
 <Lemonade binding for firewalls and mobile networks> February 2006

Lemonade S. H. Maes
Internet Draft: Lemonade Bindings for firewalls R. Cromwell
and mobile network intermediaries N. Mitra
Informational Track (Editors)

Document: draft-ietf-lemonade-firewall-binding-00
Expires: August 2006 February 2006

Lemonade bindings to cross firewalls and mobile network
intermediaries

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 As part of the LEMONADE work to define extensions to the IMAP and
 SMTP protocols that provide optimizations in a variety of settings,
 the this document describes an alternative, optional binding for IMAP
 and SMTP showing how HTTP can be used to transfer commands and
 responses. This binding is intended to facilitate the use of IMAP and
 SMTP in deployments involving a variety of intermediaries. Bindings
 to SOAP, REST and WebDAV are also provided.

https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-firewall-binding-00
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Maes Expires August 2006 [Page 1]

 <Lemonade binding for firewalls and mobile networks> February 2006

Conventions used in this document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST or REQUIRED level requirements for the protocol(s) it
 implements. An implementation that satisfies all the MUST or REQUIRED
 level and all the SHOULD level requirements for a protocol is said to
 be "unconditionally compliant" to that protocol; one that satisfies
 all the MUST level requirements but not all the SHOULD level
 requirements is said to be "conditionally compliant." When
 describing the general syntax, some definitions are omitted as they
 are defined in [RFC3501], [RFC821], and related documents..

Table of Contents

 Status of this Memo..1
 Copyright Notice...1
 Abstract...1
 Conventions used in this document..................................2
 Table of Contents..2

1. Introduction and motivation.....................................3
2. Techniques for binding over HTTP................................4

2.1. Tunneling Approaches.......................................4
 2.1.1. Non-Persistent HTTP for In-response Connectivity Mode.6
 2.1.2. Using Persistent HTTP/HTTPS + Chunked Transfer
 Encoding for In-band Connectivity Mode................7

2.1.3. Using HTTP Connect....................................9
2.1.4. Using HTTP as a binding for SMTP......................9

2.2. Syntactic Mapping Approaches..............................10
2.3. Using SOAP (Web Services) as a binding for IMAP...........10
2.4. REST Mapping..12

2.4.1. IMAP resources as REST resources and interface.......13
2.4.2. IMAP commands as HTTP commands on REST resources.....14
2.4.3. Representation of transferred resources..............15
2.4.4. Challenges...15

2.5. WebDAV Mapping..15
3. Security Considerations..16
4. References...17
5. Future Work..18
6. Version History..19

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc821

 Acknowledgments...19

Maes Expires August 2006 [Page 2]

 <Lemonade binding for firewalls and mobile networks> February 2006

 Authors Addresses...19
 Intellectual Property Statement...................................19
 Disclaimer of Validity..20
 Copyright Statement...20

1.
 Introduction and motivation

 As part of the LEMONADE goal to define extensions to the IMAP and
 SMTP protocols [RFC3501] for providing optimizations in a variety of
 settings, this document describes how HTTP can optionally be used to
 transfer IMAP and SMTP commands and responses. This binding is
 intended to facilitate the use of IMAP and SMTP in deployments
 involving a variety of intermediaries, and offers a standardized
 alternative to de facto proprietary implementations of such a
 feature.

 The need for an optional HTTP binding is driven by the needs of the
 mobile network operator community (see [MEMAIL][OMA-ME-RD]), where
 the reuse of an existing and well-understood technology will allow
 operators to apply their experience in solving practical deployment
 issues. Specifically, HTTP allows operators to reuse a similar setup
 and model that is already used for many other similar and related
 services, such as certain proprietary push e-mail and synchronization
 offerings, OMA Data Synchronization, Web services and Web access.

 Using HTTP/HTTPS can simplify deployment in a corporate network
 through the potential use of a reverse proxy to achieve end-to-end
 encryption. This also has the advantage of not requiring changes to
 any firewall configurations and reduces the concerns that this often
 presents to corporation. In general the solution is compatible with
 any existing firewall. A reverse proxy can also support deployment
 models that offer roles to other service providers in the value
 chains, as discussed in [OMA-ME-AD].

 The confidentiality, integrity, and compression capabilities used
 with HTTP and already implemented in a wide range of existing mobile
 device, can also be reused.

 Studies have also shown that a persistent HTTP session has usually
 proven more resilient than an IMAP IDLE over TCP connection over an
 unreliable bearer such as a GPRS-based mobile network.

 The use of HTTP as an underlying protocol for other application
 protocols has received much attention (see [RFC3205]). In particular,
 the concern exists that this circumvents firewall security policies.
 Another concern is the potential misuse or neglect of HTTP semantics
 by the application protocol that uses HTTP as a substrate.

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3205

Maes Expires August 2006 [Page 3]

 <Lemonade binding for firewalls and mobile networks> February 2006

 Note that if the suppression of IMAP (or indeed any other
 application) traffic on HTTP/HTTPS is an issue, firewall
 administrators can still prevent such passage and this can provide
 incentives to re-configure firewalls to allow solutions on other
 transports (e.g. TLS) or offer the HTTP-based solution using another
 provisioned port (e.g. manually, out of band or via instructions like
 XGETLPREFS (see [NOTIFICATIONS])). The aim, therefore, is to allow
 for the use of this solution in the widest possible set of
 circumstances by codifying a standard way to do so that works with
 existing, deployed (i.e., HTTP only) firewalls, while explicitly
 allowing the possibility of detecting and filtering such traffic in
 deployments using the HTTP Content-Type in deployments where this is
 not permitted.

 SOAP, REST and WeDAV binding are also described.

2.
 Techniques for binding over HTTP

 There are two general approaches described below for binding IMAP
 over HTTP. The first approach shows how to tunnel regular IMAP
 requests and responses over HTTP using POST. The second approach
 proposes a syntactic change which recodes IMAP requests and responses
 as SOAP documents, WebDAV requests, or REST requests and attempts to
 obey the underlying semantics of those protocols. At the current
 stage of the draft, the SOAP, REST, and DAV mappings are meant more
 as informative examples for further research and discussion.

2.1.
 Tunneling Approaches

 To use HTTP/HTTPS as the transfer protocol for IMAP commands and
 responses between the IMAP client and server, the client MUST send an
 HTTP POST request to the server, and embed IMAP commands (commands to
 an IMAPv4 Rev1 server or IMAP servers supporting Lemonade extensions)
 in the body of the request. A server MUST reject a HTTP GET request
 from the client. The content-type header of the POST request MUST be
 set to "application/vnd.lemonade". Multiple IMAP commands may be
 included in one POST request. In general, the HTTP server is expected
 to preserve session state between HTTP commands to the best of its
 ability, therefore the client does not need to reauthenticate and
 reissue a SELECT until it receives an (IMAP) error response showing
 that it is not authenticated.

 In what follows, the term Lemonade client/server is used to refer to
 a client/server that supports both IMAPv4 Rev1 as well as any
 LEMONADE extensions.

Maes Expires August 2006 [Page 4]

 <Lemonade binding for firewalls and mobile networks> February 2006

 When the HTTP binding is used, the Lemonade server listens on
 whatever port has been configured for this.

 The following is an example of a possible Lemonade HTTP request:

 POST /lemonadePath HTTP/1.1 <CRLF>
 Content-Type: application/vnd.lemonade <CRLF>
 [other headers]
 <CRLF>
 (<tag> SP <Lemonade command> <CRLF> | literal)
 [(<tag> SP <Lemonade command> <CRLF> | literal)]

 The Lemonade command MUST be plain text (7bit).

 Multiple Lemonade commands MAY be sent on the same request. Thus
 Lemonade commands must be tagged. The client must be able to deal
 with recovering from errors when commands are batched. See RFC2442
 Batch SMTP for a further discussion. In general, if a command is
 expected to produce a synchronized literal or continuation request,
 it MUST be the last command in the batch.

 The Content-Type header is the only HTTP headers that MUST be sent to
 a Lemonade server. Other headers such as Cache-Control MAY be
 included.

 When the Lemonade server sends back a response it is in following
 format:

 HTTP/1.1 <HTTP Status Code> <CRLF>
 Content-Type: text/plain <CRLF>
 <CRLF>
 [<untagged responses>]
 <tag> SP <Lemonade Server response> <CRLF>
 [<untagged responses>]
 <tag> SP <Lemonade Server response> <CRLF>

 Notes:
 The Lemonade Server uses the following HTTP status codes, and what
 each code indicates is given below:
 - 100
 - This indicates the presence of a synchronizing literal or
 continuation request. The server is waiting for more data from
 the client (another HTTP request) before continuing. If the
 HTTP request includes batched commands after the command which
 generates a continuation request or synchronized literal, the
 server MUST generate a 5xx request.

 - 200

https://datatracker.ietf.org/doc/html/rfc2442

Maes Expires August 2006 [Page 5]

 <Lemonade binding for firewalls and mobile networks> February 2006

 - This indicates normal execution of the Lemonade commands
 from an IMAP perspective. The client should further parse
 the response body to get the tagged responses to the
 commands and process those accordingly.
 - 401
 - This indicates that the execution of the IMAP commands might
 have been successful, but the session is no longer
 authenticated. The client should try to reauthenticate to the
 IMAP server, and then resend the commands.

 - 5xx
 - This indicates that at least one command was
 malformed/protocol level error, or, a command could not
 complete due to a problem in the IMAP server. In conforming to
 HTTP semantics, this means the IMAP server responses such as
 BAD or NO on a tagged response generate a HTTP 500 response
 code.

 When using HTTP to transfer IMAP commands and responses, the client
 SHOULD utilize built-in features of HTTP to their advantage. For
 example, the client SHOULD use HTTPS instead of HTTP whenever
 possible, since HTTPS has built in encryption and MAY have
 compression capabilities. STARTTLS should not be needed in this
 case, as it just requires additional overhead without any additional
 benefit.

 HTTP can be used in both in-response and in-band modes. Details
 about these transport modes are given in the following two
 subsections.

2.1.1. Non-Persistent HTTP for In-response Connectivity Mode

 If the client uses a traditional HTTP connection (either by
 establishing a different socket for each HTTP request to the Lemonade
 server, or by reusing the same socket for all HTTP requests, but
 sending each request under its own header), it has in-response
 connectivity to the server. The client can issue as many commands as
 it would like in one HTTP request to the server, and the server
 responds by sending back one HTTP response with all the responses to
 all the commands in the HTTP request. With this connectivity mode,
 the IDLE command cannot be issued. Other commands that use a
 continuation response or synchronized literal cannot be issued unless
 they are the last command in the batch. [LITERAL+] SHOULD be used to
 eliminate synchronized literals when using APPEND.

 In order for the server to identify separate HTTP requests as
 belonging to the same session, an in-response HTTP client needs to

Maes Expires August 2006 [Page 6]

 <Lemonade binding for firewalls and mobile networks> February 2006

 accept cookies. A session-id is passed in the cookie to identify the
 session.

 Example: the headers for a HTTP In-response Response after the client
 has issued its first HTTP request to the server.

 HTTP/1.1 <HTTP Status Code> <CRLF>
 Content-Type: text/plain <CRLF>
 Set-Cookie:JSESSIONID=94571a8530d91e1913bfydafa;
 path=/lemonade<CRLF>
 <CRLF>
 [<untagged responses>]
 <tag> SP <Lemnade Server response> <CRLF>
 [[<untagged responses>]
 <tag> SP <Lemonade Server response> <CRLF>]

 Example: the headers for a HTTP In-response Response after the client
 has issued its first HTTP request to the server, with the final
 command generating a continuation request.

 HTTP/1.1 100 Continue <CRLF>
 Content-Type: text/plain <CRLF>
 Set-Cookie:JSESSIONID=94571a8530d91e1913bfydafa;
 path=/lemonade<CRLF>
 <CRLF>
 [<untagged responses>]
 <tag> SP <Lemnade Server response> <CRLF>
 +continuation-request

 The client must then save this cookie and send it back to the server
 with the next request in order for the server to reattach these
 commands to the same session as the previous commands.

 POST /lemonadePath HTTP/1.1 <CRLF>
 Content-Type: application/vnd.lemonade <CRLF>
 Cookie: JSESSIONID=94571a8530d91e1913bfydafa
 [other headers]
 <CRLF>
 <tag> SP <Lemonade command> <CRLF>
 [<tag> SP <Lemonade command> <CRLF>]

2.1.2. Using Persistent HTTP/HTTPS + Chunked Transfer Encoding for In-
band Connectivity Mode

 It is possible to use persistent HTTP or persistent HTTPS plus
 chunked- transfer-encoding so that the server can instantly send

Maes Expires August 2006 [Page 7]

 <Lemonade binding for firewalls and mobile networks> February 2006

 notifications to the client while a session is open. The client
 needs to open a persistent connection and keep it active. In this
 case, the HTTP headers must be sent the first time the client device
 opens the connection to the Lemonade Server and these headers MUST
 set the transfer coding to be chunk-encoded [RFC2616, Sec. 3.6.1].
 All subsequent client-server requests are written to the open
 connection, without needing any additional headers negotiations. The
 server can use this open channel to push events to the client device
 at any time. In this case, the client SHOULD NOT accept cookies.

 The client must send the HTTP headers one time only:

 POST /lemonadeServletPath HTTP/1.1 <CRLF>
 Content-Type: application/vnd.lemonade <CRLF>
 Connection: keep-alive <CRLF>
 Pragma: no-cache <CRLF>
 Transfer-Encoding: chunked <CRLF>

 The server responds with the following header:

 HTTP/1.1 <HTTP Status Code> <CRLF>
 Cache-Control: private
 Keep-Alive: timeout=15, max=100 (or other suitable setting)
 Connection: Keep-Alive
 Transfer-Encoding: chunked
 Content-Type: text/plain

 Then the client can send a command anytime it wants with the
 following format:
 <length of Lemonade command, including bytes in CRLF> <CRLF>
 <tag> SP <Lemonade command> <CRLF>
 <CRLF>

 And example of an actual client command is:
 e <CRLF>
 2 CAPABILITY<CRLF>
 <CRLF>

 The server responds to each command with as many untagged responses
 as needed, and one tagged response, where each response is in the
 format that follows:
 <length of a single response, including bytes in CRLF> <CRLF>
 <tagged or untagged response> <CRLF>
 <CRLF>

 An actual Server response might be:
 d5 <CRLF>

Maes Expires August 2006 [Page 8]

 <Lemonade binding for firewalls and mobile networks> February 2006

 * CAPABILITY IMAP4REV1 AUTH=LOGIN NAMESPACE SORT MULTIAPPEND
 LITERAL+ UIDPLUS IDLE XORACLE X-ORACLE-LIST X-ORACLE-COMMENT X-
 ORACLE-QUOTA X-ORACLE-PREF X-ORACLE-MOVE X-ORACLE-DELETE ACL X-
 ORACLE-PASSWORD LDELIVER LZIP LCONVERT LFILTER LSETPREF LGETPREF
 <CRLF> <CRLF>
 1b <CRLF>
 2 OK CAPABILITY completed <CRLF>
 <CRLF>

 Note however that the HTTP protocol is in general not meant to be
 used in such a way. To maintain such an open channel might be a
 practical challenge to proxies/firewalls, which might not forward the
 requests chunk by chunk to the server, and meanwhile route responses
 back to the client chunk by chunk. Consequently the session closes.
 Chunked transfer encoding requests MAY not be honored by an HTTP
 server. In cases where such requests are denied, the client should be
 prepared to use the non-chunked encoding technique from section 2.1

 The same challenges exist for TCP session.

 In any case, the session can be automatically started again by the
 client after a lost connection or by the server through out-of-band;
 after some defined time-out.

2.1.3. Using HTTP Connect

 If a HTTP proxy server is available to the client which supports the
 HTTP CONNECT method, and the IMAP server the user wishes to reach
 allows external connections outside the destination network s
 firewall, the client may wish to tunnel a regular TCP connection
 through the HTTP proxy.

 See [LUOTONEN] or section 5.2 of [RFC2817] for a detailed
 description of the technique. Note that HTTP Proxy servers may not
 honor all CONNECT requests, and may in fact, limit CONNECT requests
 to a small number of common ports, such as 80, 443, 8080, etc. It is
 advised that networks wishing to allow their users to use this
 feature allow clients within their network to CONNECT to ports 25,
 143, 587, and 993.

2.1.4. Using HTTP as a binding for SMTP

 All of the techniques described in sections 2.1, 2.2, and 2.3 may
 be used for SMTP as well. The only difference between IMAP and SMTP
 will be the HTTP URL used. Servers implementing the HTTP binding are

https://datatracker.ietf.org/doc/html/rfc2817#section-5.2

Maes Expires August 2006 [Page 9]

 <Lemonade binding for firewalls and mobile networks> February 2006

 expected to differentiate between IMAP and SMTP protocol bodies via
 the URL.

2.2.
 Syntactic Mapping Approaches

 The following mappings shows how synthactic mapping approaches can be
 used to map IMAP /SMTO over SOAP, REST, and WebDAV.

2.3.
 Using SOAP (Web Services) as a binding for IMAP

 The SOAP binding attempts to map IMAP commands to SOAP methods, and
 IMAP data types and grammar (atoms, lists, et al) to document-
 literals supplied as the soap body. This is essentially a tunneling
 technique with a syntactic change. The following general encoding
 rules are proposed:

 - IMAP commands are translated into SOAP methods of the same name,
 e.g. the FETCH command becomes the FETCH SOAP method name. (UID
 FETCH is mapped to UID_FETCH).
 - SOAP document literal style is used
 - Terminals in the IMAP grammar which represent atoms become elements
 (e.g. FLAGS becomes <FLAGS/>). Flags are stripped of leading
 backslash and uppercased.
 - Non-terminals which are an ATOM followed by a single parameter are
 represented as a non-empty element containing that parameter(e.g.
 CHARSET foo becomes <CHARSET>foo</CHARSET>, or SENTBEFORE date
 becomes <SENTBEFORE>date</SENTBEFORE>).
 - Lists are represented as <L> </L> containing zero or more elements
 (including other <L>s)
 - Unless otherwise defined, if a particular keyword is followed by
 more than one value, each value is encoded as <P>value</P> as placed
 as a child element. E.g. APPEND mailbox SP flaglist SP literal
 becomes
 <APPEND><P>mailbox</P><P><L><ANSWERED/><DRAFT/></L></P></APPEND>
 - Continuation responses and requests are encapsulated as <C>data</C>
 - Literals are encapsulated as <T>text</T> or binary
 - Unsolicited responses are encapsulates as <U>response</U>
 - The partial specifier is <P>offset.length</P>
 - The section specifier is <SECTION> </SECTION>
 - A sequence set is wrapped as <SEQUENCE>sequence-set</SEQUENCE>
 - The IMAP response is encoded in <RESP>response</RESP>
 - Any responses which start with a number followed by an ATOM are
 encoded as <ATOM>number</ATOM>

 The following is an example encoding:

 C: a1 FETCH 1:5,9 BODY[1.1.CONVERT(TEXT/PLAIN)]<1024.2048>

 Becomes

Maes Expires August 2006 [Page 10]

 <Lemonade binding for firewalls and mobile networks> February 2006

 <FETCH>
 <SEQUENCE>1:5,9</SEQUENCE>
 <BODY>
 <SECTION>
 <P>1.1.CONVERT(TEXT/PLAIN)</P>
 </SECTION>
 <P>1024.2048</P>
 </BODY>
 </FETCH>

 This would then be invoked on a Web Service via the SOAPMethodName
 FETCH . The expected response would be zero or more <U> elements
 containing <FETCH> elements which encode the returned data.

 These rules are by no means complete and exhaustive, and more
 stringent encoding rules are needed to encompass the full range of
 IMAP extended ABNF. The above rules are provided as a starting point.

 SOAP by itself adds considerable overhead to requests, so it would
 not be recommended without some form of compression or compact
 encoding such as Fast Web Services (X.695 ASN.1 Support for SOAP,
 Web Services and the XML Information Set)[X.695]. However, SOAP may
 provide some benefits over raw HTTP for those who have existing
 investments in SOAP infrastructure.

 Usage of X.695 is optional.

 As a final note, the above usage once again, assumes that the SOAP
 server is not stateless and uses HTTP cookies to preserve IMAP
 session state between requests.

 Here s an example session side by side with IMAP syntax(SOAP envelop
 not shown):

 C-SOAP: <LOGIN><P>username</P><P>password</P>
 C-IMAP: a1 LOGIN username password

 S-SOAP: <RESP><OK>LOGIN Ok</OK>
 S-IMAP: * OK LOGIN Ok

 C-SOAP: <SELECT>INBOX</SELECT>
 C-IMAP: a2 SELECT INBOX

 S-SOAP: <RESP>
 <U>
 <FLAGS><L>
 <ANSWERED/>
 <DRAFT/>

Maes Expires August 2006 [Page 11]

 <Lemonade binding for firewalls and mobile networks> February 2006

 <FLAGGED/>
 <SEEN/>
 </L>
 </FLAGS>
 </U>
 <U>
 <OK>
 <PERMANENTFLAGS>
 <L>
 <ANSWERED/>
 <DRAFT/>
 <FLAGGED/>
 <SEEN/>
 </L>
 </PERMANENTFLAGS>
 </OK>
 </U>
 <U>
 <EXISTS>1234</EXISTS>
 </U>
 <U>
 <RECENT>0</RECENT>
 </U>
 <U>
 <OK>
 <UIDVALIDITY>12345678</UIDVALIDITY>
 </OK>
 </U>
 <OK><READ-WRITE/></OK>
 </RESP>

 S-IMAP: * FLAGS (\Answered \Draft \Flagged \Seen)
 S-IMAP: * OK [PERMANENTFLAGS (\Answered \Draft \Flagged \Seen)]
 S-IMAP: * 1234 EXISTS
 S-IMAP: * 0 RECENT
 S-IMAP: * Ok [UIDVALIDITY 12345678]
 S-IMAP: a2 OK [READ-WRITE]

2.4.
 REST Mapping

 [REST] stands for Representation State Transfer, and is an
 architectural style modeled on HTTP, which seeks to build
 applications around the elements of HTTP s design which are
 attributed to its wide success and large scalability.

Maes Expires August 2006 [Page 12]

 <Lemonade binding for firewalls and mobile networks> February 2006

 The tunneling approach in section 2.1 violates REST principles
 because it doesn t model server state as resources and doesn t seek
 to use the underlying HTTP operations according to their true
 semantics.

 REST suggests that server resources should be modeled as, and
 addressable as URLs, instead of as the result of the execution of
 verbs. SOAP RPC seeks to model manipulation of resources as the
 invocation of a method which returns the resource, such as
 executeFetch , whereas REST seeks to model those resources via a
 uniform interface (a URL), that can be manipulated via standard HTTP
 commands.

 To create a mapping of IMAP to RESTful HTTP, a discussion
 entailing the description of what resources IMAP exports, what
 uniform interface will be used to locate those resources, and what
 representation will be used to exchange those resources (e.g.) must
 be provided.

2.4.1. IMAP resources as REST resources and interface

 An IMAP server primary consists of mailboxes and messages. A mailbox
 contains a collection of messages, and a message contains message
 contents. Both mailboxes and messages also have server specified
 metadata attached, such as flags, annotations, etc

 An Example REST interface to such data, might take the form of the
 following examples:

http://imap.server.com/mailboxname/

 To refer to a mailbox resource, and

http://imap.server.com/mailboxname/messageuid

 To refer to a message in a mailbox.

 Metadata about a mailbox or message might be identified as

http://imap.server.com/mailboxname/annotations

 or

http://imap.server.com/mailboxname/messageuid/flags

http://imap.server.com/mailboxname/
http://imap.server.com/mailboxname/messageuid
http://imap.server.com/mailboxname/annotations
http://imap.server.com/mailboxname/messageuid/flags

Maes Expires August 2006 [Page 13]

 <Lemonade binding for firewalls and mobile networks> February 2006

 Message body parts might be represented via a hierarchical URL
 syntax, such as

http://imap.server.com/mailboxname/messageuid/body/1/2/3
 (BODY[1.2.3])

 or with convert (BODY[1.2.3.CONVERT (image/gif ..)]

http://imap.server.com/mailboxname/messageuid/body/1/2/3/convert/imag
e/gif

2.4.2. IMAP commands as HTTP commands on REST resources

 REST generally views GET requests as idempotent or requests that do
 not mutate a resource, PUT requests as storing a new resource at the
 specified URL, DELETE as removing resources located by the URL, and
 POST as potentially performing some server defined action on the
 specified resource.

 Given the above guidelines, IMAP commands such as FETCH (with
 BODY.PEEK or BINARY.PEEK) would be considered as GET requests,
 commands such as STORE and APPEND would be considered candidates for
 PUT mapping, and commands such as EXPUNGE, CREATE, or RENAME might be
 modeled as POST.

 Commands which may return multiple resources (UID FETCH n-m,x-y) may
 be modeled as a collection resource with a query, such as

http://imap.server.com/mailboxname/allmsgs?uids=n-m,x-y

 An IMAP immediate delete of a single message can be carried out via
 REST via a HTTP DELETE of the URL identifying that message. However,
 an IMAP delete of several messages by marketing \Deleted, followed by
 an expunge, would have to be carried out via several PUT requests to
 set the flags on a particular message, followed by an EXPUNGE via
 POST.

 Because REST frowns on the use of PUT with query parameters, a multi-
 update of several messages at once with the same flags, would either
 require multiple PUTs (one per message), or a new POST URL which
 takes a collection URL and performs the operation, such as

 POST http://imap.server.com/mailboxname/storeflags?uids=n-m,x-y
 (body of request indicating that \Deleted is the flag to be updated)

http://imap.server.com/mailboxname/messageuid/body/1/2/3
http://imap.server.com/mailboxname/messageuid/body/1/2/3/convert/image/gif
http://imap.server.com/mailboxname/messageuid/body/1/2/3/convert/image/gif
http://imap.server.com/mailboxname/allmsgs?uids=n-m
http://imap.server.com/mailboxname/storeflags?uids=n-m

Maes Expires August 2006 [Page 14]

 <Lemonade binding for firewalls and mobile networks> February 2006

2.4.3. Representation of transferred resources

 REST does not dictate the usage of XML. Because of this, a REST
 binding could in fact use IMAP responses for its syntax. A GET
 request of http://imap.server.com/mailboxname/ for example, could act
 as FETCH 1:* UID and return the untagged * FETCH responses from
 server.

 A GET request on a message resource could simply return RFC822 format
 text, for example.

2.4.4. Challenges

 The challenge of producing a REST binding for IMAP lies not in
 mapping IMAP resources to HTTP URLs, but of allowing the client to
 take advantage of efficient IMAP commands, such as fetching a subset
 of data over a subset of a collection of messages (SEARCH and FETCH
 commands) in a way that preserves the REST model as much as possible.
 Also, mapping IMAP security, and IMAP extensions at this point,
 remains a challenge and has to be done on a case by case basis.

 Unlike the SOAP binding, which is a mere syntax transformation of
 IMAP, producing REST notions of arbitrary IMAP extensions is an
 unbounded scope of work. It may help however, to consider only the
 set of extensions that MUST be implemented in Lemonade Profile Phase
 2 as the candidates for mapping, and work from there.

2.5.
 WebDAV Mapping

 WebDAV models collections of resources with structured metadata in
 XML form via a URL abstraction, with typical operations such
 retrieval, copy, delete, move, and update. It is REST-like, with
 additional semantics related to metadata.

 WebDAV differs from REST in that it adds a more rigorous definition
 of what request and response payloads are, specifically to manipulate
 metadata properties, as well as defining the concept of a collection
 of resources. WebDAV also adds new HTTP methods such as COPY and
 MOVE.

 Existing WebDAV mappings for IMAP already exist. Microsoft Outlook
 contains such a mapping for HotMail, referred to as HTTPMail, which
 treats IMAP mailboxes as WebDAV collections.

http://imap.server.com/mailboxname/
https://datatracker.ietf.org/doc/html/rfc822

Maes Expires August 2006 [Page 15]

 <Lemonade binding for firewalls and mobile networks> February 2006

 The approach suggested here is similar, which is to model IMAP
 mailboxes as WebDAV collections, with mailbox specific metadata
 treated as WebDAV metadata properties about the resource (EXISTS,
 UIDNEXT, etc). Messages within a mailbox are treated as resources
 within a WebDAV collection. Message envelope and other metadata are
 modeled as WebDAV properties attached to the resource.

 Many IMAP commands can be mapped to WebDAV commands which manipulate
 collections, however, due to differences in the underlying semantics
 of WebDAV and the lack of some operations that exist in Lemonade
 which do not in WebDAV, a sufficient mapping at this time is not
 possible.

 For example, IMAP APPEND can be mapped to WebDAV PUT, and IMAP STORE
 can be mapped to WebDAV PROPPATCH, but Lemonade CATENATE cannot be
 mapped to any WebDAV sequence, because WebDAV lacks the ability to
 append to an existing resource (it can only overwrite it), and the
 WebDAV COPY command cannot take multiple source arguments. IMAP
 SEARCH can t be mapped unless one takes into account the draft WebDAV
 SEARCH command.

 Moreover, WebDAV s security model with respect to authorization
 differs from IMAP further complicating a mapping, and IMAP extensions
 like CONVERT would have to be mapped outside the bounds of the DAV
 spec via HTTP POST.

 As such, a strict WebDAV mapping would have to be a subset of
 Lemonade Profile. Therefore, a complete mapping must combine the
 approaches of REST using POST to map actions, and WebDAV for
 resources for which a good mapping already exists.

3.
 Security Considerations

 HTTP binding has the same security requirements as IMAP when using an
 in-response or inband connectivity mode.

 The HTTPS protocol can be used to provide end-to-end security

 Proxy-based implementations may still require payload encryption for
 end-to-end security.

 Caching is a concern. The client SHOULD use the HTTP Cache-Control
 directive (no-cache, no-store, must-revalidate, or combinations
 thereof) to inform proxy servers, origin servers, and client
 libraries not to cache or store the HTTP response. To deal with HTTP
 1.0 servers that may exist in the network, Pragma: no-cache should be

 used as well.

Maes Expires August 2006 [Page 16]

 <Lemonade binding for firewalls and mobile networks> February 2006

 Attacks on HTTP sessions and the HTTP server may also be a concern,
 since the HTTP server is maintaining an authenticated session to the
 IMAP server on behalf of the user in most cases.

 Firewall administrators wishing to block stealth deployments of HTTP
 IMAP bindings may block HTTP requests with Content-Type
 application/vnd.lemonade via an application level firewall.

4.
 References

 [LEMONADEPROFILE] Maes, S.H. and Melnikov A., "Lemonade Profile",
draft-ietf-lemonade-profile-XX.txt, (work in progress).

 [LUOTONEN] Luotonen, A., Tunneling TCP based protocols through Web
 proxy servers , draft-luotonen-web-proxy-tunneling-01.txt, August
 1998

 [MEMAIL] Maes, S.H., Lemonade and Mobile e-mail", draft-maes-
lemonade-mobile-email-xx.txt, (work in progress).

 [NOTIFICATIONS] Maes, S.H., Lima R., Kuang, C., Cromwell, R., Ha, V.
 and Chiu, E., Day, J., Ahad R., Jeong W-H., Rosell G., Sini, J.,
 Sohn S-M., Xiaohui F. and Lijun Z., "Server to Client
 Notifications and Filtering", draft-ietf-lemonade-server-to-

client-notifications-xx.txt, (work in progress).

 [OMA-ME-AD] Open Mobile Alliance Mobile Email Architecture Document,
 (Work in progress). http://www.openmobilealliance.org/

 [OMA-ME-RD] Open Mobile Alliance Mobile Email Requirement Document,
 (Work in progress). http://www.openmobilealliance.org/

 [P-IMAP] Maes, S.H., Lima R., Kuang, C., Cromwell, R., Ha, V. and
 Chiu, E., Day, J., Ahad R., Jeong W-H., Rosell G., Sini, J., Sohn
 S-M., Xiaohui F. and Lijun Z., "Push Extensions to the IMAP
 Protocol (P-IMAP)", draft-maes-lemonade-p-imap-xx.txt, (work in
 progress).

 [REST] Fielding, Roy Thomas. Architectural Styles and the Design of
 Network-based Software Architectures. Doctoral dissertation,
 University of California, Irvine, 2000.

 [RFC2088] Myers, J. IMAP non-synchronizing literals , RFC2088,
 January 1997

http://www.ietf.org/rfc/rfc2088

https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-profile-XX.txt
https://datatracker.ietf.org/doc/html/draft-luotonen-web-proxy-tunneling-01.txt
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-mobile-email-xx.txt
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-mobile-email-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-server-to-client-notifications-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-server-to-client-notifications-xx.txt
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-p-imap-xx.txt
https://datatracker.ietf.org/doc/html/rfc2088
http://www.ietf.org/rfc/rfc2088

Maes Expires August 2006 [Page 17]

 <Lemonade binding for firewalls and mobile networks> February 2006

 [RFC2119] Brader, S. "Keywords for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

http://www.ietf.org/rfc/rfc2119

 [RFC2442] Freed, N. et al. "The Batch SMTP Media Type", RFC 2442,
 November 1998.

http://www.ietf.org/rfc/rfc2442

 [RFC2616] Fielding, R. et al. "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

http://www.ietf.org/rfc/rfc2616

 [RFC2817] Khare, R., Upgrading to TLS Within HTTP/1.1 , RFC2817, May
 2000

http://www.ietf.org/rfc/rfc2817.txt, May 2000

 [RFC3205] Moore, K. On the use of HTTP as a Substrate , RFC 3205,
 February 2002.

http://www.ietf.org/rfc/rfc3205

 [RFC3501] Crispin, M. "IMAP4, Internet Message Access Protocol
 Version 4 rev1", RFC 3501, March 2003.

http://www.ietf.org/rfc/rfc3501

 [X.695] X.695 ASN.1 Support for SOAP, Web Services and the XML
 Information Set , ITU/ISO

http://java.sun.com/developer/technicalArticles/WebServices/fastWS
 /
 [WEBDAV] Goland, Y., Whitehead, E., Faizi, A., Carter, S.R., and D.
 Jensen, HTTP Extensions for Distributed Authoring -- WEBDAV ,

RFC 2518, February 1999
 .
5.
 Future Work

 TBD[1] Should an OPTIONS HTTP request be supported to allow a client
 to probe HTTP binding capabilities, such as which protocol a given
 URL is bound to, or whether chunking is supported?

 [2] Should separate content types exist for IMAP and SMTP since the
 entity body in the HTTP request is different?

 [3] Standardizing the form of the URL for the binding may permit
 firewall administrations to impose better filtering.

 [4] Produce more rigorous rules for mapping IMAP and SMTP ABNF to
 SOAP, REST, and DAV.

 [5] Provide ways to declare supported bindings or select a binding.

https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf.org/rfc/rfc2119
https://datatracker.ietf.org/doc/html/rfc2442
http://www.ietf.org/rfc/rfc2442
https://datatracker.ietf.org/doc/html/rfc2616
http://www.ietf.org/rfc/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817
http://www.ietf.org/rfc/rfc2817.txt
https://datatracker.ietf.org/doc/html/rfc3205
http://www.ietf.org/rfc/rfc3205
https://datatracker.ietf.org/doc/html/rfc3501
http://www.ietf.org/rfc/rfc3501
http://java.sun.com/developer/technicalArticles/WebServices/fastWS
https://datatracker.ietf.org/doc/html/rfc2518

Maes Expires August 2006 [Page 18]

 <Lemonade binding for firewalls and mobile networks> February 2006

6.
 Version History

 Release 00
 Initial release published in February 2006. Carried over from

draft-maes-lemonade-http-binding-04 and now made into a working group
 document. Added REST and WebDAV binding discussion. Clarified HTTP
 response codes.

Acknowledgments

 The authors want to thank all who have contributed key insight and
 extensively reviewed and discussed the concepts of HTTP Bindings and
 its early introduction in P-IMAP [P-IMAP].

Authors Addresses

 Stephane H. Maes
 Oracle Corporation
 500 Oracle Parkway
 M/S 4op634
 Redwood Shores, CA 94065
 USA
 Phone: +1-650-607-6296
 Email: stephane.maes@oracle.com

 Ray Cromwell
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

 Nilo Mitra
 Ericsson
 Tel: +1 212-843-8451
 Email: nilo.mitra@ericsson.com

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

https://datatracker.ietf.org/doc/html/draft-maes-lemonade-http-binding-04
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Maes Expires August 2006 [Page 19]

 <Lemonade binding for firewalls and mobile networks> February 2006

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Maes Expires August 2006 [Page 20]

