accessible via [TCP]/[IP]
 (v4 or v6) is written as an LDAP URL according to [LDAPURL].

 In order to complete the search, the client issues a new search
 operation for each SearchResultReference that is returned. Note that
 the abandon operation described in Section 4.11 applies only to a

 particular operation sent on an association between a client and
 server. The client must abandon subsequent search operations it
 wishes to individually.

 Clients that follow search continuation references MUST ensure that
 they do not loop between servers. They MUST NOT repeatedly contact
 the same server for the same request with the same target entry name,
 scope and filter. Some clients use a counter that is incremented each
 time search result reference handling occurs for an operation, and
 these kinds of clients MUST be able to handle at least ten nested
 search result references between the root and a leaf entry.

Sermersheim Internet-Draft - Expires Oct 2004 Page 24

 Lightweight Directory Access Protocol Version 3

 When an LDAP URL is used, the following instructions are followed:

 - The <dn> part of the URL MUST be present, with the new target
 object name. The client MUST use this name when following the
 reference. UTF-8 encoded characters appearing in the string
 representation of a DN or search filter may not be legal for URLs
 (e.g. spaces) and MUST be escaped using the % method in [URI].

 - Some servers (e.g. participating in distributed indexing) may
 provide a different filter in a URL of a SearchResultReference.

 - If the <filter> part of the URL is present, the client MUST use
 this filter in its next request to progress this search, and if it
 is not present the client MUST use the same filter as it used for
 that search.

 - If the originating search scope was singleLevel, the <scope> part
 of the URL will be "base".

 - it is RECOMMENDED that the <scope> part be present to avoid
 ambiguity.

 - Other aspects of the new search request may be the same as or
 different from the search request which generated the
 SearchResultReference.

 - The name of an unexplored subtree in a SearchResultReference need
 not be subordinate to the base object.

 Other kinds of URIs may be returned. The syntax and semantics of such
 URIs is left to future specifications. Clients may ignore URIs that
 they do not support.

4.5.3.1. Examples

 For example, suppose the contacted server (hosta) holds the entry
 <DC=Example,DC=NET> and the entry <CN=Manager,DC=Example,DC=NET>. It
 knows that either LDAP-capable servers (hostb) or (hostc) hold
 <OU=People,DC=Example,DC=NET> (one is the master and the other server
 a shadow), and that LDAP-capable server (hostd) holds the subtree
 <OU=Roles,DC=Example,DC=NET>. If a wholeSubtree search of
 <DC=Example,DC=NET> is requested to the contacted server, it may
 return the following:

 SearchResultEntry for DC=Example,DC=NET
 SearchResultEntry for CN=Manager,DC=Example,DC=NET
 SearchResultReference {
 ldap://hostb/OU=People,DC=Example,DC=NET??sub
 ldap://hostc/OU=People,DC=Example,DC=NET??sub }
 SearchResultReference {
 ldap://hostd/OU=Roles,DC=Example,DC=NET??sub }
 SearchResultDone (success)

Sermersheim Internet-Draft - Expires Oct 2004 Page 25

 Lightweight Directory Access Protocol Version 3

 Client implementors should note that when following a
 SearchResultReference, additional SearchResultReference may be
 generated. Continuing the example, if the client contacted the server
 (hostb) and issued the search for the subtree
 <OU=People,DC=Example,DC=NET>, the server might respond as follows:

 SearchResultEntry for OU=People,DC=Example,DC=NET
 SearchResultReference {
 ldap://hoste/OU=Managers,OU=People,DC=Example,DC=NET??sub }
 SearchResultReference {
 ldap://hostf/OU=Consultants,OU=People,DC=Example,DC=NET??sub }
 SearchResultDone (success)

 Similarly, if a singleLevel search of <DC=Example,DC=NET> is
 requested to the contacted server, it may return the following:

 SearchResultEntry for CN=Manager,DC=Example,DC=NET
 SearchResultReference {
 ldap://hostb/OU=People,DC=Example,DC=NET??base
 ldap://hostc/OU=People,DC=Example,DC=NET??base }
 SearchResultReference {
 ldap://hostd/OU=Roles,DC=Example,DC=NET??base }
 SearchResultDone (success)

 If the contacted server does not hold the base object for the search,
 but has knowledge of its possible location, then it may return a
 referral to the client. In this case, if the client requests a
 subtree search of <DC=Example,DC=ORG> to hosta, the server returns a

 SearchResultDone containing a referral.

 SearchResultDone (referral) {
 ldap://hostg/DC=Example,DC=ORG??sub }

4.6. Modify Operation

 The Modify Operation allows a client to request that a modification
 of an entry be performed on its behalf by a server. The Modify
 Request is defined as follows:

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 changes SEQUENCE OF change SEQUENCE {
 operation ENUMERATED {
 add (0),
 delete (1),
 replace (2) },
 modification PartialAttribute } }

 Fields of the Modify Request are:

 - object: The name of the object to be modified. The value of this
 field contains the DN of the entry to be modified. The server

Sermersheim Internet-Draft - Expires Oct 2004 Page 26

 Lightweight Directory Access Protocol Version 3

 SHALL NOT perform any alias dereferencing in determining the
 object to be modified.

 - changes: A list of modifications to be performed on the entry. The
 entire list of modifications MUST be performed in the order they
 are listed as a single atomic operation. While individual
 modifications may violate certain aspects of the directory schema
 (such as the object class definition and DIT content rule), the
 resulting entry after the entire list of modifications is
 performed MUST conform to the requirements of the directory model
 and controlling schema [Models].

 - operation: Used to specify the type of modification being
 performed. Each operation type acts on the following
 modification. The values of this field have the following
 semantics respectively:

 add: add values listed to the modification attribute,
 creating the attribute if necessary;

 delete: delete values listed from the modification attribute,
 removing the entire attribute if no values are listed, or if

 all current values of the attribute are listed for deletion;

 replace: replace all existing values of the modification
 attribute with the new values listed, creating the attribute
 if it did not already exist. A replace with no value will
 delete the entire attribute if it exists, and is ignored if
 the attribute does not exist.

 - modification: A PartialAttribute (which may have an empty SET
 of vals) used to hold the attribute type or attribute type and
 values being modified.

 Upon receipt of a Modify Request, the server attempts to perform the
 necessary modifications to the DIT and returns the result in a Modify
 Response, defined as follows:

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 The server will return to the client a single Modify Response
 indicating either the successful completion of the DIT modification,
 or the reason that the modification failed. Due to the requirement
 for atomicity in applying the list of modifications in the Modify
 Request, the client may expect that no modifications of the DIT have
 been performed if the Modify Response received indicates any sort of
 error, and that all requested modifications have been performed if
 the Modify Response indicates successful completion of the Modify
 Operation. If the association changes or the stream fails, whether
 the modification occurred or not is indeterminate.

 The Modify Operation cannot be used to remove from an entry any of
 its distinguished values, i.e. those values which form the entry's
 relative distinguished name. An attempt to do so will result in the

Sermersheim Internet-Draft - Expires Oct 2004 Page 27

 Lightweight Directory Access Protocol Version 3

 server returning the notAllowedOnRDN result code. The Modify DN
 Operation described in Section 4.9 is used to rename an entry.

 Note that due to the simplifications made in LDAP, there is not a
 direct mapping of the changes in an LDAP ModifyRequest onto the
 changes of a DAP ModifyEntry operation, and different implementations
 of LDAP-DAP gateways may use different means of representing the
 change. If successful, the final effect of the operations on the
 entry MUST be identical.

4.7. Add Operation

 The Add Operation allows a client to request the addition of an entry
 into the Directory. The Add Request is defined as follows:

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList }

 AttributeList ::= SEQUENCE OF attribute Attribute

 Fields of the Add Request are:

 - entry: the name of the entry to be added. The server SHALL NOT
 dereference any aliases in locating the entry to be added.

 - attributes: the list of attributes that, along with those from the
 RDN, make up the content of the entry being added. Clients MAY or
 MAY NOT include the RDN attribute in this list. Clients MUST
 include the 'objectClass' attribute, and values of any mandatory
 attributes of the listed object classes. Clients MUST NOT supply
 NO-USER-MODIFICATION attributes such as the createTimestamp or
 creatorsName attributes, since the server maintains these
 automatically.

 The entry named in the entry field of the AddRequest MUST NOT exist
 for the AddRequest to succeed. The immediate superior (parent) of an
 object or alias entry to be added MUST exist. For example, if the
 client attempted to add <CN=JS,DC=Example,DC=NET>, the
 <DC=Example,DC=NET> entry did not exist, and the <DC=NET> entry did
 exist, then the server would return the noSuchObject result code with
 the matchedDN field containing <DC=NET>.

 Server implementations SHOULD NOT restrict where entries can be
 located in the Directory unless DIT structure rules are in place.
 Some servers allow the administrator to restrict the classes of
 entries which can be added to the Directory.

 Upon receipt of an Add Request, a server will attempt to add the
 requested entry. The result of the add attempt will be returned to
 the client in the Add Response, defined as follows:

 AddResponse ::= [APPLICATION 9] LDAPResult

Sermersheim Internet-Draft - Expires Oct 2004 Page 28

 Lightweight Directory Access Protocol Version 3

 A response of success indicates that the new entry has been added to
 the Directory.

4.8. Delete Operation

 The Delete Operation allows a client to request the removal of an

 entry from the Directory. The Delete Request is defined as follows:

 DelRequest ::= [APPLICATION 10] LDAPDN

 The Delete Request consists of the name of the entry to be deleted.
 The server SHALL NOT dereference aliases while resolving the name of
 the target entry to be removed.

 Only leaf entries (those with no subordinate entries) can be deleted
 with this operation.

 Upon receipt of a Delete Request, a server will attempt to perform
 the entry removal requested and return the result in the Delete
 Response defined as follows:

 DelResponse ::= [APPLICATION 11] LDAPResult

4.9. Modify DN Operation

 The Modify DN Operation allows a client to change the Relative
 Distinguished Name (RDN) of an entry in the Directory, and/or to move
 a subtree of entries to a new location in the Directory. The Modify
 DN Request is defined as follows:

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 Fields of the Modify DN Request are:

 - entry: the name of the entry to be changed. This entry may or may
 not have subordinate entries.

 - newrdn: the new RDN of the entry. If the operation moves the entry
 to a new superior without changing its RDN, the value of the old
 RDN is supplied for this parameter.
 Attribute values of the new RDN not matching any attribute value
 of the entry are added to the entry and an appropriate error is
 returned if this fails.

 - deleteoldrdn: a boolean field that controls whether the old RDN
 attribute values are to be retained as attributes of the entry, or
 deleted from the entry.

Sermersheim Internet-Draft - Expires Oct 2004 Page 29

 Lightweight Directory Access Protocol Version 3

 - newSuperior: if present, this is the name of an existing object
 entry which becomes the immediate superior (parent) of the
 existing entry.

 The server SHALL NOT dereference any aliases in locating the objects
 named in entry or newSuperior.

 Upon receipt of a ModifyDNRequest, a server will attempt to perform
 the name change and return the result in the Modify DN Response,
 defined as follows:

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

 For example, if the entry named in the entry field was <cn=John
 Smith,c=US>, the newrdn field was <cn=John Cougar Smith>, and the
 newSuperior field was absent, then this operation would attempt to
 rename the entry to be <cn=John Cougar Smith,c=US>. If there was
 already an entry with that name, the operation would fail with the
 entryAlreadyExists result code.

 The object named in newSuperior MUST exist. For example, if the
 client attempted to add <CN=JS,DC=Example,DC=NET>, the
 <DC=Example,DC=NET> entry did not exist, and the <DC=NET> entry did
 exist, then the server would return the noSuchObject result code with
 the matchedDN field containing <DC=NET>.

 If the deleteoldrdn field is TRUE, the attribute values forming the
 old RDN but not the new RDN are deleted from the entry. If the
 deleteoldrdn field is FALSE, the attribute values forming the old RDN
 will be retained as non-distinguished attribute values of the entry.
 The server MUST fail the operation and return an error in the result
 code if the setting of the deleteoldrdn field would cause a schema
 inconsistency in the entry.

 Note that X.500 restricts the ModifyDN operation to only affect
 entries that are contained within a single server. If the LDAP server
 is mapped onto DAP, then this restriction will apply, and the
 affectsMultipleDSAs result code will be returned if this error
 occurred. In general, clients MUST NOT expect to be able to perform
 arbitrary movements of entries and subtrees between servers or
 between naming contexts.

4.10. Compare Operation

 The Compare Operation allows a client to compare an assertion value
 with the values of a particular attribute in a particular entry in
 the Directory. The Compare Request is defined as follows:

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion }

Sermersheim Internet-Draft - Expires Oct 2004 Page 30

 Lightweight Directory Access Protocol Version 3

 Fields of the Compare Request are:

 - entry: the name of the entry to be compared. The server SHALL NOT
 dereference any aliases in locating the entry to be compared.

 - ava: holds the attribute description and assertion value with
 which an attribute in the entry is to be compared.

 Upon receipt of a Compare Request, a server will attempt to perform
 the requested comparison and return the result in the Compare
 Response, defined as follows:

 CompareResponse ::= [APPLICATION 15] LDAPResult

 The resultCode field is set to compareTrue, compareFalse, or an
 appropriate error. compareTrue indicates that the assertion value in
 the ava field matches a value of the attribute or subtype according
 to the attribute's EQUALITY matching rule. compareFalse indicates
 that the assertion value in the ava field and the values of the
 attribute or subtype did not match or was Undefined (Section 4.5.1).

 In the event that the attribute or subtype is not present in the
 entry, the resultCode field is set to noSuchAttribute. If the
 attribute is unknown, the resultCode is set to
 undefinedAttributeType. If the attribute or subtype has no equality
 matching rule, innapropriateMatching is returned in the resultCode.

 Note that some directory systems may establish access controls which
 permit the values of certain attributes (such as userPassword) to be
 compared but not interrogated by other means.

4.11. Abandon Operation

 The function of the Abandon Operation is to allow a client to request
 that the server abandon an outstanding operation. The Abandon Request
 is defined as follows:

 AbandonRequest ::= [APPLICATION 16] MessageID

 The MessageID is that of an operation which was requested earlier in
 this LDAP association. The abandon request itself has its own message
 id. This is distinct from the id of the earlier operation being
 abandoned.

 There is no response defined in the Abandon operation. Upon receipt

 of an AbandonRequest, the server MAY abandon the operation identified
 by the MessageID. Since the client cannot tell the difference between
 a successfully abandoned operation and an outstanding operation, the
 application of the Abandon operation is limited to uses where the
 client does not require an indication of its outcome.

 Abandon, Bind, Unbind, and StartTLS operations cannot be abandoned.

Sermersheim Internet-Draft - Expires Oct 2004 Page 31

 Lightweight Directory Access Protocol Version 3

 In the event that a server receives an Abandon Request on a Search
 Operation in the midst of transmitting responses to the search, that
 server MUST cease transmitting entry responses to the abandoned
 request immediately, and MUST NOT send the SearchResponseDone. Of
 course, the server MUST ensure that only properly encoded LDAPMessage
 PDUs are transmitted.

 The ability to abandon other (particularly update) operations is at
 the discretion of the server.

 Clients should not send abandon requests for the same operation
 multiple times, and MUST also be prepared to receive results from
 operations it has abandoned (since these may have been in transit
 when the abandon was requested, or are not able to be abandoned).

 Servers MUST discard abandon requests for message IDs they do not
 recognize, for operations which cannot be abandoned, and for
 operations which have already been abandoned.

4.12. Extended Operation

 The extended operation allows additional operations to be defined for
 services not already available in the protocol. For example, to add
 operations to install transport layer security (see Section 4.14).

 The extended operation allows clients to make requests and receive
 responses with predefined syntaxes and semantics. These may be
 defined in RFCs or be private to particular implementations.

 Each extended operation consists of an extended request and an
 extended response.

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 The requestName is a dotted-decimal representation of the unique
 OBJECT IDENTIFIER corresponding to the request. The requestValue is

 information in a form defined by that request, encapsulated inside an
 OCTET STRING.

 The server will respond to this with an LDAPMessage containing an
 ExtendedResponse.

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 responseValue [11] OCTET STRING OPTIONAL }

 The responseName is typically not required to be present as the
 syntax and semantics of the response (including the format of the
 responseValue) is implicitly known and associated with the request by
 the messageID.

Sermersheim Internet-Draft - Expires Oct 2004 Page 32

 Lightweight Directory Access Protocol Version 3

 If the requestName is not recognized by the server, the server MUST
 NOT provide a responseName nor a responseValue and MUST return a
 resultCode of protocolError.

 The requestValue and responseValue fields contain any information
 associated with the operation. The format of these fields is defined
 by the specification of the extended operation. Implementations MUST
 be prepared to handle arbitrary contents of these fields, including
 zero bytes. Values that are defined in terms of ASN.1 and BER encoded
 according to Section 5.2, also follow the extensibility rules in

Section 4.

 It is RECOMMENDED that servers list the requestName of extended
 operations they support in the 'supportedExtension' attribute of the
 root DSE [Models].

 Extended operations may be specified in other documents. The
 specification of an extended operation consists of:

 - the OBJECT IDENTIFIER assigned to the requestName,

 - the OBJECT IDENTIFIER (if any) assigned to the responseName (note
 that the same OBJECT IDENTIFIER my be used for both the
 requestName and responseName),

 - the format of the contents of the requestValue and responseValue
 (if any), and

 - the semantics of the operation.

4.13. IntermediateResponse Message

 While the Search operation provides a mechanism to return multiple
 response messages for a single search request, other operations, by
 nature, do not provide for multiple response messages.

 The IntermediateResponse message provides a general mechanism for
 defining single-request/multiple-response operations in LDAP. This
 message is intended to be used in conjunction with the extended
 operation to define new single-request/multiple-response operations
 or in conjunction with a control when extending existing LDAP
 operations in a way that requires them to return intermediate
 response information.

 It is intended that the definitions and descriptions of extended
 operations and controls that make use of the IntermediateResponse
 message will define the circumstances when an IntermediateResponse
 message can be sent by a server and the associated meaning of an
 IntermediateResponse message sent in a particular circumstance.

 IntermediateResponse ::= [APPLICATION 25] SEQUENCE {
 responseName [0] LDAPOID OPTIONAL,

Sermersheim Internet-Draft - Expires Oct 2004 Page 33

 Lightweight Directory Access Protocol Version 3

 responseValue [1] OCTET STRING OPTIONAL }

 IntermediateResponse messages SHALL NOT be returned to the client
 unless the client issues a request that specifically solicits their
 return. This document defines two forms of solicitation: extended
 operation and request control. IntermediateResponse messages are
 specified in documents describing the manner in which they are
 solicited (i.e. in the extended operation or request control
 specification that uses them). These specifications include:

 - the OBJECT IDENTIFIER (if any) assigned to the responseName,

 - the format of the contents of the responseValue, and

 - the semantics associated with the IntermediateResponse message.

 Extensions that allow the return of multiple types of
 IntermediateResponse messages SHALL identify those types using unique
 responseName values (note that one of these may specify no value).

 Sections 4.13.1 and 4.13.2 describe additional requirements on the
 inclusion of responseName and responseValue in IntermediateResponse
 messages.

4.13.1. Usage with LDAP ExtendedRequest and ExtendedResponse

 A single-request/multiple-response operation may be defined using a
 single ExtendedRequest message to solicit zero or more
 IntermediateResponse messages of one or more kinds followed by an
 ExtendedResponse message.

4.13.2. Usage with LDAP Request Controls

 A control's semantics may include the return of zero or more
 IntermediateResponse messages prior to returning the final result
 code for the operation. One or more kinds of IntermediateResponse
 messages may be sent in response to a request control.

 All IntermediateResponse messages associated with request controls
 SHALL include a responseName. This requirement ensures that the
 client can correctly identify the source of IntermediateResponse
 messages when:

 - two or more controls using IntermediateResponse messages are
 included in a request for any LDAP operation or

 - one or more controls using IntermediateResponse messages are
 included in a request with an LDAP extended operation that uses
 IntermediateResponse messages.

4.14. StartTLS Operation

Sermersheim Internet-Draft - Expires Oct 2004 Page 34

 Lightweight Directory Access Protocol Version 3

 The Start Transport Layer Security (StartTLS) operation provides the
 ability to establish a TLS-protected connection. The StartTLS
 operation is defined using the extended operation mechanism described
 in Section 4.12.

4.14.1. StartTLS Request

 A client requests TLS establishment by transmitting a StartTLS
 request PDU to the server. The StartTLS request is defined in terms
 of an ExtendedRequest. The requestName is "1.3.6.1.4.1.1466.20037",
 and the requestValue field is always absent.

 The client MUST NOT send any PDUs on this connection following this
 request until it receives a StartTLS extended response and, in the
 case of a successful response, completes TLS negotiations.

4.14.2. StartTLS Response

 When a StartTLS request is made, servers supporting the operation
 MUST return a StartTLS response PDU to the requestor. The
 responseName is also "1.3.6.1.4.1.1466.20037", and the responseValue
 field is absent.

 The server provides a resultCode field to either success or one of
 the other values outlined in Section 4.14.2.2.

4.14.2.1. "Success" Response

 If the StartTLS Response contains a resultCode of success, this
 indicates that the server is willing and able to negotiate TLS. Refer
 to Section 4 of [AuthMeth] for details.

4.14.2.2. Response other than "success"

 If the ExtendedResponse contains a result code other than success,
 this indicates that the server is unwilling or unable to negotiate
 TLS. The following result codes have these meanings for this
 operation:

 - operationsError: operations sequencing incorrect; e.g. TLS is
 already established.

 - protocolError: TLS is not supported or incorrect PDU structure.

 - unavailable: Some major problem with TLS, or the server is
 shutting down.

Sermersheim Internet-Draft - Expires Oct 2004 Page 35

 Lightweight Directory Access Protocol Version 3

 The server MUST return operationsError if the client violates any of
 the StartTLS extended operation sequencing requirements described in
 Section 4 of [AuthMeth].

 If the server does not support TLS (whether by design or by current
 configuration), it MUST return the protocolError resultCode. In this
 event, the client may proceed with any LDAP operation, or it may
 close the stream.

 The server MUST return unavailable if it supports TLS but cannot
 install the TLS layer for some reason, e.g. the certificate server
 not responding, it cannot contact its TLS implementation, or if the
 server is in process of shutting down. The client may retry the

 StartTLS operation, or it may proceed with any other LDAP operation,
 or it may close the stream.

4.14.3. Removal of the TLS Layer

 Two forms of TLS layer -- graceful and abrupt -- are supported. These
 do not involve LDAP PDUs, but are preformed at the underlying layers.

 If the stream is closed, outstanding operations are handled as
 specified in Section 5.1.

4.14.3.1. Graceful Removal

 Either the client or server MAY remove the TLS layer and leave the
 connection intact by sending and receiving a TLS closure alert.

 The initiating protocol peer sends the TLS closure alert. If it
 wishes to leave the connection intact, it then MUST cease to send
 further PDUs and MUST ignore any received PDUs until it receives a
 TLS closure alert from the other peer.

 Once the initiating protocol peer receives a TLS closure alert from
 the other peer it MAY send and receive LDAP PDUs.

 When a protocol peer receives the initial TLS closure alert, it may
 choose to allow the connection to remain intact. In this case, it
 MUST immediately transmit a TLS closure alert. Following this, it MAY
 send and receive LDAP PDUs.

 Protocol peers MAY close the stream after sending or receiving a TLS
 closure alert.

 After the TLS layer has been removed, the server MUST NOT send
 responses to any request message received before the TLS closure
 alert. Thus, clients wishing to receive responses to messages sent
 while the TLS layer is intact MUST wait for those message responses
 before sending the TLS closure alert.

Sermersheim Internet-Draft - Expires Oct 2004 Page 36

 Lightweight Directory Access Protocol Version 3

4.14.3.2. Abrupt Removal

 Either the client or server MAY abruptly remove the TLS layer by
 closing the stream. In this circumstance, a server MAY send the
 client a Notice of Disconnection before closing the stream.

5. Protocol Encoding, Connection, and Transfer

 This protocol is designed to run over connection-oriented, reliable
 transports, where the data stream is divided into octets (8-bit
 units), with each octet being significant.

 One underlying service, LDAP over TCP, is defined in Section
5.3. This service is generally applicable to applications providing

 or consuming X.500-based directory services on the Internet. This
 specification was generally written with the TCP mapping in mind.
 Specifications detailing other mappings may encounter various
 obstacles.

 Implementations of LDAP over TCP MUST implement the mapping as
 described in Section 5.3

 This table illustrates the relationship between the different layers
 involved in an exchange between two protocol peers:
 +------------+ |
 | connection | |
 +------------+ > LDAP PDU |
 +------------+ < data |
 | SASL layer | |
 +------------+ > SASL-protected data |
 +------------+ < data |
 | TLS layer | |
 +------------+ > TLS-protected data | Application
 +------------+ < data +------------
 | stream | | Transport
 +------------+

5.1 Operation and Connection Relationship

 Protocol operations are tied to a connection. If the stream is
 closed, any outstanding operations tied to the connection are, when
 possible, abandoned, and when not possible, completed without
 transmission of the response. Also, if the stream is closed, the
 client MUST NOT assume that any outstanding update operations tied to
 the connection have succeeded or failed.

5.2. Protocol Encoding

Sermersheim Internet-Draft - Expires Oct 2004 Page 37

 Lightweight Directory Access Protocol Version 3

 The protocol elements of LDAP SHALL be encoded for exchange using the

 Basic Encoding Rules [BER] of [ASN.1] with the following
 restrictions:

 - Only the definite form of length encoding is used.

 - OCTET STRING values are encoded in the primitive form only.

 - If the value of a BOOLEAN type is true, the encoding of the value
 octet is set to hex "FF".

 - If a value of a type is its default value, it is absent. Only some
 BOOLEAN and INTEGER types have default values in this protocol
 definition.

 These restrictions are meant to ease the overhead of encoding and
 decoding certain elements in BER.

 These restrictions do not apply to ASN.1 types encapsulated inside of
 OCTET STRING values, such as attribute values, unless otherwise
 stated.

5.3. Transmission Control Protocol (TCP)

 The encoded LDAPMessage PDUs are mapped directly onto the [TCP]
 bytestream using the BER-based encoding described in Section 5.2. It
 is recommended that server implementations running over the TCP
 provide a protocol listener on the Internet Assigned Numbers
 Authority (IANA)-assigned LDAP port, 389 [PortReg]. Servers may
 instead provide a listener on a different port number. Clients MUST
 support contacting servers on any valid TCP port.

6. Security Considerations

 This version of the protocol provides facilities for simple
 authentication using a cleartext password, as well as any [SASL]
 mechanism. Installing SASL layers can provide integrity and privacy
 services.

 It is also permitted that the server can return its credentials to
 the client, if it chooses to do so.

 Use of cleartext password is strongly discouraged where the
 underlying transport service cannot guarantee confidentiality and may
 result in disclosure of the password to unauthorized parties.

 Servers are encouraged to prevent directory modifications by clients
 that have authenticated anonymously [AuthMeth].

 Security considerations for authentication methods, SASL mechanisms,
 and TLS are described in [AuthMeth].

Sermersheim Internet-Draft - Expires Oct 2004 Page 38

 Lightweight Directory Access Protocol Version 3

 It should be noted that SASL authentication exchanges do not provide
 data confidentiality nor integrity protection for the version or name
 fields of the bind request nor the resultCode, diagnosticMessage, or
 referral fields of the bind response nor of any information contained
 in controls attached to bind request or responses. Thus information
 contained in these fields SHOULD NOT be relied on unless otherwise
 protected (such as by establishing protections at the transport
 layer).

 Server implementors should plan for the possibility of an identity in
 and association being deleted, renamed, or modified, and take
 appropriate actions to prevent insecure side effects. Likewise,
 server implementors should plan for the possibility of an associated
 identity's credentials becoming invalid, or an identity's privileges
 being changed. The ways in which these issues are addressed are
 application and/or implementation specific.

 Implementations which cache attributes and entries obtained via LDAP
 MUST ensure that access controls are maintained if that information
 is to be provided to multiple clients, since servers may have access
 control policies which prevent the return of entries or attributes in
 search results except to particular authenticated clients. For
 example, caches could serve result information only to the client
 whose request caused it to be in the cache.

 Servers may return referrals or search result references which
 redirect clients to peer servers. It is possible for a rogue
 application to inject such referrals into the data stream in an
 attempt to redirect a client to a rogue server. Clients are advised
 to be aware of this, and possibly reject referrals when
 confidentiality measures are not in place. Clients are advised to
 reject referrals from the StartTLS operation.

 The matchedDN and diagnosticMessage fields, as well as some
 resultCode values (e.g., attributeOrValueExists and
 entryAlreadyExists), could disclose the presence the specific data in
 the directory which is subject to access and other administrative
 controls. Server implementations should restrict access to protected
 information equally under both normal and error conditions.

 Protocol peers MUST be prepared to handle invalid and arbitrary
 length protocol encodings. A number of LDAP security advisories are
 available through [CERT].

7. Acknowledgements

 This document is based on RFC 2251 by Mark Wahl, Tim Howes, and Steve
 Kille. It is also based on RFC 2830 by Jeff Hodges, RL "Bob" Morgan,
 and Mark Wahl. It is also based on [LIMR] by Roger Harrison, and Kurt
 Zeilenga. Notable amounts of technical reviews and content were
 provided by Kurt Zeilenga, Steven Legg, and Hallvard Furuseth. Their
 work along with the input of individuals of the IETF ASID, LDAPEXT,
 LDUP, LDAPBIS, and other Working Groups is gratefully acknowledged.

Sermersheim Internet-Draft - Expires Oct 2004 Page 39

 Lightweight Directory Access Protocol Version 3

8. Normative References

 [ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [ASN.1] ITU-T Recommendation X.680 (07/2002) | ISO/IEC 8824-1:2002
 "Information Technology - Abstract Syntax Notation One
 (ASN.1): Specification of basic notation"

 [AuthMeth] Harrison, R., "LDAP: Authentication Methods and Connection
 Level Security Mechanisms", draft-ietf-ldapbis-authmeth-

xx.txt, (a work in progress).

 [BER] ITU-T Rec. X.690 (07/2002) | ISO/IEC 8825-1:2002,
 "Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", 2002.

 [IP] Postel, J., "Internet Protocol", STD5 and RFC 791,
 September 1981

 [ISO10646] Universal Multiple-Octet Coded Character Set (UCS) -
 Architecture and Basic Multilingual Plane, ISO/IEC 10646-1
 : 1993.

 [Keyword] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [LDAPDN] Zeilenga, K., "LDAP: String Representation of
 Distinguished Names", draft-ietf-ldapbis-dn-xx.txt, (a
 work in progress).

 [LDAPIANA] Zeilenga, K., "IANA Considerations for LDAP", draft-ietf-
ldapbis-bcp64-xx.txt, (a work in progress).

 [LDAPURL] Smith, M., "LDAP: Uniform Resource Locator", draft-ietf-

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-authmeth-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-authmeth-xx.txt
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-dn-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-bcp64-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-bcp64-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-url-xx.txt

ldapbis-url-xx.txt, (a work in progress).

 [LIMR] Harrison, R., and K. Zeilenga, "The Lightweight Directory
 Access Protocol (LDAP) Intermediate Response Message",

draft-rharrison-ldap-intermediate-resp-xx.txt (a work in
 progress).

 [Models] Zeilenga, K., "LDAP: Directory Information Models", draft-
ietf-ldapbis-models-xx.txt (a work in progress).

 [Roadmap] Zeilenga, K., "LDAP: Technical Specification Road Map",
draft-ietf-ldapbis-roadmap-xx.txt (a work in progress).

 [SASL] Melnikov, A., "Simple Authentication and Security Layer",
draft-ietf-sasl-rfc2222bis-xx.txt (a work in progress).

Sermersheim Internet-Draft - Expires Oct 2004 Page 40

 Lightweight Directory Access Protocol Version 3

 [SASLPrep] Zeilenga, K., "Stringprep profile for user names and
 passwords", draft-ietf-sasl-saslprep-xx.txt, (a work in
 progress).

 [StringPrep] Hoffman P. and M. Blanchet, "Preparation of
 Internationalized Strings ('stringprep')", draft-hoffman-

rfc3454bis-xx.txt, a work in progress.

 [Syntaxes] Legg, S., and K. Dally, "LDAP: Syntaxes and Matching
 Rules", draft-ietf-ldapbis-syntaxes-xx.txt, (a work in
 progress).

 [TCP] Postel, J., "Transmission Control Protocol", STD7 and RFC
793, September 1981

 [TLS] Dierks, T. and C. Allen. "The TLS Protocol Version 1.1",
draft-ietf-tls-rfc2246-bis-xx.txt, a work in progress.

 [Unicode] The Unicode Consortium, "The Unicode Standard, Version
 3.2.0" is defined by "The Unicode Standard, Version 3.0"
 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5),
 as amended by the "Unicode Standard Annex #27: Unicode
 3.1" (http://www.unicode.org/reports/tr27/) and by the
 "Unicode Standard Annex #28: Unicode 3.2"
 (http://www.unicode.org/reports/tr28/).

 [URI] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO

https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-url-xx.txt
https://datatracker.ietf.org/doc/html/draft-rharrison-ldap-intermediate-resp-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-models-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-models-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-roadmap-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2222bis-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-saslprep-xx.txt
https://datatracker.ietf.org/doc/html/draft-hoffman-rfc3454bis-xx.txt
https://datatracker.ietf.org/doc/html/draft-hoffman-rfc3454bis-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapbis-syntaxes-xx.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc2246-bis-xx.txt
http://www.unicode.org/reports/tr27/
http://www.unicode.org/reports/tr28/
https://datatracker.ietf.org/doc/html/rfc2396

 10646", STD63 and RFC3629, November 2003.

 [X.500] ITU-T Rec. X.500, "The Directory: Overview of Concepts,
 Models and Service", 1993.

 [X.501] ITU-T Rec. X.501, "The Directory: Models", 1993.

 [X.511] ITU-T Rec. X.511, "The Directory: Abstract Service
 Definition", 1993.

9. Informative References

 [CERT] The CERT(R) Center, http://www.cert.org

 [PortReg] IANA, "Port Numbers",
http://www.iana.org/assignments/port-numbers

10. IANA Considerations

Sermersheim Internet-Draft - Expires Oct 2004 Page 41

 Lightweight Directory Access Protocol Version 3

 It is requested that the Internet Assigned Numbers Authority (IANA)
 update the LDAP result code registry to indicate that this document
 provides the definitive technical specification for result codes 0-
 36, 48-54, 64-70, 80-90.

 It is requested that the IANA update the LDAP Protocol Mechanism
 registry to indicate that this document and [AuthMeth] provides the
 definitive technical specification for the Start TLS
 (1.3.6.1.4.1.1466.20037) extended operation.

 It is requested that the IANA update the occurrence of "RFC XXXX" in
Appendix B with this RFC number at publication.

11. Editor's Address

 Jim Sermersheim
 Novell, Inc.
 1800 South Novell Place
 Provo, Utah 84606, USA
 jimse@novell.com
 +1 801 861-3088

https://datatracker.ietf.org/doc/html/rfc3629
http://www.cert.org
http://www.iana.org/assignments/port-numbers

Sermersheim Internet-Draft - Expires Oct 2004 Page 42

 Lightweight Directory Access Protocol Version 3

Appendix A - LDAP Result Codes

 This normative appendix details additional considerations regarding
 LDAP result codes and provides a brief, general description of each
 LDAP result code enumerated in Section 4.1.9.

 Additional result codes MAY be defined for use with extensions
 [LDAPIANA]. Client implementations SHALL treat any result code which
 they do not recognize as an unknown error condition.

A.1 Non-Error Result Codes

 These result codes (called "non-error" result codes) do not indicate
 an error condition:
 success (0),
 compareFalse (5),
 compareTrue (6),
 referral (10), and
 saslBindInProgress (14).

 The success, compareTrue, and compareFalse result codes indicate
 successful completion (and, hence, are referred to as "successful"
 result codes).

 The referral and saslBindInProgress result codes indicate the client
 is required to take additional action to complete the operation.

A.2 Result Codes

 Existing LDAP result codes are described as follows:

 success (0)
 Indicates the successful completion of an operation. Note:
 this code is not used with the compare operation. See
 compareFalse (5) and compareTrue (6).

 operationsError (1)
 Indicates that the operation is not properly sequenced with
 relation to other operations (of same or different type).

 For example, this code is returned if the client attempts to
 StartTLS [TLS] while there are other operations outstanding
 or if a TLS layer was already installed.

 protocolError (2)
 Indicates the server received data which has incorrect
 structure.

 For bind operation only, this code is also used to indicate
 that the server does not support the requested protocol
 version.

Sermersheim Internet-Draft - Expires Oct 2004 Page 43

 Lightweight Directory Access Protocol Version 3

 For the extended operation only, this code indicates that the
 server does not recognize the requestName.

 For the Start TLS operation, this code may also indicate that
 the server does not currently support Start TLS (even though
 it may recognize the requestName).

 For request operations specifying multiple controls, this may
 be used to indicate that the server cannot ignore the order
 of the controls as specified.

 timeLimitExceeded (3)
 Indicates that the time limit specified by the client was
 exceeded before the operation could be completed.

 sizeLimitExceeded (4)
 Indicates that the size limit specified by the client was
 exceeded before the operation could be completed.

 compareFalse (5)
 Indicates that the compare operation has successfully
 completed and the assertion has evaluated to FALSE or
 Undefined.

 compareTrue (6)
 Indicates that the compare operation has successfully
 completed and the assertion has evaluated to TRUE.

 authMethodNotSupported (7)
 Indicates that the authentication method or mechanism is not
 supported.

 strongAuthRequired (8)
 Indicates that the server has detected that an established
 security association between the client and server has
 unexpectedly failed or been compromised, or that the server
 now requires the client to authenticate using a strong(er)
 mechanism.

 referral (10)
 Indicates that a referral needs to be chased to complete the
 operation (see Section 4.1.10).

 adminLimitExceeded (11)
 Indicates that an administrative limit has been exceeded.

 unavailableCriticalExtension (12)
 Indicates that the server is unable or unwilling to perform a
 critical control (see Section 4.1.11).

 confidentialityRequired (13)
 Indicates that data confidentiality protections are required.

 saslBindInProgress (14)

Sermersheim Internet-Draft - Expires Oct 2004 Page 44

 Lightweight Directory Access Protocol Version 3

 Indicates the server requires the client to send a new bind
 request, with the same SASL mechanism, to continue the
 authentication process (see Section 4.2).

 noSuchAttribute (16)
 Indicates that the named entry does not contain the specified
 attribute or attribute value.

 undefinedAttributeType (17)
 Indicates that a request field contains an unrecognized
 attribute description.

 inappropriateMatching (18)
 Indicates that an attempt was made, e.g. in an assertion, to
 use a matching rule not defined for the attribute type
 concerned.

 constraintViolation (19)
 Indicates that the client supplied an attribute value which
 does not conform to the constraints placed upon it by the
 data model.

 For example, this code is returned when multiple values are
 supplied to an attribute which has a SINGLE-VALUE constraint.

 attributeOrValueExists (20)
 Indicates that the client supplied an attribute or value to
 be added to an entry, but the attribute or value already
 exists.

 invalidAttributeSyntax (21)
 Indicates that a purported attribute value does not conform
 to the syntax of the attribute.

 noSuchObject (32)
 Indicates that the object does not exist in the DIT.

 aliasProblem (33)
 Indicates that an alias problem has occurred. For example,
 the code may used to indicate an alias has been dereferenced
 which names no object.

 invalidDNSyntax (34)
 Indicates that an LDAPDN or RelativeLDAPDN field (e.g. search
 base, target entry, ModifyDN newrdn, etc.) of a request does
 not conform to the required syntax or contains attribute
 values which do not conform to the syntax of the attribute's
 type.

 aliasDereferencingProblem (36)
 Indicates that a problem occurred while dereferencing an
 alias. Typically an alias was encountered in a situation
 where it was not allowed or where access was denied.

Sermersheim Internet-Draft - Expires Oct 2004 Page 45

 Lightweight Directory Access Protocol Version 3

 inappropriateAuthentication (48)
 Indicates the server requires the client which had attempted
 to bind anonymously or without supplying credentials to
 provide some form of credentials.

 invalidCredentials (49)
 Indicates that the provided credentials (e.g. the user's name
 and password) are invalid.

 insufficientAccessRights (50)
 Indicates that the client does not have sufficient access
 rights to perform the operation.

 busy (51)
 Indicates that the server is too busy to service the
 operation.

 unavailable (52)
 Indicates that the server is shutting down or a subsystem
 necessary to complete the operation is offline.

 unwillingToPerform (53)
 Indicates that the server is unwilling to perform the
 operation.

 loopDetect (54)
 Indicates that the server has detected an internal loop (e.g.
 while dereferencing aliases or chaining an operation).

 namingViolation (64)
 Indicates that the entry's name violates naming restrictions.

 objectClassViolation (65)
 Indicates that the entry violates object class restrictions.

 notAllowedOnNonLeaf (66)
 Indicates that the operation is inappropriately acting upon a
 non-leaf entry.

 notAllowedOnRDN (67)
 Indicates that the operation is inappropriately attempting to
 remove a value which forms the entry's relative distinguished
 name.

 entryAlreadyExists (68)
 Indicates that the request cannot be fulfilled (added, moved,
 or renamed) as the target entry already exists.

 objectClassModsProhibited (69)
 Indicates that an attempt to modify the object class(es) of
 an entry's 'objectClass' attribute is prohibited.

 For example, this code is returned when a client attempts to
 modify the structural object class of an entry.

Sermersheim Internet-Draft - Expires Oct 2004 Page 46

 Lightweight Directory Access Protocol Version 3

 affectsMultipleDSAs (71)
 Indicates that the operation cannot be performed as it would
 affect multiple servers (DSAs).

 other (80)
 Indicates the server has encountered an internal error.

Sermersheim Internet-Draft - Expires Oct 2004 Page 47

 Lightweight Directory Access Protocol Version 3

Appendix B - Complete ASN.1 Definition

 This appendix is normative.

 Lightweight-Directory-Access-Protocol-V3
 -- Copyright (C) The Internet Society (2003). This version of
 -- this ASN.1 module is part of RFC XXXX; see the RFC itself
 -- for full legal notices.
 DEFINITIONS
 IMPLICIT TAGS
 EXTENSIBILITY IMPLIED ::=

 BEGIN

 LDAPMessage ::= SEQUENCE {
 messageID MessageID,
 protocolOp CHOICE {
 bindRequest BindRequest,
 bindResponse BindResponse,
 unbindRequest UnbindRequest,
 searchRequest SearchRequest,
 searchResEntry SearchResultEntry,
 searchResDone SearchResultDone,
 searchResRef SearchResultReference,
 modifyRequest ModifyRequest,
 modifyResponse ModifyResponse,
 addRequest AddRequest,
 addResponse AddResponse,
 delRequest DelRequest,
 delResponse DelResponse,
 modDNRequest ModifyDNRequest,
 modDNResponse ModifyDNResponse,
 compareRequest CompareRequest,
 compareResponse CompareResponse,
 abandonRequest AbandonRequest,
 extendedReq ExtendedRequest,
 extendedResp ExtendedResponse,
 intermediateResponse IntermediateResponse
 ... },
 controls [0] Controls OPTIONAL }

 MessageID ::= INTEGER (0 .. maxInt)

 maxInt INTEGER ::= 2147483647 -- (2^^31 - 1) --

 LDAPString ::= OCTET STRING -- UTF-8 encoded,
 -- [ISO10646] characters

 LDAPOID ::= OCTET STRING -- Constrained to <numericoid> [Models]

 LDAPDN ::= LDAPString -- Constrained to <distinguishedName>
 -- [LDAPDN]

 RelativeLDAPDN ::= LDAPString -- Constrained to <name-component>

Sermersheim Internet-Draft - Expires Oct 2004 Page 48

 Lightweight Directory Access Protocol Version 3

 -- [LDAPDN]

 AttributeDescription ::= LDAPString
 -- Constrained to <attributedescription>
 -- [Models]

 AttributeValue ::= OCTET STRING

 AttributeValueAssertion ::= SEQUENCE {
 attributeDesc AttributeDescription,
 assertionValue AssertionValue }

 AssertionValue ::= OCTET STRING

 PartialAttribute ::= SEQUENCE {
 type AttributeDescription,
 vals SET OF value AttributeValue }

 Attribute ::= PartialAttribute(WITH COMPONENTS {
 ...,
 vals (SIZE(1..MAX))})

 MatchingRuleId ::= LDAPString

 LDAPResult ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 timeLimitExceeded (3),
 sizeLimitExceeded (4),
 compareFalse (5),
 compareTrue (6),
 authMethodNotSupported (7),

 strongAuthRequired (8),
 -- 9 reserved --
 referral (10),
 adminLimitExceeded (11),
 unavailableCriticalExtension (12),
 confidentialityRequired (13),
 saslBindInProgress (14),
 noSuchAttribute (16),
 undefinedAttributeType (17),
 inappropriateMatching (18),
 constraintViolation (19),
 attributeOrValueExists (20),
 invalidAttributeSyntax (21),
 -- 22-31 unused --
 noSuchObject (32),
 aliasProblem (33),
 invalidDNSyntax (34),
 -- 35 reserved for undefined isLeaf --
 aliasDereferencingProblem (36),
 -- 37-47 unused --

Sermersheim Internet-Draft - Expires Oct 2004 Page 49

 Lightweight Directory Access Protocol Version 3

 inappropriateAuthentication (48),
 invalidCredentials (49),
 insufficientAccessRights (50),
 busy (51),
 unavailable (52),
 unwillingToPerform (53),
 loopDetect (54),
 -- 55-63 unused --
 namingViolation (64),
 objectClassViolation (65),
 notAllowedOnNonLeaf (66),
 notAllowedOnRDN (67),
 entryAlreadyExists (68),
 objectClassModsProhibited (69),
 -- 70 reserved for CLDAP --
 affectsMultipleDSAs (71),
 -- 72-79 unused --
 other (80),
 ... },
 matchedDN LDAPDN,
 diagnosticMessage LDAPString,
 referral [3] Referral OPTIONAL }

 Referral ::= SEQUENCE SIZE (1..MAX) OF uri URI

 URI ::= LDAPString -- limited to characters permitted in

 -- URIs

 Controls ::= SEQUENCE OF control Control

 Control ::= SEQUENCE {
 controlType LDAPOID,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL }

 BindRequest ::= [APPLICATION 0] SEQUENCE {
 version INTEGER (1 .. 127),
 name LDAPDN,
 authentication AuthenticationChoice }

 AuthenticationChoice ::= CHOICE {
 simple [0] OCTET STRING,
 -- 1 and 2 reserved
 sasl [3] SaslCredentials,
 ... }

 SaslCredentials ::= SEQUENCE {
 mechanism LDAPString,
 credentials OCTET STRING OPTIONAL }

 BindResponse ::= [APPLICATION 1] SEQUENCE {
 COMPONENTS OF LDAPResult,
 serverSaslCreds [7] OCTET STRING OPTIONAL }

Sermersheim Internet-Draft - Expires Oct 2004 Page 50

 Lightweight Directory Access Protocol Version 3

 UnbindRequest ::= [APPLICATION 2] NULL

 SearchRequest ::= [APPLICATION 3] SEQUENCE {
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 derefAliases ENUMERATED {
 neverDerefAliases (0),
 derefInSearching (1),
 derefFindingBaseObj (2),
 derefAlways (3) },
 sizeLimit INTEGER (0 .. maxInt),
 timeLimit INTEGER (0 .. maxInt),
 typesOnly BOOLEAN,
 filter Filter,
 attributes AttributeSelection }

 AttributeSelection ::= SEQUENCE OF selector LDAPString
 -- The LDAPString is constrained to
 -- <attributeSelection> in Section 4.5.1

 Filter ::= CHOICE {
 and [0] SET SIZE (1..MAX) OF filter Filter,
 or [1] SET SIZE (1..MAX) OF filter Filter,
 not [2] Filter,
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] MatchingRuleAssertion }

 SubstringFilter ::= SEQUENCE {
 type AttributeDescription,
 -- at least one must be present,
 -- initial and final can occur at most once
 substrings SEQUENCE SIZE (1..MAX) OF substring CHOICE {
 initial [0] AssertionValue,
 any [1] AssertionValue,
 final [2] AssertionValue } }

 MatchingRuleAssertion ::= SEQUENCE {
 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
 matchValue [3] AssertionValue,
 dnAttributes [4] BOOLEAN DEFAULT FALSE }

 SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
 objectName LDAPDN,
 attributes PartialAttributeList }

Sermersheim Internet-Draft - Expires Oct 2004 Page 51

 Lightweight Directory Access Protocol Version 3

 PartialAttributeList ::= SEQUENCE OF
 partialAttribute PartialAttribute

 SearchResultReference ::= [APPLICATION 19] SEQUENCE
 SIZE (1..MAX) OF uri URI

 SearchResultDone ::= [APPLICATION 5] LDAPResult

 ModifyRequest ::= [APPLICATION 6] SEQUENCE {
 object LDAPDN,
 changes SEQUENCE OF change SEQUENCE {
 operation ENUMERATED {

 add (0),
 delete (1),
 replace (2) },
 modification PartialAttribute } }

 ModifyResponse ::= [APPLICATION 7] LDAPResult

 AddRequest ::= [APPLICATION 8] SEQUENCE {
 entry LDAPDN,
 attributes AttributeList }

 AttributeList ::= SEQUENCE OF attribute Attribute

 AddResponse ::= [APPLICATION 9] LDAPResult

 DelRequest ::= [APPLICATION 10] LDAPDN

 DelResponse ::= [APPLICATION 11] LDAPResult

 ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
 entry LDAPDN,
 newrdn RelativeLDAPDN,
 deleteoldrdn BOOLEAN,
 newSuperior [0] LDAPDN OPTIONAL }

 ModifyDNResponse ::= [APPLICATION 13] LDAPResult

 CompareRequest ::= [APPLICATION 14] SEQUENCE {
 entry LDAPDN,
 ava AttributeValueAssertion }

 CompareResponse ::= [APPLICATION 15] LDAPResult

 AbandonRequest ::= [APPLICATION 16] MessageID

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,

Sermersheim Internet-Draft - Expires Oct 2004 Page 52

 Lightweight Directory Access Protocol Version 3

 responseValue [11] OCTET STRING OPTIONAL }

 IntermediateResponse ::= [APPLICATION 25] SEQUENCE {
 responseName [0] LDAPOID OPTIONAL,
 responseValue [1] OCTET STRING OPTIONAL }

 END

Sermersheim Internet-Draft - Expires Oct 2004 Page 53

 Lightweight Directory Access Protocol Version 3

Appendix C - Changes

 This appendix is non-normative.

 This appendix summarizes substantive changes made to RFC 2251 and RFC
2830.

C.1 Changes made to RFC 2251:

 This section summarizes the substantive changes made to Sections 1,
 2, 3.1, and 4 through the remainder of RFC 2251. Readers should
 consult [Models] and [AuthMeth] for summaries of changes to other
 sections.

C.1.1 Section 1

 - Removed IESG note. Post publication of RFC 2251, mandatory LDAP
 authentication mechanisms have been standardized which are
 sufficient to remove this note. See [AuthMeth] for authentication
 mechanisms.

C.1.2 Section 3.1 and others

 - Removed notes giving history between LDAP v1, v2 and v3. Instead,
 added sufficient language so that this document can stand on its
 own.

C.1.3 Section 4

 - Clarified where the extensibility features of ASN.1 apply to the
 protocol. This change also affected various ASN.1 types.
 - Removed the requirement that servers which implement version 3 or
 later MUST provide the 'supportedLDAPVersion' attribute. This
 statement provided no interoperability advantages.

C.1.4 Section 4.1.1

 - There was a mandatory requirement for the server to return a
 Notice of Disconnection and drop the connection when a PDU is
 malformed in a certain way. This has been clarified such that the
 server SHOULD return the Notice of Disconnection, and MUST drop
 the connection.

C.1.5 Section 4.1.1.1

 - Clarified that the messageID of requests MUST be non-zero.

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2251

Sermersheim Internet-Draft - Expires Oct 2004 Page 54

 Lightweight Directory Access Protocol Version 3

 - Clarified when it is and isn't appropriate to return an already
 used message id. RFC 2251 accidentally imposed synchronous server
 behavior in its wording of this.

C.1.6 Section 4.1.2

 - Stated that LDAPOID is constrained to <numericoid> from [Models].

C.1.7 Section 4.1.5.1

 - Removed the Binary Option from the specification. There are
 numerous interoperability problems associated with this method of
 alternate attribute type encoding. Work to specify a suitable
 replacement is ongoing.

C.1.8 Section 4.1.6

 - Removed references to the "binary" encoding as it has been removed
 from the specification.

C.1.9 Section 4.1.7

 - Removed references to the "binary" encoding as it has been removed
 from the specification.

C.1.10 Section 4.1.8

 - Combined the definitions of PartialAttribute and Attribute here,
 and defined Attribute in terms of PartialAttribute.

C.1.11 Section 4.1.10

 - Renamed "errorMessage" to "diagnosticMessage" as it is allowed to
 be sent for non-error results.
 - Moved some language into Appendix A, and refer the reader there.
 - Allowed matchedDN to be present for other result codes than those
 listed in RFC 2251.

C.1.12 Section 4.1.11

 - Defined referrals in terms of URIs rather than URLs.

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2251

 - Removed the requirement that all referral URIs MUST be equally
 capable of progressing the operation. The statement was ambiguous
 and provided no instructions on how to carry it out.
 - Added the requirement that clients MUST NOT loop between servers.
 - Clarified the instructions for using LDAPURLs in referrals, and in
 doing so added a recommendation that the scope part be present.

Sermersheim Internet-Draft - Expires Oct 2004 Page 55

 Lightweight Directory Access Protocol Version 3

C.1.13 Section 4.1.12

 - Specified how control values defined in terms of ASN.1 are to be
 encoded.
 - Noted that the criticality field is only applied to request
 messages (except unbindRequest), and must be ignored when present
 on response messages and unbindRequest.
 - Added language regarding combinations of controls and the ordering
 of controls on a message.
 - Changed "The server MUST be prepared" to "Implementations MUST be
 prepared" in the eighth paragraph to reflect that both client and
 server implementations must be able to handle this (as both parse
 controls).

C.1.14 Section 4.2

 - Mandated that servers return protocolError when the version is not
 supported.
 - Clarified behavior when the simple authentication is used, the
 name is empty and the password is non-empty.
 - Required servers to not dereference aliases for bind. This was
 added for consistency with other operations and to help ensure
 data consistency.
 - Required that textual passwords be transferred as UTF-8 encoded
 Unicode, and added recommendations on string preparation. This was
 to help ensure interoperability of passwords being sent from
 different clients.

C.1.15 Section 4.2.1

 - This section was largely reorganized for readability and language
 was added to clarify the authentication state of failed and
 abandoned bind operations.
 - Removed: "If a SASL transfer encryption or integrity mechanism has
 been negotiated, that mechanism does not support the changing of
 credentials from one identity to another, then the client MUST
 instead establish a new connection."

 Each SASL negotiation is, generally, independent of other SASL
 negotiations. If there were dependencies between multiple
 negotiations of a particular mechanism, the mechanism technical
 specification should detail how applications are to deal with
 them. LDAP should not require any special handling. And if an LDAP
 client had used such a mechanism, it would have the option of
 using another mechanism.
 - Dropped MUST imperative in paragraph 3 to align with [Keywords].

C.1.16 Section 4.2.3

Sermersheim Internet-Draft - Expires Oct 2004 Page 56

 Lightweight Directory Access Protocol Version 3

 - Moved most error-related text to Appendix A, and added text
 regarding certain errors used in conjunction with the bind
 operation.
 - Prohibited the server from specifying serverSaslCreds when not
 appropriate.

C.1.17 Section 4.3

 - Required both peers to cease transmission and close the connection
 for the unbind operation.

C.1.18 Section 4.4

 - Added instructions for future specifications of Unsolicited
 Notifications.

C.1.19 Section 4.5.1

 - SearchRequest attributes is now defined as an AttributeSelection
 type rather than AttributeDescriptionList, and an ABNF is
 provided.
 - SearchRequest attributes may contain duplicate attribute
 descriptions. This was previously prohibited. Now servers are
 instructed to ignore subsequent names when they are duplicated.
 This was relaxed in order to allow different short names and also
 OIDs to be requested for an attribute.
 - The Filter choices 'and' and 'or', and the SubstringFilter
 substrings types are now defined with a lower bound of 1.
 - The SubstringFilter substrings 'initial, 'any', and 'final' types
 are now AssertionValue rather than LDAPString. Also, added
 imperatives stating that 'initial' (if present) must be listed

 first, and 'final' (if present) must be listed last.
 - Clarified the semantics of the derefAliases choices.
 - Added instructions for equalityMatch, substrings, greaterOrEqual,
 lessOrEqual, and approxMatch.

C.1.20 Section 4.5.2

 - Recommended that servers not use attribute short names when it
 knows they are ambiguous or may cause interoperability problems.
 - Removed all mention of ExtendedResponse due to lack of
 implementation.

C.1.21 Section 4.5.3

 - Made changes similar to those made to Section 4.1.11.

C.1.22 Section 4.5.3.1

Sermersheim Internet-Draft - Expires Oct 2004 Page 57

 Lightweight Directory Access Protocol Version 3

 - Fixed examples to adhere to changes made to Section 4.5.3.

C.1.23 Section 4.6

 - Removed restriction that required an EQUALITY matching rule in
 order to perform value delete modifications. It is sufficiently
 documented that in absence of an equality matching rule, octet
 equality is used.
 - Replaced AttributeTypeAndValues with Attribute as they are
 equivalent.
 - Clarified what type of modification changes might temporarily
 violate schema.

C.1.24 Section 4.7

 - Aligned Add operation with X.511 in that the attributes of the RDN
 are used in conjunction with the listed attributes to create the
 entry. Previously, Add required that the distinguished values be
 present in the listed attributes.

C.1.25 Section 4.9

 - Required servers to not dereference aliases for modify DN. This
 was added for consistency with other operations and to help ensure

 data consistency.
 - Allow modify DN to fail when moving between naming contexts.
 - Specified what happens when the attributes of the newrdn are no
 present on the entry.

C.1.26 Section 4.10

 - Clarified the semantics of Compare when the attribute is not
 present and when it is unknown.
 - Clarified that an Undefined compare results in a compareFalse
 resultCode.
 - Required servers to not dereference aliases for compare. This was
 added for consistency with other operations and to help ensure
 data consistency.

C.1.27 Section 4.11

 - Explained that since abandon returns no response, clients should
 not use it if they need to know the outcome.
 - Specified that Abandon and Unbind cannot be abandoned.

C.1.28 Section 4.12

Sermersheim Internet-Draft - Expires Oct 2004 Page 58

 Lightweight Directory Access Protocol Version 3

 - Specified how values of extended operations defined in terms of
 ASN.1 are to be encoded.
 - Added instructions on what extended operation specifications
 consist of.
 - Added a recommendation that servers advertise supported extended
 operations.

C.1.29 Section 5.2

 - Moved referral-specific instructions into referral-related
 sections.

C.1.30 Section 7

 - Reworded notes regarding SASL not protecting certain aspects of
 the LDAP bind PDU.
 - Noted that Servers are encouraged to prevent directory
 modifications by clients that have authenticated anonymously
 [AuthMeth].

 - Added a note regarding the scenario where an identity is changed
 (deleted, privileges or credentials modified, etc.).
 - Warned against following referrals that may have been injected in
 the data stream.
 - Noted that servers should protect information equally, whether in
 an error condition or not, and mentioned specifically; matchedDN,
 diagnosticMessage, and resultCodes.
 - Added a note regarding malformed and long encodings.

C.1.31 Appendix A

 - Added "EXTESIBILITY IMPLIED" to ASN.1 definition.
 - Removed AttributeType. It is not used.

C.2 Changes made to RFC 2830:

 This section summarizes the substantive changes made to Sections of
RFC 2830. Readers should consult [AuthMeth] for summaries of changes

 to other sections.

C.2.1 Section 2.3

 - Removed wording indicating that referrals can be returned from
 StartTLS
 - Removed requirement that only a narrow set of result codes can be
 returned. Some result codes are required in certain scenarios, but
 any other may be returned if appropriate.

C.2.1 Section 4.13.3.1

Sermersheim Internet-Draft - Expires Oct 2004 Page 59

 Lightweight Directory Access Protocol Version 3

 - Reworded most of this section and added the requirement that after
 the TLS connection has been closed, the server MUST NOT send
 responses to any request message received before the TLS closure.

C.3 Changes made to [LIMR]:

 - In general, all technical language was transferred in whole.
 Supporting and background language seen as redundant due to its
 presence in this document was omitted.

https://datatracker.ietf.org/doc/html/rfc2830
https://datatracker.ietf.org/doc/html/rfc2830

Sermersheim Internet-Draft - Expires Oct 2004 Page 60

 Lightweight Directory Access Protocol Version 3

Intellectual Property Rights

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of

https://datatracker.ietf.org/doc/html/bcp11

 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Sermersheim Internet-Draft - Expires Oct 2004 Page 61

