
Transport Working Group R. Penno
Internet Draft S. Raghunath
Intended status: Informational Juniper Networks
Expires: August 2010 R. Woundy
 Comcast
 V. Gurbani
 Bell Labs, Alcatel-Lucent
 J. Touch
 USC/ISI
 February 26, 2010

LEDBAT Practices and Recommendations for Managing Multiple
Concurrent TCP Connections

draft-ietf-ledbat-practices-recommendations-00.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on August 26, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Penno Expires August 26, 2010 [Page 1]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 Applications routinely open multiple TCP connections. For example,
 P2P applications maintain connections to a number of different peers
 and web browsers perform concurrent download from the same web
 server. Application designers pursue different goals when doing so:
 P2P apps need to maintain a well-connected mesh in the swarm while
 web browsers mainly use multiple connections to parallelize requests
 that involve application latency on the web server side. However
 this practice also has impacts to the host and the network as a
 whole. For example, an application can obtain a larger fraction of
 the bottleneck than if it had used fewer connections. Although
 capacity is the most commonly considered bottleneck resource,
 middlebox state table entries are also an important resource for an
 end system communication.

 This document clarifies the current practices of application design
 involving concurrent TCP connections and reasons behind them, and
 discusses the tradeoffs surrounding their use, whether to one
 destination or to different destinations. Other resource types may
 exist, and the guidelines are expected to comprehensively discuss
 them.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119.

Table of Contents

 1. Introduction 3
 2. Terminology 4
 3. Multiple control versus data connections 5
 4. Multiple TCP Connections Advantages 6
 4.1. Avoiding head-of-line blocking 6
 4.2. Logical partitioning at application level 7
 4.3. Multiple streams with different properties 7

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc2119

Penno Expires August 26, 2010 [Page 2]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 4.4. Signaling application layer request completion 7
 4.5. High bandwidth-delay links 7
 4.6. Error resiliency and reliability 8
 4.7. Leveraging multiple processors in a system 8
 4.8. Overcoming TCP Limitations 8
 5. Multiple TCP connections Disadvantages 8
 5.1. Additional connection setup overhead 8
 5.2. Memory Space 9
 5.3. Link Bandwidth 9
 5.4. Middleboxes 10
 6. Conclusion and Recommendations 10
 6.1. Diffserv 10
 6.2. Window scale negotiation 10
 6.3. Number of Connections 11
 6.3.1. HTTP 11
 6.4. Bi-Directional HTTP 12
 7. Security Considerations 12
 8. IANA Considerations 12
 9. Acknowledgments 12
 10. References 13
 10.1. Normative References 13
 10.2. Informative References 13
 Author's Addresses 15

1. Introduction

 The use of P2P protocols by end users is widespread. These protocols
 are meant to exchange, replicate, stream or download files with
 little human intervention, trying at the same time to minimize the
 download time of the files requested by any single peer. This is done
 by opening several connections to multiple peers and downloading one
 or more chunks of the file from each one, selecting faster peers,
 amongst others.

 If we assume that in any file transfer the bottleneck is on the
 uploading peer or server side, end users that utilize P2P clients in
 general download the file faster and consume more bandwidth within a
 specific timeframe than traditional client-server applications. P2P
 clients can overcome the server side bottleneck by opening multiple
 connections to different peers. Users of P2P applications also
 consume bandwidth throughout the whole day since even after a file is
 fully downloaded it will continue to be shared with others users
 increasing the upstream bandwidth.

 We can see then that the advantages of P2P applications come from the
 fact that they open multiple TCP connection to different peers in

Penno Expires August 26, 2010 [Page 3]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 order to download multiple pieces of a file in parallel, and that
 they always look for faster peers.

 But the use of multiple TCP connections by an application is not new.
 Web Browsers have been doing it for a decade. But these are usually
 short-lived connections as opposed to long-lived connections. A long-
 lived connection in this document should be interpreted as strictly
 defined, i.e., a TCP connection that is simply in the established
 state, but not necessarily continuously transferring data. In the
 case of P2P protocols, e.g. BitTorrent, at any point in time only a
 fraction of these connections is actually sending or receiving data,
 while the others are idle or exchange occasional control information.

 With the popularity of P2P applications, which maintain hundreds of
 long-lived TCP connections to multiple hosts, the issue of
 applications making use of multiple TCP connections has been gaining
 attention.

 This document clarifies the current practices of application design
 and reasons behind them, and discusses the tradeoffs surrounding the
 use of many concurrent TCP connections to one destination and/or to
 different destinations. Other resource types may exist, and the
 guidelines are expected to comprehensively discuss them.

2. Terminology

 Bandwidth: A measure of the amount of data that can be transferred
 within a time period, often expressed in bits per second. Bit rate
 prefixes are expressed in decimal, so 1 kilobit per second is 1,000
 bits per second, and 1 megabit per second is 1,000,000 bits per
 second. So, if one million bits are transferred within one second,
 the average bandwidth consumption during the transfer would be 1
 megabit per second (1 Mbps). If the same amount of data were
 transferred within a day, the bandwidth would be approximately 11.574
 bits per second.

 Volume: The total number of bytes (or octets) transferred during a
 time period. Byte prefixes are expressed in binary, so 1 kilobyte is
 1,024 bytes, and 1 megabyte is 1,024 * 1,024 = 1048576 bytes. In both
 examples above the volume within a day would have been 125,000 bytes
 or about 122.07 kilobytes (122.07 KB).

 Capacity: The maximum bandwidth a link can sustain continuously.

 Long-lived connection: A TCP connection that is in the established
 state but not necessarily continuously transferring data.

Penno Expires August 26, 2010 [Page 4]

Internet-Draft LEDBAT Practices and Recommendations February 2010

3. Multiple control versus data connections

 The traditional model of applications interacting with each other
 using TCP started off as a single socket opened between a client and
 a server for data communications. Control signaling was usually
 passed on the same channel as well. Telnet [RFC854] and rlogin
 protocols [RFC1282] are good examples of this approach. File
 Transfer Protocol [RFc959] was one of the first known protocols that
 used more than one connection between a client and a server. In FTP,
 the client in the normal client-server fashion opens the control
 connection. This connection is used for commands from the client to
 the server and replies from the server to the client. Distinguishing
 FTP from other protocols was its use of a second data connection.
 The client initiates this data connection passively, and the port
 number is sent to the server. The server subsequently establishes an
 active connection to this port. A data connection is created each
 time a file is transferred between the client and the server.
 However, unlike the control connection, it does not persist for the
 duration of the FTP session.

 These early protocols limited TCP connections between a pair of
 machines. This changed with the advent of the Hypertext Transfer
 Protocol [RFC2616]. In HTTP, a client (browser) downloads a document
 from a server and analyses it to render the document on a display
 device of some sort. As part of the analysis, the browser may open
 one or more connections to either the same host from which the
 original document was downloaded, or to different hosts that serve
 other content referenced in the document. However, these connections
 were usually short lived (the current phenomenon of "long polling"
 notwithstanding). Here, the client (browser) opens up multiple TCP
 connections to possibly multiple servers simultaneously. The Session
 Initiation Protocol [RFC3261] can use TCP connection in the same vein
 as HTTP did, namely to contact multiple servers simultaneously.
 Generally -- although there are exceptions -- in SIP just like HTTP,
 these connections are typically short-lived.

 More recent protocols like Skype (http://www.skype.com) and
 BitTorrent (http://www.bittorrent.com) have a much different view on
 the number of TCP connections they are willing to open and manage.
 While earlier protocols were parsimonious with connections, the
 modern peer-to-peer protocols do not appear to be wary of this to the
 same degree. Part of the reason why this is the case is the
 assumption that the older protocols (Telnet, rlogin, HTTP) were
 operating under was that relatively few bytes will be transferred
 from the client to the server while many more bytes will be

https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc1282
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3261
http://www.skype.com
http://www.bittorrent.com

Penno Expires August 26, 2010 [Page 5]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 transferred in the opposite direction. With current peer-to-peer
 protocols, where the resource to be accessed is distributed among the
 peers, a requesting peer has to open multiple TCP connections to more
 than one peer in order to efficiently download the data represented
 by that resource.

 In summary, trying to establish a boundary between data connections
 and control connections is something of a fool's errand. Protocols
 evolve to match the capabilities and characteristics of the network.
 While early protocols may have opened up a pair of connections to
 communicate, more recent protocols are not inhibited in the same
 manner.

 Similarly, while earlier protocols may have established different
 control channel from a data channel, this was not a design rule that
 was carried forward faithfully. While SIP falls in the former camp
 of a control channel that is distinct from a data channel, HTTP falls
 in the latter camp (i.e., same TCP connection serves to send control
 messages and the data itself.) BitTorrent and Skype perform control
 and data communications over the very same TCP connection as well.
 BitTorrent, in particular, attempts to open multiple connections to
 many peers, even though only a small subset of these connections are
 involved in the actual data transfer. In Skype, a peer does not open
 multiple connections to access a resource; rather multiple
 connections are opened and maintained to a discrete set of neighbors
 to help in routing of subsequent messages [Skype-analysis].

4. Multiple TCP Connections Advantages

 There are good reasons for an application to use multiple TCP
 connections. P2P apps need to maintain a well-connected mesh in the
 swarm while web browsers mainly use multiple connections to
 parallelize requests that involve application latency on the web
 server side

 But from a P2P standpoint multiple TCP connections are at the heart
 of its functionality. Multiple connections allow for multiple
 simultaneous downloads, which improve reliability and speed. Multiple
 connections also allow more effective discovery of new peers, and
 effective peer-to-peer communication, which allows exchange of
 information such as which pieces of a file a client has and is
 available.

4.1. Avoiding head-of-line blocking

 Web browsers started using multiple TCP connections partly because of
 this reason [STEVENS]. This is especially true when the multiple TCP

Penno Expires August 26, 2010 [Page 6]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 connections are between a pair of hosts. Originally, individual HTTP
 transactions each used their own TCP connection, because HTTP lacked
 a response length marker. The client sent a request to the server,
 and the server's response to the client was completed when the TCP
 connection was closed, i.e., CLOSE was interpreted as ''end of
 transaction''. This caused numerous problems, notably the buildup of
 connections in the TIME-WAIT state at the server [Fab1999]. HTTP
 added persistent connections to v1.0 (they were later included in the
 1.1 spec), and they became the default. In persistent connections,
 transactions complete but the connection remains open for subsequent
 responses. Responses are pipelined, not interleaved, however,
 resulting in Head-of-Line (HOL) blocking.

 HTTP clients currently open 4-8 connections to each endpoint. This
 partly avoids HOL blocking, but also allows increased performance.
 Separate connections open independently, increasing bandwidth, and
 also can use separate endpoint processes, increasing computational
 parallelism that maps more effectively to multiprocessors and multi-
 core systems.

4.2. Logical partitioning at application level

 Some applications such as FTP use a separate connection for control
 and data transfers. The advantage is that this allows a model where
 the data transfer is actually happening between hosts that are not
 local (see [RFC959], sections 2.3 & 5.2).

4.3. Multiple streams with different properties

 The application may need different properties on multiple streams of
 data (e.g., Nagle's algorithm, socket buffer sizes etc).

4.4. Signaling application layer request completion

 If the application assumes that connection close indicates the
 completion of a request, it becomes necessary to have new connections
 for multiple requests. This was a reason for multiple connections in
 HTTP 1.0.

4.5. High bandwidth-delay links

 In the presence of a large bandwidth-delay product, the 16-bit window
 size parameter in TCP header does not allow the application to fully
 utilize the link. In such situations, the current practice is to
 negotiate the Window Scale Option [RFC1323]. In addition multiple TCP
 connections can allow the application to achieve an effectively
 larger window size so that it can better utilize a link with high

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc1323

Penno Expires August 26, 2010 [Page 7]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 bandwidth-delay product (e.g. iSCSI [SCSIREF]), although this can
 result in mutual escalation, where TCP fairness is ensured only for
 endpoints opening multiple connections.

4.6. Error resiliency and reliability

 When multiple connections are used to download a single file or
 webpage, for instance, there is lesser chance of a single failure on
 one connection having a negative impact on the whole download.
 Especially with P2P applications, this makes the network robust to
 failures and churn in participants.

4.7. Leveraging multiple processors in a system

 With multiple processor systems, there can be higher performance with
 parallelism and multiple connections spread over different
 processors.

 This presumes that the kernel is parallelized; the potential for TCP
 parallelism is limited (http://www.isi.edu/touch/pubs/pfhsn94.html)

4.8. Overcoming TCP Limitations

 The performance of a single TCP connection given a certain link is
 well understood today [PARATCPSCK], [FF99], [PFTK98] and the general
 rule of thumb is that a TCP connection can utilize 75% of its
 capacity. This means more than one connection to one or more servers
 would be needed to saturate the link.

5. Multiple TCP connections Disadvantages

 Every connected application on the Internet competes for resources.
 This is not specific to applications that open multiple TCP
 connections. The use of multiple TCP connections just amplifies the
 issue. In the following sections we discuss these resources and how
 they are amplified by an application opening multiple connections.

5.1. Additional connection setup overhead

 The TCP's mechanisms for starting up the connection and then probing
 the available bandwidth have to be repeated for each new connection.
 So there may be lesser leverage of network information. There is also
 the overhead of additional control traffic that may have been
 avoided.

http://www.isi.edu/touch/pubs/pfhsn94.html

Penno Expires August 26, 2010 [Page 8]

Internet-Draft LEDBAT Practices and Recommendations February 2010

5.2. Memory Space

 Each TCP connection needs a TCP control block (TCB) or equivalent to
 keep state about its connection. In operating systems where the TCP
 stack is part of the kernel, this would come from the kernel memory
 space, otherwise from userland memory.

 But irrespective of where the memory comes from a TCP control block
 requires a significant amount of memory. This is significant issue
 for devices that terminate TCP connections from multiple end hosts to
 provide functions such as Load-Balancing, Gateway and Tunneling.

 Some proposals have been put forward to reduce the amount of memory
 occupied by each TCP control block [RFC2140], but the issue remains
 significant and is amplified by applications that use multiple TCP
 connections.

5.3. Link Bandwidth

 The bottlenecks for these N multiple connections could be shared or
 separate. If separate, there's no specific bottleneck where the
 connections are hogging bandwidth. But from a network resource point
 of view, the application download still gets multiple shares.

 If some/all bottlenecks are shared, then two possibilities exist for
 shared bottleneck:

 o the bottleneck is a last-hop link (user traffic dominates link),
 OR

 o the bottleneck is an in-network wide-area link (background traffic
 dominates link)

 If bottleneck is the last-hop, then n transport connections compete
 with each other and share link bandwidth.

 Although these connections might impact delay-sensitive traffic and
 increase delay, in the last hop they only affect the end-user, which
 is in control of which applications run on its host. In this case the
 user has the option of manually choosing when to run each
 application, configuring the end host, amongst other choices.
 Alternatively, or in conjunction with the above, the application can
 be enhanced to use Diffserv and new delay sensitive congestion
 mechanisms.

 If the shared bottleneck is in-network, then the application gets an
 unfair share of bottleneck bandwidth. This impacts flows belonging to

https://datatracker.ietf.org/doc/html/rfc2140

Penno Expires August 26, 2010 [Page 9]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 other users in general, and most importantly may impact delay-
 sensitive traffic.

5.4. Middleboxes

 Middleboxes are defined as any intermediary box performing functions
 apart from normal, standard functions of an IP router on the data
 path between a source host and destination host [RFC3234].
 Middleboxes can be stand-alone or integrated in another device such
 as a router or modem.

 The functions that are relevant to this discussion are those that
 require the middlebox to keep per session state, sometimes referred
 as transformation services. Some of these functions are, for example,
 NAT, Intrusion Detection and Load-Balancing.

 It is easy to see that the more sessions a host initiates, the more
 state the middlebox will have to keep. The relationship is at least
 1:1 but due asymmetric traffic, routing changes and other
 considerations, this can be 1:N.

 Although application traffic from most broadband subscribers today go
 through at least one middlebox (as a stand-alone device in the home
 network, or integrated into the broadband modem), it can traverse
 other middleboxes that reside within the ISP's network or close to
 the destination. These middleboxes aggregate traffic from multiple
 subscribers, and state tables within these devices can become a
 premium.

6. Conclusion and Recommendations

6.1. Diffserv

 REC-1: Applications involved in bulk data transfer with low priority
 in time could mark their packets according with the guidelines of RFC

3662 [RFC3662].

6.2. Window scale negotiation

 REC-2: Where appropriate, sender & receiver window should be scaled
 using RFC1323 based negotiation in order to make the best use of
 network resources. Recommendations to adjust window size are not new
 and have been recommended in networks where the BDP (Bandwidth Delay
 Product) is large [RFC3481].

https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc3662
https://datatracker.ietf.org/doc/html/rfc3662
https://datatracker.ietf.org/doc/html/rfc3662
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc3481

Penno Expires August 26, 2010 [Page 10]

Internet-Draft LEDBAT Practices and Recommendations February 2010

6.3. Number of Connections

 Multiple connections to the same or different servers provide a
 significant speedup as compared to a single connection. The
 motivation to use multiple connections is to achieve throughput
 efficiency and the cause for such deficiency could be head of line
 blocking, slow servers, server availability or simply overcoming TCP
 throughput limitations. [DYNPARACON],[PARATCPSCK].

 In the case of multiple parallel connection homogeneous connection
 sharing a link of capacity c, it was found that 6 connections are
 sufficient to reach 95% download utilization [PARATCPSCK].
 Interestingly this is comparable to the number of configured active
 transfers (5) of the most used BitTorrent client [UTORRENT]. It is
 worth noticing that during a large file transfer BitTorrent clients
 will prefer peers that provide the largest upload rate, thus
 theoretically saturating its download link. In reality, packet drops,
 upload caps and others transient effects would require clients to
 have more than 5 connections in order to saturate the link, but the
 overall effect of these issues in terms of bandwidth decrease is
 something already measured by BitTorrent clients and used in the
 (optimistic) unchoke/choke algorithm. Therefore the number of active
 connections should not be much higher than 5 since the idea is to
 saturate the link by choosing the best connections and not
 necessarily more connections.

 REC-3: Applications should only open more than 6 connections to
 download the same object if the first hop link is not saturated.

6.3.1. HTTP

 The case of web browsing (HTTP) is quite different from P2P. One
 could argue that the number of active connections used by HTTP is
 much higher than that used by BitTorrent, but the scenarios are quite
 different. In the case of dynamic pages, different objects are
 downloaded from (and exclusively available from) certain locations.
 Moreover, time is of the essence since there is an expectation that a
 page is downloaded and rendered within a few seconds. Finally,
 objects in a webpage are quite small, with the majority (75%) below
 6KB [HTTPDATA]; therefore many connections are needed to saturate the
 link since TCP congestion avoidance never has time to ramp up to its
 maximum bandwidth. If multiple small HTTP objects can be retrieved
 from the same server, the use of HTTP/1.1 Pipelining is recommended
 since it can dramatically reduce the number of packets and connection
 overhead between client and server [HTTPPERF].

Penno Expires August 26, 2010 [Page 11]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 REC-4: HTTP based applications should use HTTP/1.1 pipelining when
 transferring multiple small objects from the same server.

6.4. Bi-Directional HTTP

 Recent frameworks like Ajax allow application developers to write
 applications that allow a delay between when the HTTP server receives
 a request and sends the corresponding response a response. This
 technique, called "long polling", works by having the HTTP server
 delay sending the response to a request back until it has some
 additional data to sent to the client. HTTP streaming is a technique
 where the server keeps the connection open indefinitely by using
 chunked Transfer-Encoding mechanism to send incremental responses
 spread over time.

 Both these techniques originated as a counter mechanism to the normal
 manner of polling for events in HTTP: sending multiple requests where
 the inter-request frequency is fairly small. Such a polling mechanism
 tends to overwhelm the server if the polling frequency is set too
 low.

 Both long polling and HTTP streaming affect the number of TCP
 connections open over a period of time and the network in the
 following way:

 o Reducing the overhead of opening/closing connections

 o Increasing memory consumption in both clients and servers

7. Security Considerations

 None at this time

8. IANA Considerations

 None at this time

9. Acknowledgments

 J. Iyengar was one of the presenters on the first BOF and worked on
 the original version of this document.

Penno Expires August 26, 2010 [Page 12]

Internet-Draft LEDBAT Practices and Recommendations February 2010

10. References

10.1. Normative References

 [RFC959] J. Postel and J. Reynolds, "File Transfer Protocol (FTP)",
RFC 959 (1985).

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

10.2. Informative References

 [RFC1323] V. Jacobson, B. Braden, D. Borman, TCP Extensions for High
 Performance, RFC 1323, May 1992

 [RFC2140] J. Touch, TCP Control Block Interdependence, RFC 2140
 (1997)

 [RFC2616] R. Fielding et al, Hypertext Transfer Protocol HTTP/1.1,
RFC 2616 (1999)

 [RFC3481] Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., and F.
 Khafizov, "TCP over Second (2.5G) and Third (3G) Generation
 Wireless Networks", BCP 71, RFC 3481, February 2003.

 [RFC3234] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234, February 2002.

 [RFC3662] Bless, R., Nichols, K., and K. Wehrle, "A Lower Effort
 Per-Domain Behavior (PDB) for Differentiated Services", RFC

3662, December 2003.

 [SCSIREF] K.Z. Meth, J. Satran, Design of the iSCSI protocol, Storage
 Conference (2003)

 [STEVENS] W. Richard Stevens et al, ''Unix Network Programming, The
 Sockets Networking API'', Volume 1, Third Edition (2003),

section 10.5, page 293.

 [HOLBLCK] Head-of-line Blocking in TCP and SCTP: Analysis and
 Measurements

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp71
https://datatracker.ietf.org/doc/html/rfc3481
https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc3662
https://datatracker.ietf.org/doc/html/rfc3662

Penno Expires August 26, 2010 [Page 13]

Internet-Draft LEDBAT Practices and Recommendations February 2010

 [EXPPARA] S. Philopoulos and M. Maheswaran. Experimental Study of
 Parallel Downloading Schemes for Internet Mirror Sites. In
 Thirteenth IASTED International Conference on Parallel and
 Distributed Computing Systems (PDCS '01), Aug. 2001.

 [HTTPPERF] Network Performance Effects of HTTP/1.1, CSS1, and PNG.
http://www.w3.org/Protocols/HTTP/Performance/Pipeline

 [DYNPARACON] P. Rodriguez and E. W. Biersack, ''Dynamic Parallel-
 Access to Replicated Content in the Internet'', IEEE/ACM
 Transactions on Networking, August 2002

 [UTORRENT] http://www.utorrent.com

 [PARATCPSCK] Altman, E., Barman, D., Tu.n, B., Vojnovic, M.Parallel
 TCP Sockets: Simple Model, Throughput and Validation. In:
 IEEE INFOCOM 2006, Barcelona, Spain (2006)

 [HTTPDATA] Y. C. Chehadeh, A. Z. Hatahet, A. E. Agamy, M. A.
 Bamakhrama, and S. A. Banawan, "Investigating distribution
 of data of http traffic: An empirical study," in
 Innovations in Information Technology, 2006.

 [PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. ''Modeling
 TCP Throughput: A Simple Model and its Empirical
 Validation''. SIGCOMM Symposium on Communications
 Architectures and Protocols, Aug. 1998.

 [FF99] S. Floyd and K. Fall. ''Promoting the Use of End-to-End
 Congestion Control in the Internet''. IEEE/ACM Transactions
 on Networking, Aug. 1999.

 [Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in
 TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp.
 1573-1583.

 [Skype-analysis] S. Baset and H. Schulzrinne, "An Analysis of the
 Skype Peer-to-Peer Internet Telephony Protocol". IEEE
 Infocom", Apr. 2006

Penno Expires August 26, 2010 [Page 14]

http://www.w3.org/Protocols/HTTP/Performance/Pipeline
http://www.utorrent.com

Internet-Draft LEDBAT Practices and Recommendations February 2010

Author's Addresses

 Reinaldo Penno
 Juniper Networks
 1194 N Mathilda Aveue
 Sunnyvale, CA

 Email: rpenno@juniper.net

 Satish Raghunath
 Juniper Networks
 1194 N Mathilda Aveue
 Sunnyvale, CA

 Email: satishr@juniper.net

 Vijay K. Gurbani
 Bell Labs, Alcatel-Lucent
 1960 Lucent Lane
 Room 9C-533
 Naperville, IL
 60566
 USA

 Email: vkg@bell-labs.com

 Richard Woundy
 Comcast Cable Communications
 27 Industrial Avenue
 Chelmsford, MA 01824
 US

 Email: richard_woundy@cable.comcast.com
 URI: http://www.comcast.com

 Joe Touch
 USC/ISI
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695
 U.S.A.

 Email: touch@isi.edu
 URL: http://www.isi.edu/touch

http://www.comcast.com
http://www.isi.edu/touch

Penno Expires August 26, 2010 [Page 15]

