
Network Working Group Rob Weltman
INTERNET-DRAFT Netscape Communications Corp.
Intended Category: Standards Track Christine Tomlinson
June 7, 2004 Sun Microsystems, Inc.
Expires December 6, 2004 Steven Sonntag
 Novell, Inc.

 The Java LDAP Application Program Interface
draft-ietf-ldapext-ldap-java-api-19.txt

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 22, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This document defines a Java [JAVA] language application program
 interface to the Lightweight Directory Access Protocol Version 3
 (LDAP) [LDAPv3], in the form of a class library.

Conventions Used in this Document

https://datatracker.ietf.org/doc/html/draft-ietf-ldapext-ldap-java-api-19.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"

Expires December 6, 2004 [Page 1]

JAVA LDAP API April 2004

 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

Expires December 6, 2004 [Page 2]

JAVA LDAP API April 2004

1. Overview...10
1.1 The LDAP model..10
1.2 Package name..11
1.3 The LDAP classes..11
1.4 The LDAP asynchronous methods.....................................12
1.5 Interfaces..12
1.6 Classes...12
1.7 Exceptions..15
1.8 LDAP API use..15
2. The Java LDAP classes..17
2.1 public class LDAPAttribute..18
2.1.1 Constructors..18
2.1.2 addValue..19
2.1.3 compareTo...19
2.1.4 getBaseName...19
2.1.5 getByteValues...20
2.1.6 getByteValueArray...20
2.1.7 getLangSubtype..20
2.1.8 getName...20
2.1.9 getStringValueArray...20
2.1.10 getStringValues..20
2.1.11 getSubtypes..21
2.1.12 hasSubtype...21
2.1.13 hasSubtypes..21
2.1.14 removeValue..21
2.1.15 size...22
2.2 public class LDAPAttributeSchema..................................22
2.2.1 Constructors..22
2.2.2 getEqualityMatchingRule...23
2.2.3 getOrderingMatchingRule...24
2.2.4 getSubstringMatchingRule..24
2.2.5 getSuperior...24
2.2.6 getSyntaxString...24
2.2.7 getUsage..24
2.2.8 isCollective..24
2.2.9 isSingleValued..25
2.2.10 isUserModifiable...25
2.2.11 Constants of LDAPAttributeSchema...............................25
2.3 public class LDAPAttributeSet.....................................25
2.3.1 Constructors..26
2.3.2 clone...26
2.3.3 getAttribute..26
2.3.4 getSubset...26
2.4 public interface LDAPAuthHandler..................................28
2.4.1 getAuthProvider...28
2.5 public class LDAPAuthProvider.....................................28
2.5.1 Constructors..28
2.5.2 getDN...29

2.5.3 getPassword...29
2.6 public interface LDAPBindHandler..................................29
2.6.1 bind..29
2.7 public class LDAPCompareAttrNames.................................30

Expires December 6, 2004 [Page 3]

JAVA LDAP API April 2004

2.7.1 Constructors..30
2.7.2 compare...31
2.7.3 equals..31
2.7.4 getLocale...32
2.7.5 setLocale...32
2.8 public class LDAPConnection.......................................32
2.8.1 Constructors..32
2.8.2 abandon...33
2.8.3 add...34
2.8.4 addUnsolicitedNotificationListener..............................34
2.8.5 bind..35
2.8.6 clone...38
2.8.7 compare...39
2.8.8 connect...39
2.8.9 delete..40
2.8.10 disconnect...41
2.8.11 extendedOperation..41
2.8.12 fetchSchema..42
2.8.13 finalize...42
2.8.14 getAuthenticationDN..42
2.8.15 getAuthenticationMethod..43
2.8.16 getConstraints...43
2.8.17 getHost..43
2.8.18 getPort..43
2.8.19 getProperty..44
2.8.20 getProtocolVersion...44
2.8.21 getResponseControls..45
2.8.22 getSaslBindCallbackHandler.....................................45
2.8.23 getSaslBindProperties..45
2.8.24 getSchemaDN..45
2.8.25 getSearchConstraints...46
2.8.26 getSocketFactory...46
2.8.27 isBound..46
2.8.28 isConnected..46
2.8.29 isTLS..46
2.8.30 modify...46
2.8.31 read...48
2.8.32 removeUnsolicitedNotificationListener..........................49
2.8.33 rename...50
2.8.34 search...51
2.8.35 setConstraints...54
2.8.36 setSocketFactory...54
2.8.37 startTLS...54
2.8.38 stopTLS..55
2.8.39 Constants of LDAPConnection....................................55
2.9 public class LDAPConstraints......................................56
2.9.1 Constructors..56
2.9.2 getControls...57

2.9.3 getHopLimit...57
2.9.4 getProperty...57
2.9.5 getReferralFollowing..57
2.9.6 getTimeLimit..57

Expires December 6, 2004 [Page 4]

JAVA LDAP API April 2004

2.9.7 setControls...58
2.9.8 setHopLimit...58
2.9.9 setProperty...58
2.9.10 setReferralFollowing...59
2.9.11 setReferralHandler...59
2.9.12 setTimeLimit...59
2.10 public class LDAPControl...59
2.10.1 Constructors...60
2.10.2 clone..60
2.10.3 getID..60
2.10.4 getValue...60
2.10.5 isCritical...60
2.10.6 register...61
2.10.7 setValue...61
2.11 public class LDAPDITContentRuleSchema............................61
2.11.1 Constructors...61
2.11.2 getAuxiliaryClasses..62
2.11.3 getOptionalAttributes..62
2.11.4 getPrecludedAttributes...63
2.11.5 getRequiredAttributes..63
2.12 public class LDAPDITStructureRuleSchema..........................63
2.12.1 Constructors...63
2.12.2 getNameForm..64
2.12.3 getRuleID..64
2.12.4 getSuperiors...64
2.13 public class LDAPDN..65
2.13.1 equals...65
2.13.2 escapeRDN..65
2.13.3 explodeDN..65
2.13.4 explodeRDN...66
2.13.5 isValid..66
2.13.6 normalize..66
2.13.7 unescapeRDN..66
2.14 public class LDAPEntry...67
2.14.1 Constructors...67
2.14.2 compareTo..67
2.14.3 getAttribute...68
2.14.4 getAttributeSet..68
2.14.5 getDN..68
2.15 public class LDAPException.......................................69
2.15.1 Constructors...69
2.15.2 getCause...70
2.15.3 getLDAPErrorMessage..70
2.15.4 getResultCode..71
2.15.5 getMatchedDN...71
2.15.6 resultCodeToString...71
2.15.7 toString...72
2.15.8 Result codes...72

2.16 public class LDAPExtendedOperation...............................73
2.16.1 Constructors...73
2.16.2 getID..74
2.16.3 getValue...74

Expires December 6, 2004 [Page 5]

JAVA LDAP API April 2004

2.16.4 setValue...74
2.17 public class LDAPExtendedResponse................................74
2.17.1 getID..74
2.17.2 getValue...74
2.17.3 register...75
2.18 public class LDAPLocalException..................................75
2.18.1 Constructors...75
2.19 public class LDAPMatchingRuleSchema..............................76
2.19.1 Constructors...76
2.19.2 getAttributes..77
2.19.3 getSyntaxString..77
2.20 public class LDAPMatchingRuleUseSchema...........................77
2.20.1 Constructors...77
2.20.2 getAttributes..78
2.21 public class LDAPMessage...78
2.21.1 getControls..78
2.21.2 getMessageID...79
2.21.3 getType..79
2.22 public interface LDAPMessageQueue................................79
2.22.1 getMessageIDs..79
2.22.2 getResponse..80
2.22.3 isResponseReceived...80
2.22.4 merge..81
2.23 public class LDAPModification....................................81
2.23.1 Constructors...81
2.23.2 getAttribute...82
2.23.3 getOp..82
2.23.4 Constants of LDAPModification..................................82
2.24 public class LDAPNameFormSchema..................................82
2.24.1 Constructors...83
2.24.2 getObjectClass...83
2.24.3 getOptionalNamingAttributes....................................84
2.24.4 getRequiredNamingAttributes....................................84
2.25 public class LDAPObjectClassSchema...............................84
2.25.1 Constructors...84
2.25.2 getOptionalAttributes..85
2.25.3 getRequiredAttributes..85
2.25.4 getSuperiors...85
2.25.5 getType..85
2.25.6 Constants of LDAPObjectClassSchema.............................86
2.26 public class LDAPReferralException...............................86
2.26.1 Constructors...86
2.26.2 getFailedReferral..87
2.26.3 getReferrals...87
2.26.4 setFailedReferral..87
2.27 public interface LDAPReferralHandler.............................87
2.28 public class LDAPResponse..87
2.28.1 getErrorMessage..88

2.28.2 getMatchedDN...88
2.28.3 getReferrals...88
2.28.4 getResultCode..88
2.29 public class LDAPResponseQueue...................................88

Expires December 6, 2004 [Page 6]

JAVA LDAP API April 2004

2.29.1 getMessageIDs..88
2.29.2 getResponse..88
2.29.3 isResponseReceived...88
2.29.4 merge..88
2.30 public class LDAPSchema..88
2.30.1 Constructors...88
2.30.2 getAttributeNames..89
2.30.3 getAttributeSchema...89
2.30.4 getAttributeSchemas..89
2.30.5 getDITContentRuleNames...89
2.30.6 getDITContentRuleSchema..89
2.30.7 getDITContentRuleSchemas.......................................90
2.30.8 getDITStructureRuleNames.......................................90
2.30.9 getDITStructureRuleSchema......................................90
2.30.10 getDITStructureRuleSchemas....................................90
2.30.11 getMatchingRuleNames..90
2.30.12 getMatchingRuleSchema...90
2.30.13 getMatchingRuleSchemas..91
2.30.14 getMatchingRuleUseNames.......................................91
2.30.15 getMatchingRuleUseSchema......................................91
2.30.16 getMatchingRuleUseSchemas.....................................91
2.30.17 getNameFormNames..91
2.30.18 getNameFormSchema...91
2.30.19 getNameFormSchemas..92
2.30.20 getObjectClassNames...92
2.30.21 getObjectClassSchema..92
2.30.22 getObjectClassSchemas...92
2.30.23 getSyntaxSchema...92
2.30.24 getSyntaxSchemas..93
2.31 public abstract class LDAPSchemaElement..........................93
2.31.1 getDescription...93
2.31.2 getNames...93
2.31.3 getID..93
2.31.4 getQualifier...93
2.31.5 getQualifierNames..94
2.31.6 isObsolete...94
2.31.7 setQualifier...94
2.31.8 toString...94
2.32 public class LDAPSearchConstraints...............................94
2.32.1 Constructors...95
2.32.2 getBatchSize...96
2.32.3 getDereference...96
2.32.4 getMaxResults..96
2.32.5 getServerTimeLimit...97
2.32.6 setBatchSize...97
2.32.7 setDereference...97
2.32.8 setMaxResults..97
2.32.9 setServerTimeLimit...98

2.32.10 Constants of LDAPSearchConstraints............................98
2.33 public class LDAPSearchQueue.....................................98
2.33.1 getMessageIDs..98
2.33.2 getResponse..98

Expires December 6, 2004 [Page 7]

JAVA LDAP API April 2004

2.33.3 isComplete...98
2.33.4 isResponseReceived...98
2.33.5 merge..98
2.34 public class LDAPSearchResult....................................98
2.34.1 getEntry...98
2.35 public class LDAPSearchResultReference...........................98
2.35.1 getReferrals...98
2.36 public class LDAPSearchResults...................................99
2.36.1 getCount...99
2.36.2 getResponseControls..99
2.36.3 hasMore..99
2.36.4 next...99
2.37 public interface LDAPSocketFactory...............................99
2.37.1 createSocket...99
2.38 public class LDAPSyntaxSchema....................................99
2.38.1 Constructors..100
2.39 public interface LDAPTLSSocketFactory...........................100
2.39.1 createSocket..100
2.40 public interface LDAPUnsolicitedNotificationListener............100
2.40.1 messageReceived...100
2.41 public class LDAPUrl..101
2.41.1 Constructors..101
2.41.2 decode..102
2.41.3 encode..102
2.41.4 getAttributeArray...102
2.41.5 getAttributes...103
2.41.6 getDN...103
2.41.7 getExtensions...103
2.41.8 getFilter...103
2.41.9 getHost...103
2.41.10 getPort..103
2.41.11 getScope...103
2.41.12 toString...104
3. Implementation considerations.....................................104
3.1 Controls...104
3.2 Referral handling and exceptions.................................104
3.3 Message IDs..106
3.4 Notice of disconnection..106
3.5 Level of compatibility...107
3.6 Dependencies...107
3.7 Invalid responses..107
4. Security considerations...108
5. Acknowledgements..109
6. Bibliography..109
6.1 Normative References...109
6.2 Informative References...110
7. Authors' addresses..110
8. Appendix A - Sample Java LDAP programs............................112

8.1 Java LDAP programs using synchronous methods.....................112
8.2 Java LDAP programs using asynchronous methods....................118
9. Appendix B - Revision history.....................................124
9.1 Changes from ldap-java-api-17.txt................................126

Expires December 6, 2004 [Page 8]

JAVA LDAP API April 2004

9.2 Changes from ldap-java-api-16.txt................................128
9.3 Changes from ldap-java-api-15.txt................................128
9.4 Changes from ldap-java-api-14.txt................................132
9.5 Changes from ldap-java-api-13.txt................................133
9.6 Changes from ldap-java-api-12.txt................................134
9.7 Changes from ldap-java-api-11.txt................................136
9.8 Changes from ldap-java-api-10.txt................................138
9.9 Changes from ldap-java-api-09.txt................................139
9.10 Changes from ldap-java-api-08.txt...............................140
9.11 Changes from ldap-java-api-07.txt...............................140
9.12 Changes from ldap-java-api-06.txt...............................141
9.13 Changes from ldap-java-api-05.txt...............................142
9.14 Changes from ldap-java-api-04.txt...............................142
9.15 Changes from ldap-java-api-03.txt...............................143
9.16 Changes from ldap-java-api-02.txt...............................144
9.17 Changes from ldap-java-api-01.txt...............................144

Expires December 6, 2004 [Page 9]

JAVA LDAP API April 2004

1. Overview

 The LDAP [LDAPv3] class library is designed to provide powerful, yet
 simple, access to LDAP directory services. It defines both
 asynchronous and synchronous APIs to LDAP that suit a wide variety of
 client applications and is capable of generating all possible
 protocol requests and interpreting all possible protocol responses as
 defined by LDAP v3 [LDAPPROTO]. This API does not attempt to provide
 compatibility with earlier versions of LDAP.

 This document gives a brief overview of the LDAP model, then an
 overview of the constituents of the class library. The public class
 methods are described in detail, followed by an appendix that
 provides some example code demonstrating the use of the
 classes, and an appendix listing changes from earlier drafts.

1.1 The LDAP model

 LDAP is the Lightweight Directory Access Protocol, described in
 [LDAPv3]. It defines a lightweight access mechanism by which client
 applications send requests to and receive responses from LDAP
 servers.

 The LDAP information model comes from X.500 [X500] and is based on
 the entry, which contains information about some object (e.g., a
 person). Entries are composed of attributes, which have a type and
 one or more values. Each attribute has a syntax that determines what
 kinds of values are allowed in the attribute (e.g., ASCII characters,
 a jpeg photograph, etc.) and how directory operations act upon these
 values.

 Entries may be organized in a tree structure, usually based on
 political, geographical, and organizational boundaries. Other
 structures are possible, including a flat namespace. Each entry is
 uniquely named relative to its sibling entries by its relative
 distinguished name (RDN) consisting of one or more distinguished
 attribute values from the entry. At most one value from each
 attribute may be used in the RDN. For example, the entry for the
 person Babs Jensen might be named with the "Barbara Jensen" value
 from the cn attribute.

 A globally unique name for an entry, called a distinguished name or
 DN, is constructed by concatenating the sequence of RDNs from the
 entry up to the root of the tree. For example, if Babs worked for the
 Example company, the DN of her entry might be "cn=Barbara
 Jensen,dc=example,dc=com". The DN format used by LDAP is defined in
 [DN].

 Objects in LDAP are identified by an Object Identifier in dot-decimal
 format. Short names are often used as more readable aliases for

Expires December 6, 2004 [Page 10]

JAVA LDAP API April 2004

 Object Identifiers. Object Identifiers in dot-decimal format will be
 referred to as an OID or as OIDs throughout this document.

 Operations are provided to authenticate, search for and retrieve
 information, modify information, and add and delete entries from the
 tree. The protocol is also extensible, allowing operations to be
 extended by "controls" and new "extended" operations to be defined.

 An LDAP server may return referrals or search references if it cannot
 completely service a request (for example if the request specifies a
 directory base outside of the tree managed by the server, the server
 may return a referral. If a search request spans multiple servers, it
 may return one or more search references).

1.2 Limitations
 Before the API implementation encodes and sends a string value to a
 server, the string values are converted from the Java 16-bit Unicode
 format (UCS2) to UTF-8 format, which many LDAPv3 protocol elements
 and valueencodings use. The integrity of double-byte and other non-
 ASCII character sets is fully preserved. Any characters to be sent or
 received, which cannot be represented with Java 16-bit Unicode
 strings must be processed as binary values by the client application.
 Values received from a server which cannot be represented as UCS-2
 characters must be handled as binary values, since they will produce
 undefined results if converted to a Java String.

The next sections give an overview of how the class library is used and
detailed descriptions of the LDAP class methods that implement all of
these functions.

1.3 Package name

 The classes of the LDAP class library have the package name
 org.ietf.ldap.

1.4 The LDAP classes

 The central LDAP class is LDAPConnection. It provides methods to
 establish an authenticated or anonymous connection to an LDAP server,
 as well as methods to search for, modify, compare, delete entries in
 the directory, and establish integrity and confidentiality protective
 services.

 The LDAPConnection class also provides access to settings that are
 specific to the LDAP session (such as limits on the number of results
 returned or timeout limits). An LDAPConnection object can be cloned,
 allowing objects to share a single network connection but use
 different settings (using LDAPConstraints or LDAPSearchConstraints).

 A synchronous search conducted by an LDAPConnection object returns
 results in an LDAPSearchResults object, which can be enumerated to
 access the entries found. Each entry (represented by an LDAPEntry

Expires December 6, 2004 [Page 11]

JAVA LDAP API April 2004

 object) provides access to the attributes (represented by
 LDAPAttribute objects) returned for that entry. Each attribute can
 produce the values found as byte arrays or as Strings.

1.5 The LDAP asynchronous methods

 The LDAP protocol provides synchronous as well as asynchronous
 directory access methods. All asynchronous methods are conducted by
 an LDAPConnection object, take an LDAPMessageQueue object as input,
 and return an LDAPMessageQueue object . The returned LDAPMessageQueue
 object is a message queue associated with the request, and it is the
 responsibility of the client application to read messages out of the
 queue and process them.

 Messages retrieved from an LDAPMessageQueue are objects of type
 LDAPResponse, LDAPSearchResult, or LDAPSearchResultReference. .

 An asynchronous search returns an LDAPMessageQueue object. Search
 results are obtained from that object via the getResponse method. A
 search result is typically an LDAPSearchResult object, which has a
 getEntry method. The LDAPEntry returned by getEntry contains the DN
 and attributes of a single search result.

 None of the ancillary asynchronous classes are intended to be
 instantiated by a client application, so they lack public
 constructors.

1.6 Interfaces

LDAPAuthHandler Interface used to provide credentials for simple bind
when following a referral.
 LDAPBindHandler Interface used to do explicit bind processing
 when following a referral.

 LDAPReferralHandler Interface that is a shared ancestor to
 LDAPBindHandler and LDAPAuthHandler.

 LDAPUnsolicitedNotificationListener Interface that allows a client
 application to be notified when
 unsolicited messages arrive from a
 server.

1.7 Classes

Expires December 6, 2004 [Page 12]

JAVA LDAP API April 2004

 LDAPAttribute Represents the name and values of one
 attribute of a directory entry.

 LDAPAttributeSchema Represents a definition of an attribute
 in a Directory ServerÆs subschema.

 LDAPAttributeSet Represents a collection of
 LDAPAttributes.

 LDAPAuthProvider An encapsulation of reauthentication
 credentials, used when automatically
 following referrals.

 LDAPCompareAttrNames An implementation of Comparator to
 support sorting of search results by one
 or more attributes.

 LDAPConnection The central point for operations on an
 LDAP Directory Server.

 LDAPConstraints Defines options controlling all
 operations on a Directory Server.

 LDAPControl Encapsulates additional parameters for an
 LDAP operation, sent to or received from
 a server.

 LDAPDITContentRuleSchema Represents a DIT content rule in a
 Directory ServerÆs subschema.

 LDAPDITStructureRuleSchema Represents a DIT structure rule in a
 Directory ServerÆs subschema.

 LDAPDN A utility class to facilitate composition
 and decomposition of distinguished names
 (DNs).

 LDAPEntry Represents a single entry in a directory.

Expires December 6, 2004 [Page 13]

JAVA LDAP API April 2004

 LDAPExtendedOperation Encapsulates the OID and data associated
 with the sending or receiving of an
 extended operation.

 LDAPExtendedResponse The response returned by an LDAP server
 on an extended operation request. It
 extends LDAPResponse.

 LDAPMatchingRuleSchema Represents the schematic definition of a
 matching rule in a Directory ServerÆs
 subschema.

 LDAPMatchingRuleUseSchema Represents a matching rule use in a
 Directory ServerÆs subschema.

 LDAPMessage Base class for LDAP request and response
 messages. Subclassed by response messages
 used in asynchronous operations.

 LDAPMessageQueue Represents a queue of incoming
 asynchronous messages from the server.

 LDAPModification A single add/delete/replace operation to
 an LDAPAttribute.

 LDAPNameFormSchema Represents a name form in a Directory
 ServerÆs subschema.

 LDAPObjectClassSchema Represents the schematic definition of an
 object class in a Directory ServerÆs
 subschema.

 LDAPResponse Represents a message received from an
 LDAP server in response to an
 asynchronous request. It extends
 LDAPMessage.

 LDAPSchema Represents the subschema controlling one
 or more entries held by a Directory
 Server.

 LDAPSchemaElement Base class for representing LDAP
 subschema elements.

Expires December 6, 2004 [Page 14]

JAVA LDAP API April 2004

 LDAPSyntaxSchema Represents a syntax definition in a
 Directory ServerÆs subschema.

 LDAPSearchConstraints Defines the options controlling search
 operations.

 LDAPSearchResult A single search result that is in
 response to an asynchronous search
 operation. It extends LDAPMessage.

 LDAPSearchResultReference A continuation reference from an
 asynchronous search operation. It extends
 LDAPMessage.

 LDAPSearchResults The enumerable results of a search
 operation.

 LDAPUrl Represents an LDAP Url [LDAPURL].

1.8 Exceptions

 LDAPException General exception, which includes an error
 message and an LDAP API local error code or
 server result code.

 LDAPLocalException Derived from LDAPException and is an exception
 generated by the API implementation, i.e., an
 exception not received from the server.

 LDAPReferralException Derived from LDAPException and contains a list
 of URLs corresponding to a single referral or
 search continuation response received on an
 LDAP operation.

1.9 LDAP API use

 An application generally uses the LDAP API in four steps.

 - Construct an LDAPConnection. Initialize an LDAP session with a

Expires December 6, 2004 [Page 15]

JAVA LDAP API April 2004

 Directory Server. Supplying an optional SocketFactory during
 connection creation may enable an SSL or TLS session. The
 LDAPConnection.connect() call establishes a handle to the
 session, allowing multiple sessions to be open at once, on
 different instances of LDAPConnection.

 - Optionally authenticate to the LDAP server with
 LDAPConnection.bind().

 - Perform some LDAP operations and obtain some results.
 The synchronous version of LDAPConnection.search() returns an
 LDAPSearchResults object which can be enumerated to access all
 entries found. The asynchronous version of
 LDAPConnection.search() returns anLDAPMessageQueue, which is
 used to read the results of the search. LDAPConnection.read()
 returns a single entry. Other methods allow other operations
 such as add, delete, and modify to be performed.

 - Close the connection. The LDAPConnection.disconnect() callcloses
 the connection.

 There are both synchronous and asynchronous versions of the LDAP
 protocol operations described in this specification. Synchronous
 methods do not return until the operation has completed.

 Asynchronous methods take an LDAPMessageQueue parameter and return an
 LDAPMessageQueue object which is used to enumerate the responses from
 the server. A loop is typically used to read from the queue object,
 which blocks until there is a response available, until the operation
 has completed.

 An LDAPMessageQueue may be shared between operations for multiplexing
 the results. In this case, the object returned on one operation is
 passed in to one or more other operations, rather than passing in
 null.

 For the asynchronous methods, exceptions are raised only for
 connection errors and API errors (LDAPLocalException). LDAP result
 messages are converted into LDAPResponse objects which are to be
 checked by the client application for errors and referrals, whereas
 the synchronous methods throw an LDAPException on result codes other
 than success(0), compareTrue(5), and compareFalse(6).

 To facilitate user feedback during synchronous searches, intermediate
 search results can be obtained before the entire search operation is
 completed by specifying, in an LDAPSearchConstraints object, the
 number of entries to return at a time.

 Errors result in the throwing of an LDAPException, with a specific

 result code and context-specific textual information, if available.

Expires December 6, 2004 [Page 16]

JAVA LDAP API April 2004

 Methods implemented by the API that return an array MUST return an
 empty array if no values are present to return, unless otherwise
 specified.

 If null is passed as the value of an LDAPConstraints or
 LDAPSearchConstraints parameter to an operation, the default
 constraints are used for that operation.

 If null is passed as the value of a DN to an operation it is treated
 as if it was the empty string.

 When using synchronous APIs, the client application doesn't
 distinguish between LDAP search continuation references and LDAP
 referrals, as the API presents a unified interface for handling the
 two. This document generically refers to continuation references and
 referrals as simply referrals or referral following. The API gives
 the application two options for handling referrals.

1.9.1 Default Referral Handling

 By default, referrals are not followed automatically. The application
 receives a referral and either ignores it or explicitly issues a new
 request to the referred-to servers.

1.9.2 Automatic Referral Following

 The application, if using synchronous requests, can choose to let the
 library automatically follow the referrals. When automatic referral
 following is selected, a referral is followed by default with
 anonymous credentials using the protocol version, socket factory, and
 TLS [TLS][LDAPTLS] of the original connection. Socket factories
 supplied by the client application can determine if and when TLS
 client credentials are to be disclosed.

 If default referral following is not desired when automatically
 following referrals, the application can instruct the library to
 follow referrals with an authenticated connection by providing a
 reauthentication object to supply credentials for a simple bind.

 For greater flexibility, the client application can provide an object
 that creates, binds, and manages authenticated connections for use by
 the API implementation when automatically following referrals.

2. The Java LDAP classes

 The following sections describe the LDAP classes in more detail.

Expires December 6, 2004 [Page 17]

JAVA LDAP API April 2004

2.1 public class LDAPAttribute
 implements Cloneable, Serializable, Comparable

 The LDAPAttribute class represents the name and values of an
 attribute. It is used to specify an attribute to be added to, deleted
 from, or modified in a Directory entry. It is also returned on a
 search of a Directory.

 It should be noted that attribute name (called Attribute Description
 in the LDAP Protocol [LDAPPROTO]) consists of an Attribute Type and
 Attribute Options. Attribute Type can be expressed as an OID or as
 one of its short names. The API implementation is not required to
 make a mapping of short names and the OID. The Attribute Type MAY be
 followed by one or more options. The implementation MUST treat the
 name and options as case insensitive and return name and options as
 lower case strings. No ordering can be implied on the options.

2.1.1 Constructors

 public LDAPAttribute(LDAPAttribute attr)

 Constructs an attribute with copies of all values of the input
 attribute.

 public LDAPAttribute(String attrName)

 Constructs an attribute with no values.

 public LDAPAttribute(String attrName,
 byte[] attrBytes)

 Constructs an attribute with a byte-formatted value.

 public LDAPAttribute(String attrName,
 String attrString)

 Constructs an attribute that has a single string value.

 public LDAPAttribute(String attrName,
 String[] attrStrings)

 Constructs an attribute that has an array of string values.

 Parameters are:

 attr An attribute to use as template.

Expires December 6, 2004 [Page 18]

JAVA LDAP API April 2004

 attrName Name of the attribute.

 attrBytes Value of the attribute as raw bytes.

 attrString Value of the attribute as a String.

 attrStrings Array of values as Strings.

 IllegalArgumentException is thrown if any of the attribute values is
 null.

2.1.2 addValue

 public void addValue(String attrString)

 Adds a string value to the attribute.

 public void addValue(byte[] attrBytes)

 Adds a byte[]-formatted value to the attribute.

 Parameters are:

 attrString Value of the attribute as a String.

 attrBytes Value of the attribute as raw bytes.

 Adding a value which is already present has no effect.

2.1.3 compareTo

 public int compareTo(Object obj)

 Compares this object with the specified object for order. Ordering is
 determined by comparing normalized attribute names and options (see
 getName()) using the compareTo() method of the String class. Returns
 a negative integer, zero, or a positive integer as this object is
 less than, equal to, or greater than the specified object.

 Parameters are:

 obj The object to be compared to this object.

2.1.4 getTypeName

 public String getTypeName()

Expires December 6, 2004 [Page 19]

JAVA LDAP API April 2004

 public static String getTypeName(String attrName)

 Returns the type name of the attribute. For example, if the attribute
 name is cn;lang-ja;phonetic, this method returns cn. The name may be
 an OID.

 attrName Name of the attribute to extract the type name
 from.

2.1.5 getByteValues

 public Enumeration getByteValues()

 Returns an enumerator for the values of the attribute in byte[]
 format.

2.1.6 getByteValueArray

 public byte[][] getByteValueArray()

 Returns the values of the attribute as an array of byte[].

2.1.7 getName

 public String getName()

 Returns the normalized name of the attribute, i.e. the attribute
 type, and its options, if any.

2.1.8 getStringValueArray

 public String[] getStringValueArray()

 Returns the values of the attribute as an array of Strings. This
 method should only be called if the attribute values are known to be
 strings. The returned Strings have undefined values if the attribute
 values do not consist of valid UTF-8 character encodings.

2.1.9 getStringValues

 public Enumeration getStringValues()

 Returns an enumerator for the string values of an attribute. This
 method should only be called if the attribute values are known to be
 strings. The returned Stringvalues are undefined if the values do not

 consist of valid UTF-8 character encodings.

Expires December 6, 2004 [Page 20]

JAVA LDAP API April 2004

2.1.10 getOptions

 public String[] getOptions()

 public static String[] getOptions(String attrName)

 Extracts the options from the specified attribute name. For example,
 if the attribute name is cn;lang-ja;phonetic, this method returns an
 array containing lang-ja and phonetic. The options may be returned in
 any order.

 Parameters are:

 attrName Name of the attribute to extract the options
 from.

2.1.11 hasOption

 public boolean hasOption(String option)

 Reports if the attribute name contains the specified option. For
 example, if you check for the option lang-en and the attribute name
 is cn;lang-en;phonetic, this method returns true.

 Parameters are:

 option The single option to check for.

2.1.12 hasOptions

 public boolean hasOptions(String[] options)

 Reports if the attribute name contains at least the specified
 options. For example, if you check for the options lang-en and
 phonetic and if the attribute name is cn;lang-en;phonetic, this
 method returns true. If the attribute name is cn;phonetic or cn;lang-
 en, this method returns false. The options may be specified in any
 order.

 Parameters are:

 options An array of subtypes to check for.

2.1.13 removeValue

 public void removeValue(String attrString)

 Removes a string value from the attribute.

Expires December 6, 2004 [Page 21]

JAVA LDAP API April 2004

 public void removeValue(byte[] attrBytes)

 Removes a byte[]-formatted value from the attribute. The value to be
 removed must match, byte for byte, the specified value.

 Parameters are:

 attrString Value of the attribute as a String.

 attrBytes Value of the attribute as raw bytes.

 Removing a value which is not present in the attribute has no effect.

2.1.14 size

 public int size()

 Returns the number of values of the attribute.

2.2 public class LDAPAttributeSchema
 extends LDAPSchemaElement

 The LDAPAttributeSchema class represents the definition of an
 attribute. It is used to query attribute syntax, and to add or delete
 an attribute definition in a DirectoryÆs subschema. See [ATTR] for a
 description of attribute representation in LDAP.

2.2.1 Constructors

 public LDAPAttributeSchema(String[] names,
 String oid,
 String description,
 String syntaxString,
 boolean single,
 String superior,
 boolean obsolete,
 String equality,
 String ordering,
 String substring,
 boolean collective,
 boolean userMod,
 int usage)

 Constructs an attribute definition for adding to or deleting from a

 DirectoryÆs subschema.

 public LDAPAttributeSchema(String raw)

Expires December 6, 2004 [Page 22]

JAVA LDAP API April 2004

 Constructs an attribute definition from an encoding using the
 AttributeTypeDescription syntax [ATTR].

 Parameters are:

 names Name(s) of the attribute.

 oid OID of the attribute.

 description Optional description of the attribute.

 syntaxString OID of the syntax of the attribute.

 single true if the attribute is to be single-valued.

 superior Optional name of the attribute type which this
 attribute type derives from; null if there is no
 superior attribute type.

 obsolete true if this attribute is obsolete.

 equality OID of the equality matching rule for the
 attribute ; or null if none.

 ordering OID of the ordering matching rule for the, or
 null if none.

 substring OID of the substring matching rule for the
 attribute, or null if none.

 collective true if this is a collective attribute.

 userMod true if the attribute is modifiable by users.

 usage One of the following constants (see 2.2.11):

 USER_APPLICATIONS
 DIRECTORY_OPERATION
 DISTRIBUTED_OPERATION
 DSA_OPERATION

 raw An attribute definition encoded using the
 AttributeTypeDescription syntax [ATTR].

2.2.2 getEqualityMatchingRule

 public String getEqualityMatchingRule ()

Expires December 6, 2004 [Page 23]

JAVA LDAP API April 2004

 Returns the OID of the equality matching rule in effect for this
 attribute, or null if there is none.

2.2.3 getOrderingMatchingRule

 public String getOrderingMatchingRule ()

 Returns the OID of the ordering matching rule in effect for this
 attribute, or null if there is none.

2.2.4 getSubstringMatchingRule

 public String getSubstringMatchingRule ()

 Returns the OID of the substring matching rule in effect for this
 attribute, or null if there is none.

2.2.5 getSuperior

 public String getSuperior()

 Returns the name of the attribute type which this attribute derives
 from, or null if there is no superior attribute.

2.2.6 getSyntaxString

 public String getSyntaxString()

 Returns the OID of the syntax of the attribute.

2.2.7 getUsage

 public int getUsage ()

 Returns one of the following constants (see 2.2.11):

 USER_APPLICATIONS
 DIRECTORY_OPERATION
 DISTRIBUTED_OPERATION
 DSA_OPERATION

2.2.8 isCollective

 public boolean isCollective ()

 Returns true if the attribute is collective.

Expires December 6, 2004 [Page 24]

JAVA LDAP API April 2004

2.2.9 isSingleValued

 public boolean isSingleValued()

 Returns true if the attribute is single-valued.

2.2.10 isUserModifiable

 public boolean isUserModifiable ()

 Returns true if the attribute is modifiable by users.

2.2.11 Constants of LDAPAttributeSchema

 The constants correspond to those defined in RFC 2252 [ATTR]:
 userApplications, directoryOperation, distributedOperation, and
 dSAOperation. The table below gives the constant name followed by
 its value.

 USER_APPLICATIONS (0) An ordinary user attribute

 DIRECTORY_OPERATION (1) An operational attribute used for a
 directory operation or which holds a
 directory specific value

 DISTRIBUTED_OPERATION (2) An operational attribute used to hold
 server (DSA) information that is shared
 among servers holding replicas of the
 entry

 DSA_OPERATION (3) An operational attribute used to hold
 server (DSA) information that is local
 to a server

2.3 public class LDAPAttributeSet
 implements Cloneable, Serializable, Set

 An LDAPAttributeSet is a collection of LDAPAttributes, as returned in
 an entry on a search or read operation, or is used to construct an
 entry to be added to a directory. If add() or addAll() is called and
 one or more of the objects to be added is not an LDAPAttribute,
 ClassCastException is thrown (as discussed in the documentation for
 java.util.Collection). To remove an attribute, remove() is called
 with the LDAPAttribute object to remove.

https://datatracker.ietf.org/doc/html/rfc2252

Expires December 6, 2004 [Page 25]

JAVA LDAP API April 2004

2.3.1 Constructors

 public LDAPAttributeSet()

 Constructs a new set of attributes. This set is initially empty.

2.3.2 clone

 public Object clone()

 Returns a deep copy of this attribute set.

2.3.3 getAttribute

 public LDAPAttribute getAttribute(String attrDesc)

 Returns the attribute matching the specified attribute description.
 The returned attribute has just the options specified for the given
 attribute type or null if none. Note: no order is implied with
 attribute options.Parameters are:

 attrDesc Description of the attribute. The description
 consists of the attribute type and any attribute
 options. Note: the attribute description is case
 insensitive and the options are not ordered. The
 options specify the exact set of attribute
 options that must be present when selecting the
 attribute.

 For example,

 getAttribute("cn") returns only the "cn" attribute
 that has no options.
 getAttribute("cn;lang-en") returns only the "cn;lang-en"
 attribute.
 getAttribute(ôcn;lang-en;lang-en-usö)
 returns the ôcnö attribute with the ôlang-en-usö option and the
 ôlangenö option. Note: the options
 can be in any
 order.getAttribute("cn", null)
 returns all the "cn" attributes,
 without regard to options.
 getAttribute("cn", new String[] {ôlang-enö})
 returns any "cn" attributes that
 have the lang-en attribute.
2.3.4 getSubset

 public LDAPAttributeSet getSubset(String options)

Expires December 6, 2004 [Page 26]

JAVA LDAP API April 2004

 Returns a new attribute set containing only the attributes that have
 at least the specified options. If no attributes have the specified
 options, an empty LDAPAttributeSet is returned.

 Public LDAPAttributeSet getSubset(String attrType, String options)

 Returns a new attribute set containing only the attributes that have
 the specified attribute type and at least the specified options. If
 no attributes have the specified type and options, an empty
 LDAPAttributeSet is returned.

 For example, suppose an attribute set contains the following
 attributes:

 cn
 cn;lang-ja
 cn;lang-ja;phoentic sn;lang-ja;phonetic
 sn;lang-us

 Calling the getSubset method and passing lang-ja as the argument, the
 method returns an attribute set containing the following attributes:

 cn;lang-ja
 sn;lang-ja;phonetic

 Calling the getSubset method and passing type cn and lang-ja as the
 argument returns an attribute set containing the following
 attributes:

 cn;lang-ja
 cn;lang-ja;phoentic

 Parameters are:

 attrType û the attribute type of the attributes to include in the
 attribute set. Any options specified with this
 parameter are ignored. If null, all attributes
 matching the specified options are returned in
 the subset.

 options - Semi-colon delimited list of subtypes to include. The
 options can be specified in any order. If null,
 all attributes of the specified type are
 returned. For example:

 "lang-ja" // The lang-ja option

 "binary;lang-ja" // The binary and the lang-ja
 // options

Expires December 6, 2004 [Page 27]

JAVA LDAP API April 2004

2.4 public interface LDAPAuthHandler
 extends LDAPReferralHandler

 Used by the API only if automatic referral handling is enabled in
 LDAPConstraints. The API ignores instances of this class if referral
 following is disabled (the default referral following behavior).

2.4.1 LDAPAuthHandler is used by the API to obtain credentials for
reauthentication (simple bind) when automatically following a referral.
If set in an LDAPContraints instance, an applicationÆs implementation of
LDAPAuthHandler is called during referral processing and returns an
LDAPAuthProvider. An application may specify an instance of an
LDAPConstraints class to be used on a single operation (as a method
parameter) or for all operations (as connection
constraints).getAuthProvider

 public LDAPAuthProvider getAuthProvider(String host, int port)

 Returns an object which can provide credentials to simple bind for
 authenticating to a server at the provided host name and port number.

 Parameters are:

 host Contains a host identifier representing the IP
 address of a host running an LDAP server. See
 2.8.9 for a discussion of valid identifiers.

 port Contains the TCP port number to connect to.

2.5 public class LDAPAuthProvider

2.5.1 Represents information the API uses to authenticate the
application in cases where the the application has set an
LDAPAuthHandler in LDAPContraints to facilitate automatic referral
following. Constructors

 public LDAPAuthProvider(String dn,
 byte[] password)

 Constructs information that is used by the application for simple
 bind authentication
 when following referrals automatically.

 Parameters are:

Expires December 6, 2004 [Page 28]

JAVA LDAP API April 2004

 dn Distinguished name to use in authenticating to
 the server.

 password The UTF-8 or binary representation of the
 password to use in authenticating to the server,
 represented as a byte array.

2.5.2 getDN

 public String getDN()

 Returns the distinguished name to be used for reauthentication on
 automatic referral following.

2.5.3 getPassword

 public byte[] getPassword()

 Returns the password to be used for reauthentication on automatic
 referral following.

2.6 public interface LDAPBindHandler
 extends LDAPReferralHandler

 Used by the API to perform bind operations during the processing of a
 referral inorder to follow it. If set in an LDAPContraints instance,
 an applicationÆs implementation of LDAPBindHandler is called during
 referral processing and returns an authenticated connection to the
 referred server. An application may set an instance of this class in
 an LDAPConstraints object to be used on a single LDAP operation (as a
 method parameter) or for all LDAP operations (through connection
 constraints). An application implementating LDAPBindHandler can
 perform any sequence of valid LDAP operations before returning to the
 API, as long as as it returns a connection to the referred server. If
 LDAPAuthHandler or LDAPBindHandler are not specified, referrals and
 search references followed automatically use anonymous
 authentication.

2.6.1 bind

 public LDAPConnection bind(String[] ldapurl, LDAPConnection conn)
 throws LDAPReferralException

 This method is called by LDAPConnection when a referral or search

 continuation is received, and is responsible for binding to one of
 the hosts in the list specified by the ldapurl parameter (which

Expires December 6, 2004 [Page 29]

JAVA LDAP API April 2004

 corresponds exactly to the list of hosts returned in a single
 referral or search continuation response). An implementation may
 access the host, port, socket factoryand other information in the
 original LDAPConnection object to decide on an appropriate
 authentication mechanism, and/or may interact with a user or external
 module. The object implementing LDAPBindHandler creates a new
 LDAPConnection object to perform its connect and bind calls. It
 returns the new connection when both the connect and bind operations
 succeed on one host from the list. The LDAPConnection object referral
 following code uses the new LDAPConnection object when it resends the
 search request, updated with the new search base and possibly search
 filter. An LDAPReferralException is thrown on failure.

 The API implementation dereferences the new LDAPConnection when
 referral following has finished, but does not call disconnect. This
 allows the applicationÆs implementation of LDAPBindHandler to do
 connection pooling when managing connections for referral following.

 Parameters are:

 ldapurl List of LDAP server URLs. There is no order
 implied by the list.

 conn An established connection to an LDAP server.

2.7 public class LDAPCompareAttrNames
 implements Comparator

 An object of this class defines ordering when sorting search results.
 When using this Comparator, LDAPEntry objects are sorted by the
 values of the attribute name(s) passed in the constructor, in
 ascending or descending order. The object is typically supplied to an
 implementation of the collection interfaces such as java.util.TreeSet
 which performs the sort.

2.7.1 Constructors

 public LDAPCompareAttrNames(String attrName)

 Constructs an object that will sort results by a single attribute, in
 ascending order.

 public LDAPCompareAttrNames(String attrName,
 boolean ascendingFlag)

 Constructs an object that will sort results by a single attribute, in
 either ascending or descending order.

Expires December 6, 2004 [Page 30]

JAVA LDAP API April 2004

 public LDAPCompareAttrNames(String[] attrNames)

 Constructs an object that will sort by one or more attributes, in the
 order provided, in ascending order.

 public LDAPCompareAttrNames(String[] attrNames,
 boolean[] ascendingFlags)
 throws LDAPException

 Constructs an object that will sort by one or more attributes in the
 order provided, in either ascending or descending order for each
 attribute.

 Parameters are:

 attrName Name of an attribute to sort by.

 attrNames Array of names of attributes to sort by.

 ascendingFlag true to sort in ascending order, false for
 descending order.

 ascendingFlags Array of flags, one for each value in attrNames,
 where each one is true to sort in ascending
 order, false for descending order. An
 LDAPException is thrown if the length of
 ascendingFlags is not equal to the length of
 attrNames.

2.7.2 compare

 public int compare(Object o1, Object o2)

 Compares its two arguments for order. Returns a negative integer,
 zero, or a positive integer as the first argument is less than, equal
 to, or greater than the second. Throws ClassCastException if o1 or o2
 is not an LDAPEntry.

 Parameters are:

 o1 Target entry for comparison.

 o2 Entry to be compared to.

2.7.3 equals

 public boolean equals(Object obj)

Expires December 6, 2004 [Page 31]

JAVA LDAP API April 2004

 Returns a value of true only if the specified object is also a
 comparator and it imposes the same ordering as this comparator.

 Parameters are:

 obj The reference object with which to compare.

2.7.4 getLocale

 public Locale getLocale()

 Returns the Locale to be used for sorting, if a Locale has been
 specified. If null, a basic String.compareTo() is used for collation.
 If non-null, a Locale-specific collation is used.

2.7.5 setLocale

 public void setLocale(Locale locale)

 Sets the Locale to be used for sorting.

 Parameters are:

 locale The Locale to be used for sorting.

2.8 public class LDAPConnection
 implements Cloneable

 LDAPConnection is the central class that encapsulates the connection
 to a Directory Server through the LDAP protocol. An LDAPConnection
 object is not connected on construction, and may only be connected to
 one server at one port. Multiple threads may share this single
 connection, and an application may have more than one LDAPConnection
 object, connected to the same or different Directory Servers.
 Implementations of the API MUST ensure that methods of the
 LDAPConnection class are thread-safe.

2.8.1 Constructors

 public LDAPConnection()

 Constructs a new LDAPConnection object, which represents a connection
 to an LDAP server.

 Calling the constructor does not actually establish the connection.

 The connect or bind methods are used to connect to the LDAP server.

Expires December 6, 2004 [Page 32]

JAVA LDAP API April 2004

 public LDAPConnection(SocketFactory factory)

 Constructs a new LDAPConnection object, which will use the supplied
 SocketFactory class to construct a socket connection during
 LDAPConnection.connect(). If a security manager exists and the
 caller does not have permission to set a factory, SecurityException
 is thrown.

 Parameters are:

 factory An object capable of producing a Socket.

2.8.2 abandon

 public void abandon(LDAPSearchResults results)
 throws LDAPException

 public void abandon(LDAPSearchResults results, LDAPConstraints cons)
 throws LDAPException

 public void abandon(int id)
 throws LDAPException

 public void abandon(int id, LDAPConstraints cons)
 throws LDAPException

 public void abandon(LDAPMessageQueue queue)
 throws LDAPException

 public void abandon(LDAPMessageQueue queue, LDAPConstraints cons)
 throws LDAPException

 Either notifies the server to not send additional results associated
 with this LDAPSearchResults object, and discards any results already
 received, or abandons one or all operations for an asynchronous
 response queue.

 If the application calls this method for a particular id or
 LDAPSearchResults previously abandoned, the call is ignored. An API
 implementation MUST ignore abandon requests for an id or
 LDAPSearchResults which it does not recognize. The API implementation
 SHOULD NOT send an additional abandon request if it can determine
 that one has already been sent for an id or LDAPSearchResults.

 Parameters are:

 results An object returned from a synchronous search.

Expires December 6, 2004 [Page 33]

JAVA LDAP API April 2004

 id The ID of the asynchronous operation to abandon.
 The ID may be obtained from the response queue
 for the operation.

 queue Handler returned from an asynchronous request.
 All outstanding operations that are managed by
 the queue are abandoned.

 cons Constraints specific to the operation.

2.8.3 add

 public void add(LDAPEntry entry)
 throws LDAPException

 public void add(LDAPEntry entry,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue add(LDAPEntry entry,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue add(LDAPEntry entry,
 LDAPMessageQueue queue,
 LDAPConstraints cons)
 throws LDAPException

 Adds an entry to the directory.

 If the application does not specify attribute values which are valid
 according to the syntax defined for the attributes, or does not
 include all attributes which are required for the entry, the server
 will return an error.

 Parameters are:

 entry LDAPEntry object specifying the distinguished
 name and attributes of the new entry.

 queue Handler for messages returned from a server in
 response to this request. If it is null, a queue
 object is created internally.

 cons Constraints specific to the operation.

2.8.4 addUnsolicitedNotificationListener

 public void addUnsolicitedNotificationListener(

Expires December 6, 2004 [Page 34]

JAVA LDAP API April 2004

 LDAPUnsolicitedNotificationListener listener)

 Registers an object to be notified on arrival of an unsolicited
 message from a server.

 Parameters are:

 listener An object to be notified on arrival of an
 unsolicited message from a server.

2.8.5 bind (simple)

 public void bind(int version,
 String dn,
 byte[] passwd)
 throws LDAPException

 public void bind(int version,
 String dn,
 byte[] passwd,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue bind(int version,
 String dn,
 byte[] passwd,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue bind(int version,
 String dn,
 byte[] passwd,
 LDAPMessageQueue queue,
 LDAPConstraints cons)
 throws LDAPException

 Synchronously authenticates using simple authentication to the LDAP
 server (that the object is currently connected to) using the
 specified name and password, with the specified LDAP protocol
 version. This API is specifically designed for use with LDAPv3.
 Unless the API provides specific support (as defined in other
 documents) for other versions of LDAP, version 3 should be used. If
 the server does not support the requested protocol version, an
 exception is thrown. If the object had already authenticated, the
 old authentication is discarded. If the object has been disconnected
 from an LDAP server, this method attempts to reconnect and

 authenticate to the server.

 Parameters are:

Expires December 6, 2004 [Page 35]

JAVA LDAP API April 2004

 version LDAP protocol version requested: currently 3.

 dn If the dn and passwd are non-null and non-empty,
 the connection and all operations through it are
 authenticated with dn as the distinguished name
 and passwd as password. If dn and/or passwd are
 null or empty, the connection is anonymous on
 completion of the simple bind request.

 passwd The UTF-8 or binary representation of the
 password to use in authenticating to the server,
 represented as a byte array. If both the passwd
 and dn are non-null and non-empty, the connection
 and all operations through it are authenticated
 with dn as the distinguished name and passwd as
 password. If dn and/or passwd is null or empty,
 the connection is anonymous on completion of the
 simple bind request.

 queue Handler for asynchronous messages returned from a
 server in response to this request. Ifnull, a
 queue object is created internally.

 cons Constraints specific to the operation.

2.8.6 bind (SASL)

 public void bind(String dn,
 String authzId,
 Map props,
 javax.security.auth.callback.CallbackHandler cbh)
 throws LDAPException

 public void bind(String dn,
 String authzId,
 Map props,
 javax.security.auth.callback.CallbackHandler cbh,
 LDAPConstraints cons)
 throws LDAPException

 public void bind(String dn,
 String authzId,
 String[] mechanisms,
 Map props,
 javax.security.auth.callback.CallbackHandler cbh)
 throws LDAPException

 public void bind(String dn,
 String authzId,

Expires December 6, 2004 [Page 36]

JAVA LDAP API April 2004

 String[] mechanisms,
 Map props,
 javax.security.auth.callback.CallbackHandler cbh,
 LDAPConstraints cons)
 throws LDAPException

 Synchronously authenticates using SASL authentication to the LDAP
 server (that the object is currently connected to) using the
 specified name and one of a specified set of mechanisms. If none of
 the requested SASL [SASL][AUTH][JAVASASL] mechanisms is available, an
 exception is thrown. If the object had already authenticated, the
 old authentication is discarded. If the object has been disconnected
 from an LDAP server, this method attempts to reconnect to the server.
 A SASL bind call may involve multiple protocol requests and
 responses. An attempt to invoke an operation other than bind or
 unbind between bind requests in a multi-stage bind, results in an
 LDAPException with the result code SASL_BIND_IN_PROGRESS.Parameters
 are:

 dn The distinguished name to use as the bind name.
 It may be null or empty. This value is not used
 as either a SASL authentication nor authorization
 identity. The application provides these
 identities through the callback handler.

 authzId If not null and not empty, an LDAP authzID [AUTH]
 to be passed to the SASL layer. If null or empty,
 the authzId will be treated as an empty string
 and processed as per RFC 2222 [SASL].

 mechanisms An array of IANA-registered SASL mechanisms which
 the client application is willing to use for
 authentication. Null or an empty array may be
 specified to abort the negotiation, forcing the
 server to return an AUTH_METHOD_NOT_SUPPORTED
 result.

 props Optional qualifiers for the authentication
 session.

 cbh A class which may be called by the SASL client
 implementation to obtain additional information
 required, such as additional credentials.

 cons Constraints specific to the operation.

 See [JAVASASL] for additional information about the above parameters.

https://datatracker.ietf.org/doc/html/rfc2222

Expires December 6, 2004 [Page 37]

JAVA LDAP API April 2004

2.8.7 clone

 public Object clone()

 Returns a copy of the object with a private context, but sharing the
 network connection if there is one. The network connection remains
 open until all clones have disconnected or gone out of scope. Any
 connection opened after cloning is private to the object making the
 connection.

 The clone can freely modify options and search constraints, and issue
 requests, without affecting the source object or other clones. If the
 clone disconnects or reconnects, it is completely dissociated from
 the source object and other clones. Reauthenticating in a clone,
 however, is a global operation which will affect the source object
 and all associated clones, because it applies to the single shared
 physical connection. Any request by an associated object after one
 has reauthenticated will carry the new identity.

 Methods that are global in nature and which affect the source object
 are:

 addUnsolicitedNotificationListener
 bind
 connect
 disconnect
 finalize
 removeUnsolicitedNotificationListener
 startTLS

 The following methods return data that is from the source object and
 is the same for all clones of LDAPConnection:

 getAuthenticationDN
 getAuthenticationMethod
 getHost
 getPort
 getProtocolVersion
 getSaslBindCallBackHandler
 getSaslBindProperties
 getSocketFactory
 isBound
 isConnected
 isTLS

 The following methods manipulate or retrieve data that is unique to
 each clone of LDAPConnection:

 getConstraints

 getResponseControls
 getSearchConstraints
 setConstraints

Expires December 6, 2004 [Page 38]

JAVA LDAP API April 2004

2.8.8 compare

 public boolean compare(String dn,
 LDAPAttribute attr)
 throws LDAPException

 public boolean compare(String dn,
 LDAPAttribute attr,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue compare(String dn,
 LDAPAttribute attr,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue compare(String dn,
 LDAPAttribute attr,
 LDAPMessageQueue queue,
 LDAPConstraints cons)
 throws LDAPException

 Checks to see if an entry in the Directory Server contains an
 attribute with a specified
 value. The synchronous methods return a value of true if the entry
 has the value, and false if the entry does not have the value or the
 attribute. The method throws an IllegalArgumentException if
 LDAPAttribute object specified by the attr parameter contains more
 than one value.
 Parameters are:

 dn The distinguished name of the entry to use in the
 comparison.

 attr The attribute to compare against the entry. The
 method checks to see if the entry has an
 attribute with the same name and value as this
 attribute.

 queue Handler for messages returned from a server in
 response to this request. If it is null, a queue
 object is created internally.

 cons Constraints specific to the operation.

2.8.9 connect

 public void connect(String host,
 int port)

Expires December 6, 2004 [Page 39]

JAVA LDAP API April 2004

 throws LDAPException

 Connects to the specified host and port. If this LDAPConnection
 object represents an open connection, the connection is closed first
 before the new connection is opened. At this point there is no
 authentication, and any operations will be conducted as an anonymous
 client.

 Parameters are:

 host Contains a host identifier consisting of a
 hostname, an IPv4 dotted string, or an IPv6
 reference [IPv6] representing the IP address of a
 host running an LDAP server to connect to.
 Alternatively, it may contain a list of host
 identifiers, space-delimited. Each host
 identifier may include a trailing colon and port
 number. IPv6 identifiers with a port number are
 represented with square brackets around the IP
 address part as per [IPv6URL]. In the case where
 more than one host identifier is specified, each
 host identifier in turn will be contacted until a
 connection can be established. Examples:

 "directory.example.com"
 "192.0.2.0"
 "[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]:4389"
 "directory.example.com:1050 people.catalog.com 192.0.2.0"

 port Port number for LDAP server (use
 LDAPConnection.DEFAULT_PORT for default port).
 "port" is ignored for any host identifier which
 includes a colon and port number.

2.8.10 delete

 public void delete(String dn) throws LDAPException

 public void delete(String dn,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue delete(String dn,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue delete(String dn,
 LDAPMessageQueue queue,

 LDAPConstraints cons)
 throws LDAPException

Expires December 6, 2004 [Page 40]

JAVA LDAP API April 2004

 Deletes the entry for the specified DN from the directory.

 Parameters are:

 dn Distinguished name of the entry to delete.

 queue Handler for messages returned from a server in
 response to this request. If it is null, a queue
 object is created internally.

 cons Constraints specific to the operation.

2.8.11 disconnect

 public void disconnect() throws LDAPException

 public void disconnect(LDAPConstraints cons) throws LDAPException

 Disassociates the LDAPConnection object from clones and any physical
 connection to an LDAP server. If the object is the last clone sharing
 a physical connection, the method closes the connection with the LDAP
 server. The API implementation sends an Unbind request to the server
 with any controls specified by the LDAPConstraints object before
 closing the connection. Before the application can perform LDAP
 operations again, it MUST reconnect to a server by calling either
 connect or bind (bind will attempt to reconnect to the previous
 server).

 Parameters are:

 cons Constraints to be sent with the unbind request.

2.8.12 extendedOperation

 public LDAPExtendedResponse extendedOperation(
 LDAPExtendedOperation op)
 throws LDAPException

 public LDAPExtendedResponse extendedOperation(
 LDAPExtendedOperation op,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue extendedOperation(
 LDAPExtendedOperation op,

 LDAPMessageQueue queue)
 throws LDAPException

Expires December 6, 2004 [Page 41]

JAVA LDAP API April 2004

 public LDAPMessageQueue extendedOperation(
 LDAPExtendedOperation op,
 LDAPConstraints cons,
 LDAPMessageQueue queue)
 throws LDAPException

 Provides a means to access extended, non-mandatory operations offered
 by a particular LDAP version 3 compliant server.

 Returns an operation-specific object, containing an OID and an Octet
 String or BER-encoded value(s).

 Parameters are:

 op Object which contains the OID of the extended
 operation and any operation-specific data.

 cons Constraints specific to the operation.

2.8.13 fetchSchema

 public LDAPSchema fetchSchema(String schemaDN)
 throws LDAPException

 Retrieves the schema associated with a particular schema DN in the
 Directory Server. The schema DN for a particular entry is obtained by
 calling the getSchemaDN method of LDAPConnection (see 2.8.25).

 An LDAPException is thrown if the schema cannot be retrieved.

 Parameters are:

 schemaDN The schema DN used to fetch the schema.

2.8.14 finalize

 protected void finalize() throws LDAPException

 Closes the connection if open and releases any other resources held
 by the object.

2.8.15 getAuthenticationDN

 public String getAuthenticationDN()

 Returns the distinguished name (DN) used as the bind name during the
 last successful bind operation. null is returned if no authentication

 has been performed or if the bind resulted in an anonymous
 connection.

Expires December 6, 2004 [Page 42]

JAVA LDAP API April 2004

2.8.16 getAuthenticationMethod

 public String getAuthenticationMethod()

 Returns the method used to authenticate the connection. The return
 value is one of the following:

 "none" The current authentication state has not been
 established by use of the bind operation. This
 is the initial state upon connect(), as well as
 if the last bind failed.

 "simple" Simple bind has completed successfully
 (anonymous, unauthenticated, or authenticated)

 "sasl" The current authentication state was established
 by the successful completion of a SASL bind

2.8.17 getConstraints

 public LDAPConstraints getConstraints()

 Returns a copy of the set of constraints associated with this
 connection. These constraints apply to all operations performed
 through this connection (unless a different set of constraints is
 specified when calling an operation method). If no constraints have
 been assigned with setConstraints, a copy of the default constraints
 is returned.

2.8.18 getHost

 public String getHost()

 Returns the host name of the LDAP server to which the object is or
 was last connected, in the format originally specified. If no
 connection attempt has been made, null is returned.

2.8.19 getPort

 public int getPort()

 Returns the port number of the LDAP server to which the object is or
 was last connected. If no connection attempt has been made,
 LDAPConnection.DEFAULT_PORT is returned.

Expires December 6, 2004 [Page 43]

JAVA LDAP API April 2004

2.8.20 getProperty

 public Object getProperty(String name)

 Gets a property of a connection object. The properties are defined by
 the API implementation and not modifiable by the client application.

 Parameters are:

 name Name of the property to be returned.

 The following read-only properties are available
 for any given connection:

 LDAP_PROPERTY_SDK ("version.sdk") The version of
 this SDK, as a
 String data type.

 LDAP_PROPERTY_PROTOCOL ("version.protocol") The
 highest supported
 version of the LDAP
 protocol, as an
 Integer data type.

 LDAP_PROPERTY_SECURITY ("security.types") A
 comma-separated
 list of the types
 of authentication
 supported, as a
 String. See 2.8.16.

 Other properties MAY be available in particular implementations
 of the class.

 A deep copy of the property is provided where applicable; the
 client application does not need to clone the object received.

 null is returned if the requested property is not available.

2.8.21 getProtocolVersion

 public int getProtocolVersion ()

 Returns the protocol version that the connection is bound to (which
 currently is 3). If the connection is not bound, it returns 3.

Expires December 6, 2004 [Page 44]

JAVA LDAP API April 2004

2.8.22 getResponseControls

 public LDAPControl[] getResponseControls()

 Returns the latest Server Controls returned by a Directory Server
 with a response to an LDAP request from the current thread. For
 asynchronous requests, the response controls are available in
 LDAPMessage instead. Returns null if none or if using asynchronous
 requests.

2.8.23 getSaslBindCallbackHandler

 public javax.security.auth.callback.CallbackHandler
 getSaslBindCallbackHandler()

 Returns the callback handler, if any, specified on binding with a
 SASL mechanism, or null if none.

2.8.24 getSaslBindProperties

 public Map getSaslBindProperties()

 Returns the properties, if any, specified on binding with a SASL
 mechanism, or null if none.

2.8.25 getSchemaDN

 public String getSchemaDN() throws LDAPException

 Retrieves the DN for the schema at the root DSE of the Directory
 Server.

 Throws LDAPException if the schema DN cannot be retrieved, or if the
 subschemaSubentry attribute associated with the root DSE contains
 multiple values.

 public String getSchemaDN(String dn) throws LDAPException

 Retrieves the DN of the schema associated with a particular entry
 in the directory. Used with LDAPConnection.fetchSchema(), see 2.8.13.

 Throws LDAPException if the schema DN cannot be retrieved, or if a
 null or empty value is passed as dn, or if the subschemaSubentry
 attribute associated with the root DSE contains multiple values.

 Parameters are:

Expires December 6, 2004 [Page 45]

JAVA LDAP API April 2004

 dn Distinguished name of the entry for which the
 schema DN is to be retrieved.

2.8.26 getSearchConstraints

 public LDAPSearchConstraints getSearchConstraints()

 Returns a clone of the search constraints associated with this
 connection. These constraints apply to search operations performed
 through this connection (unless a different set of constraints is
 specified when calling the search operation method). The search
 constraints include the base constraints returned by
 getConstraints(). If no constraints have been assigned with
 setConstraints, a clone of the default constraints is returned.

2.8.27 getSocketFactory

 public SocketFactory getSocketFactory()

 Returns the SocketFactory used to establish a connection to a server.

2.8.28 isBound

 public boolean isBound()

 Indicates whether the object has authenticated to the connected LDAP
 server (other than anonymously with simple bind). It returns false
 initially, false upon a bind request, and true after successful
 completion of the last outstanding non-anonymous simple bind.

2.8.29 isConnected

 public boolean isConnected()

 Indicates if the connection represented by this object is open at
 this time.

2.8.30 isTLS

 public boolean isTLS ()

 Indicates the session is currently protected by TLS. Themethod
 provides no indication of the level of protection provided.

2.8.31 modify

Expires December 6, 2004 [Page 46]

JAVA LDAP API April 2004

 public void modify(String dn,
 LDAPModification mod)
 throws LDAPException

 public void modify(String dn,
 LDAPModification mod,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue modify(String dn,
 LDAPModification mod,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue modify(String dn,
 LDAPModification mod,
 LDAPMessageQueue queue,
 LDAPConstraints cons)
 throws LDAPException

 Makes a single change to an existing entry in the directory (for
 example, changes the value of an attribute, adds a new attribute
 value, or removes an existing attribute value).

 The LDAPModification object specifies both the change to be made and
 the LDAPAttribute value to be changed.

 The application is responsible for specifying attribute values which
 are valid according to the syntax defined for the attributes.

 public void modify(String dn,
 LDAPModification[] mods)
 throws LDAPException

 public void modify(String dn,
 LDAPModification[] mods,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue modify(String dn,
 LDAPModification[] mods,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue modify(String dn,
 LDAPModification[] mods,
 LDAPMessageQueue queue,
 LDAPConstraints cons)

 throws LDAPException

 Makes multiple changes to an existing entry in the directory (for

Expires December 6, 2004 [Page 47]

JAVA LDAP API April 2004

 example, changes attribute values, adds new attribute values, or
 removes existing attribute values).

 The application is responsible for specifying attribute values which
 are valid according to the syntax defined for the attributes.

 Parameters are:

 dn Distinguished name of the entry to modify.

 mod A single change to be made to the entry.

 mods An array specifying multiple changes to be made
 to the entry. The changes are made in the order
 specified.

 queue Handler for messages returned from a server in
 response to this request. If it is null, a queue
 object is created internally.

 cons Constraints specific to the operation.

2.8.32 read

 public LDAPEntry read(String dn) throws LDAPException

 public LDAPEntry read(String dn,
 LDAPSearchConstraints cons)
 throws LDAPException

 Reads the entry from the directory for the specified distiguished
 name (DN) and
 retrieves all attributes for the entry.

 public LDAPEntry read(String dn,
 String[] attrs)
 throws LDAPException

 public LDAPEntry read(String dn,
 String[] attrs,
 LDAPSearchConstraints cons)
 throws LDAPException

 Reads the entry for the specified distinguished name (DN) and
 retrieves only the specified attributes from the entry.

 public static LDAPEntry read(LDAPUrl toGet) throws LDAPException

Expires December 6, 2004 [Page 48]

JAVA LDAP API April 2004

 public static LDAPEntry read(LDAPUrl toGet,
 LDAPSearchConstraints cons)
 throws LDAPException

 Reads the entry specified by the LDAP URL and
 retrieves all attributes for the entry.

 When this method is called, a new connection is created
 automatically, using the host and port specified in the URL. After
 reading the entry, the method closes the connection (in other words,
 it disconnects from the LDAP server).

 If the URL specifies a scope other than base,
 IllegalArgumentException is thrown. Any critical extensions specified
 in the URL must be processed or else an LDAPException is thrown with
 the result code UNSUPPORTED_OPERATION.

 The method returns the entry specified by the base DN.

 Parameters are:

 dn Distinguished name of the entry to retrieve.

 cons Constraints specific to the operation.

 attrs Names of attributes to retrieve.

 toGet LDAP URL specifying the entry to read.

 If the server does not return exactly one entry, an LDAPException is
 thrown with a result code of AMBIGIOUS_RESPONSE.

 Note: read is simply a helper method and uses the ldap search
 operation to achieve the results. As such, there is no asynchronous
 interface.

2.8.33 removeUnsolicitedNotificationListener

 public void removeUnsolicitedNotificationListener(
 LDAPUnsolicitedNotificationListener listener)

 Deregisters an object so that it will no longer be notified on
 arrival of an unsolicited message from a server. If the object is
 null or was not previously registered for unsolicited notifications,
 the method does nothing.

 Parameters are:

Expires December 6, 2004 [Page 49]

JAVA LDAP API April 2004

 listener An object to no longer be notified on arrival of
 an unsolicited message from a server.

2.8.34 rename

 public void rename(String dn,
 String newRdn,
 boolean deleteOldRdn)
 throws LDAPException

 public void rename(String dn,
 String newRdn,
 boolean deleteOldRdn,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue rename(String dn,
 String newRdn,
 boolean deleteOldRdn,
 LDAPMessageQueue queue)
 throws LDAPException

 public LDAPMessageQueue rename(String dn,
 String newRdn,
 boolean deleteOldRdn,
 LDAPMessageQueue queue,
 LDAPConstraints cons)
 throws LDAPException

 Renames an existing entry in the directory.

 public void rename(String dn,
 String newRdn,
 String newParentdn,
 boolean deleteOldRdn)
 throws LDAPException

 public void rename(String dn,
 String newRdn,
 String newParentdn,
 boolean deleteOldRdn,
 LDAPConstraints cons)
 throws LDAPException

 public LDAPMessageQueue rename(String dn,
 String newRdn,
 String newParentdn,

 boolean deleteOldRdn,
 LDAPMessageQueue queue)
 throws LDAPException

Expires December 6, 2004 [Page 50]

JAVA LDAP API April 2004

 public LDAPMessageQueue rename(String dn,
 String newRdn,
 String newParentdn,
 boolean deleteOldRdn,
 LDAPMessageQueue queue,
 LDAPConstraints cons)
 throws LDAPException

Renames an existing entry or subtree in the directory, possibly
repositioning it in the directory tree.

 Parameters are:

 dn Current distinguished name of the entry.

 newRdn New relative distinguished name for the entry.

 newParentdn Distinguished name of the existing entry which is
 to be the new parent of the entry. If newParentdn
 is null, the request is treated as if the method
 without newParentdn is called.

 deleteOldRdn If true, the old name is not retained as an
 attribute value.

 queue Handler for messages returned from a server in
 response to this request. If it is null, a queue
 object is created internally.

 cons Constraints specific to the operation.

2.8.35 search

 public LDAPSearchResults search(String base,
 int scope,
 String filter,
 String[] attrs,
 boolean typesOnly)
 throws LDAPException

 public LDAPMessageQueue search(String base,
 int scope,
 String filter,
 String[] attrs,
 boolean typesOnly,
 LDAPMessageQueue queue)
 throws LDAPException

 Performs the search specified by the parameters.

Expires December 6, 2004 [Page 51]

JAVA LDAP API April 2004

 public LDAPSearchResults search(String base,
 int scope,
 String filter,
 String[] attrs,
 boolean typesOnly,
 LDAPSearchConstraints cons)
 throws LDAPException

 public LDAPMessageQueue search(String base,
 int scope,
 String filter,
 String[] attrs,
 boolean typesOnly,
 LDAPMessageQueue queue,
 LDAPSearchConstraints cons)
 throws LDAPException

 Performs the search specified by the parameters, also allowing
 specification of operation specific constraints for the search (such
 as the maximum
 number of entries to find or the maximum time to wait for search
 results).

 As part of the operation or default search constraints, a choice can
 be made as to
 whether or not the results are to be delivered all at once or in
 smaller batches. If specified that the results are to be delivered in
 smaller batches, each iteration blocks only until the next batch of
 results is received from the server.

 public static LDAPSearchResults search(LDAPUrl toGet)
 throws LDAPException

 Performs the search specified by the LDAP URL, returning an
 enumerable LDAPSearchResults object.

 public static LDAPSearchResults search(LDAPUrl toGet,
 LDAPSearchConstraints cons)
 throws LDAPException

 Perfoms the search specified by the LDAP URL. This method also allows
 specifying operation specific constraints for the search (such as the
 maximum number of entries to find or the maximum time to wait for
 search results).

 When the methods using the LDAPUrl parameter are called, a new

 connection is created automatically, using the host and port
 specified in the URL. After all search results have been received

Expires December 6, 2004 [Page 52]

JAVA LDAP API April 2004

 from the server, the method closes the connection (in other words, it
 disconnects from the LDAP server).

 As part of operation or default search constraints, a choice can be
 made as to whether to have the results delivered all at once or in
 smaller batches. If the results are to be delivered in smaller
 batches, each iteration blocks only until the next batch of results
 is received from the server.

 Parameters are:

 base The base distinguished name to search from.

 scope The scope of the entries to search. The following
 are the valid options:

 SCOPE_BASE Search only the base DN

 SCOPE_ONE Search only entries directly under the base
 DN

 SCOPE_SUB Search the base DN and all entries within
 its subtree

 filter Search filter specifying the search criteria, as
 defined in [FILTER]. The value null can be passed
 to indicate that the filter "(objectclass=*)"
 which matches all entries is to be used.

 attrs Names of attributes to retrieve. If null or an
 empty array is specified, all attributes are
 retrieved.

 typesOnly If true, returns the names but not the values of
 the attributes found. If false, returns the
 names and values for attributes found.

 toGet LDAP URL specifying the entry to read.

 queue Handler for messages returned from a server in
 response to this request. If it is null, a queue
 object is created internally.

 cons Constraints specific to the search.

 Note: RFC 2251 [LDAPPROTO] indicates that extendedResponses on search
 requests may be defined in future versions of the LDAP protocol.
 There is no support for extendedResponses on search requests in this

https://datatracker.ietf.org/doc/html/rfc2251

 version of the Java LDAP API.

Expires December 6, 2004 [Page 53]

JAVA LDAP API April 2004

2.8.36 setConstraints

 public void setConstraints(LDAPConstraints cons)

 Sets the constraints that apply to all operations performed through
 this connection (unless a different set of constraints is specified
 when calling an operation method). An LDAPSearchConstraints object
 which is passed to this method will override all constraints (search
 and base), while an LDAPConstraints object will only affect the base
 constraints.

 Parameters are:

 cons Non-null constraints object.

2.8.37 setSocketFactory

 public static void setSocketFactory(SocketFactory factory)

 Establishes the default SocketFactory used when LDAPConnection
 objects are constructed unless an SocketFactory is specified in the
 LDAPConnection object constructor.

 This method sets the default SocketFactory used for all subsequent
 LDAPConnection objects constructed. If called after LDAPConnection
 objects are created, those already created are not affected even if
 they disconnect and establish a new connection. It affects
 LDAPConnection objects only as they are constructed.

 If a security manager exists and the caller does not have permission
 to set a factory, SecurityException is thrown.

 To use the setSocketFactory method, the caller needs the following
 permission:

 java.lang.RuntimePermission("setFactory");

 Parameters are:

 factory A factory object which can construct socket
 connections for an LDAPConnection. If null, the
 default factory of the API implementation is
 selected.

2.8.38 startTLS

 public void startTLS()

 throws LDAPException

Expires December 6, 2004 [Page 54]

JAVA LDAP API April 2004

 Begin using the Transport Layer Security (TLS) protocol for session
 privacy [TLS][LDAPTLS]. If the socket factory of the connection is
 not capable of initiating a TLS session, an LDAPException is thrown
 with the error code TLS_NOT_SUPPORTED. If the server does not support
 the transition to a TLS session, an LDAPException is thrown with the
 error code returned by the server. If there are outstanding LDAP
 operations on the connection, an LDAPException is thrown.

2.8.39 stopTLS

 public void stopTLS ()
 throws LDAPException

 Stop using the Transport Layer Security (TLS) protocol for session
 privacy [LDAPTLS]. If the server does not support the termination of
 a TLS session, an LDAPException is thrown with the error code
 returned by the server. If there are outstanding LDAP operations on
 the connection, an LDAPException is thrown.

2.8.40 Constants of LDAPConnection

 ALL_USER_ATTRS ("*") Used with search in an attribute list to
 indicate that all attributes (other than
 operational attributes) are to be returned.

 NO_ATTRS ("1.1") Used with search instead of an attribute list
 to indicate that no attributes are to be
 returned.

 DEFAULT_PORT (389) Used with connect to indicate the default LDAP
 port number.

 SCOPE_BASE (0) Used with search to indicate that only the entry
 corresponding to the base DN is to be returned.

 SCOPE_ONE (1) Used with search to indicate that only immediate
 subordinates of the entry corresponding to the
 base DN, and not the entry corresponding to the
 base DN, are to be returned.

 SCOPE_SUB (2) Used with search to indicate that the entry
 corresponding to the base DN as well as all
 direct and indirect subordinate entries are to be
 returned.

 LDAP_PROPERTY_SDK ("version.sdk") Used with

 getProperty to retrieve the version of the SDK.

Expires December 6, 2004 [Page 55]

JAVA LDAP API April 2004

 LDAP_PROPERTY_PROTOCOL ("version.protocol") Used with
 getProperty to retrieve the highest supported
 LDAP protocol version.

 LDAP_PROPERTY_SECURITY ("security.types") Used with
 getProperty to retrieve a list of the
 authentication types supported.

2.9 public class LDAPConstraints
 implements Cloneable, Serializable

 A set of options to control any operation. There is always an
 LDAPConstraints associated with an LDAPConnection object; its
 values can be changed with LDAPConnection.setConstraints, or
 overridden by passing an LDAPConstraints object to an operation.

2.9.1 Constructors

 public LDAPConstraints()

 Constructs an LDAPConstraints object that specifies the default
 set of constraints.

 public LDAPConstraints(int msLimit,
 boolean doReferrals,
 LDAPReferralHandler handler,
 int hop_limit)

 Constructs a new LDAPConstraints object and allows specifying
 the operational constraints in that object.

 Parameters are:

 msLimit Maximum time in milliseconds to wait for results
 (0 by default, which means that there is no
 maximum time limit). This is an interface-
 enforced limit.

 doReferrals Specify true to follow referrals automatically,
 or false to throw an LDAPReferralException error
 if the server sends back a referral (false by
 default). It is ignored for asynchronous
 operations.

 handler Custom authentication processor, called when the
 LDAPConnection needs to authenticate, typically

 on following a referral. The value null indicates
 default authentication processing, which is, to
 use anonymous authentication if automatically

Expires December 6, 2004 [Page 56]

JAVA LDAP API April 2004

 following referrals. This parameter ignored if
 doReferrals is set to false. The handler object
 may implement either the LDAPBindHandler or the
 LDAPAuthHandler interface. Any settings for
 following referrals are ignored for asynchronous
 operations.

 hop_limit Maximum number of referrals to follow in a
 sequence when attempting to resolve a request,
 when doing automatic referral following. It is
 ignored for asynchronous operations.

2.9.2 getControls

 public LDAPControl[] getControls()

 Returns controls to be sent to the server.

2.9.3 getHopLimit

 public int getHopLimit()

 Returns the maximum number of hops to follow during automatic
 referral following.

2.9.4 getProperty

 public Object getProperty(String name)

 Gets a property of a constraints object which has been assigned with
 setProperty. null is returned if the property is not defined.

 Parameters are:

 name Name of the property to be returned.

2.9.5 getReferralFollowing

 public boolean getReferralFollowing()

 Specifies whether or not referrals are followed automatically.
 Returns true if referrals are to be followed automatically, or false
 if receipt of referrals causes the API to throw an
 LDAPReferralException.

2.9.6 getTimeLimit

Expires December 6, 2004 [Page 57]

JAVA LDAP API April 2004

 public int getTimeLimit()

 Returns the maximum number of milliseconds the client application
 waits for any operation under these constraints. If 0, there is no
 maximum time limit on waiting for the operation results. The time
 limit is enforced by the API, and the actual granularity of the
 timeout depends on the implementation.

2.9.7 setControls

 public void setControls(LDAPControl control)

 public void setControls(LDAPControl[] controls)

 Sets controls to be sent to the server.If controls are not set by
 calling this method, no controls are sent to the server.

 Parameters are:

 control A single control to be sent to the server.

 controls An array of controls to be sent to the server.

2.9.8 setHopLimit

 public void setHopLimit(int hop_limit)

 Sets the maximum number of hops to follow in sequence during
 automatic referral following. The default is 10. 0 means no limit.

 Parameters are:

 hop_limit Maximum number of chained referrals to follow
 automatically.

2.9.9 setProperty

 public void setProperty(String name, Object value)

 Sets a property of the constraints object.

 No property names have been defined at this time, but the mechanism
 is in place in order to support revisional as well as dynamic and
 proprietary extensions to operation modifiers. Throws
 IllegalArgumentException if the property name is not defined in the
 API.

 Parameters are:

Expires December 6, 2004 [Page 58]

JAVA LDAP API April 2004

 name Name of the property to set.

 value Value to assign to the property.

2.9.10 setReferralFollowing

 public void setReferralFollowing(boolean doReferrals)

 Specifies whether nor not referrals are followed automatically, or if
 referrals throw an LDAPReferralException. The default is false, i.e.,
 do not follow referrals

 Parameters are:

 doReferrals True to follow referrals automatically.

2.9.11 setReferralHandler

 public void setReferralHandler (LDAPReferralHandler handler)

 Specifies the object that will process authentication requests. The
 default is null.

 Parameters are:

 handler An object that implements LDAPBindHandler or
 LDAPAuthHandler.

2.9.12 setTimeLimit

 public void setTimeLimit(int msLimit)

 Sets the maximum number of milliseconds to wait for any operation
 under these constraints. If 0, there is no maximum time limit
 on waiting for the operation results. The time limit is enforced by
 the API, and the actual granularity of the
 time limit depends on the implementation.

 Parameters are:

 msLimit Maximum milliseconds to wait.

2.10 public class LDAPControl
 implements Serializable, Cloneable

 An LDAPControl encapsulates optional additional parameters or

 constraints to be applied to LDAP operations. When included with
 LDAPConstraints or LDAPSearchConstraints on an LDAPConnection or on a

Expires December 6, 2004 [Page 59]

JAVA LDAP API April 2004

 specific operation request, it is sent to the server along with
 operation requests.

2.10.1 Constructors

 public LDAPControl(String oid,
 boolean critical,
 byte[] value)

 Parameters are:

 oid The type of the Control, as an OID.

 critical If true, the LDAP operation will fail with
 UNAVAILABLE_CRITICAL_EXTENSION if the server does
 not support this Control.

 value BER-Encoded control-specific data. The API
 implementation does not interpret or convert the
 value.

2.10.2 clone

 public Object clone()

 Returns a deep copy of the object.

2.10.3 getID

 public String getID()

 Returns the OID of the control.

2.10.4 getValue

 public byte[] getValue()

 Returns the control-specific data of the object.

2.10.5 isCritical

 public boolean isCritical()

 Returns true if the control must be supported for an associated
 operation to be executed.

Expires December 6, 2004 [Page 60]

JAVA LDAP API April 2004

2.10.6 register

 public static void register(String oid, Class controlClass)

 Registers an application class to be instantiated on receipt of a
 control with the given OID. Any previous registration for the OID is
 overridden. The controlClass MUST be an extension of LDAPControl.

 Parameters are:

 oid The OID of the Control.

 controlClass A class which can instantiate an LDAPControl.

2.10.7 setValue

 protected void setValue(byte[] value)

 Sets the BER-Encoded control-specific data of the object. This method
 is for use by extensions of LDAPControl.

 Parameters are:

 value The value to be assigned to the Control.

2.11 public class LDAPDITContentRuleSchema
 extends LDAPSchemaElement

 The LDAPDITContentRuleSchema class represents the definition of a DIT
 Content Rule. It is used to discover or modify additional auxiliary
 classes, mandatory and optional attributes, and restricted attributes
 in effect for an object class. See [ATTR] for a description of DIT
 content rule representation in LDAP.

2.11.1 Constructors

 public LDAPDITContentRuleSchema(String[] names,
 String oid,
 String description,
 boolean obsolete,
 String[] auxiliary,
 String[] required,
 String[] optional,
 String[] precluded)

 Constructs a DIT content rule for adding to or deleting from the
 schema. [LDAPPROTO] defines which parameters are optional (may be

 null).

Expires December 6, 2004 [Page 61]

JAVA LDAP API April 2004

 public LDAPDITContentRuleSchema(String raw)

 Constructs a DIT content rule from an encoding using the
 ditContentRules syntax [ATTR].

 Parameters are:

 names Name(s) of the content rule.

 oid OID of the content.

 description Optional description of the content rule.

 obsolete true if the content rule is obsolete.

 auxiliary A list of auxiliary object classes allowed for
 an entry to which this content rule applies.
 These may either be specified by name or by
 OID.

 required A list of user attribute types that an entry
 to which this content rule applies must
 contain in addition to its normal set of
 mandatory attributes. These may either be
 specified by name or OID.

 optional A list of user attribute types that an entry
 to which this content rule applies may contain
 in addition to its normal set of optional
 attributes. These may either be specified by
 name or OID.

 precluded A list, consisting of a subset of the optional
 user attribute types of the structural and
 auxiliary object classes which are precluded
 from an entry to which this content rule
 applies. These may either be specified by name
 or OID.

 raw A DIT content rule encoded using the
 ditContentRules syntax [ATTR].

2.11.2 getAuxiliaryClasses

 public String[] getAuxiliaryClasses()

 Returns the list of allowed auxiliary classes.

2.11.3 getOptionalAttributes

 public String[] getOptionalAttributes()

Expires December 6, 2004 [Page 62]

JAVA LDAP API April 2004

 Returns the list of additional optional attributes for an entry
 controlled by this content rule.

2.11.4 getPrecludedAttributes

 public String[] getPrecludedAttributes()

 Returns the list of precluded attributes for an entry controlled by
 this content rule.

2.11.5 getRequiredAttributes

 public String[] getRequiredAttributes()

 Returns the list of additional required attributes for an entry
 controlled by this content rule.

2.12 public class LDAPDITStructureRuleSchema
 extends LDAPSchemaElement

 The LDAPDITStructureRuleSchema class represents the definition of a
 DIT Structure Rule. It is used to discover or modify which object
 classes a particular object class may be subordinate to in the DIT.
 See [ATTR] for a description of DIT structure rule representation in
 LDAP.

2.12.1 Constructors

 public LDAPDITStructureRuleSchema(String[] names,
 int ruleID,
 String description,
 boolean obsolete,
 String nameForm,
 String[] superiorIDs)

 Constructs a DIT structure rule for adding to or deleting from the
 schema. [LDAPPROTO] defines which parameters are optional (may be
 null).

 public LDAPDITStructureRuleSchema(String raw)

 Constructs a DIT structure rule from an encoding
 using the dITStructureRules syntax [ATTR].

 Parameters are:

 names Name(s) of the structure rule.

Expires December 6, 2004 [Page 63]

JAVA LDAP API April 2004

 ruleID Unique identifier of the structure rule. NOTE:
 this is an integer, not an OID. Structure
 rules aren't identified by OID.

 description Optional description of the structure rule.

 obsolete true if the structure rule is obsolete.

 nameForm Either the OID or the name of a name form.
 This is used to indirectly refer to the object
 class that this structure rule applies to.

 superiorIDs List of superior structure rules - specified
 by their integer ID, or null if none. The
 object class specified by this structure rule
 (via the nameForm parameter) may only be
 subordinate in the DIT to object classes of
 those represented by the structure rules here
 .

 raw A DIT structure rule encoded using the
 dITStructureRules syntax [ATTR].

2.12.2 getNameForm

 public String getNameForm()

 Returns the NameForm that this structure rule controls. You can get
 the actual object class that this structure rule controls by calling
 getNameForm(ditStructRule.getNameForm()).getObjectClass().

2.12.3 getRuleID

 public int getRuleID()

 Returns the rule ID for this structure rule. Note that this returns
 an integer rather than an OID. Objects of this class do not have an
 OID, thus getID will return null.

2.12.4 getSuperiors

 public String[] getSuperiors()

 Returns a list of all structure rules that are superior to this
 structure rule. To resolve to an object class, you need to first
 resolve the superior id to another structure rule, then call

 getNameForm().getObjectClass() on that structure rule.

Expires December 6, 2004 [Page 64]

JAVA LDAP API April 2004

2.13 public class LDAPDN

 A utility class used to manipulate a distinguished name (DN).

2.13.1 equals

 public static boolean equals(String dn1, String dn2)

 Compares the two strings per the distinguishedNameMatch matching rule
 [ATTR]. An API implementation MUST use caseIgnoreMatch equality
 matching for the attributes listed in section 2 of [ATTR].
 IllegalArgumentException is thrown if one or both DNs are invalid.
 UnsupportedOperationException is thrown if the API implementation is
 not able to determine if the DNs match or not.

 Parameters are:

 dn1 String form of first DN to compare.

 dn2 String form of second DN to compare.

2.13.2 escapeRDN

 public static String escapeRDN(String rdn)

 Returns the RDN after escaping the characters requiring escaping
 [DN]. For example, for the rdn "cn=Example, Inc", "cn=Example\, Inc"
 is returned.

 Parameters are:

 rdn The RDN to escape.

2.13.3 explodeDN

 public static String[] explodeDN(String dn,
 boolean noTypes)

 Returns the individual components of a distinguished name (DN).

 Parameters are:

 dn Distinguished name, e.g. "cn=Babs
 Jensen,ou=Accounting,dc=example,dc=com"

 noTypes If true, returns only the values of the
 components, and not the names, e.g. "Babs

 Jensen", "Accounting", "Example", "com" - instead

Expires December 6, 2004 [Page 65]

JAVA LDAP API April 2004

 of "cn=Babs Jensen","ou=Accounting","dc=Example",
 and "dc=com".

2.13.4 explodeRDN

 public static String[] explodeRDN(String rdn,
 boolean noTypes)

 Returns the individual components of a relative distinguished name
 (RDN).

 Parameters are:

 rdn Relative distinguished name, i.e. the left-most
 component of a distinguished name.

 noTypes If true, returns only the values of the
 components, and not the names.

2.13.5 isValid

 public static boolean isValid(String dn)

 Returns true if the string conforms to distinguished name syntax
 (section 3 of [DN], or if the string conforms to section 4 of [DN].

 Parameters are:

 dn String to evaluate for distinguished name syntax.

2.13.6 normalize

 public static String normalize(String dn)

 Returns the DN normalized by removal of non-significant space
 characters as per RFC 2253, section 4 [DN].

 Parameters are:

 dn The DN to normalize.

2.13.7 unescapeRDN

 public static String unescapeRDN(String rdn)

 Returns the RDN after unescaping the characters requiring escaping
 [DN]. For example, for the rdn "cn=Example\, Inc", "cn=Example, Inc"

https://datatracker.ietf.org/doc/html/rfc2253#section-4

 is returned. IllegalArgumentException is thrown if the RDN cannot be
 parsed.

Expires December 6, 2004 [Page 66]

JAVA LDAP API April 2004

 Parameters are:

 rdn The RDN to unescape.

2.14 public class LDAPEntry
 implements Serializable, Comparable

 An LDAPEntry represents a single entry in a directory, consisting of
 a distinguished name (DN) and zero or more attributes. An instance of
 LDAPEntry is created in order to add an entry to a Directory, and
 instances are returned on a search by either enumerating an
 LDAPSearchResults, or calling LDAPSearchResult.getEntry.

2.14.1 Constructors

 public LDAPEntry()

 Constructs an empty entry.

 public LDAPEntry(String dn)

 Constructs a new entry with the specified distinguished name and with
 an empty attribute set.

 public LDAPEntry(String dn,
 LDAPAttributeSet attrs)

 Constructs a new entry with the specified distinguished name and set
 of attributes.

 Parameters are:

 dn The distinguished name of the new entry. The
 value is not validated. An invalid distinguished
 name will cause adding of the entry to a
 directory to fail.

 attrs The initial set of attributes assigned to the
 entry.

2.14.2 compareTo

 public int compareTo(Object obj)

 Compares this object with the specified object for order. Ordering is

 determined by comparing normalized DN values (see LDAPEntry.getDN()
 2.14.5 and LDAPDN.normalize() 2.13.6) using the compareTo() method of

Expires December 6, 2004 [Page 67]

JAVA LDAP API April 2004

 the String class. Returns a negative integer, zero, or a positive
 integer as this object is less than, equal to, or greater than the
 specified object.

 Parameters are:

 obj The object to be compared to this object.

2.14.3 getAttribute

 public LDAPAttribute getAttribute(String attrName)

 Returns a copy of the attribute matching the specified attrName or
 null if none.

 Parameters are:

 attrName The name of the attribute. See 2.3.3 for the
 syntax and semantics relevant to this parameter.

2.14.4 getAttributeSet

 public LDAPAttributeSet getAttributeSet()

 Returns a copy of the attribute set of the entry. Copies of all base
 and option variants of all attributes are returned. The
 LDAPAttributeSet returned is empty if there are no attributes in the
 entry.

 public LDAPAttributeSet getAttributeSet(String options)

 Returns an attribute set from the entry, consisting of copies of only
 those attributes matching the specified options(s). "option" may be,
 for example, "lang-ja", "binary", or "lang-ja;phonetic". If more than
 one option is specified, separated with a semicolon, only those
 attributes with all of the named options will be returned. The
 LDAPAttributeSet returned may be empty if there are no matching
 attributes in the entry.

 Parameters are:

 option One or more option specification(s), separated
 with semicolons. "lang-ja" and
 "lang-en;phonetic" are valid option
 specifications.

2.14.5 getDN

Expires December 6, 2004 [Page 68]

JAVA LDAP API April 2004

 public String getDN()

 Returns the distinguished name of the entry.

2.15 public class LDAPException
 extends Exception

 Thrown to indicate an error has occurred. An LDAPException typically
 results from errors reported by the directory server. Errors not
 reported by the directory server (such as network errors, or invalid
 usage of the API) are thrown as LDAPLocalException objects (see also
 2.18 and 2.26).

 The
 getLDAPResultCode() method returns the specific LDAP result code.

2.15.1 Constructors

 public LDAPException()

 Constructs a default exception with no specific error information.

 public LDAPException(String message,
 int resultCode,
 String serverMessage)

 Constructs an exception with a string describing the error, a result
 code, and optionally a message from the server.

 public LDAPException(String message,
 int resultCode,
 String serverMessage,
 Throwable rootException)

 Constructs an exception with a string describing the error, a result
 code, an optional message from the server, and an embedded root
 exception as additional information.

 public LDAPException(String message,
 int resultCode,
 String serverMessage,
 String matchedDN)

 Constructs an exception with a string describing the error, a result
 code, an optional message from the server, and the maximal subset of
 a specified DN which could be matched by the server on a search

 operation.

Expires December 6, 2004 [Page 69]

JAVA LDAP API April 2004

 Parameters are:

 message The descriptive error string or null if none

 resultCode The result code returned

 serverMessage Error message specifying additional information
 from the server or null if none

 matchedDN The DN of the most immediate ancestor of a
 specified search DN which could be found by the
 server on a search operation or null if none

 rootException An exception which caused the failureor null if
 none

2.15.2 getCause

 public Throwable getCause()

 Returns the lower level Exception which caused the failure, or null
 if none. For example, an IOException with additional information may
 be returned on a CONNECT_ERROR failure.

2.15.3 getLDAPErrorMessage

 public String getLDAPErrorMessage()

 Returns the error message returned by the server, if this message is
 available (that is, if this message was set). If the message was not
 set, this method
 returns null.

2.15.4 getResponse

 public LDAPMessage getResponse()

 Returns the LDAPMessage of a response received as a result of an LDAP
 Intermediate Response message, or from a response received with an
 unknown LDAP Message Type. If this exception does not have the result
 code of INTERMEDIATE_RESPONSE or UNKNOWN_TYPE, this method returns
 null.

2.15.5 getMatchedDN

 public String getMatchedDN()

Expires December 6, 2004 [Page 70]

JAVA LDAP API April 2004

 Returns the matchedDN value provided by the server in the response
 which generated this exception (it may be empty). If the exception is
 not due to a server response, null is returned.

2.15.6 getResultCode

 public int getResultCode()

 Returns the result code from the exception. The codes are defined as
 public final static int members of this class. If the exception is a
 result of error information returned from a directory operation, the
 code will be one of those defined in [LDAPPROTO]. Otherwise, if the
 exception was generated by the API implementation, a local error code
 is returned (see "Result codes" at 2.15.9) and the exception class is
 an instance of LDAPLocalException, see 2.18.

2.15.7 resultCodeToString

 public String resultCodeToString()

 Returns a String representing the result code in the default Locale.

 public static String resultCodeToString(int code)

 Returns a String representing the specified result code in the
 default Locale, or null if there is no such code known to the API.

 public String resultCodeToString(Locale locale)

 Returns a String representing the result code in the specified
 Locale, or null if a String representation is not available for the
 requested Locale.

 public static String resultCodeToString(int code, Locale locale)

 Returns a String representing the specified result code in the
 specified Locale, or null if there is no such code or if a String
 representation is not available for the requested Locale.

 Parameters are:

 code One of the result codes listed in "Result codes"
 below.

 locale A Locale in which to render the String.

Expires December 6, 2004 [Page 71]

JAVA LDAP API April 2004

2.15.8 toString

 public String toString()

 Overrides the default toString implementation. It expands all the
 nested exceptions.

2.15.9 Result codes

 See [LDAPPROTO] for a discussion of the meanings and values of the
 codes. The corresponding ASN.1 name from [LDAPPROTO] is provided in
 parentheses. Applications should not use the result code to
 distinguish between server exceptions and local exceptions, but
 instead should use instanceof LDAPLocalException (see 2.18). All of
 the following are constants of LDAPException.

 ADMIN_LIMIT_EXCEEDED (adminLimitExceeded)
 AFFECTS_MULTIPLE_DSAS (affectsMultipleDSAs)
 ALIAS_DEREFERENCING_PROBLEM (aliasDereferencingProblem)
 ALIAS_PROBLEM (aliasProblem)
 ATTRIBUTE_OR_VALUE_EXISTS (attributeOrValueExists)
 AUTH_METHOD_NOT_SUPPORTED (authMethodNotSupported)
 BUSY (busy)
 COMPARE_FALSE (compareFalse)
 COMPARE_TRUE (compareTrue)
 CONFIDENTIALITY_REQUIRED (confidentialityRequired)
 CONSTRAINT_VIOLATION (constraintViolation)
 ENTRY_ALREADY_EXISTS (entryAlreadyExists)
 INAPPROPRIATE_AUTHENTICATION (inappropriateAuthentication)
 INAPPROPRIATE_MATCHING (inappropriateMatching)
 INSUFFICIENT_ACCESS_RIGHTS (insufficientAccessRights)
 INVALID_ATTRIBUTE_SYNTAX (invalidAttributeSyntax)
 INVALID_CREDENTIALS (invalidCredentials)
 INVALID_DN_SYNTAX (invalidDNSyntax)
 IS_LEAF (isLeaf)
 LOOP_DETECT (loopDetect)
 NAMING_VIOLATION (namingViolation)
 NO_SUCH_ATTRIBUTE (noSuchAttribute)
 NO_SUCH_OBJECT (noSuchObject)
 NOT_ALLOWED_ON_NONLEAF (notAllowedOnNonLeaf)
 NOT_ALLOWED_ON_RDN (notAllowedOnRDN)
 OBJECT_CLASS_MODS_PROHIBITED (objectClassModsProhibited)
 OBJECT_CLASS_VIOLATION (objectClassViolation)
 OPERATIONS_ERROR (operationsError)
 OTHER (other)
 PROTOCOL_ERROR (protocolError)

 REFERRAL (referral)
 SASL_BIND_IN_PROGRESS (saslBindInProgress)
 SIZE_LIMIT_EXCEEDED (sizeLimitExceeded)

Expires December 6, 2004 [Page 72]

JAVA LDAP API April 2004

 STRONG_AUTH_REQUIRED (strongAuthRequired)
 SUCCESS (success)
 TIME_LIMIT_EXCEEDED (timeLimitExceeded)
 UNAVAILABLE (unavailable)
 UNAVAILABLE_CRITICAL_EXTENSION (unavailableCriticalExtension)
 UNDEFINED_ATTRIBUTE_TYPE (undefinedAttributeType)
 UNWILLING_TO_PERFORM (unwillingToPerform)

 Local errors, resulting from actions other than an operation on a
 server, are among the following:

 AMBIGUOUS_RESPONSE (0x65)
 AUTH_UNKNOWN (0x56)
 CLIENT_LOOP (0x60)
 CONNECT_ERROR (0x5b)
 CONTROL_NOT_FOUND (0x5d)
 DECODING_ERROR (0x54)
 ENCODING_ERROR (0x53)
 FILTER_ERROR (0x57)
 INTERMEDIATE_RESPONSE (0x71)
 INVALID_RESPONSE (0x64)
 LDAP_NOT_SUPPORTED (0x5c)
 LDAP_TIMEOUT (0x55)
 LOCAL_ERROR (0x52)
 MORE_RESULTS_TO_RETURN (0x5f)
 NO_MEMORY (0x5a)
 NO_RESULTS_RETURNED (0x5e)
 REFERRAL_LIMIT_EXCEEDED (0x61)
 SERVER_DOWN (0x51)
 TLS_NOT_SUPPORTED (0x70)
 UNKNOWN_TYPE (072)
 USER_CANCELLED (0x58)

2.16 public class LDAPExtendedOperation
 implements Cloneable, Serializable

 An LDAPExtendedOperation encapsulates an OID which uniquely
 identifies a particular extended operation, known to a particular
 server, and the data associated with the operation.

2.16.1 Constructors

 public LDAPExtendedOperation(String oid,
 byte[] value)

 Constructs a new object with the specified OID and data.

 Parameters are:

 oid The OID of the operation.

Expires December 6, 2004 [Page 73]

JAVA LDAP API April 2004

 value The BER-encoded operation-specific data of the
 operation. The API implementation does not
 interpret or convert the value.

2.16.2 getID

 public String getID()

 Returns the OID of the operation.

2.16.3 getValue

 public byte[] getValue()

 Returns the operation-specific data (not a copy, a reference).

2.16.4 setValue

 protected void setValue(byte[] value)

 Sets the operation-specific data of the object. This method is for
 use by extensions of LDAPExtendedOperation.

 Parameters are:

 value The BER-encoded operation-specific data of the
 operation to be assigned to the object (as a
 reference) The API implementation does not
 interpret or convert the value.

2.17 public class LDAPExtendedResponse
 extends LDAPResponse implements Serializable
An LDAPExtendedResponse object encapsulates a server response to an
extended operation request. Objects extending this class can be
registered by OID (see 2.17.3), and are instantiated by the API
implementation on receipt of an extended response with the given OID.

2.17.1 getID

 public String getID()

 Returns the OID of the response.

2.17.2 getValue

 public byte[] getValue()

Expires December 6, 2004 [Page 74]

JAVA LDAP API April 2004

 Returns the raw bytes of the value part of the response.

2.17.3 register

 public static void register(String oid, Class extendedResponseClass)

 Registers an application class to be instantiated on receipt of an
 extended response with the given oid. Any previous registration for
 the oid is overridden. The extendedResponseClass object MUST be an
 extension of LDAPExtendedResponse.

 Parameters are:

 oid The OID of the extended response

 extendedResponseClass A class which can instantiate an
 LDAPExtendedResponse. The class must
 implement the following constructor
 signature:

 public (String oid, byte[] value)

 oid The OID of the extended response

 value Response-specific data; the API
 implementation does not interpret or
 convert the value

2.18 public class LDAPLocalException
 extends LDAPException

 This exception, derived from LDAPException, is thrown to report an
 LDAP error that does not originate from the server, and is not
 covered by other Exception classes such as IllegalArgumentException.
 For example, LDAPLocalException is thrown when network errors occur,
 when calling LDAPConnection.StartTLS() and operations are outstanding
 on the connection, or when a REFERRAL_LIMIT_EXCEEDED error occurs
 when following referrals.

2.18.1 Constructors

 public LDAPLocalException()

 Constructs a default exception with no specific error information.

 public LDAPLocalException(String message,
 int resultCode)

Expires December 6, 2004 [Page 75]

JAVA LDAP API April 2004

 Constructs an exception with a string describing the error and a
 result code.

 public LDAPException(String message,
 int resultCode,
 Throwable rootException)

 Constructs an exception with a result code, a string describing the
 error, and an embedded root exception as additional information.

 Parameters are:

 message The additional error information

 resultCode The result code returned

 rootException An exception which caused the failure, if any

2.19 public class LDAPMatchingRuleSchema
 extends LDAPSchemaElement

 The LDAPMatchingRuleSchema class represents the definition of a
 matching rule. It is used to query matching rule syntax, and to add
 or delete a matching rule definition in a DirectoryÆs subschema. See
 [ATTR] for a description of matching rule representation in LDAP.

2.19.1 Constructors

 public LDAPMatchingRuleSchema(String[] names,
 String oid,
 String description,
 String[] attributes,
 boolean obsolete,
 String syntaxString)

 Constructs a matching rule definition for adding to or deleting from
 a DirectoryÆs subschema. [LDAPPROTO] defines which parameters are
 optional (may be null).

 public LDAPMatchingRuleSchema(String rawMatchingRule,
 String rawMatchingRuleUse)

 Constructs a matching rule definition from values encoded
 using the matchingRule syntax and the matchingRuleUse syntax [ATTR]

 for the same rule.

Expires December 6, 2004 [Page 76]

JAVA LDAP API April 2004

 Parameters are:

 name Name of the attribute.

 oid OID of the.

 description Optional description of the attribute.

 attributes OIDs of attributes to which the rule applies,
 or null if none.

 obsolete true if this matching rule is obsolete.

 syntaxString OID of the syntax that this matching rule is
 valid for.

 rawMatchingRule A matching rule definition encoded using the
 matchingRule syntax [ATTR].

 rawMatchingRuleUse A matching rule use definition encoded using
 the matchingRuleUse syntax [ATTR], or null if
 none.

2.19.2 getAttributes

 public String[] getAttributes()

 Returns the OIDs of the attributes to which this rule applies.

2.19.3 getSyntaxString

 public String getSyntaxString()

 Returns the OID of the syntax that this matching rule is valid for.

2.20 public class LDAPMatchingRuleUseSchema
 extends LDAPSchemaElement

 The LDAPMatchingRuleUseSchema class represents the definition of a
 matching rule use. It is used to discover or modify which attributes
 are suitable for use with an extensible matching rule. It contains
 the name and OID of a matching rule, and a list of attributes that it
 applies to. See [ATTR] for a description of matching rule use
 representation in LDAP.

2.20.1 Constructors

 public LDAPMatchingRuleUseSchema(String[] names,

Expires December 6, 2004 [Page 77]

JAVA LDAP API April 2004

 String oid,
 String description,
 boolean obsolete,
 String[] attributes)

 Constructs a matching rule use definition for adding to or deleting
 from the schema. [LDAPPROTO] defines which parameters are optional
 (may be null).

 public LDAPMatchingRuleUseSchema(String raw)

 Constructs a matching rule use definition from an encoding
 using the matchingRuleUse syntax [ATTR].

 Parameters are:

 names Name(s) of the matching rule.

 oid OID of the matching rule.

 description Optional description of the matching rule use.

 obsolete true if the matching rule use is obsolete.

 attributes List of attributes that this matching rule
 applies to. These values may be either the
 names or OIDs of the attributes

 raw A matching rule use definition using the
 matchingRuleUse syntax [ATTR].

2.20.2 getAttributes

 public String[] getAttributes()

 Returns an array of all the attributes that this matching rule
 applies to.

2.21 public class LDAPMessage
 implements Serializable

 Base class for asynchronous LDAP request and response messages and
 for LDAPExtendedResponse.

2.21.1 getControls

 public LDAPControl[] getControls()

 Returns any controls in the message.

Expires December 6, 2004 [Page 78]

JAVA LDAP API April 2004

2.21.2 getMessageID

 public int getMessageID()

 Returns the message ID. Message IDs are defined in section 4.1.1.1 of
 [LDAPPROTO].

2.21.3 getType

 public int getType()

 Returns the LDAP operation type of the message. The type is one of
 the following:

 BIND_REQUEST (0x0)
 BIND_RESPONSE (0x1)
 UNBIND_REQUEST (0x2)
 SEARCH_REQUEST (0x3)
 SEARCH_RESPONSE (0x4)
 SEARCH_RESULT (0x5)
 MODIFY_REQUEST (0x6)
 MODIFY_RESPONSE (0x7)
 ADD_REQUEST (0x8)
 ADD_RESPONSE (0x9)
 DEL_REQUEST (0xa)
 DEL_RESPONSE (0xb)
 MODIFY_RDN_REQUEST (0xc)
 MODIFY_RDN_RESPONSE (0xd)
 COMPARE_REQUEST (0xe)
 COMPARE_RESPONSE (0xf)
 ABANDON_REQUEST (0x10)
 SEARCH_RESULT_REFERENCE (0x13)
 EXTENDED_REQUEST (0x17)
 EXTENDED_RESPONSE (0x18)
 INTERMEDIATE_RESPONSE (0x19)

 Each of the above types is a constant of LDAPMessage.

2.22 public class LDAPMessageQueue implements Serializable

 Represents the message queue associated with a particular
 asynchronous LDAP operation or operations.
2.22.1 getMessageIDs

 public int[] getMessageIDs()

 Returns the message IDs for all outstanding requests, i.e. requests
 for which a response has not been received from the server or which

Expires December 6, 2004 [Page 79]

JAVA LDAP API April 2004

 still have messages to be retrieved with getResponse. The last ID in
 the array is the messageID of the latest submitted request. Message
 IDs are defined in section 4.1.1.1 of [LDAPPROTO].

2.22.2 getResponse

 public LDAPMessage getResponse() throws LDAPException

 Blocks until a response is available, or until all operations
 associated with the object have completed or been canceled, and
 returns the response.

 public LDAPMessage getResponse(int msgid) throws LDAPException

 Blocks until a response is available for a particular message ID, or
 until all operations associated with the message ID have completed or
 been canceled, and returns the response. If there is no outstanding
 operation for the message ID (or if msgid is zero or a negative
 number), IllegalArgumentException is thrown.

 Parameters are:

 msgid A particular message ID to query for responses
 available.

2.22.3 isComplete

 public boolean isComplete(int msgid)

 Reports true if all results for a particular message ID have been
 received by the API implementation. For requests that return multiple
 results (for example search) there may still be messages queued in
 the object for retrieval by the application. If there is no
 outstanding operation for the message ID (or if msgid is zero or a
 negative number), IllegalArgumentException is thrown.

 Parameters are:

 msgid A particular message ID to query for completion.
2.22.4 isResponseReceived

 public boolean isResponseReceived()

 Reports true if any response has been received from the server and
 not yet retrieved with getResponse. If getResponse has been used to
 retrieve all messages received to this point, then isResponseReceived

 returns false.

Expires December 6, 2004 [Page 80]

JAVA LDAP API April 2004

 public boolean isResponseReceived(int msgid)

 Reports true if a response has been received from the server for a
 particular message ID but not retrieved with getResponse. If there is
 no outstanding operation for the message ID (or if msgid is zero or a
 negative number), IllegalArgumentException is thrown.

 Parameters are:

 msgid A particular message to query for responses
 available.
2.22.5 merge

 public void merge(LDAPMessageQueue queue2)

 Merges two queues. Moves/appends the content from the specified queue
 to this one. After the operation, queue2.getMessageIDs() returns an
 empty array and its outstanding responses have been removed (and
 appended to this queue).

2.23 public class LDAPModification
 implements Serializable

 Encapsulates a single change specification for an LDAPAttribute.

2.23.1 Constructors

 public LDAPModification(int op,
 LDAPAttribute attr)

 Specifies a modification to be made to an attribute.

 Parameters are:

 op The type of modification to make, which can be
 one of the following:

 ADD The value should be added to
 the attribute, creating the
 attribute if necessary.

 DELETE The value should be removed
 from the attribute, removing
 the entire attribute if no
 values are listed, or if all

 current values of the attribute
 are listed for deletion.

Expires December 6, 2004 [Page 81]

JAVA LDAP API April 2004

 REPLACE The value should replace all
 existing values of the
 attribute with the new values
 listed, creating the attribute
 if it did not already exist. A
 replace with no value will
 delete the entire attribute if
 it exists, and is ignored if
 the attribute does not exist.

 attr The attribute (possibly with values) to be
 modified.

2.23.2 getAttribute

 public LDAPAttribute getAttribute()

 Returns the attribute (possibly with values) to be modified.

2.23.3 getOp

 public int getOp()

 Returns the type of modification specified by this object.

2.23.4 Constants of LDAPModification

 ADD (0) The value should be added to the attribute,
 creating the attribute if necessary.

 DELETE (1) The value should be removed from the attribute,
 removing the entire attribute if no values are
 listed, or if all current values of the attribute
 are listed for deletion.

 REPLACE (2) The value should replace all existing values of
 the attribute with the new values listed,
 creating the attribute if it did not already
 exist. A replace with no value will delete the
 entire attribute if it exists, and is ignored if
 the attribute does not exist.

2.24 public class LDAPNameFormSchema
 extends LDAPSchemaElement

 The LDAPNameFormSchema class represents the definition of a Name
 Form. It is used to discover or modify the allowed naming attributes

Expires December 6, 2004 [Page 82]

JAVA LDAP API April 2004

 for a particular object class. See [ATTR] for a description of name
 form representation in LDAP.

2.24.1 Constructors

 public LDAPNameFormSchema(String[] names,
 String oid,
 String description,
 boolean obsolete,
 String objectClass,
 String[] required,
 String[] optional)

 Constructs a name form for adding to or deleting from the schema.
 [LDAPPROTO] defines which parameters are optional (may be null).

 public LDAPNameFormSchema(String raw)

 Constructs a DIT content rule from an encoding
 using the nameForms syntax [ATTR].

 Parameters are:

 names Name(s) of the name form.

 oid OID of the name form.

 description Optional description of the name form.

 obsolete true if the name form is obsolete.

 objectClass The object to which this name form applies.
 This may either be specified by name or OID.

 required A list of the attributes that must be present
 in the RDN of an entry that this name form
 controls. These may either be specified by
 name or OID.

 optional A list of the attributes that may be present
 in the RDN of an entry that this name form
 controls. These may either be specified by
 name or OID.

 raw A name form definition encoded using the
 nameForms syntax [ATTR].

2.24.2 getObjectClass

Expires December 6, 2004 [Page 83]

JAVA LDAP API April 2004

 public String getObjectClass()

 Returns the name of the object class that this name form applies to.

2.24.3 getOptionalNamingAttributes

 public String[] getOptionalNamingAttributes()

 Returns the list of optional naming attributes for an entry
 controlled by this content rule.

2.24.4 getRequiredNamingAttributes

 public String[]getRequiredNamingAttributes()

 Returns the list of required naming attributes for an entry
 controlled by this name form.

2.25 public class LDAPObjectClassSchema
 extends LDAPSchemaElement

 The LDAPObjectClassSchema class represents the definition of an
 object class. It is used to query the syntax of an object class, and
 to add or delete an object class definition in a DirectoryÆs
 subschema. See [ATTR] for a description of object class
 representation in LDAP.

2.25.1 Constructors

 public LDAPObjectClassSchema(String[] names,
 String oid,
 String[] superiors,
 String description,
 String[] required,
 String[] optional,
 int type,
 boolean obsolete)

 Constructs an object class definition for adding to or deleting from
 a DirectoryÆs subschema. [LDAPPROTO] defines which parameters are
 optional (i.e., which may be null).

 public LDAPObjectClassSchema(String raw)

 Constructs an object class definition from an encoding

 using the ObjectClassDescription syntax [ATTR].

Expires December 6, 2004 [Page 84]

JAVA LDAP API April 2004

 Parameters are:

 names Name(s) of the object class.

 oid OID of the object class.

 description Optional description of the object class.

 superiors The object classes this one derives from.

 required A list of attributes required for an entry with
 this object class.

 optional A list of attributes acceptable but not required
 for an entry with this object class.

 type One of ABSTRACT, AUXILIARY, or STRUCTURAL (See
 2.25.6).
 obsolete true if this object class is obsolete.

 raw An object class definition encoded using the
 ObjectClassDescription syntax [ATTR].

2.25.2 getOptionalAttributes

 public String[] getOptionalAttributes()

 Returns a list of attributes acceptable but not required of an entry
 with this object class.

2.25.3 getRequiredAttributes

 public String[] getRequiredAttributes()

 Returns a list of attributes required of an entry with this object
 class.

2.25.4 getSuperiors

 public String[] getSuperiors()

 Returns the object classes which this one derives from.

2.25.5 getType

 public int getType()

Expires December 6, 2004 [Page 85]

JAVA LDAP API April 2004

 Returns one of ABSTRACT, AUXILIARY, or STRUCTURAL (See 2.25.6).

2.25.6 Constants of LDAPObjectClassSchema

 ABSTRACT (0) identifies an abstract schema class
 STRUCTURAL (1) identifies a structural schema class
 AUXILIARY (2) identifies an auxiliary schema class

2.26 public class LDAPReferralException
 extends LDAPException

 This exception, derived from LDAPException, is thrown when a server
 returns a referral or search reference on a synchronous request and
 when automatic referral following has not been enabled. The
 exception may also be thrown when automatic referral following is
 enabled, but only if there was an error while attempting to follow
 the referral.

2.26.1 Constructors

 public LDAPReferralException()

 Constructs a default exception with no specific error information.

 public LDAPReferralException(String message)

 Constructs a default exception with a specified string as additional
 information. This form is used for lower-level errors.

 public LDAPReferralException(String message,
 Throwable rootException)

 Constructs a default exception with a specified string as additional
 information and an exception that indicates a failure to follow a
 referral.

 public LDAPReferralException(String message,
 int resultCode,
 String serverMessage)

 public LDAPReferralException(String message,
 int resultCode,
 String serverMessage,
 Throwable rootException)

 Parameters are:

 message The additional error information.

Expires December 6, 2004 [Page 86]

JAVA LDAP API April 2004

 resultCode The result code returned

 serverMessage Error message specifying additional information
 from the server.

 rootException An exception which caused referral following to
 fail

2.26.2 getFailedReferral

 public String getFailedReferral()

 Gets the referral URL that could not be followed. If multiple URLs
 are in the list, and none could be followed, the method returns one
 of them.

2.26.3 getReferrals

 public String[] getReferrals()

 Gets the list of referral URLs (URLs to other servers) returned by
 the LDAP server. If the scope field of a referral of type
 SearchResultReference must be modified in order to follow the
 referral, the API implementation MUST modify the scope field of the
 URL before returning the URL to the application.

 The referral list may include URLs of a type other than LDAP server
 (i.e. a referral URL other than ldap://something).

2.26.4 setFailedReferral

 public void setFailedReferral(String url)

 Sets a referral URL that could not be followed.

2.27 public interface LDAPReferralHandler

 Shared ancestor to the two types of referral objects -
 LDAPBindHandler and LDAPAuthHandler.

2.28 public class LDAPResponse
 extends LDAPMessage

Expires December 6, 2004 [Page 87]

JAVA LDAP API April 2004

 Represents the response to a particular asynchronous LDAP operation.
 LDAPExtendedResponse extends LDAPResponse and is returned on a
 synchronous extended request.

2.28.1 getErrorMessage

 public String getErrorMessage()

 Returns any error message in the response.

2.28.2 getMatchedDN

 public String getMatchedDN()

 Returns the partially matched DN field, if any, in a server response.

2.28.3 getReferrals

 public String[] getReferrals()

 Returns list of all referral URLs, if any, in a server response.

2.28.4 getResultCode

 public int getResultCode()

 Returns the result code in a server response, as defined in
 [LDAPPROTO].

2.29 public class LDAPSchema
 extends LDAPEntry
 implements Serializable

 The LDAPSchema class provides methods to parse schema attributes
 associated with an LDAPEntry. Schema is retrieved from a Directory
 ServerÆs subschema using the fetchSchema method of LDAPConnection
 (see 2.8.13).

2.29.1 Constructors

 public LDAPSchema(LDAPEntry entry)

 Constructs an LDAPSchema object from attributes of an LDAPEntry. The
 object is empty if the entry parameter contains no schema attributes.

Expires December 6, 2004 [Page 88]

JAVA LDAP API April 2004

 Parameters are:

 entry An LDAPEntry containing schema information.

2.29.2 getAttributeNames

 public Enumeration getAttributeNames()

 Returns an enumeration of attribute names.

2.29.3 getAttributeSchema

 public LDAPAttributeSchema getAttributeSchema(String name)

 Returns a particular attribute definition, or null if not found.

 Parameters are:

 name Name or OID of the attribute for which a
 definition is to be returned.

2.29.4 getAttributeSchemas

 public Enumeration getAttributeSchemas()

 Returns an enumeration of attribute definitions.

2.29.5 getDITContentRuleNames

 public Enumeration getDITContentRuleNames()

 Returns an enumeration of content rule names.

2.29.6 getDITContentRuleSchema

 public
 LDAPDITContentRuleSchema getDITContentRuleSchema(String name)
 Returns a particular content rule definition, or null if not found.

 Parameters are:

 name Name or OID of the content rule for which a
 definition is to be returned.

Expires December 6, 2004 [Page 89]

JAVA LDAP API April 2004

2.29.7 getDITContentRuleSchemas

 public Enumeration getDITContentRuleSchemas()

 Returns an enumeration of LDAPDITContentRuleSchema objects.

2.29.8 getDITStructureRuleNames

 public Enumeration getDITStructureRuleNames ()

 Returns an enumeration of structure rule names.

2.29.9 getDITStructureRuleSchema

 public
 LDAPDITStructureRuleSchema getDITStructureRuleSchema(String name)

 public LDAPDITStructureRuleSchema getDITStructureRuleSchema(int id)

 Returns a particular structure rule definition, or null if not found.

 Parameters are:

 name Name or OID of the structure rule for which a
 definition is to be returned.

 id Identifier of the structure rule for which a
 definition is to be returned.

2.29.10 getDITStructureRuleSchemas

 public Enumeration getDITStructureRuleSchemas()

 Returns an enumeration of LDAPDITStructureRuleSchema objects.

2.29.11 getMatchingRuleNames

 public Enumeration getMatchingRuleNames()

 Returns an enumeration of matching rule names.

2.29.12 getMatchingRuleSchema

 public LDAPMatchingRuleSchema getMatchingRuleSchema(String name)

 Returns a particular matching rule definition, or null if not found.

Expires December 6, 2004 [Page 90]

JAVA LDAP API April 2004

 Parameters are:

 name Name or OID of the matching rule for which a
 definition is to be returned.

2.29.13 getMatchingRuleSchemas

 public Enumeration getMatchingRuleSchemas()

 Returns an enumeration of matching rule definitions.

2.29.14 getMatchingRuleUseNames

 public Enumeration getMatchingRuleUseNames()

 Returns an enumeration of matching rule use names.

2.29.15 getMatchingRuleUseSchema

 public
 LDAPMatchingRuleUseSchema getMatchingRuleUseSchema(String name)

 Returns a particular matching rule use definition, or null if not
 found.

 Parameters are:

 name Name or OID of the matching rule use for which a
 definition is to be returned.

2.29.16 getMatchingRuleUseSchemas

 public Enumeration getMatchingRuleUseSchemas()

 Returns an enumeration of LDAPMatchingRuleUseSchema objects.

2.29.17 getNameFormNames

 public Enumeration getNameFormNames ()

 Returns an enumeration of name form names.

2.29.18 getNameFormSchema

 public LDAPNameFormSchema getNameFormSchema(String name)

Expires December 6, 2004 [Page 91]

JAVA LDAP API April 2004

 Returns a particular name form definition, or null if not found.

 Parameters are:

 name Name or OID of the name form for which a
 definition is to be returned.

2.29.19 getNameFormSchemas

 public Enumeration getNameFormSchemas()

 Returns an enumeration of LDAPNameFormSchema objects.

2.29.20 getObjectClassNames

 public Enumeration getObjectClassNames()

 Returns an enumeration of object class names.

2.29.21 getObjectClassSchema

 public LDAPObjectClassSchema getObjectClassSchema(String name)

 Returns a particular object class definition, or null if not found.

 Parameters are:

 name Name or OID of the object class for which a
 definition is to be returned.

2.29.22 getObjectClassSchemas

 public Enumeration getObjectClassSchemas()

 Returns an enumeration of object class definitions.

2.29.23 getSyntaxSchema

 public LDAPSyntaxSchema getSyntaxSchema(String oid)

 Returns a particular syntax definition, or null if not found.

 Parameters are:

 oid OID of the syntax for which a definition is to be

 returned.

Expires December 6, 2004 [Page 92]

JAVA LDAP API April 2004

2.29.24 getSyntaxSchemas

 public Enumeration getSyntaxSchemas()

 Returns an enumeration of LDAPSyntaxSchema objects.

2.30 public abstract class LDAPSchemaElement
 extends LDAPAttribute implements Serializable

 The LDAPSchemaElement class is the base class for representing schema
 elements in LDAP. All classes representing schema elements are
 read-only and thus do not support the addValue and removeValue
 methods from LDAPAttribute. This class overrides those methods and
 throws UnsupportedOperationException if addValue or removeValue is
 invoked.

2.30.1 getDescription

 public String getDescription()

 Returns the description of the element. With respect to the protocol-
 level schema element syntax definition of [ATTR], the value is that
 of the DESC qualifier.

2.30.2 getNames

 public String[] getNames()

 Returns the name(s) of the element.

2.30.3 getID

 public String getID()

 Returns the OID of the element.

2.30.4 getQualifier

 public String[] getQualifier(String name)

 Returns an array of all values of a qualifier of the element which is
 not defined in [ATTR]. This method may be used to access the values
 of vendor-specific qualifiers (which begin with "X-" [ATTR]).

 Parameters are:

Expires December 6, 2004 [Page 93]

JAVA LDAP API April 2004

 name The name of the qualifier, case-sensitive.

2.30.5 getQualifierNames

 public Enumeration getQualifierNames()

 Returns an enumeration of all qualifiers of the element which are not
 defined in [ATTR].

2.30.6 isObsolete

 public boolean isObsolete()

 Returns true if the element has the OBSOLETE qualifier in its LDAP
 definition [ATTR].

2.30.7 setQualifier

 public void setQualifier(String name, String[] values)

 Sets the values of a specified optional or experimental qualifier of
 the element. This method may be used to set the values of vendor-
 specific qualifiers (which begin with "X-" [ATTR]).

 Parameters are:

 name The name of the qualifier, case-sensitive.

 values The values to set for the qualifier.

2.30.8 toString

 public String toString()

 Returns a String in a format suitable for directly adding to a
 Directory (defined in [ATTR], as a value of the particular schema
 element attribute. See the format definition for each derived class.

2.31 public class LDAPSearchConstraints
 extends LDAPConstraints

 A set of options to control a search operation. There is always an
 LDAPSearchConstraints object associated with an LDAPConnection
 object; it bcan be changed with LDAPConnection.setConstraints, or

 overridden by passing an LDAPSearchConstraints object to a search
 operation.

Expires December 6, 2004 [Page 94]

JAVA LDAP API April 2004

2.31.1 Constructors

 public LDAPSearchConstraints()

 Constructs an LDAPSearchConstraints object that specifies the default
 set of search constraints.

 public LDAPSearchConstraints(LDAPConstraints cons)

 Constructs an LDAPSearchConstraints object initialized with values
 from an existing constraints object (LDAPConstraints or
 LDAPSearchConstraints).

 public LDAPSearchConstraints(int msLimit,
 int serverTimeLimit,
 int dereference,
 int maxResults,
 boolean doReferrals,
 int batchSize,
 LDAPReferralHandler handler,
 int hop_limit)

 Constructs a new LDAPSearchConstraints object and allows specifying
 the operational constraints in that object.

 Parameters are:

 cons Constraints object to use as template.

 msLimit Maximum time in milliseconds to wait for results
 The default of 0 means that there is no maximum
 time limit. This is an interface-enforced limit.

 serverTimeLimit Maximum time in seconds that the server should
 spend returning results. This is a server-
 enforced limit. The default of 0 means no time
 limit.

 dereference Specifies when aliases should be dereferenced.
 The value MUST be either DEREF_NEVER,
 DEREF_FINDING, DEREF_SEARCHING, or DEREF_ALWAYS
 (DEREF_NEVER by default).

 maxResults Maximum number of search results to return (1000
 by default).

 doReferrals Specify true to follow referrals automatically,
 or false to throw an LDAPReferralException error

Expires December 6, 2004 [Page 95]

JAVA LDAP API April 2004

 if the server sends back a referral (false by
 default). It is ignored for asynchronous
 operations.

 batchSize Specify the number of results to block on during
 enumeration. 0 means to block until all results
 are in (1 by default). It is ignored for
 asynchronous operations.

 handler Custom authentication processor, called when the
 LDAPConnection needs to authenticate, typically
 on following a referral. The default of null
 specifies default authentication processing, i.e.
 anonymous authentication if doReferrals is true.
 The object implements either the LDAPBindHandler
 or the LDAPAuthHandler interface. It is ignored
 for asynchronous operations.

 hop_limit Maximum number of referrals to follow in a
 sequence when attempting to resolve a request,
 when doing automatic referral following. It is
 ignored for asynchronous operations. The value is
 10 by default.

2.31.2 getBatchSize

 public int getBatchSize()

 Returns the blocking factor for synchronous searches. When retrieving
 results from the LDAPSearchResults object, a blocking factor of 0
 indicates that the next() method blocks until all results are
 received from the server. A value of 1 indicates that next() returns
 each result when it is received. A value of 2 blocks until 2 results
 are received from the server or until the final result is received.

2.31.3 getDereference

 public int getDereference()

 Specifies when aliases should be dereferenced. Returns one of
 DEREF_NEVER, DEREF_FINDING, DEREF_SEARCHING, or
 DEREF_ALWAYS.

2.31.4 getMaxResults

 public int getMaxResults()

 Returns the maximum number of search results to be returned; 0 means
 no limit.

Expires December 6, 2004 [Page 96]

JAVA LDAP API April 2004

2.31.5 getServerTimeLimit

 public int getServerTimeLimit()

 Reports the maximum number of seconds that the server is to wait when
 returning search results while using this constraint object

2.31.6 setBatchSize

 public void setBatchSize(int batchSize)

 Sets the blocking factor for synchronous searches. When retrieving
 results from the LDAPSearchResults object, a blocking factor of 0
 indicates that the next() method blocks until all results are
 received from the server. A value of 1 indicates that next() returns
 each result when it is received. A value of 2 blocks until 2 results
 are received from the server or until the final result is received.
 The default is 1.

 Parameters are:

 batchSize Blocking size on search enumerations.

2.31.7 setDereference

 public void setDereference(int dereference)

 Sets a preference indicating whether or not aliases should be
 dereferenced, and if so, when.

 Parameters are:

 dereference Either DEREF_NEVER, DEREF_FINDING,
 DEREF_SEARCHING, or DEREF_ALWAYS.

2.31.8 setMaxResults

 public void setMaxResults(int maxResults)

 Sets the maximum number of search results to be returned; 0 means no
 limit. The default is 1000.

 Parameters are:

 maxResults Maximum number of search results to return.

Expires December 6, 2004 [Page 97]

JAVA LDAP API April 2004

2.31.9 setServerTimeLimit

 public void setServerTimeLimit(int seconds)

 Sets the maximum number of seconds that the server is to wait when
 returning search results. The parameter is only recognized on search
 operations. The default of 0 means no time limt.

2.31.10 Constants of LDAPSearchConstraints

 DEREF_NEVER (0) Aliases are never dereferenced.

 DEREF_SEARCHING (1) Aliases are dereferenced when searching the
 entries beneath the starting point of the search
 (but not when finding the starting entry).

 DEREF_FINDING (2) Aliases are dereferenced when finding the
 starting point for the search (but not when
 searching under that starting entry).

 DEREF_ALWAYS (3) Aliases are always dereferenced (both when
 finding the starting point for the search and
 when searching under that starting entry).

2.32 public class LDAPSearchResult
 extends LDAPMessage

 An LDAPSearchResult object encapsulates a single asynchronous search
 result.

2.32.1 getEntry

 public LDAPEntry getEntry()

 Returns the entry of a server search response.

2.33 public class LDAPSearchResultReference
 extends LDAPMessage

 An LDAPSearchResultReference object encapsulates a continuation
 reference from an asynchronous search operation.

2.33.1 getReferrals

 public String[] getReferrals()

Expires December 6, 2004 [Page 98]

JAVA LDAP API April 2004

 Returns the list of any continuation reference URLs in the object.

2.34 public class LDAPSearchResults

 An LDAPSearchResults object is returned from a synchronous search
 operation. It provides access to all results received during the
 operation (entries and exceptions).

2.34.1 getCount

 public int getCount()

 Returns a count of the entries and exceptions in the object. If the
 search was submitted with a batch size greater than 0, this reports
 the number of results received so far but not enumerated with next().

2.34.2 getResponseControls

 public LDAPControl[] getResponseControls()

 Returns the latest Server Controls returned by a Directory Server
 in the context of this search request.

2.34.3 hasMore

 public boolean hasMore()

 Reports if there are more search results. If true, there are more
 search results.

2.34.4 next

 public LDAPEntry next() throws LDAPException

 Returns the next search result as an LDAPEntry. If
 automatic referral following is disabled or a referral was not
 followed, next() will throw an LDAPReferralException when the
 referral is received. See also 2.31.6.

2.35 public class LDAPSyntaxSchema
 extends LDAPSchemaElement

 The LDAPSyntaxSchema class represents the definition of a syntax. It
 is used to discover the known set of syntaxes in effect for the

 subschema. See [ATTR] for a description of syntax representation in
 LDAP.

Expires December 6, 2004 [Page 99]

JAVA LDAP API April 2004

 Note, that though this extends LDAPSchemaElement, it does not use the
 name or obsolete members, subsequently calls to getName always return
 null and isObsolete always returns false. There is also no matching
 getSyntaxNames method in LDAPSchema.
 Note also, that adding and removing syntaxes is not typically a
 supported feature of LDAP servers.

2.35.1 Constructors

 public LDAPSyntaxSchema(String oid,
 String description)

 Constructs a syntax for adding to or deleting from the schema.

 public LDAPSyntaxSchema(String raw)

 Constructs a syntax from an encoding using the ldapSyntaxes syntax
 [ATTR].

 Parameters are:

 oid OID of the syntax.

 description Optional description of the syntax.

 raw A definition of a syntax encoded using the
 ldapSyntaxes syntax [ATTR].

2.36 public interface LDAPUnsolicitedNotificationListener

 An object that implements this interface can be notified when
 unsolicited messages arrive from the server. The Application
 registers the object with
 LDAPConnection.addUnsolicitedNotificationListener. Unsolicited
 messages have a message ID of 0. An implementation of the Java LDAP
 API SHOULD NOT generate messages with an ID of 0.

2.36.1 messageReceived

 public void messageReceived(LDAPExtendedResponse msg)

 The method is called when an unsolicited message arrives from a
 server, if the object has registered with
 LDAPConnection.addUnsolicitedNotificationListener.

 Parameters are:

 msg An unsolicited message received from the server.

Expires December 6, 2004 [Page 100]

JAVA LDAP API April 2004

2.37 public class LDAPUrl
 implements Cloneable, Serializable

 Encapsulates parameters of an LDAP Url query, as defined in
 [LDAPURL]. An LDAPUrl object can be passed to LDAPConnection.search
 to retrieve search results.

2.37.1 Constructors

 public LDAPUrl(String url) throws MalformedURLException

 Constructs a URL object with the specified string as URL.

 public LDAPUrl(String host,
 int port,
 String dn)

 Constructs a URL object with the specified host, port, and DN. This
 form is used to create URL references to a particular object in the
 directory.

 public LDAPUrl(String host,
 int port,
 String dn,
 String[] attrNames,
 int scope,
 String filter,
 String[] extensions)

 Constructs an LDAP URL with all fields explicitly assigned, to
 specify an LDAP search operation.

 Parameters are:

 url An LDAP URL string, e.g.
 "ldap://ldap.example.com:80/dc=example,dc=com?cn,
 sn?sub?(objectclass=inetOrgPerson)".

 host Host identifier of LDAP server, or null for
 "localhost". See 2.8.9 for a discussion of valid
 identifiers.

 port Port number for LDAP server (use
 LDAPConnection.DEFAULT_PORT for default port).

 dn Distinguished name of the base object of the
 search.

Expires December 6, 2004 [Page 101]

JAVA LDAP API April 2004

 attrNames Names or OIDs of attributes to retrieve. Passing
 a null array signifies that all user attributes
 are to be retrieved. Passing a value of "*" as an
 element of the array signifies that all user
 attributes are to be retrieved.

 scope Depth of search (in DN namespace). Use one of
 SCOPE_BASE, SCOPE_ONE, SCOPE_SUB from
 LDAPConnection.

 filter Search filter specifying the search criteria, as
 defined in [FILTER].

 extensions LDAP URL extensions specified; may be null or
 empty. Each extension is a type=value expression.
 The =value part can be omitted. Prefix the
 expression with '!' if the extension is mandatory
 for evaluation of the URL.

2.37.2 decode

 public static String decode(String URLEncoded)
 throws MalformedURLException

 Decodes a URL-encoded string. Any occurrences of %HH are decoded to
 the hex value represented. However, this method does NOT decode "+"
 into " ". See [URL] for details on URL encoding/decoding.

 Parameters are:

 URLEncoded String to decode.

2.37.3 encode

 public static String encode(String toEncode)

 Encodes the specified string. Any illegal characters are encoded as
 %HH.

 Parameters are:

 toEncode String to encode.

2.37.4 getAttributeArray

 public String[] getAttributeArray()

 Returns an array of attribute names specified in the URL.

Expires December 6, 2004 [Page 102]

JAVA LDAP API April 2004

2.37.5 getAttributes

 public Enumeration getAttributes()

 Returns an enumerator for the attribute names specified in the URL.
 The enumerator is empty if the URL contains no attribute names.

2.37.6 getDN

 public String getDN()

 Returns the distinguished name encapsulated in the URL, or null if
 none is specified.

2.37.7 getExtensions

 public String[] getExtensions ()

 Returns any LDAP URL extensions specified, or null if none are
 specified. Each extension is a type=value expression. The =value part
 can be omitted. Prefix the expression with '!' if the extension is
 mandatory for evaluation of the URL.

2.37.8 getFilter

 public String getFilter()

 Returns the search filter [LDAPURL], or null if none was specified.

2.37.9 getHost

 public String getHost()

 Returns the host name of the LDAP server to connect to.

2.37.10 getPort

 public int getPort()

 Returns the port number of the LDAP server to connect to.

2.37.11 getScope

 public int getScope()

Expires December 6, 2004 [Page 103]

JAVA LDAP API April 2004

 Returns the depth of search (in DN namespace) - one of SCOPE_BASE,
 SCOPE_ONE, SCOPE_SUB from LDAPConnection.

2.37.12 toString

 public String toString()

 Returns a valid string representation of this LDAP URL.

3. Implementation considerations

3.1 Controls

 LDAPv3 operations can be extended through the use of controls.
 Controls can be sent to a server or returned to the application with
 any LDAP message. These controls are represented by LDAPControl
 objects.

 Controls are set and retrieved in LDAPConnection with the
 setConstraints and getConstraints methods. Either a single
 LDAPControl or an array can be specified, e.g.

 LDAPControl control = new LDAPControl(type, critical, vals);
 LDAPConstraints cons = ld.getConstraints();
 cons.setControls(control);
 ld.setConstraints(cons);
 or
 LDAPControl[] controls = new LDAPControl[2];
 controls[0] = new LDAPControl(type0, critical0, vals0);
 controls[1] = new LDAPControl(type1, critical1, vals1);
 LDAPConstraints cons = ld.getConstraints();
 cons.setControls(controls);
 ld.setConstraints(cons);

 Server controls returned to an application as part of the response to
 a synchronous operation can be obtained with
 LDAPConnection.getResponseControls() or
 LDAPSearchResults.getResponseControls(). Controls returned on an
 asynchronous operation are available with LDAPMessage.getControls().

3.2 Referral handling and exceptions

 Asynchronous requests

 No automatic referral following is supported for asynchronous

 requests.

Expires December 6, 2004 [Page 104]

JAVA LDAP API April 2004

 No LDAPExceptions are thrown for asynchronous requests except in the
 case of LDAPLocalException. The Throwable causing the local error can
 be retrieved with LDAPConnection.getCause().

 When a referral is received, the application receives an LDAPResponse
 object with a result code of REFERRAL. If a continuation reference is
 received the application receives an LDAPSearchResultReference
 object.

 Synchronous requests

 Referral-following behavior depends on two things: if automatic
 referral following is enabled, and when enabled if an
 LDAPReferralHandler is provided by the application.

 - Behavior if automatic referral following is "false" (not enabled):

 An LDAPException is thrown for any non-zero result code.

 An LDAPException is thrown for local failures.

 An LDAPReferralException is thrown if the result code is
 REFERRAL. The object contains the referral URL strings. This
 ends the request, i.e., LDAPSearchResults.hasMore() will return
 false since there are noresults to retrieve.

 An LDAPReferralException is thrown for each
 SearchResultReference received during a synchronous search
 request. The object contains the referral URL strings. The
 exception is not an error, LDAPSearchResults.hasMore() will
 indicate ifthere are more results to retrieve.

 - Behavior if automatic referral following is "true" and either no
 LDAPReferralHandler is registered in LDAPConstraints, or an
 LDAPAuthHandler object is registered in LDAPConstraints:

 Exception handling is the same whether or not an LDAPAuthHandler
 object is registered, but authentication to the server is not
 the same. The registration of an LDAPAuthHandler object allows
 connections to be authenticated. No handler registered results
 in an anonymous (unauthenticated) connection.

 LDAPExceptions are thrown if errors occur during the normal
 processing of the command, i.e. NO_SUCH_OBJECT,
 NO_SUCH_ATTRIBUTE, etc.

 An LDAPReferralException is thrown only if the API
 implementation could not connect and bind to any referral URL in

 the list of URLs included in an individual REFERRAL result or
 LDAPSearchResultReference.

Expires December 6, 2004 [Page 105]

JAVA LDAP API April 2004

 When problems occur during the establishment of an authenticated
 connection by the API implementation during automatic referral
 following, the LDAPReferralException will contain the last tried
 URL String of the server the API attempted to connect/bind to
 (the referral can be retrieved with getFailedReferral()), and
 the Throwable that caused the Exception (which can be retrieved
 with getCause()).Some possible failures are IOException on the
 connection, MalformedURLException on the referral string, or
 authentication failures on the bind.

 Upon receipt of an LDAPReferralException, the application knows
 that the API implementation was not able to connect to any of
 the servers in the referral list (which can be retrieved with
 getReferrals()) and was not able to follow the referral. The
 error indicated by getCause() occurred on the referral indicated
 with getFailedReferral(). In the case of search, any results
 starting at the indicated base of the referred to server are
 missing from the search results.

 - behavior if automatic referral following is "true", and an
 LDAPBindHandler object is registered in LDAPConstraints:

 LDAPExceptions are thrown if errors occur during the normal
 processing of the command, i.e. NO_SUCH_OBJECT,
 NO_SUCH_ATTRIBUTE, etc.

 An LDAPReferralException is thrown only if the LDAPBindHandler
 object throws an exception.

 Upon receipt of an LDAPReferralException, the application knows
 that the LDAPBindHandler object was not able or not willing to
 connect to any of the servers in the referral list and so was
 not able to follow the referral. The list of referrals that
 failed is available with getReferrals() and the last failed
 referral with getFailedReferral(). The exception thrown by the
 LDAPBindHandler object is available with getCause().

The API implementation MAY follow referrals of types other than LDAP
URLs [LDAPURL] on automatic referral following if access to the referred
servers is through the LDAP protocol [LDAPv3]. To successfully follow
such referral URLs, the application MUST provide an LDAPBindHandler that
can interpret the URL and perform an appropriate connect and bind
operation to the server. The application MAY follow such referrals
through application specific code.
3.3 Message IDs

 An implementation of the Java LDAP API SHOULD NOT generate messages
 with an ID of 0.

3.4 Notice of disconnection

Expires December 6, 2004 [Page 106]

JAVA LDAP API April 2004

 If a notice of disconnection is received by a connection object, the
 API implementation MUST close the connection without accepting or
 sending additional messages. Any clones of the object are
 disconnected as a consequence of closing the connection.

3.5 Level of compatibility

 Implementations of the API MUST include all classes and interfaces
 described in this document and thus are to be binary compatible, i.e.
 any application with its classpath including the jar or class files
 implementing this API will exhibit consistant behavior when using the
 API as defined by this document.

3.6 Dependencies

 The Java LDAP API is dependent on the following:

 - JDK 1.2 or higher
 - JAAS 1.0 or higher (for the interfaces in the
 javax.security.auth.callback package)

3.7 Invalid responses

 If a message is received by an API implementation from the server and
 the message cannot be interpreted as an LDAP PDU, an LDAPException
 MUST be thrown with a result code of INVALID_RESPONSE.

3.8 Java Unicode Limitations

 Any Unicode characters which cannot be represented with Java 16-bit
 Unicode strings (UCS2) cannot be used with this API, unless those
 characters are handled as binary UTF-8 data. If changes are
 introduced into the Java Language to accommodate these characters,
 implementations of the Java LDAP API SHOULD also accommodate these
 characters.

3.9 Intermediate Response Messages

 Applications may receive messages with a response type of
 LDAP_INTERMEDIATE_RESPONSE from any operation [LDAPINT].

 Applications using synchronous interfaces will receive an
 INTERMEDIATE_RESPONSE exception upon receipt of an LDAP Intermediate
 Response Message; the operation will not be terminated, but will
 continue until an LDAPResponse message is received from the server or

 until the application abandons the operation. The application can
 obtain the actual message through the getResponse() method of the
 LDAPException class.

Expires December 6, 2004 [Page 107]

JAVA LDAP API April 2004

 Applications using asynchronous interfaces receive an LDAPMessage
 class with the response type set to LDAP_INTERMEDIATE_RESPONSE.

 It is up to the application to determine how to interpret the data in
 the message.

3.10 Extensibility

 To accommodate additions to the LDAP protocol [LDAPINT], LDAP
 messages with types not defined in [LDAPPROTO] MUST be returned to
 the application. Responses with unknown types that do not match the
 Message ID of an outstanding request or that are not an unsolicited
 notification message, SHOULD be discarded.

 Applications using synchronious interfaces will receive an
 UNKNOWN_TYPE exception upon receipt of an LDAP message containing an
 unknown response type; the operation will not be terminated but will
 continue until an LDAPResponse message is received from the server or
 until the application abandons the operation. The application can
 obtain the actual message through the getResponse() method of the
 LDAPException class.

 Applications using asynchronous interfaces will receive an
 LDAPMessage class with the response type set to the type of the
 message received.

 It is up to the application to determine how to interpret the data in
 the message.

4. Security considerations

 LDAP supports security through protocol-level authentication, using
 clear-text passwords or other more secure mechanisms. It also
 supports running over TLS, which provides strong security at the
 transport layer.

 If a TLS session is terminated by the server but the client TLS
 provider and LDAP API implementation continue to use the socket
 rather than closing it, the application is notified through an
 LDAPException on the first operation request subsequent to
 termination of the TLS session.

 An interface to using SASL for configurable authentication and
 session protection is provided, but implementations are outside the
 scope of this document. Implementations of this API MUST ensure that
 a SASL provider is configured to comply with the minimal security

 guidelines of RFC 2829 [AUTH].

 Implementations of this API SHOULD be cautious when handling

Expires December 6, 2004 [Page 108]

https://datatracker.ietf.org/doc/html/rfc2829

JAVA LDAP API April 2004

 authentication credentials. In particular, keeping long-lived copies
 of credentials without the application's knowledge is discouraged.

 Implementations of this API MUST discard information about the server
 obtained prior to negotiation of security protections provided by
 SASL and/or TLS [AUTH].

5. Acknowledgements

 The proposed API builds on earlier work done in collaboration with
 Thomas Kwan and Stephan Gudmundson, then of NCware Technologies Corp.
 It also includes suggestions by Steven Merrill of Novell, Inc, and
 benefited from extensive review and comments by Kurt Zeilenga of
 OpenLDAP, Rosanna Lee of Sun Microsystems, Mark Smith of Netscape
 Communications Corp., and Jim Sermersheim of Novell, Inc. Parts of
 the overview of the LDAP model are taken from draft-ietf-ldapext-

ldap-c-api.

6. Bibliography

6.1 Normative References

 [ATTR] M. Wahl, A. Coulbeck, T. Howes, S. Kille, "Lightweight
 Directory Access Protocol: Attribute Syntax Definitions",

RFC 2252, December 1997

 [AUTH] M. Wahl, H. Alvestrand, J. Hodges, R. Morgan, "Authentication
 Methods for LDAP", RFC 2829, May 2000

 [DN] S. Kille, " UTF-8 String Representation of Distinguished
 Names," RFC 2253, December 1997.

 [FILTER] T. Howes, "A String Representation of LDAP Search Filters,"
RFC 2254, December 1997.

 [LDAPINT] R. Harrison, K. Zeilenga, ôThe Lightweight Directory Access
 Protocol (LDAP) Itermediate Response Messageö, RFC 3771, April
 2004
 [LDAPLANG] M. Wahl, T. Howes, "Use of Language Codes in LDAP", RFC

2596, May 1999

 [LDAPPROTO] J. Hodges & R. Morgan, "LDAPv3: Technical
 Specificationö, RFC 3377, September 2002

 [LDAPTLS] J. Hodges, R. Morgan, M. Wahl, "Lightweight Directory
 Access Protocol (v3): Extension for Transport Layer Security",

https://datatracker.ietf.org/doc/html/draft-ietf-ldapext-ldap-c-api
https://datatracker.ietf.org/doc/html/draft-ietf-ldapext-ldap-c-api
https://datatracker.ietf.org/doc/html/rfc2252
https://datatracker.ietf.org/doc/html/rfc2829
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2254
https://datatracker.ietf.org/doc/html/rfc3771
https://datatracker.ietf.org/doc/html/rfc2596
https://datatracker.ietf.org/doc/html/rfc2596
https://datatracker.ietf.org/doc/html/rfc3377

RFC 2830, May 2000.

Expires December 6, 2004 [Page 109]

https://datatracker.ietf.org/doc/html/rfc2830

JAVA LDAP API April 2004

 [LDAPURL] T. Howes, M. Smith, "An LDAP URL Format", RFC 2255,
 December 1997.

 [LDAPv3] M. Wahl, T. Howes, S. Kille, "Lightweight Directory Access
 Protocol (v3)", RFC 2251, December 1997.

 [SASL] J. Myers, "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [TLS] T. Dierks, C. Allen, "The TLS Protocol", RFC 2246, January
 1999.

 [URL] T. Berners-Lee, R. Fielding, L. Masinter, " Uniform Resource
 Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

6.2 Informative References

 [IPv6] R. Hinden, S. Deering, "IP Version 6 Addressing Architecture",
RFC 2373, July 1998

 [IPv6URL] R. Hinden, B. Carpenter, L. Masinter, "Format for Literal
 IPv6 Addresses in URL's", RFC 2732, December 1999

 [JAVA] B. Joy, G. Steele, J. Gosling, G. Bracha, "The Java Language
 Specification", Second Edition, Addison-Wesley, June 2000

 [JAVASASL] "Java SASL Specification", Java Community Process, JSR28

 [KEYWORDS] "Key words for use in RFCs to Indicate Requirement
 Levels", Bradner, S., RFC 2119, March 1997

 [LANG] H. Alvestrans, "Tags for the Identification of Languages", RFC
3066, January 2001.

 [X500] The Directory: Overview of Concepts, Models, and Services.
 CCITT, Recommendation X.500, 2nd edition, 1993

7. Authors' addresses

 Rob Weltman
 Netscape Communications Corp.
 466 Ellis Street
 Mountain View, CA 94043
 USA
 +1 650 937-3194
 rweltman@netscape.com

https://datatracker.ietf.org/doc/html/rfc2255
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc2732
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc3066

 Christine Tomlinson
 Sun Microsystems, Inc.
 8911 Capital of Texas Highway

Expires December 6, 2004 [Page 110]

JAVA LDAP API April 2004

 Suite 4140
 Austin, TX US 78759
 +1 512 231 1600
 christine.tomlinson@sun.com

 Steven Sonntag
 Novell, Inc.
 1800 South Novell Place
 Provo, UT 84606
 USA
 +1 801 861 7097
 vtag@novell.com

Expires December 6, 2004 [Page 111]

JAVA LDAP API April 2004

8. Appendix A - Sample Java LDAP programs

8.1 Java LDAP programs using synchronous methods

 import org.ietf.ldap.*;
 import java.util.*;

 public class SearchJensen {
 public static void main(String[] args) {
 LDAPConnection ld = new LDAPConnection();
 try {
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = LDAPConnection.DEFAULT_PORT;
 ld.connect(MY_HOST, MY_PORT);
 /* Authentication not required for an anonymous
 connection */

 /* search for all entries with surname of Jensen */
 String MY_FILTER = "(sn=Jensen)";
 String MY_SEARCHBASE = "dc=example,dc=com";

 LDAPSearchConstraints cons = ld.getSearchConstraints();
 /* Setting the batchSize to one will cause the result
 enumeration below to block on one result at a time,
 allowing us to update a list or do other things as
 results come in. */
 /* We could set it to 0 if we just wanted to get all
 results and were willing to block until then */
 cons.setBatchSize(1);
 ld.setSearchConstraints(cons);
 LDAPSearchResults res = ld.search(MY_SEARCHBASE,
 ld.SCOPE_ONE,
 MY_FILTER,
 null,
 false,
 cons);

 /* Loop on results until finished */
 while (res.hasMore()) {

 /* Next directory entry */
 LDAPEntry findEntry = res.next ();
 System.out.println(findEntry.getDN());

 /* Get the attributes of the entry */
 LDAPAttributeSet findAttrs =
 findEntry.getAttributeSet();
 Iterator enumAttrs = findAttrs.iterator();

 System.out.println("Attributes: ");
 /* Loop on attributes */
 while (enumAttrs.hasNext()) {

Expires December 6, 2004 [Page 112]

JAVA LDAP API April 2004

 LDAPAttribute anAttr =
 (LDAPAttribute)enumAttrs.next();
 String attrName = anAttr.getName();
 System.out.println(" " + attrName);
 /* Loop on values for this attribute.
 Note: we are assuming all values are UTF-8
 strings
 */
 Enumeration enumVals = anAttr.getStringValues();
 while (enumVals.hasMoreElements()) {
 String aVal = (String)enumVals.nextElement();
 System.out.println(" " + aVal);
 }
 }
 }

 /* Done, so disconnect */
 ld.disconnect();
 } catch(LDAPException e) {
 System.out.println("Error: " + e.toString());
 }
 }
 }

Expires December 6, 2004 [Page 113]

JAVA LDAP API April 2004

 import org.ietf.ldap.*;
 import java.io.*;
 import java.util.*;
 import javax.security.auth.callback.*;

 public class ModifyEmail {
 public static void main(String[] args) {
 LDAPConnection ld = new LDAPConnection();
 try {
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = LDAPConnection.DEFAULT_PORT;
 ld.connect(MY_HOST, MY_PORT);
 String MY_NAME =
 "uid=bjensen,ou=people,dc=example,dc=com";

 /* Callback handler to supply credentials for SASL */
 CallbackHandler cbh = new CallbackHandler() {
 public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof NameCallback){
 ((NameCallback)callbacks[i]).setName(
 "bjensen");
 } else if (callbacks[i] instanceof
 PasswordCallback) {
 ((PasswordCallback)callbacks[i]).setPassword(
 "MysteryLady".toCharArray());

 } else {
 throw new UnsupportedCallbackException (
 callbacks[i],
 "Unrecognized Callback");
 }
 }
 }
 };
 /* SASL bind */
 ld.bind("cn=Barbara Jensen,dc=example,dc=com",
 "bjensen", null, cbh);

 /* Prepare to change my email address */
 LDAPAttribute attrEmail =
 new LDAPAttribute("mail", "babs@example.com");
 LDAPModification mod =
 new LDAPModification(LDAPModification.REPLACE,
 attrEmail);

 /* Now modify the entry in the directory */
 ld.modify(MY_NAME, mod);
 System.out.println("Entry modified");

Expires December 6, 2004 [Page 114]

JAVA LDAP API April 2004

 /* Done, so disconnect */
 ld.disconnect();
 } catch(LDAPException e) {
 System.out.println("Error: " + e.toString());
 }
 }
 }

Expires December 6, 2004 [Page 115]

JAVA LDAP API April 2004

 import org.ietf.ldap.*;
 import java.util.*;

 public class ShowSchema {
 public static void main(String[] args) {
 LDAPConnection ld = new LDAPConnection();
 try {
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = LDAPConnection.DEFAULT_PORT;
 ld.connect(MY_HOST, MY_PORT);

 /* Fetch the schema */
 LDAPSchema schema = ld.fetchSchema(ld.getSchemaDN());

 /* What is the definition of "userPassword"? */
 LDAPAttributeSchema a =
 schema.getAttributeSchema("userpassword");
 if (a != null) {
 String syntax = a.getSyntaxString();
 String syntaxString = "string";
 if (syntax.equals(BINARY_SYNTAX))
 syntaxString = "binary";
 else if (syntax.equals(INTEGER_SYNTAX))
 syntaxString = "integer";
 String single = "multi-valued";
 if (a.isSingleValued())
 single = "single-valued";
 System.out.println("userPassword. " +
 "OID = " + a.getID() +
 ", type = " + syntaxString +
 ", " + single);
 }

 /* What are the possible attributes for "person"? */
 LDAPObjectClassSchema o =
 schema.getObjectClassSchema("person");
 if (o != null) {
 Enumeration required = o.getRequiredAttributes();
 Enumeration optional = o.getOptionalAttributes();
 System.out.println(
 "Required attributes for person:");
 while(required.hasMoreElements()) {
 System.out.println(" " +
 required.nextElement());
 }
 System.out.println(
 "Optional attributes for person:");

 while(optional.hasMoreElements()) {
 System.out.println(" " +
 optional.nextElement());
 }

Expires December 6, 2004 [Page 116]

JAVA LDAP API April 2004

 }

 /* Done, so disconnect */
 ld.disconnect();
 } catch(LDAPException e) {
 System.out.println("Error: " + e.toString());
 }
 }
 protected static final String BINARY_SYNTAX =
 "1.3.6.1.4.1.1466.115.121.1.5";
 protected static final String INTEGER_SYNTAX =
 "1.3.6.1.4.1.1466.115.121.1.27";
 }

Expires December 6, 2004 [Page 117]

JAVA LDAP API April 2004

8.2 Java LDAP programs using asynchronous methods

 import org.ietf.ldap.*;
 import java.util.*;
 import java.io.UnsupportedEncodingException;

 public class SearchJensen {
 public static void main(String[] args) {
 try {
 LDAPConnection ld = new LDAPConnection();
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = 389;
 byte[] MY_PASSWORD = null;
 try {
 MY_PASSWORD = "password".getBytes("UTF8");
 } catch (UnsupportedEncodingException ex) {
 }
 ld.connect(MY_HOST, MY_PORT);

 /* Asynchronous authentication */
 LDAPMessageQueue r =
 ld.bind(3, "uid=admin,ou=people,dc=example,dc=com",
 MY_PASSWORD, (LDAPMessageQueue)null);

 /* Do something else, just to show that we're not
 blocked yet */
 System.out.println("Started authenticating");

 /* Wait until it completes */
 LDAPResponse response = (LDAPResponse)r.getResponse();
 int resultCode = response.getResultCode();
 if (resultCode != LDAPException.SUCCESS) {
 throw new LDAPException ("error result",
 resultCode,
 response.getMatchedDN());
 }

 /* search for all entries with surname of Jensen */
 String MY_FILTER = "(sn=Jensen)";
 String MY_SEARCHBASE = "dc=example,dc=com";

 LDAPMessageQueue l =
 ld.search(MY_SEARCHBASE,
 ld.SCOPE_ONE,
 MY_FILTER,
 null,
 false,

 (LDAPMessageQueue)null);

 /* Loop on results until finished */
 LDAPMessage msg;

Expires December 6, 2004 [Page 118]

JAVA LDAP API April 2004

 while((msg = l.getResponse()) != null) {
 if (msg instanceof LDAPSearchResultReference) {
 String[] urls =
 ((LDAPSearchResultReference)msg).getReferrals();
 // Do something with the referrals...
 } else if (msg instanceof LDAPSearchResult) {
 LDAPEntry entry =
 ((LDAPSearchResult)msg).getEntry();
 // The rest of the processing is the same as for
 // a synchronous search
 System.out.println(entry.getDN());
 } else {
 // A search response
 LDAPResponse res = (LDAPResponse)msg;
 int status = res.getResultCode();
 if (status == LDAPException.SUCCESS) {
 // Nothing to do
 } else {
 String err =
 LDAPException.resultCodeToString(status);
 throw new LDAPException(err,
 status,
 res.getMatchedDN());
 }
 }
 }

 /* Done, so disconnect */
 ld.disconnect();
 } catch (LDAPException e) {
 System.err.println(e.toString());
 }
 }
 }

Expires December 6, 2004 [Page 119]

JAVA LDAP API April 2004

 import org.ietf.ldap.*;
 import java.util.*;

 /* This example multiplexes the input from three different servers */

 public class MultiplexServers {
 public static void main(String[] args) {
 try {
 LDAPConnection [] ld = new LDAPConnection[3];
 String[] hosts = { "foo1", "foo2", "foo3" };
 int[] ports = { 389, 389, 2018 };
 String[] bases = { "dc=example,dc=com",
 "o=example.com",
 "dc=example2,dc=com" };
 /* search for all entries with surname of Jensen */
 String MY_FILTER = "(sn=Jensen)";

 for(int i = 0; i < ld.length; i++) {
 ld[i] = new LDAPConnection();
 /* Connect to server */
 ld[i].connect(hosts[i], ports[i]);
 }

 /* Get a response queue for one search */
 LDAPMessageQueue l =
 ld[0].search(bases[0],
 ld.SCOPE_SUB,
 MY_FILTER,
 null,
 false,
 (LDAPMessageQueue)null);
 /* Share the queue */
 for(int i = 1; i < ld.length; i++) {
 ld[i].search(bases[i],
 ld[i].SCOPE_SUB,
 MY_FILTER,
 null,
 false,
 l);
 }

 /* Loop on results until finished */
 LDAPMessage msg;
 while((msg = l.getResponse()) != null) {
 /* The rest is the same as in the previous example */
 /* ... */

Expires December 6, 2004 [Page 120]

JAVA LDAP API April 2004

 import org.ietf.ldap.*;
 import java.util.*;

 /* This example multiplexes the input from three searches in
 different subtrees of the same server */

 public class MultiplexTrees {
 public static void main(String[] args) {
 try {
 LDAPConnection ld = new LDAPConnection ();
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = 389;
 ld.connect(MY_HOST, MY_PORT);
 String MY_FILTER = "(sn=Jensen)";
 String[] bases = { "dc=example,dc=com",
 "o=example.com",
 "dc=example2,dc=com" };

 /* Get a response queue for one search */
 LDAPMessageQueue l =
 ld.search(bases[0],
 ld.SCOPE_SUB,
 MY_FILTER,
 null,
 false,
 (LDAPMessageQueue)null);
 /* Share the queue */
 for(int i = 1; i < bases.length; i++) {
 ld.search(bases[i],
 ld.SCOPE_SUB,
 MY_FILTER,
 null,
 false,
 l);
 }

 /* The rest is the same as in the MultiplexServers
 example */
 /* ... */

Expires December 6, 2004 [Page 121]

JAVA LDAP API April 2004

 import org.ietf.ldap.*;
 import java.util.*;

 public class ModifyEmail {
 public static void main(String[] args) {
 LDAPConnection ld = new LDAPConnection(
 new SSLSocketFactory.getdefault());
 try {
 /* Connect to server */
 String MY_HOST = "localhost";
 int MY_PORT = 389;
 ld.connect(MY_HOST, MY_PORT);

 /* Use TLS to authenticate and secure the connection */
 ld.startTLS();
 /* Use SASL external on completed TLS client auth */
 ld.bind(null, null, new String[] { "external" },
 null, null);

 /* Prepare to change my email address */
 LDAPAttribute attrEmail =
 new LDAPAttribute("mail", "babs@example.com");
 LDAPModification mod =
 new LDAPModification(LDAPModification.REPLACE,
 attrEmail);

 /* Now modify the entry in the directory */
 LDAPMessageQueue r =
 ld.modify(MY_NAME, mod, null);

 /* Do something else, just to show that we're not
 blocked yet */
 System.out.println("Started authenticating");

 /* Wait until it completes */
 LDAPResponse response = (LDAPResponse)r.getResponse();
 int resultCode = response.getResultCode();
 if (resultCode != LDAPException.SUCCESS) {
 throw new LDAPException ("error result",
 resultCode,
 response.getMatchedDN());
 }

 System.out.println("Entry modified");

 /* Done, so disconnect */
 ld.disconnect();
 } catch(LDAPException e) {
 System.out.println("Error: " + e.toString());

 }

 }

Expires December 6, 2004 [Page 122]

JAVA LDAP API April 2004

 }

Expires December 6, 2004 [Page 123]

JAVA LDAP API April 2004

9. Appendix B - Revision history

9.1 Changes from ldap-java-api-18.txt

 Updated ôStatus of this Memoö and Copyright sections per RFC 3668.

 Made usage of MUST, MAY, SHOULD conforms to RFC 2119.

 Made editorial changes.

 Clarified definition of OID.

 Made a distinction between the API implementation and the application
 using the implementation.

 LDAPAttribute

 Clarified that name and options are case insensitive and options
 have no order.

 Renamed method getBaseName to getTypeName.

 Removed method getLangSubtype.

 Renamed method getSubtypes to getOptions.

 Renamed method hasSubtype to hasOption.

 Renamed method hasSubtypes to hasOptions.

 Changed terminology throughout the document from subtype to
 option and removed references to language subtypes, leaving only
 a general discussion about options.

 LDAPAttributeSchema

 Clarified names and values of constants.

 LDAPAttributeSet

 Clarified that method getAttribute returns null if no attribute
 found.

 Removed method getAttribute(String, String) because it was
 associated with language subtypes.

 Added method getSubset(String, String) which provides a more
 general implementation of the above.

https://datatracker.ietf.org/doc/html/rfc3668
https://datatracker.ietf.org/doc/html/rfc2119

 LDAPConnection

Expires December 6, 2004 [Page 124]

JAVA LDAP API April 2004

 Clarified that the method compare throws an
 IllegalArgumentException if more than one assertion value is
 supplied in the parameters.

 Clarified which bind() methods are are synchronous and which are
 asynchronous.

 LDAPConstraints

 Clarified that the method getControls returns null if no
 controls are present.

 LDAPException

 Clarified use of LDAPLocalException to distinguish local errors.

 Placed methods in alphabetical order.

 Placed local errors in alphabetical order.

 Added method getResponse which is used to obtain message of
 unknown type of of type LDAP_INTERMEDIATE_RESPONSE.

 LDAPExtendedResponse

 Implements Serializable

 LDAPLocalException

 Clarified use of LDAPLocalException to distinguish local errors.

 LDAPMessage
 Added a new response type: LDAP_INTERMEDIATE_RESPONSE

 LDAPMessageQueue

 Now a class instead of an interface. LDAPResponseQueue and
 LDAPSearchQueue are removed. If an application using
 asynchronous methods merged a search queue into a response
 queue, the search queue functionality of the isComplete method
 is needed but not present in the response queue and the identity
 of the queues is muddied. If you add the method, both classes
 will have the same functionality. There is really no need for
 the two classes, as the single class LDAPMessageQueue can
 perform all the needed functionality with no ambiguity.

 LDAPResponseQueue

 Removed class, only LDAPMessageQueue is needed.

 LDAPSchemaElement

Expires December 6, 2004 [Page 125]

JAVA LDAP API April 2004

 Implements Serializable

 LDAPSearchQueue

 Removed class, only LDAPMessageQueue is needed.

 LDAPSchemaElement

 Implements Serializable.

 LDAPSocketFactory

 Remove class, now using standard Java JSSE, such as
 SSLSocketFactory.

 LDAPTLSSocketFactory

 Remove class, now using standard Java JSSE.

 Implementation Notes

 Added a note describing what action is taken for referrals that
 are not a URL of type ldap://.

 Moved the note regarding limitations of Java with regard to
 support for UCS4 characters in a String from the overview to the
 Implementation Notes and included notes on how to handle those
 characters.

 Added information on how receipt of an LDAP Intermediate
 Response Message is handled.

 Added information on how receipt of an LDAP message with an
 unknown response type is handled.

 Bibliography

 Moved some references from Informative to Normative and added
RFC 3771, LDAP Intermediate Response Message.

9.2 Changes from ldap-java-api-17.txt

 LDAPAttribute

 Throws IllegalArgumentException for null as value parameter in
 constructors.
 Implements Comparable, with the method compareTo().

https://datatracker.ietf.org/doc/html/rfc3771

Expires December 6, 2004 [Page 126]

JAVA LDAP API April 2004

 LDAPConnection

 getProperty() returns null for property not found rather than
 throwing LDAPException.
 Added fetchSchema() and getSchemaDN().
 Removed getInputStream(), getOutputStream(), setInputStream(),
 setOutputStream().

 LDAPConstraints

 Removed text saying that non-LDAP URLs are ignored.
 setProperty() throws IllegalArgumentException for an
 unsupported property.

 LDAPEntry

 Implements Comparable, with the method compareTo().
 Clarified that getAttributeSet() and getAttribute() return
 copies rather than references.

 LDAPExtendedOperation

 Implements Cloneable.

 LDAPExtendedResponse

 Added register().

 LDAPLocalException

 New class for local errors.

 LDAPSchema

 It now extends LDAPEntry.
 Constructor takes an LDAPEntry as parameter.
 Removed fetchSchema(), add(), modify(), remove(), and
 saveSchema().Methods in LDAPConnection provide this
 functionality.

 LDAPSchemaElement

 Extends LDAPAttribute.

 Added clarification that the class is read only.

Expires December 6, 2004 [Page 127]

JAVA LDAP API April 2004

 LDAPTLSSocketFactory

 New interface to indicate ability to create a TLS socket.

 Other

 Java 2 is now a requirement (not JDK 1.1.8 or Java 2).
 Editorial changes

9.3 Changes from ldap-java-api-16.txt

 LDAPException

 Added serverMessage as parameter in constructors.

 Other

 Corrected typographical errors and errors in examples of
appendix A.

9.4 Changes from ldap-java-api-15.txt

 LDAPAttribute

 Implements Cloneable.

 LDAPAttributeSchema

 Constructor takes "String[] names" instead of "String name" and
 "String[] aliases".

 LDAPAttributeSet

 Implements Cloneable and java.util.Set. Removed the methods
 made redundant by implementing Set: add(LDAPAttribute attr),
 elementAt(), getAttributes(), remove(String name),
 removeElementAt(), and size().

 LDAPConnection

 Removed all bind() signatures which take String instead of
 byte[] for password.

Expires December 6, 2004 [Page 128]

JAVA LDAP API April 2004

 Replaced Hashtable as parameter with Map in bind() and
 getSaslBindProperties.

 The LDAP_PROPERTY_SDK is of type String rather than Float.
 LDAP_PROPERTY_PROTOCOL is of type Integer.

 setInputStream and setOutputStream throw LDAPException.

 Removed setProperty.

 Added stopTLS.

 LDAPCompareAttrNames

 Implements java.util.Comparator instead of LDAPEntryComparator.

 LDAPConstraints

 Implements Cloneable.

 getServerControls renamed to getControls.

 setServerControls renamed to setControls.

 Added getProperty and setProperty.

 getClientControls and setClientControls removed.

 LDAPControl

 Removed all references to "client controls".

 LDAPEntryComparator

 Removed; LDAPCompareAttrNames implements java.util.Comparator
 instead.

 LDAPException

 Renamed errorCodeToString() to resultCodeToString().

 Renamed getLDAPResultCode () to getResultCode ().

 LDAPListener

Expires December 6, 2004 [Page 129]

JAVA LDAP API April 2004

 Renamed to LDAPMessageQueue.

 LDAPMatchingRuleSchema

 Combined the two constructors with explicit field parameters.

 LDAPModificationSet

 Removed (replaced with LDAPModification[] as parameter where
 referenced).

 LDAPResponseListener

 Renamed to LDAPResponseQueue.

 LDAPRebind

 Renamed to LDAPAuthHandler.

 LDAPRebindAuth

 Renamed to LDAPAuthProvider.

 LDAPSchema

 Renamed getAttribute() to getAttributeSchema(),getAttributes()
 to getAttributeSchemas(), getObjectClass() to
 getObjectClassSchema(), getSyntax() to getSyntaxSchema(),
 getSyntaxes() to getSyntaxSchemas(), getDITContentRule () to
 getDITContentRuleSchema(), getDITContentRules() to
 getDITContentRuleSchemas(), getDITStructureRule() to
 getDITStructureRuleSchema(), getDITStructureRules() to
 getDITStructureRuleSchemas(),getMatchingRule() to
 getMatchingRuleSchema(), getMatchingRules() to
 getMatchingRuleSchemas(), getMatchingRuleUse() to
 getMatchingRuleUseSchema(),getMatchingRuleUses() to
 getMatchingRuleUseSchemas(),getNameForm() to
 getNameFormSchema(), getNameForms() to getNameFormSchemas().

 Added add(), modify(), remove(), and saveSchema().

 LDAPSchemaElement

 Renamed getValue() to toString().

Expires December 6, 2004 [Page 130]

JAVA LDAP API April 2004

 Changed getName() to getNames(), removed getAliases().

 Removed add(), modify(), and remove().

 LDAPSearchConstraints

 Added constructor that takes LDAPConstraints as parameter.

 LDAPSearchListener

 Renamed to LDAPSearchQueue.

 LDAPSearchResults

 Does not implement Enumeration.

 Removed nextElement().

 Renamed hasMoreElements() to hasMore().

 Removed sort() (sorting can now be done with classes/interfaces
 of the Collections framework now that LDAPAttributeSet
 implements Set).

 LDAPSocketFactory

 Renamed makeSocket() to createSocket().

 LDAPUrl

 Implements Cloneable.

 Renamed getUrl() to toString().

 Added extensions to the constructor that takes all fields
 explicitly.

 All schema elements

 Constructors take a parameter "String[] names" instead of
 "String name" and "String[] aliases".

 Implementation Considerations

Expires December 6, 2004 [Page 131]

JAVA LDAP API April 2004

 Removed the specification of package name for controls. The
 package name may be specified in a follow-on document
 describing various controls.

 Moved the package name up to section 1.

 Added Dependencies.

 Serializability

 Made the following classes Serializable:
 LDAPAttribute
 LDAPAttributeSet
 LDAPConstraints
 LDAPControl
 LDAPEntry
 LDAPExtendedOperation
 LDAPMessage
 LDAPModification
 LDAPSchema
 LDAPSchemaElement
 LDAPSearchListener
 LDAPSearchResults
 LDAPUrl

9.5 Changes from ldap-java-api-14.txt

 LDAPAttributeSchema

 Changed isModifiable() to isUserModifiable()

 LDAPConnection

 Added bind() signatures that take byte[] as password parameter,
 removed bind() signatures which do not take a version parameter

 Use Hashtable, not Properties, in all SASL bind signatures

 Removed setSearchConstraints()

 rename() takes newParentdn before deleteOldRdn (one of the
 eight signatures had the order reversed)

 LDAPException

 Defined how the toString method overrides the default toString
 behavior

Expires December 6, 2004 [Page 132]

JAVA LDAP API April 2004

 LDAPMatchingRuleSchema

 Changed return of getSyntaxString from String[] to String

 LDAPUrl

 Removed constructor signature which takes "secure" as a
 parameter

 Removed isSecure()

 getFilter() returns null instead of "(objectclass=*)" if no
 filter was specified

 Examples

 Use SASL to bind in synchronous ModifyEmail example and TLS in
 asynchronous ModifyEmail example (instead of simple bind)

 General

 Put methods of LDAPAttributeSchema in alphabetical order

 Clarifications and editorial changes

9.6 Changes from ldap-java-api-13.txt

 Notice of disconnection, Invalid responses, Level of compatibility

 New section

 Result codes

 Added INVALID_RESPONSE, AMBIGUOUS_RESPONSE
 Removed PARAM_ERROR

 LDAPConnection

 Removed getAuthenticationPassword()

 Added bind() signatures that take a byte array for password
 bind() signatures for SASL take an authzId parameter

Expires December 6, 2004 [Page 133]

JAVA LDAP API April 2004

 disconnect() may take an LDAPConstraints parameter
 read() throws LDAPException with AMBIGUOUS_RESPONSE if there is
 more than one result

 LDAPConstraints

 Removed getReferralHandler

 LDAPRebindAuth

 Added a signature of the constructor which takes byte[] as
 parameter
 getPassword() returns byte[] instead of String

 LDAPReferralException

 Clarified that getReferrals() must return LDAP URL strings with
 the scope rewritten if necessary (for SearchResultReferences on
 search continuation).

 LDAPDN

 Added normalize() and isValid().

 LDAPUnsolicitedNotificationListener

 The argument to messageReceived() is LDAPExtendedResponse and
 not LDAPMessage.

 Security Considerations

 Added implementation guidelines

 General

 All classes and methods in alphabetical order
 Many clarifications and editorial changes

9.7 Changes from ldap-java-api-12.txt

 Abstract

Expires December 6, 2004 [Page 134]

JAVA LDAP API April 2004

 Removed references to RFC 1823 and to an earlier draft on an
 asynchronous interface.

 LDAPConnection

 Under clone(), added a listing of which methods affect an
 individual clone and which ones affect all related clones.

 LDAPException

 Can take Throwable as root exception argument in an additional
 constructor signature. Added getCause() to return the root
 exception. Removed reference to LDAP_PARTIAL_RESULTS among
 result codes.

 LDAPBind

 bind() throws LDAPReferralException instead of LDAPException.

 LDAPReferralException

 Can take Throwable as root exception argument instead of
 LDAPException. getFailureException() was removed and replaced
 by getCause() in LDAPException. Added getFailedReferral() and
 setFailedReferral().

 LDAPControl

 Removed newInstance(). An implementation of the API can
 instantiate a control using the LDAPControl constructor.
 Removed a sentence saying that LDAPv2 doesn't support controls.

 Referral handling

 Added section outlining the handling of exceptions on
 referrals.

 References

 Added references to RFCs 2222 and 2830.

 Host names

https://datatracker.ietf.org/doc/html/rfc1823

 May be IPv6 references as well as hostnames or IPv4 addresses.

Expires December 6, 2004 [Page 135]

JAVA LDAP API April 2004

 LDAPMessage

 Restored the values of the message types to correspond to the
 message type values in ldap-java-api-11.txt.

 LDAPEntry

 getAttribute returns a single attribute.

 Unsolicited notifications in LDAPConnection

 Removed getUnsolicitedNotifications and
 setUnsolicitedNotifications. Added
 addUnsolicitedNotificationListener and
 removeUnsolicitedNotificationListener. Added interface
 LDAPUnsolicitedNotificationListener.

9.8 Changes from ldap-java-api-11.txt

 LDAPConnection

 Eliminated the interfaces (LDAPv2 and LDAPv3) that
 LDAPConnection implemented.

 Eliminated setOption and getOption (there are corresponding
 properties in LDAPConstraints and LDAPSearchConstraints).

 Removed the signatures of connect which took DN, password, and
 protocol version as arguments. The previous signatures were
 utility methods that combined connect and bind.

 Added a signature of extendedOperation which takes
 LDAPConstraints as argument.

 Added isTLS.

 Added getProtocolVersion.

 Added signatures of abandon which take LDAPConstraints as
 argument.

 extendedOperation returns LDAPExtendedResponse, not
 LDAPExtendedOperation.

 Added signatures of SASL bind that take LDAPConstraints as
 argument.

Expires December 6, 2004 [Page 136]

JAVA LDAP API April 2004

 Added getSaslBindProperties.

 Added getSaslBindCallbackHandler.

 Added getUnsolicitedNotifications and
 setUnsolicitedNotifications.

 The default protocol version to bind with is LDAPv3, not
 LDAPv2.

 Constants: LDAP_DEREF_NEVER, etc changed to DEREF_NEVER, etc.
 Values of DEREF_SEARCHING and DEREF_FINDING corrected to those
 of RFC 2251. The values are now defined in
 LDAPSearchConstraints instead of in LDAPConnection.

 LDAPControl

 Added setValue.

 LDAPExtendedOperation

 Added setValue.

 LDAPSearchResultReference

 Changed getURLs to getReferrals, which returns String[].

 LDAPUrl

 Added method isSecure.

 Added constructors that take a boolean for isSecure.

 LDAPReferralException

 Added getReferralFailureException.
 Changed getURLs to getReferrals, which returns String[].

 LDAPConstraints

 Takes a new interface LDAPReferralHandler as parameter, instead
 of LDAPBind and LDAPRebind.
 Changed getReferrals to getReferralFollowing.

https://datatracker.ietf.org/doc/html/rfc2251

 Changed setReferrals to setReferralFollowing.

Expires December 6, 2004 [Page 137]

JAVA LDAP API April 2004

 LDAPReferralHandler

 New common ancestor to LDAPBind and LDAPRebind.

 LDAPListener

 New common ancestor to LDAPSearchListener and
 LDAPResponseListener.

 LDAPSearchListener

 Implements LDAPListener.

 Added signature of isResponseReceived and of getResponse that
 takes a message ID as parameter.

 Added isComplete.

 LDAPResponseListener

 Implements LDAPListener.

 Added signatures isResponseReceived and getResponse that take a
 message ID as parameter.

 LDAPBind

 Changed the signature of bind to return LDAPConnection instead
 of void, and take an LDAP URL string list as argument.

 LDAPException

 Defined the values of symbolic result codes generated by the
 interface. Added a constructor that takes matchedDN as
 parameter.

 LDAPMessage

 Redefined the values of the message types to correspond to the
 message type values in [LDAPv3].

9.9 Changes from ldap-java-api-10.txt

 Overview of the LDAP model

Expires December 6, 2004 [Page 138]

JAVA LDAP API April 2004

 Allowed for character set conversion from/to T.61 (in addition
 to UTF-8).

 LDAPConnection

 Added startTLS. Added STRING_FORMAT option to setOption. Added
 numerical values to options in setOption and search. Changed
 REFERRALS_AUTHENTICATION to REFERRALS_REBIND_PROC. Clarified
 that getAuthenticationPassword returns null if no simple bind
 has been performed. Added asynchronous methods (from [TLS]).

 LDAPConstraints

 Default for setHopLimit is 10, not 5.

 LDAPUrl

 Added getScope and getExtensions.

 Schema classes

 Added parameters to constructors (aliases, obsolete,
 collective).

 Various classes

 Removed all "synchronized" qualifier on methods. Added a
 statement that implementations should ensure thread-safety.

9.10 Changes from ldap-java-api-09.txt

 Overview of LDAP API use

 Clarifications were added on the behavior of the SDK for null
 values of LDAPConstraints and for a DN.

 LDAPAttributeSet

 Return type of getAttribute is LDAPAttribute, not
 LDAPAttribute[].

 LDAPV2

Expires December 6, 2004 [Page 139]

JAVA LDAP API April 2004

 Added convenience method of add that does not take
 LDAPConstraints, added read method that does take
 LDAPSearchConstraints.

 Error Codes

 Changed to Result Codes. Added TLS_NOT_SUPPORTED.

 LDAPSearchResults

 Clarified in declaration that it implements Enumeration.

 LDAPV3

 Added constants NO_ATTRS and ALL_USER_ATTRS.

 Schema classes

 Added LDAPDITContentRuleSchema, LDAPDITStructureRuleSchema,
 LDAPMatchingRuleUseSchema, LDAPNameFormSchema, LDAPSyntaxSchema.

9.11 Changes from ldap-java-api-08.txt

 Standards track

 Added intended category to first page header.

 SASL references

 Removed all references to a Java SASL internet draft.

 LDAPv2

 Removed static methods search(LDAPUrl url). The methods are
 still present in LDAPConnection.

9.12 Changes from ldap-java-api-07.txt

 LDAPAttributeSchema

 Removed getAliases() because it is already defined in the
 superior class LDAPSchemaElement. Removed getSyntax() which

 returned an integer.

Expires December 6, 2004 [Page 140]

JAVA LDAP API April 2004

 LDAPConnection

 Added getAuthenticationMethod().

 LDAPSchemaElement

 Changed getOID() to getID().

9.13 Changes from ldap-java-api-06.txt

 LDAPAttributeSchema

 Added a constructor that takes the attribute syntax as a String,
 an optional superior attribute type, and an optional list of
 aliases. Removed previous constructor.
 Added getSuperior()and getSyntaxString().

 LDAPConnection

 Added getInputStream()getOutputStream(), setInputStream()
 (Error! Reference source not found.), and setOutputStream().
 They are used when establishing a security layer with SASL, and
 may also be used to interpose a proxy.

 LDAPDN

 Added equals().

 LDAPException

 Added additional error codes defined in [URL].

 LDAPMatchingRuleSchema

 Added a constructor that takes the attribute syntax as a String
 and an optional list of aliases. Removed previous constructor.

 LDAPObjectClassSchema

 Added a constructor that takes an array of superior object class
 names, a type (ABSTRACT, AUXILIARY, or STRUCTURAL), and an
 optional list of aliases. Removed previous constructor.
 Added getSuperiors()and getType(). Removed getSuperior().

Expires December 6, 2004 [Page 141]

JAVA LDAP API April 2004

 LDAPSchemaElement

 Added overloaded methods of add, remove, and modify which take a
 DN as parameter, for specifying where in the DIT to determine
 the subschemaSubentry for the modification.
 Added getAliases(), getQualifier(), getQualiferNames(),
 isObsolete(), and setQualifier().

9.14 Changes from ldap-java-api-05.txt

 LDAPConnection

 Distinguished between getConstraints() and
 getSearchConstraints(), and between setConstraints() and
 setSearchConstraints().

 LDAPConstraints

 LDAPBind and LDAPRebind should not be specified in the same
 constructor. Added setClientControls().

 LDAPSearchConstraints

 LDAPBind and LDAPRebind should not be specified in the same
 constructor.

 LDAPControl

 newInstance() is now static.

 LDAPv3

 Changed the signature of the bind() methods to match the Java
 SASL Internet Draft.

9.15 Changes from ldap-java-api-04.txt

 LDAPAttribute

 Added getByteValueArray() and getStringValueArray().

 LDAPCompareAttrNames

Expires December 6, 2004 [Page 142]

JAVA LDAP API April 2004

 Added getLocale() and setLocale().

 LDAPSchemaElement

 Added modify().

 LDAPSchemaElement

 Added fetchSchema(LDAPConnection, String).

9.16 Changes from ldap-java-api-03.txt

 LDAPBind

 New interface, to support sophisticated reauthentication
 mechanisms.

 LDAPControl

 Added methods register() and newInstance(), to support dynamic
 registration and instantiation of server response controls.

 LDAPConstraints

 Separated interface time limit from server search time limit.
 Moved all search-only constraints to LDAPSearchConstraints.

 LDAPRebind

 Reverted back to original name, instead of LDAPReauthentication
 as it was in the previous draft.

 LDAPRebindProc

 Reverted back from LDAPCredentials.

 LDAPSearchConstraints

 Reinstated this class, to represent all constraints applicable
 to a search. LDAPConstraints (which it extends) only represents
 common constraints for all operations.

 LDAPSearchResults

Expires December 6, 2004 [Page 143]

JAVA LDAP API April 2004

 Added getResponseControls().

 LDAPv2

 Added abandon(). Separated interface time limit from server
 search time limit. Changed authenticate() to bind().

 LDAPv3

 Changed authenticate() to bind().

9.17 Changes from ldap-java-api-02.txt

 LDAPSearchConstraints

 Renamed to LDAPConstraints, since it can be applied to
 operations other than search.

 LDAPRebind

 Renamed to LDAPReauthentication. Added a definition of its
 single method.

 LDAPRebindProc

 Renamed to LDAPCredentials.

9.18 Changes from ldap-java-api-01.txt

 LDAPAttribute

 Added a copy constructor.
 Added support for subtypes, and for language subtypes in
 particular.

 LDAPAttributeSet

 LDAPAttributeSet implements Cloneable.
 Added getSubset() for subtype support.

 LDAPDN

Expires December 6, 2004 [Page 144]

JAVA LDAP API April 2004

 Added support for escaping and unescaping an RDN.

 LDAPException

 Added the SASL_BIND_IN_PROGRESS error code.

 LDAPSearchResults

 Added getCount(), to report the number of results returned.

 LDAPConnection

 Added a signature that passes LDAPConstraints to read(LDAPURL).

 LDAPv2

 Added signatures that pass LDAPConstraints to the following
 methods:
 add()
 compare()
 modify()
 read()
 rename()

 LDAPv3

 Removed "Preferred Language", because it has been dropped from
 the extension work.
 Added a signature that passes LDAPConstraints to rename().

Expires December 6, 2004 [Page 145]

