
Network Working Group Arnt Gulbrandsen
Request for Comments: DRAFT Oryx Mail Systems GmbH
Intended Status: Proposed Standard April 2007

The IMAP COMPRESS Extension
draft-ietf-lemonade-compress-08.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-

 Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 The COMPRESS extension allows an IMAP connection to be effectively
 and efficiently compressed.

Gulbrandsen Expires October 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-draft April 2007

Table of Contents

1. Conventions Used in This Document 2
2. Introduction and Overview 2
3. The COMPRESS Command . 3
4. Compression Efficiency . 5
5. Formal Syntax . 6
6. Security Considerations 7
7. IANA Considerations . 7
8. Acknowledgements . 7
9. References . 7
9.1. Normative References 7
9.2. Informative References 8
10. Author's Address . 8

1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Formal syntax is defined by [RFC4234] as modified by [RFC3501].

 In the examples, "C:" and "S:" indicate lines sent by the client and
 server respectively. "[...]" denotes elision.

2. Introduction and Overview

 A server which supports the COMPRESS extension indicates this with
 one or more capability names consisting of "COMPRESS=" followed by a
 supported compression algorithm name as described in this document.

 The goal of COMPRESS is to reduce the bandwidth usage of IMAP.

 Compared to PPP compression (see [RFC1962]) and modem-based
 compression (see [MNP] and [V42BIS]), COMPRESS offers much better
 compression efficiency. COMPRESS can be used together with TLS
 [RFC4346], SASL encryption, VPNs etc. Compared to TLS compression
 [RFC3749], COMPRESS has the following (dis)advantages:

 - COMPRESS can be implemented easily both by IMAP servers and
 clients.

 - IMAP COMPRESS benefits from an intimate knowledge of the IMAP
 protocol's state machine, allowing for dynamic and aggressive
 optimization of the underlying compression algorithm's parameters.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc1962
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3749

Gulbrandsen Expires October 2007 [Page 2]

Internet-draft April 2007

 - When the TLS layer implements compression, any protocol using that
 layer can transparently benefit from that compression (e.g. SMTP
 and IMAP). COMPRESS is specific to IMAP.

 In order to increase interoperation, it is desirable to have as few
 different compression algorithms as possible, so this document
 specifies only one. The DEFLATE algorithm (defined in [RFC1951]) is
 standard, widely available and fairly efficient, so it is the only
 algorithm defined by this document.

 In order to increase interoperation, IMAP servers which advertise
 this extension SHOULD also advertise the TLS DEFLATE compression
 mechanism as defined in [RFC3749]. IMAP clients MAY use either
 COMPRESS or TLS compression.

 The extension adds one new command (COMPRESS) and no new responses.

3. The COMPRESS Command

 Arguments: Name of compression mechanism: "DEFLATE".

 Responses: None

 Result: OK The server will compress its responses and expects the
 client to compress its commands.
 NO Compression is already active via another layer.
 BAD Command unknown, invalid or unknown argument, or COMPRESS
 already active.

 The COMPRESS command instructs the server to use the named
 compression mechanism ("DEFLATE" is the only one defined) for all
 commands and/or responses after COMPRESS.

 The client MUST NOT send any further commands until it has seen the
 result of COMPRESS. If the response was OK, the client MUST compress
 starting with the first command after COMPRESS. If the server
 response was BAD or NO, the client MUST NOT turn on compression.

 If the server responds NO because it knows that the same mechanism
 is active already (e.g. because TLS has negotiated the same
 mechanism), it MUST send COMPRESSIONACTIVE as resp-text-code (see

[RFC3501] section 7.1), and the resp-text SHOULD say which layer
 compresses.

 If the server issues an OK response, the server MUST compress
 starting immediately after the CRLF which ends the tagged OK
 response. (Responses issued by the server before the OK response

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc3749
https://datatracker.ietf.org/doc/html/rfc3501#section-7.1

Gulbrandsen Expires October 2007 [Page 3]

Internet-draft April 2007

 will, of course, still be uncompressed.) If the server issues a BAD
 or NO respnose, the server MUST NOT turn on compression.

 For DEFLATE (as for many other compression mechanisms), the
 compressor can trade speed against quality. When decompressing
 there isn't much of a tradeoff. Consequently, the client and server
 are both free to pick the best reasonable rate of compression for
 the data they send.

 When COMPRESS is combined with TLS (see [RFC4346]) or SASL (see
 [RFC4422]) security layers, the sending order of the three
 extensions MUST be first COMPRESS, then SASL, and finally TLS. That
 is, before data is transmitted it is first compressed. Second, if a
 SASL security layer has been negotiated, the compressed data is then
 signed and/or encrypted accordingly. Third, if a TLS security layer
 has been negotiated, the data from the previous step is signed
 and/or encrypted accordingly. When receiving data, the processing
 order MUST be reversed. This ensures that before sending, data is
 compressed before it is encrypted, independent of the order in which
 the client issues COMPRESS, AUTHENTICATE, and STARTTLS.

 The following example illustrates how commands and responses are
 compressed during a simple login sequence:

 S: * OK [CAPABILITY IMAP4REV1 STARTTLS COMPRESS=DEFLATE]
 C: a starttls
 S: a OK TLS active

 From this point on, everything is encrypted.

 C: b login arnt tnra
 S: b OK Logged in as arnt
 C: c compress deflate
 S: d OK DEFLATE active

 From this point on, everything is compressed before being
 encrypted.

 The following example demonstrates how a server may refuse to
 compress twice:

 S: * OK [CAPABILITY IMAP4REV1 STARTTLS COMPRESS=DEFLATE]
 [...]
 C: c compress deflate
 S: c NO [COMPRESSIONACTIVE] DEFLATE active via TLS

https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4422

Gulbrandsen Expires October 2007 [Page 4]

Internet-draft April 2007

4. Compression Efficiency

 This section is informative, not normative.

 IMAP poses some unusual problems for a compression layer.

 Upstream is fairly simple. Most IMAP clients send the same few
 commands again and again, so any compression algorithm which can
 exploit repetition works efficiently. The APPEND command is an
 exception; clients which send many APPEND commands may want to
 surround large literals with flushes in the same way as is
 recommended for servers later in this section.

 Downstream has the unusual property that several kinds of data are
 sent, confusing all dictionary-based compression algorithms.

 One type is IMAP responses. These are highly compressible; zlib
 using its least CPU-intensive setting compresses typical responses
 to 25-40% of their original size.

 Another is email headers. These are equally compressible, and
 benefit from using the same dictionary as the IMAP responses.

 A third is email body text. Text is usually fairly short and
 includes much ASCII, so the same compression dictionary will do a
 good job here, too. When multiple messages in the same thread are
 read at the same time, quoted lines etc. can often be compressed
 almost to zero.

 Finally, attachments (non-text email bodies) are transmitted, either
 in binary form or encoded with base-64.

 When attachments are retrieved in binary form, DEFLATE may be able
 to compress them, but the format of the attachment is usually not
 IMAP-like, so the dictionary built while compressing IMAP does not
 help. The compressor has to adapt its dictionary from IMAP to the
 attachment's format, and then back. A few file formats aren't
 compressible at all using deflate, e.g. .gz, .zip and .jpg files.

 When attachments are retrieved in base-64 form, the same problems
 apply, but the base-64 encoding adds another problem. 8-bit
 compression algorithms such as deflate work well on 8-bit file
 formats, however base-64 turns a file into something resembling
 6-bit bytes, hiding most of the 8-bit file format from the
 compressor.

 When using the zlib library (see [RFC1951]), the functions
 deflateInit2(), deflate(), inflateInit2() and inflate() suffice to

https://datatracker.ietf.org/doc/html/rfc1951

Gulbrandsen Expires October 2007 [Page 5]

Internet-draft April 2007

 implement this extension. The windowBits value must be in the range
 -8 to -15, or else deflateInit2() uses the wrong format.
 deflateParams() can be used to improve compression rate and resource
 use. The Z_FULL_FLUSH argument to deflate() can be used to clear the
 dictionary (the receiving peer does not need to do anything).

 A client can improve downstream compression by implementing BINARY
 (defined in [RFC3516]) and using FETCH BINARY instead of FETCH BODY.
 In the author's experience, the improvement ranges from 5% to 40%
 depending on the attachment being downloaded.

 A server can improve downstream compression if it hints to the
 compressor that the data type is about to change strongly, e.g. by
 sending a Z_FULL_FLUSH at the start and end of large non-text
 literals (before and after '*CHAR8' in the definition of literal in

RFC 3501, page 86). Small literals are best left alone. A possible
 boundary is 5k.

 A server can improve the CPU efficiency both of the server and the
 client if it adjusts the compression level (e.g. using the
 deflateParams() function in zlib) at these points, to avoid trying
 to compress uncompressible attachments. A very simple strategy is to
 change the level to 0 to at the start of a literal provided the
 first two bytes are either 0x1F 0x8B (as in deflate-compressed
 files) or 0xFF 0xD8 (JPEG), and to keep it at 1-5 the rest of the
 time. More complex strategies are possible.

5. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [RFC4234]. This syntax augments
 the grammar specified in [RFC3501]. [RFC4234] defines SP and
 [RFC3501] defines command-auth, capability and resp-text-code.

 Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of upper or lower case characters to define
 token strings is for editorial clarity only. Implementations MUST
 accept these strings in a case-insensitive fashion.

 command-auth =/ compress

 compress = "COMPRESS" SP algorithm

 capability =/ "COMPRESS=" algorithm
 ;; multiple COMPRESS capabilities allowed

 algorithm = "DEFLATE"

https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc3501

Gulbrandsen Expires October 2007 [Page 6]

Internet-draft April 2007

 resp-text-code =/ "COMPRESSIONACTIVE"

 Note that due the syntax of capability names, future algorithm names
 must be atoms.

6. Security Considerations

 As for TLS compression [RFC3749].

7. IANA Considerations

 The IANA is requested to add COMPRESS=DEFLATE the list of IMAP
 capabilities. [Note to IANA: This is at

http://www.iana.org/assignments/imap4-capabilities]

 Note to IANA: This RFC does not specify the creation of a registry
 for compression mechanisms. The current feeling of the IMAP
 community is that is is unlikely that another compression mechanism
 will be added in the future. However, if this RFC is extended in the
 future by another RFC, and another compression mechanism is added at
 that time, it would then be appropriate to create a registry.

8. Acknowledgements

 Eric Burger, Dave Cridland, Tony Finch, Ned Freed, Philip Guenther,
 Randall Gellens, Tony Hansen, Cullen Jennings, Stephane Maes, Alexey
 Melnikov, Lyndon Nerenberg and Zoltan Ordogh have all helped with
 this document.

 The author would also like to thank various people in the rooms at
 meetings, whose help is real, but not reflected in the author's
 mailbox.

9. References

9.1. Normative References

 [RFC1951] Deutsch, "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, Aladdin Enterprises, May 1996.

 [RFC2119] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March
 1997.

https://datatracker.ietf.org/doc/html/rfc3749
http://www.iana
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2119

Gulbrandsen Expires October 2007 [Page 7]

Internet-draft April 2007

 [RFC3501] Crispin, "Internet Message Access Protocol - Version
 4rev1", RFC 3501, University of Washington, June 2003.

 [RFC4234] Crocker, Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, Brandenburg
 Internetworking, Demon Internet Ltd, October 2005.

9.2. Informative References

 [RFC1962] Rand, "The PPP Compression Control Protocol (CCP)", RFC
1962, June 1996.

 [RFC3516] Nerenberg, "IMAP4 Binary Content Extension", RFC 3516,
 Orthanc Systems, April 2003.

 [RFC3749] Hollenbeck, "Transport Layer Security Protocol
 Compression Methods", RFC 3749, VeriSign, May 2004.

 [RFC4346] Dierks, Rescorla, "The Transport Layer Security (TLS)
 Protocol, Version 1.1", RFC 4346, April 2006.

 [RFC4422] Melnikov, Zeilenga, "Simple Authentication and Security
 Layer (SASL)", RFC 4422, Isode Limited, June 2006.

 [V42BIS] ITU, "V.42bis: Data compression procedures for data
 circuit-terminating equipment (DCE) using error
 correction procedures", http://www.itu.int/rec/T-REC-

V.42bis, January 1990.

 [MNP] Gilbert Held, "The Complete Modem Reference", Second
 Edition, Wiley Professional Computing, ISBN
 0-471-00852-4, May 1994.

10. Author's Address

 Arnt Gulbrandsen
 Oryx Mail Systems GmbH
 Schweppermannstr. 8
 D-81671 Muenchen
 Germany

 Fax: +49 89 4502 9758

 Email: arnt@oryx.com

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc1962
https://datatracker.ietf.org/doc/html/rfc1962
https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3749
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4422
http://www.itu.int/rec/T-REC-V.42bis
http://www.itu.int/rec/T-REC-V.42bis

Gulbrandsen Expires October 2007 [Page 8]

Internet-draft April 2007

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Copyright Statement

 Copyright (C) The IETF Trust (2007). This document is subject to
 the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Disclaimer of Validity

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Gulbrandsen Expires October 2007 [Page 9]

