Internet-Draft Intended Category: Standard Track Expires in six months Kurt D. Zeilenga OpenLDAP Foundation 27 October 2003 # LDAP: Internationalized String Preparation <draft-ietf-ldapbis-strprep-02.txt> #### Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Distribution of this memo is unlimited. Technical discussion of this document will take place on the IETF LDAP Revision Working Group mailing list <ietf-ldapbis@openldap.org>. Please send editorial comments directly to the author <Kurt@OpenLDAP.org>. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as ``work in progress.'' The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Copyright (C) The Internet Society (2003). All Rights Reserved. Please see the Full Copyright section near the end of this document for more information. # Abstract The previous Lightweight Directory Access Protocol (LDAP) technical specifications did not precisely define how character string matching is to be performed. This lead to a number of usability and interoperability problems. This document defines string preparation algorithms for character-based matching rules defined for use in LDAP. Zeilenga LDAPprep [Page 1] #### Conventions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119]. Character names in this document use the notation for code points and names from the Unicode Standard [Unicode]. For example, the letter "a" may be represented as either <U+0061> or <LATIN SMALL LETTER A>. In the lists of mappings and the prohibited characters, the "U+" is left off to make the lists easier to read. The comments for character ranges are shown in square brackets (such as "[CONTROL CHARACTERS]") and do not come from the standard. Note: a glossary of terms used in Unicode can be found in [Glossary]. Information on the Unicode character encoding model can be found in [CharModel]. #### 1. Introduction ## 1.1. Background A Lightweight Directory Access Protocol (LDAP) [Roadmap] matching rule [Syntaxes] defines an algorithm for determining whether a presented value matches an attribute value in accordance with the criteria defined for the rule. The proposition may be evaluated to True, False, or Undefined. - the attribute contains a matching value, True False - the attribute contains no matching value, Undefined - it cannot be determined whether the attribute contains a matching value or not. For instance, the caseIgnoreMatch matching rule may be used to compare whether the commonName attribute contains a particular value without regard for case and insignificant spaces. #### 1.2. X.500 String Matching Rules "X.520: Selected attribute types" [X.520] provides (amongst other things) value syntaxes and matching rules for comparing values commonly used in the Directory. These specifications are inadequate for strings composed of characters from the Universal Character Set (UCS) [ISO10646], a superset of Unicode [Unicode]. The caseIgnoreMatch matching rule [X.520], for example, is simply defined as being a case insensitive comparison where insignificant spaces are ignored. For printableString, there is only one space character and case mapping is bijective, hence this definition is sufficient. However, for UCS-based string types such as universalString, this is not sufficient. For example, a case insensitive matching implementation which folded lower case characters to upper case would yield different different results than an implementation which used upper case to lower case folding. Or one implementation may view space as referring to only SPACE (U+0020), a second implementation may view any character with the space separator (Zs) property as a space, and another implementation may view any character with the whitespace (WS) category as a space. The lack of precise specification for character string matching has led to significant interoperability problems. When used in certificate chain validation, security vulnerabilities can arise. To address these problems, this document defines precise algorithms for preparing character strings for matching. # **1.3**. Relationship to "stringprep" The character string preparation algorithms described in this document are based upon the "stringprep" approach [StringPrep]. In "stringprep", presented and stored values are first prepared for comparison and so that a character-by-character comparison yields the "correct" result. The approach used here is a refinement of the "stringprep" [StringPrep] approach. Each algorithm involves two additional preparation steps. - a) prior to applying the Unicode string preparation steps outlined in "stringprep", the string is transcoded to Unicode; - b) after applying the Unicode string preparation steps outlined in "stringprep", characters insignificant to the matching rules are removed. Hence, preparation of character strings for X.500 matching involves the following steps: - 1) Transcode - 2) Map - 3) Normalize - 4) Prohibit - 5) Check Bidi (Bidirectional) 6) Insignificant Character Removal These steps are described in <u>Section 2</u>. ## 1.4. Relationship to the LDAP Technical Specification This document is a integral part of the LDAP technical specification [Roadmap] which obsoletes the previously defined LDAP technical specification [RFC3377] in its entirety. This document details new LDAP internationalized character string preparation algorithms used by [Syntaxes] and possible other technical specifications defining LDAP syntaxes and/or matching rules. #### 1.5. Relationship to X.500 LDAP is defined [Roadmap] in X.500 terms as an X.500 access mechanism. As such, there is a strong desire for alignment between LDAP and X.500 syntax and semantics. The character string preparation algorithms described in this document are based upon "Internationalized String Matching Rules for X.500" [XMATCH] proposal to ITU/ISO Joint Study Group 2. # 2. String Preparation The following six-step process SHALL be applied to each presented and attribute value in preparation for character string matching rule evaluation. - 1) Transcode - 2) Map - 3) Normalize - 4) Prohibit - 5) Check bidi - 6) Insignificant Character Removal Failure in any step causes the assertion to evaluate to Undefined. This process is intended to act upon non-empty character strings. If the string to prepare is empty, this process is not applied and the assertion is evaluated to Undefined. The character repertoire of this process is Unicode 3.2 [Unicode]. #### 2.1. Transcode Each non-Unicode string value is transcoded to Unicode. TeletexString [X.680][T.61] values are transcoded to Unicode as described in Appendix A. PrintableString [X.680] value are transcoded directly to Unicode. UniversalString, UTF8String, and bmpString [X.680] values need not be transcoded as they are Unicode-based strings (in the case of bmpString, a subset of Unicode). The output is the transcoded string. # 2.2. Map SOFT HYPHEN (U+00AD) and MONGOLIAN TODO SOFT HYPHEN (U+1806) code points are mapped to nothing. COMBINING GRAPHEME JOINER (U+034F) and VARIATION SELECTORS (U+180B-180D, FF00-FE0F) code points are also mapped to nothing. The OBJECT REPLACEMENT CHARACTER (U+FFFC) is mapped to nothing. CHARACTER TABULATION (U+0009), LINE FEED (LF) (U+000A), LINE TABULATION (U+000B), FORM FEED (FF) (U+000C), CARRIAGE RETURN (CR) (U+000D), and NEXT LINE (NEL) (U+0085) are mapped to SPACE (U+0020). All other control code points (e.g., Cc) or code points with a control function (e.g., Cf) are mapped to nothing. ZERO WIDTH SPACE (U+200B) is mapped to nothing. All other code points with Separator (space, line, or paragraph) property (e.g, Zs, Zl, or Zp) are mapped to SPACE (U+0020). For case ignore, numeric, and stored prefix string matching rules, characters are case folded per B.2 of [StringPrep]. The output is the mapped string. #### 2.3. Normalize The input string is be normalized to Unicode Form KC (compatibility composed) as described in [UAX15]. The output is the normalized string. #### 2.4. Prohibit All Unassigned code points are prohibited. Unassigned code points are listed in Table A.1 of [StringPrep]. Private Use (U+E000-F8FF, F0000-FFFFD, 100000-10FFFD) code points are prohibited. All non-character code points (U+FDD0-FDEF, FFFE-FFFF, 1FFFE-1FFFF, 2FFFE-2FFFF, 3FFFE-3FFFF, 4FFFE-4FFFF, 5FFFE-5FFFF, 6FFFE-6FFFF, 7FFFE-7FFFF, 8FFFE-8FFFF, 9FFFE-9FFFF, AFFFE-AFFFF, BFFFE-BFFFF, CFFFE-CFFFF, DFFFE-DFFFF, EFFFE-EFFFF, FFFFE-FFFFF, 10FFFE-10FFFF) are prohibited. Surrogate codes (U+D800-DFFFF) are prohibited. The REPLACEMENT CHARACTER (U+FFFD) code point is prohibited. The first code point of a string is prohibited from being a combining character. The step fails if the input string contains any prohibited code point. The output is the input string. #### 2.5. Check bidi There are no bidirectional restrictions. The output is the input string. #### 2.5. Insignificant Character Removal In this step, characters insignificant to the matching rule are to be removed. The characters to be removed differ from matching rule to matching rule. Section 2.5.1 applies to case ignore and exact string matching. <u>Section 2.5.2</u> applies to numericString matching. Section 2.5.3 applies to telephoneNumber matching ## 2.5.1. Insignificant Space Removal For the purposes of this section, a space is defined to be the SPACE (U+0020) code point followed by no combining marks. NOTE - The previous steps ensure that the string cannot contain any code points in the separator class, other than SPACE (U+0020). If the input string consists entirely of spaces or is empty, the output is a string consisting of exactly one space (e.g. " "). Otherwise, the following spaces are removed: - leading spaces (i.e. those preceding the first character that is not a space); - trailing spaces (i.e. those following the last character that is not a space); - multiple consecutive spaces (these are taken as equivalent to a single space character). ``` For example, removal of spaces from the Form KC string: "<SPACE><SPACE>foo<SPACE><SPACE>bar<SPACE><" would result in the output string: "foo<SPACE>bar" and the Form KC string: "<SPACE><SPACE>" would result in the output string: "<SPACE>". ``` # 2.5.2. numericString Insignificant Character Removal For the purposes of this section, a space is defined to be the SPACE (U+0020) code point followed by no combining marks. All spaces are regarded as not significant. If the input string consists entirely of spaces or is empty, the output is a string consisting of exactly one space (e.g. " "). Otherwise, all spaces are to be removed. ``` For example, removal of spaces from the Form KC string: "<SPACE><SPACE>123<SPACE><SPACE>456<SPACE><" would result in the output string: "123456" and the Form KC string: "<SPACE><SPACE>" would result in the output string: "<SPACE>". ``` # 2.5.3. telephoneNumber Insignificant Character Removal For the purposes of this section, a hyphen is defined to be HYPHEN-MINUS (U+002D), ARMENIAN HYPHEN (U+058A), HYPHEN (U+2010), NON-BREAKING HYPHEN (U+2011), MINUS SIGN (U+2212), SMALL HYPHEN-MINUS (U+FE63), or FULLWIDTH HYPHEN-MINUS (U+FF0D) code point followed by no combining marks and a space is defined to be the SPACE (U+0020) code point followed by no combining marks. All hyphens and spaces are considered insignificant. If the string contains only spaces and hyphens or is empty, then the output is a string consisting of one space. Otherwise, all hyphens and spaces are removed. ``` For example, removal of hyphens and spaces from the Form KC string: "<SPACE><HYPHEN>123<SPACE><SPACE>456<SPACE><HYPHEN>" would result in the output string: "123456" and the Form KC string: "<HYPHEN><HYPHEN>" would result in the output string: "<SPACE>". ``` ## 3. Security Considerations "Preparation for International Strings ('stringprep')" [StringPrep] security considerations generally apply to the algorithms described here. ## 4. Contributors Appendix A and B of this document were authored by Howard Chu <hyc@symas.com> of Symas Corporation (based upon information provided in RFC 1345). ## Acknowledgments The approach used in this document is based upon design principles and algorithms described in "Preparation of Internationalized Strings ('stringprep')" [StringPrep] by Paul Hoffman and Marc Blanchet. Some additional guidance was drawn from Unicode Technical Standards, Technical Reports, and Notes. This document is a product of the IETF LDAP Revision (LDAPBIS) Working Group. # 6. Author's Address Kurt Zeilenga E-mail: <kurt@openldap.org> #### 7. References #### 7.1. Normative References - [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u> (also <u>RFC 2119</u>), March 1997. - [Roadmap] Zeilenga, K. (editor), "LDAP: Technical Specification Road Map", <u>draft-ietf-ldapbis-roadmap-xx.txt</u>, a work in progress. - [StringPrep] Hoffman P. and M. Blanchet, "Preparation of Internationalized Strings ('stringprep')", draft-hoffman-rfc3454bis-xx.txt, a work in progress. - [Syntaxes] Legg, S. (editor), "LDAP: Syntaxes and Matching Rules", draft-ietf-ldapbis-syntaxes-xx.txt, a work in progress. - [ISO10646] International Organization for Standardization, "Universal Multiple-Octet Coded Character Set (UCS) Architecture and Basic Multilingual Plane", ISO/IEC 10646-1: 1993. - [Unicode] The Unicode Consortium, "The Unicode Standard, Version 3.2.0" is defined by "The Unicode Standard, Version 3.0" (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), as amended by the "Unicode Standard Annex #27: Unicode 3.1" (http://www.unicode.org/reports/tr27/) and by the "Unicode Standard Annex #28: Unicode 3.2" (http://www.unicode.org/reports/tr28/). - [UAX15] Davis, M. and M. Duerst, "Unicode Standard Annex #15: Unicode Normalization Forms, Version 3.2.0". http://www.unicode.org/unicode/reports/tr15/tr15-22.html, March 2002. - [X.680] International Telecommunication Union Telecommunication Standardization Sector, "Abstract Syntax Notation One (ASN.1) Specification of Basic Notation", X.680(1997) (also ISO/IEC 8824-1:1998). - [T.61] CCITT (now ITU), "Character Repertoire and Coded Character Sets for the International Teletex Service", T.61, 1988. ## 7.2. Informative References | [X.500] | International Telecommunication Union - | | | | | | | | | |---------|----------------------------------------------------------|--|--|--|--|--|--|--|--| | | Telecommunication Standardization Sector, "The Directory | | | | | | | | | | | Overview of concepts, models and services," | | | | | | | | | | | X.500(1993) (also ISO/IEC 9594-1:1994). | | | | | | | | | - [X.501] International Telecommunication Union Telecommunication Standardization Sector, "The Directory -- Models," X.501(1993) (also ISO/IEC 9594-2:1994). - [X.520] International Telecommunication Union Telecommunication Standardization Sector, "The Directory: Selected Attribute Types", X.520(1993) (also ISO/IEC 9594-6:1994). - [Glossary] The Unicode Consortium, "Unicode Glossary", http://www.unicode.org/glossary/. - [CharModel] Whistler, K. and M. Davis, "Unicode Technical Report #17, Character Encoding Model", UTR17, http://www.unicode.org/unicode/reports/tr17/>, August 2000. - [XMATCH] Zeilenga, K., "Internationalized String Matching Rules for X.500", <u>draft-zeilenga-ldapbis-strmatch-xx.txt</u>, a work in progress. - [RFC1345] Simonsen, K., "Character Mnemonics & Character Sets", RFC 1345, June 1992. ## Appendix A. Teletex (T.61) to Unicode This appendix defines an algorithm for transcoding $[\underline{\mathsf{T.61}}]$ characters to $[\underline{\mathsf{Unicode}}]$ characters for use in string preparation for LDAP matching rules. This appendix is normative. The transcoding algorithm is derived from the T.61-8bit definition provided in [RFC1345]. With a few exceptions, the T.61 character codes from x00 to x7f are equivalent to the corresponding [Unicode] code points, and their values are left unchanged by this algorithm. E.g. the T.61 code x20 is identical to (U+0020). The exceptions are for these T.61 codes that are undefined: x23, x24, x5c, x5e, x60, x7b, x7d, and x7e. The codes from x80 to x9f are also equivalent to the corresponding Unicode code points. This is specified for completeness only, as these codes are control characters, and will be mapped to nothing in the LDAP String Preparation Mapping step. The remaining T.61 codes are mapped below in Table A.1. Table positions marked "??" are undefined. Input strings containing undefined T.61 codes SHALL produce an Undefined matching result. For diagnostic purposes, this algorithm does not fail for undefined input codes. Instead, undefined codes in the input are mapped to the Unicode REPLACEMENT CHARACTER (U+FFFD). As the LDAP String Preparation Prohibit step disallows the REPLACEMENT CHARACTER from appearing in its output, this transcoding yields the desired effect. Note: RFC 1345 listed the non-spacing accent codepoints as residing in the range starting at (U+E000). In the current Unicode standard, the (U+E000) range is reserved for Private Use, and the non-spacing accents are in the range starting at (U+0300). The tables here use the (U+0300) range for these accents. | | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | |----|------|-----|------|---|------|---|------|---|------|-----|------|---|------|-----|------|---| | + | | -+ | | + | | + | | + | | -+ | | + | | + - | | + | | a0 | 00a0 | | 00a1 | | 00a2 | | 00a3 | | 0024 | | 00a5 | | 0023 | | 00a7 | | | a8 | 00a8 | | ?? | | ?? | | 00ab | | ?? | | ?? | | ?? | | ?? | | | b0 | 00b0 | | 00b1 | | 00b2 | | 00b3 | | 00d7 | | 00b5 | | 00b6 | | 00b7 | | | b8 | 00f7 | | ?? | | ?? | | 00bb | | 00bc | | 00bd | | 00be | | 00bf | | | c0 | ?? | | 0300 | | 0301 | | 0302 | | 0303 | | 0304 | | 0306 | | 0307 | | | c8 | 0308 | | ?? | | 030a | | 0327 | | 0332 | | 030b | | 0328 | | 030c | | | d0 | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | | d8 | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | | e0 | 2126 | | 00c6 | | 00d0 | | 00aa | | ?? | | 0126 | | 0132 | | 013f | | | e8 | 0141 | | 00d8 | | 0152 | | 00ba | | 00de | | 0166 | | 014a | | 0149 | | | f0 | 0138 | | 00e6 | | 0111 | | 00f0 | | 0127 | | 0131 | | 0133 | | 0140 | | | f8 | 0142 | | 00f8 | | 0153 | | 00df | | 00fe | | 0167 | | 014b | | ?? | | | + | | - + | | + | | + | | + | | - + | | + | | +. | | + | Table A.1: Mapping of 8-bit T.61 codes to Unicode T.61 also defines a number of accented characters that are formed by combining an accent prefix followed by a base character. These prefixes are in the code range xc1 to xcf. If a prefix character appears at the end of a string, the result is undefined. Otherwise these sequences are mapped to Unicode by substituting the corresponding non-spacing accent code (as listed in Table A.1) for the accent prefix, and exchanging the order so that the base character precedes the accent. All of the accented characters in T.61 have a corresponding code point in Unicode. For the sake of completeness, the combined character codes are presented in the following tables. This is informational only; for matching purposes it is sufficient to map the non-spacing accent and exchange the order of the character pair as specified in Appendix A. This appendix is informative. ## **B.1.** Combinations with SPACE Accents may be combined with a <SPACE> to generate the accent by itself. For each accent code, the result of combining with <SPACE> is listed in Table B.1. | | | • | | • | | • | | • | | • | | • | 6 7 | | |----|----|---|------|---|------|---|------|---|------|---|------|---|------------------------------|--| | c0 | ?? | | 0060 | | 00b4 | | 005e | Ī | 007e | Ī | 00af | | 02d8 02d9
02db 02c7 | | | | | | | | | | | | | | | | + | | Table B.1: Mapping of T.61 Accents with <SPACE> to Unicode # **B.2**. Combinations for xc1: (Grave accent) T.61 has predefined characters for combinations with A, E, I, O, and U. Unicode also defines combinations for N, W, and Y. All of these combinations are present in Table B.2. | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----|----|------|----|----|----|------|------|------| | +- | | -++- | +- | + | | + | | ++ | | 40 | ?? | 00c0 | ?? | ?? | ?? | 00c8 | ?? | ?? | | 48 | ?? | 00cc | ?? | ?? | ?? | ?? | 01f8 | 00d2 | | 50 | ?? | ?? | ?? | ?? | ?? | 00d9 | ?? | 1e80 | | 58 | ?? | 1ef2 | ?? | ?? | ?? | ?? | ?? | ?? | | 60 | ?? | 00e0 | ?? | ?? | ?? | 00e8 | ?? | ?? | | 68 | ?? | 00ec | ?? | ?? | ?? | ?? | 01f9 | 00f2 | | 70 | ?? | ?? | ?? | ?? | ?? | 00f9 | ?? | 1e81 | | 78 | ?? | 1ef3 | ?? | ?? | ?? | ?? | ?? | ?? | | +- | | -++- | +- | + | | + | | ++ | Table B.2: Mapping of T.61 Grave Accent Combinations # **B.3**. Combinations for xc2: (Acute accent) T.61 has predefined characters for combinations with A, E, I, O, U, Y, C, L, N, R, S, and Z. Unicode also defines G, K, M, P, and W. All of these combinations are present in Table B.3. | | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | |----|------|---|------|----|------|---|------|---|------|---|------|---|------|---|------|---| | + | | + | | +- | | + | | + | | + | | + | | + | | + | | 40 | ?? | | 00c1 | | ?? | | 0106 | | ?? | | 00c9 | | ?? | | 01f4 | | | 48 | ?? | | 00cd | | ?? | | 1e30 | | 0139 | | 1e3e | | 0143 | | 00d3 | | | 50 | 1e54 | | ?? | | 0154 | | 015a | | ?? | | 00da | | ?? | | 1e82 | | | 58 | ?? | | 00dd | | 0179 | | ?? | | ?? | | ?? | | ?? | | ?? | | | 60 | ?? | | 00e1 | | ?? | | 0107 | | ?? | | 00e9 | | ?? | | 01f5 | | | 68 | ?? | | 00ed | | ?? | | 1e31 | | 013a | | 1e3f | | 0144 | | 00f3 | | | 70 | 1e55 | | ?? | | 0155 | | 015b | | ?? | | 00fa | | ?? | | 1e83 | | | 78 | ?? | | 00fd | | 017a | | ?? | | ?? | | ?? | | ?? | | ?? | | | + | | + | | +- | | + | | + | | + | | + | | + | | + | Table B.3: Mapping of T.61 Acute Accent Combinations # **B.4**. Combinations for xc3: (Circumflex) T.61 has predefined characters for combinations with A, E, I, O, U, Y, C, G, H, J, S, and W. Unicode also defines the combination for Z. All of these combinations are present in Table B.4. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------|------|------|------|----|------|----|------| | + | + | ++ | | | | + | + | | 40 ?? | 00c2 | ?? | 0108 | ?? | 00ca | ?? | 011c | | 48 0124 | 00ce | 0134 | ?? | ?? | ?? | ?? | 00d4 | | 50 ?? | ?? | ?? | 015c | ?? | 00db | ?? | 0174 | | 58 ?? | 0176 | 1e90 | ?? | ?? | ?? | ?? | ?? | | 60 ?? | 00e2 | ?? | 0109 | ?? | 00ea | ?? | 011d | | 68 0125 | 00ee | 0135 | ?? | ?? | ?? | ?? | 00f4 | | 70 ?? | ?? | ?? | 015d | ?? | 00fb | ?? | 0175 | | 78 ?? | 0177 | 1e91 | ?? | ?? | ?? | ?? | ?? | | + | + | ++ | + | F | | + | + | Table B.4: Mapping of T.61 Circumflex Accent Combinations # **B.5**. Combinations for xc4: (Tilde) T.61 has predefined characters for combinations with A, I, O, U, and N. Unicode also defines E, V, and Y. All of these combinations are present in Table B.5. | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----|----|------|----|----|----|------|----------|-----| | +- | | -+ | +- | +- | | ++ | | + | | 40 | ?? | 00c3 | ?? | ?? | ?? | 1ebc | ?? | ?? | | 48 | ?? | 0128 | ?? | ?? | ?? | ?? | 00d1 0 | 0d5 | | 50 | ?? | ?? | ?? | ?? | ?? | 0168 | 1e7c | ?? | | 58 | ?? | 1ef8 | ?? | ?? | ?? | ?? | ?? | ?? | | 60 | ?? | 00e3 | ?? | ?? | ?? | 1ebd | ?? | ?? | | 68 | ?? | 0129 | ?? | ?? | ?? | ?? | 00f1 0 | 0f5 | | 70 | ?? | ?? | ?? | ?? | ?? | 0169 | 1e7d | ?? | | |----|----|------|----|----|----|------|------|----|---| | 78 | ?? | 1ef9 | ?? | ?? | ?? | ?? | ?? | ?? | | | +- | | + | | + | | + | | | + | Table B.5: Mapping of T.61 Tilde Accent Combinations # **B.6**. Combinations for xc5: (Macron) T.61 has predefined characters for combinations with A, E, I, O, and U. Unicode also defines Y, G, and AE. All of these combinations are present in Table B.6. | - 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 7 | |-----|----|------|----|----|----|------|-----------| | +- | | -++- | +- | +- | + | + | + | | 40 | ?? | 0100 | ?? | ?? | ?? | 0112 | ?? 1e20 | | 48 | ?? | 012a | ?? | ?? | ?? | ?? | ?? 014c | | 50 | ?? | ?? | ?? | ?? | ?? | 016a | ?? ?? | | 58 | ?? | 0232 | ?? | ?? | ?? | ?? | ?? ?? | | 60 | ?? | 0101 | ?? | ?? | ?? | 0113 | ?? 1e21 | | 68 | ?? | 012b | ?? | ?? | ?? | ?? | ?? 014d | | 70 | ?? | ?? | ?? | ?? | ?? | 016b | ?? ?? | | 78 | ?? | 0233 | ?? | ?? | ?? | ?? | ?? ?? | | e0 | ?? | 01e2 | ?? | ?? | ?? | ?? | ?? ?? | | f0 | ?? | 01e3 | ?? | ?? | ?? | ?? | ?? ?? | | +- | | -++- | +- | +- | + | + | + | Table B.6: Mapping of T.61 Macron Accent Combinations # **B.7**. Combinations for xc6: (Breve) T.61 has predefined characters for combinations with A, U, and G. Unicode also defines E, I, and O. All of these combinations are present in Table B.7. | | 0 | 1 | | 2 | 3 | | 4 | 5 | 6 | 7 | |----|----|------|----|----|----|----|----|------|------|------| | +- | | -+ | + | +- | | -+ | | + | + | ++ | | 40 | ?? | 0102 | ?? | | ?? | | ?? | 0114 | ?? | 011e | | 48 | ?? | 012c | ?? | | ?? | | ?? | ?? | ?? | 014e | | 50 | ?? | ?? | ?? | | ?? | | ?? | 016c | ?? | ?? | | 58 | ?? | ?? | ?? | | ?? | | ?? | ?? | ?? | ?? | | 60 | ?? | 0103 | ?? | | ?? | | ?? | 0115 | ?? | 011f | | 68 | ?? | 012d | ?? | | ?? | | ?? | ?? | 00f1 | 014f | | 70 | ?? | ?? | ?? | | ?? | | ?? | 016d | ?? | ?? | | 78 | ?? | ?? | ?? | | ?? | | ?? | ?? | ?? | ?? | | +- | | -+ | + | +- | | -+ | | + | + | ++ | Table B.7: Mapping of T.61 Breve Accent Combinations # **B.8**. Combinations for xc7: (Dot Above) T.61 has predefined characters for C, E, G, I, and Z. Unicode also defines A, O, B, D, F, H, M, N, P, R, S, T, W, X, and Y. All of these combinations are present in Table B.8. | 0 |) | L | 2 | 3 | 4 | 5 | 6 | 7 | |----------|--------|--------|---------|---------|------|------|------|------| | + | -+ | + | + | + | +- | + | + | + | | 40 ?? | 0226 | 6 1e | 92 01 | 10a 1 | .e0a | 0116 | 1e1e | 0120 | | 48 1e22 | 0130 | 9 ? | ? 1 | ?? | ?? | 1e40 | 1e44 | 022e | | 50 1e56 | ?? | 1e | 58 16 | e60 1 | .e6a | ?? | ?? | 1e86 | | 58 1e8a | 1e86 | e 01 | 7b 1 | ?? | ?? | ?? | ?? | ?? | | 60 ?? | 0227 | 7 1e | 93 01 | 10b 1 | .e0b | 0117 | 1e1f | 0121 | | 68 1e23 | ?? | ? | ? 1 | ?? | ?? | 1e41 | 1e45 | 022f | | 70 1e57 | ' ?? | 1e | 59 16 | e61 1 | .e6b | ?? | ?? | 1e87 | | 78 1e8b | 1e81 | f 01 | 7c 1 | ?? | ?? | ?? | ?? | ?? | | + | -+ | + | + | + | +- | + | + | + | Table B.8: Mapping of T.61 Dot Above Accent Combinations # **B.9**. Combinations for xc8: (Diaeresis) T.61 has predefined characters for A, E, I, O, U, and Y. Unicode also defines H, W, X, and t. All of these combinations are present in Table B.9. | 0 1 | | 2 | | 3 | | 4 | | 5 | | 6 | 7 | |-----------------|----|----|----|----|---|------|---|------|-------|----|------| | + | -+ | | +- | | + | | + | | +- | | ++ | | 40 ?? 00c4 | | ?? | | ?? | | ?? | | 00cb | | ?? | ?? | | 48 1e26 00cf | | ?? | | ?? | | ?? | | ?? | | ?? | 00d6 | | 50 ?? ?? | | ?? | | ?? | | ?? | | 00dc | | ?? | 1e84 | | 58 1e8c 0178 | | ?? | | ?? | | ?? | | ?? | | ?? | ?? | | 60 ?? 00e4 | | ?? | | ?? | | ?? | | 00eb | | ?? | ?? | | 68 1e27 00ef | | ?? | | ?? | | ?? | | ?? | | ?? | 00f6 | | 70 ?? ?? | | ?? | | ?? | | 1e97 | | 00fc | | ?? | 1e85 | | 78 1e8d 00ff | | ?? | | ?? | | ?? | | ?? | | ?? | ?? | | + | -+ | | +- | | + | | + | | - + - | | ++ | Table B.8: Mapping of T.61 Diaeresis Accent Combinations # **B.10**. Combinations for xca: (Ring Above) T.61 has predefined characters for A, and U. Unicode also defines w and y. All of these combinations are present in Table B.10. | | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | ' | |------|----|-----|------|-------|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----| | +- | | -+ | | - + - | | -+- | | -+- | | -+- | | -+- | | -+- | | -+ | | 40 l | ?? | - 1 | 00c5 | 1 | ?? | Τ | ?? | - 1 | ?? | - 1 | ?? | 1 | ?? | 1 | ?? | - 1 | | 48 | ?? | ?? | ?? | | ?? | | ?? | ?? | ?? | ?? | |-----|----|------|----|-----|----|-----|----|------|----|------| | 50 | ?? | ?? | ?? | | ?? | | ?? | 016e | ?? | ?? | | 58 | ?? | ?? | ?? | | ?? | | ?? | ?? | ?? | ?? | | 60 | ?? | 00e5 | ?? | | ?? | | ?? | ?? | ?? | ?? | | 68 | ?? | ?? | ?? | | ?? | | ?? | ?? | ?? | ?? | | 70 | ?? | ?? | ?? | | ?? | | ?? | 016f | ?? | 1e98 | | 78 | ?? | 1e99 | ?? | | ?? | | ?? | ?? | ?? | ?? | | + _ | | _++ | | _+_ | | _+_ | | -++- | | _++ | Table B.10: Mapping of T.61 Ring Above Accent Combinations # **B.11**. Combinations for xcb: (Cedilla) T.61 has predefined characters for C, G, K, L, N, R, S, and T. Unicode also defines E, D, and H. All of these combinations are present in Table B.11. | | 0 | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | |-------|-----|----|-----|------|----|------|---|------|---|------|---|------|----|------|---| | + | + | | -+- | | +- | | + | | + | | + | | +- | | + | | 40 | ?? | ?? | | ?? | | 00c7 | | 1e10 | | 0228 | | ?? | | 0122 | | | 48 1 | e28 | ?? | | ?? | | 0136 | | 013b | | ?? | | 0145 | | ?? | | | 50 | ?? | ?? | | 0156 | | 015e | | 0162 | | ?? | | ?? | | ?? | | | 58 | ?? | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | | 60 | ?? | ?? | | ?? | | 00e7 | | 1e11 | | 0229 | | ?? | | 0123 | | | 68 1 | e29 | ?? | | ?? | | 0137 | | 013c | | ?? | | 0146 | | ?? | | | 70 | ?? | ?? | | 0157 | | 015f | | 0163 | | ?? | | ?? | | ?? | | | 78 | ?? | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | | | + | + | | -+- | | +- | | + | | + | | + | | +- | | + | Table B.11: Mapping of T.61 Cedilla Accent Combinations # **B.12**. Combinations for xcd: (Double Acute Accent) T.61 has predefined characters for O, and U. These combinations are present in Table B.12. | - 1 | 0 | 1 | 1 | | 2 | - | 3 | | 4 | | 5 | 6 | | 7 | |-----|----|-----|----|-----|----|-----|----|-----|----|-----|------|----|-----|------| | +- | | -+- | | -+- | | -+- | | -+- | | -+- | + | | -+- | + | | 48 | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | ?? | | 0150 | | 50 | ?? | | ?? | | ?? | | ?? | | ?? | | 0170 | ?? | | ?? | | 68 | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | ?? | | 0151 | | 70 | ?? | | ?? | | ?? | | ?? | | ?? | | 0171 | ?? | | ?? | | +- | | -+- | | -+- | | -+- | | -+- | | -+- | + | | -+- | + | Table B.12: Mapping of T.61 Double Acute Accent Combinations # **B.13**. Combinations for xce: (Ogonek) T.61 has predefined characters for A, E, I, and U. Unicode also defines the combination for O. All of these combinations are present in Table B.13. | | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | 7 | | |----|----|----|-----|----|----|-----|----|-----|----|----|------|----|----|------|---| | +- | | -+ | | +- | | -+- | | -+- | | -+ | | +- | | ++ | - | | 40 | ?? | 01 | 104 | | ?? | | ?? | | ?? | | 0118 | | ?? | ?? | | | 48 | ?? | 01 | 12e | | ?? | | ?? | | ?? | | ?? | | ?? | 01ea | | | 50 | ?? | 1 | ?? | | ?? | | ?? | | ?? | | 0172 | | ?? | ?? | | | 58 | ?? | 1 | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | ?? | | | 60 | ?? | 0: | 105 | | ?? | | ?? | | ?? | | 0119 | | ?? | ?? | | | 68 | ?? | 01 | 12f | | ?? | | ?? | | ?? | | ?? | | ?? | 01eb | | | 70 | ?? | 1 | ?? | | ?? | | ?? | | ?? | | 0173 | | ?? | ?? | | | 78 | ?? | 1 | ?? | | ?? | | ?? | | ?? | | ?? | | ?? | ?? | | | +- | | -+ | | +- | | -+- | | -+- | | -+ | | +- | | ++ | - | Table B.13: Mapping of T.61 Ogonek Accent Combinations # **B.14**. Combinations for xcf: (Caron) T.61 has predefined characters for C, D, E, L, N, R, S, T, and Z. Unicode also defines A, I, O, U, G, H, j, and K. All of these combinations are present in Table B.14. | | 0 | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | |----------|----|------|---|------|----|------|---|------|---|------|---|------|-----|------|---| | + | +- | | + | | +- | | + | | + | | + | | + - | | + | | 40 ?? | | 01cd | | ?? | | 010c | | 010e | | 011a | | ?? | | 01e6 | | | 48 021 | e | 01cf | | ?? | | 01e8 | | 013d | | ?? | | 0147 | | 01d1 | | | 50 ?? | | ?? | | 0158 | | 0160 | | 0164 | | 01d3 | | ?? | | ?? | | | 58 ?? | | ?? | | 017d | | ?? | | ?? | | ?? | | ?? | | ?? | | | 60 ?? | | 01ce | | ?? | | 010d | | 010f | | 011b | | ?? | | 01e7 | | | 68 021 | f | 01d0 | | 01f0 | | 01e9 | | 013e | | ?? | | 0148 | | 01d2 | | | 70 ?? | | ?? | | 0159 | | 0161 | | 0165 | | 01d4 | | ?? | | ?? | | | 78 ?? | | ?? | | 017e | | ?? | | ?? | | ?? | | ?? | | ?? | | | + | +- | | + | | +- | | + | | + | | + | | + | | + | Table B.14: Mapping of T.61 Caron Accent Combinations # Intellectual Property Rights The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director. ## Full Copyright Copyright (C) The Internet Society (2003). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.