
LISP Working Group J. N. Chiappa
Internet-Draft Yorktown Museum of Asian Art
Intended status: Informational October 15, 2012
Expires: April 18, 2013

An Architectural Perspective on the LISP
Location-Identity Separation System
draft-ietf-lisp-architecture-00

Abstract

 LISP upgrades the architecture of the IPvN internetworking system by
 separating location and identity, current intermingled in IPvN
 addresses. This is a change which has been identified by the IRTF as
 a critically necessary evolutionary architectural step for the
 Internet. In LISP, nodes have both a 'locator' (a name which says
 where in the network's connectivity structure the node is) and an
 'identifier' (a name which serves only to provide a persistent handle
 for the node). A node may have more than one locator, or its locator
 may change over time (e.g. if the node is mobile), but it keeps the
 same identifier.

 This document gives additional architectural insight into LISP, and
 considers a number of aspects of LISP from a high-level standpoint.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be modified,
 and derivative works of it may not be created, except to format it
 for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Goals of LISP
 2.1. Reduce DFZ Routing Table Size
 2.2. Deployment of New Namespaces
 2.3. Future Development of LISP
 3. Architectual Perspectives
 3.1. Another Packet-Switching Layer
 3.2. 'Double-Ended' Approach
 4. Architectual Aspects
 4.1. Critical State
 4.2. Need for a Mapping System
 4.3. Piggybacking of Control on User Data
 5. Namespaces
 5.1. LISP EIDs
 5.1.1. Residual Location Functionality in EIDs
 5.2. RLOCs
 5.3. Overlapping Uses of Existing Namespaces
 5.4. LCAFs
 6. Scalability
 6.1. Demand Loading of Mappings
 6.2. Caching of Mappings
 6.3. Amount of State
 6.4. Scalability of The Indexing Subsystem
 7. Security
 7.1. Basic Philosophy
 7.2. Design Guidance
 7.2.1. Security Mechanism Complexity
 7.3. Security Overview
 7.3.1. Securing Lookups
 7.3.2. Securing The Indexing Subsystem
 7.3.3. Securing Mappings
 7.4. Securing the xTRs
 8. Robustness
 9. Fault Discovery/Handling
 10. Optimization
 11. Open Issues
 11.1. Local Open Issues
 11.1.1. Missing Mapping Packet Queueing
 11.1.2. Mapping Cache Management Algorithm
 11.2. Systemic Open Issues

http://trustee.ietf.org/license-info

 11.2.1. Mapping Database Provider Lock-in
 11.2.2. Automated ETR Synchronization
 11.2.3. EID Reachability
 11.2.4. Detect and Avoid Broken ETRs
 12. Acknowledgments
 13. IANA Considerations
 14. Security Considerations
 15. References
 15.1. Normative References
 15.2. Informative References

Appendix A. Glossary/Definition of Terms
Appendix B. Other Appendices

1. Introduction

 This document begins by introducing some high-level architectural
 perspectives which have proven useful for thinking about the LISP
 location-identity separation system. It then discusses some
 architectural aspects of LISP (e.g. its namespaces). The balance
 (and bulk) of the document contains architectural analysis of the
 LISP system; that is, it reviews from a high-level standpoint various
 aspects of that system; e.g. its scalability, security, robustness,
 etc.

 NOTE: This document assumes a fair degree of familiarity with LISP;
 in particular, the reader should have a good 'high-level'
 understanding of the overall LISP system architecture, such as is
 provided by [Introduction], "An Introduction to the LISP System".

 By "system architecture" above, the restricted meaning used there is:
 'How the system is broken up into subsystems, and how those
 subsystems interact; when does information flows from one to another,
 and what that information is.' There is obviously somewhat more to
 architecture (e.g. the namespaces of a system, in particular their
 syntax and semantics), and that remaining architectural content is
 covered here.

2. Goals of LISP

 As previously stated in the abstract, broadly, the goal of LISP is to
 be a practically deployable architectural upgrade to IPvN which
 performs separation of location and identity. But what is the value
 of that? What will it allow us to do?

 The answer to that obviously starts with the things mentioned in the
 "Initial Applications" section of [Introduction], but there are
 other, longer-range (and broader) goals as well.

2.1. Reduce DFZ Routing Table Size

 One of the main design drivers for LISP, as well as other location-

 identity separation proposals, is to decrease the overhead of running
 global routing system. In fact, it was this aspect that led the IRTF
 Routing RG to conclude that separation of location and identity was a
 key architectural underpinning needed to control the growth of the
 global routing system. [RFC6115]

 As noted in [Introduction], many of the practical needs of Internet
 users are today met with techniques that increase the load on the
 global routing system (Provider Independent addresses for the
 provision of provider independence, multihoming, etc; more-specific
 routes for TE; etc.) Provision of these capabilities by a mechanism
 which does not involve extra load on the global routing system is
 therefore very desirable.

 A number of factors, including the use of these techniques, has led
 to a great increase in the fragmentation of the address space, at
 least in terms of routing table entries. In particular, the growth
 in demand for multi-homing has been forseen as driving a large
 increase in the size of the global routing tables.

 In addition, as the IPv4 address space becomes fuller and fuller,
 there will be an inevitable tendency to find use in smaller and
 smaller 'chunks' of that space. [RFC6127] This too would tend to
 increase the size of the global routing table.

 LISP, if successful and widely deployed, offers an opportunity to use
 separation of location and identity to control the growth of the size
 of the global routing table. (A full examination of this topic is
 beyond the scope of this document - see {{find reference}}.)

2.2. Deployment of New Namespaces

 Once the mapping system is widely deployed and available, it should
 make deployment of new namespaces (in the sense of new syntax, if not
 new semantics) easier. E.g. if someone wishes in the future to
 devise a system which uses native MPLS [RFC3031] for a data carriage
 system joining together a large number of xTRs, it would easy enough
 to arrange to have the mappings for destinations attached to those
 xTRs abe some sort of MPLS-specific name.

 More broadly, the existence of a binding layer, with support for
 multiple namespace built into the interface on both sides (see

Section 5) is a tremendously powerful evolutionary tool; one can
 introduce a new namespace (on one side) more easily, if it is mapped
 to something which is already deployed (on the other). Then, having
 taken that step, one can invert the process, and deploy yet another
 new namespace, but this time on the other.

2.3. Future Development of LISP

 Speculation about long-term future developments which are enabled by

https://datatracker.ietf.org/doc/html/rfc6115
https://datatracker.ietf.org/doc/html/rfc6127
https://datatracker.ietf.org/doc/html/rfc3031

 the deployment of LISP is not really proper for this document.
 However, interested readers may wish to consult [Future] for one
 person's thoughts on this topic.

3. Architectual Perspectives

 This section contains some high-level architectural perspectives
 which have proven useful in a number of ways for thinking about LISP.
 For one, when trying to think of LISP as a complete system, they
 provide a conceptual structure which can aid analysis of LISP. For
 another, they can allow the application of past analysis of, and
 experience with, similar designs.

3.1. Another Packet-Switching Layer

 When considering the overall structure of the LISP system at a high
 level, it has proven most useful to think of it as another packet-
 switching layer, run on top of the original internet layer - much as
 the Internet first ran on top of the ARPANET.

 All the functions that a normal packet switch has to undertake - such
 as ensuring that it can reach its neighbours, and they they are still
 up - the devices that make up the LISP overlay also have to do, along
 the 'tunnels' which connect them to other LISP devices.

 There is, however, one big difference: the fanout of a typical LISP
 ITR will be much larger than most classic physical packet switches.
 (ITRs only need to be considered, as the LISP tunnels are all
 effectively unidirectional, from ITR to ETR - an ETR needs to keep no
 per-tunnel state, etc.)

 LISP is, fundamentally, a 'tunnel' based system. Tunnel system
 designs do have their issues (e.g. the high inter-'switch' fan-out),
 but it's important to realize that they also can have advantages,
 some of which are listed below.

3.2. 'Double-Ended' Approach

 LISP may be thought of as a 'double-ended' approach to enhancing the
 architecture, in that it uses pairs of devices, one at each end of a
 communication stream. In particular, to interact with the population
 of 'legacy' hosts (which will be, inevitably, the vast majority, in
 the early stages of deployment) it requires a LISP device at both
 ends of the 'tunnel'.

 This is in distinction to, say, NAT systems ([RFC1631]), which only
 need a device deployed at one end: the host at the other end doesn't
 need a matching device at its end to massage the packets, but can
 simply consume them on its own, as any packets it receives are fully
 normal packets. This allows any site which deploys such a 'single-
 ended' device to get the full benefit, whilst acting entirely on its
 own. [Wasserman]

https://datatracker.ietf.org/doc/html/rfc1631

 The issue is not that LISP uses tunnels. Designs like HIP
 ([RFC4423]) and ILNP ([ILNP]), which do not involve tunnels, inhabit
 a similar space to tunnel-based designs like LISP, in that unless
 both ends are upgraded - or there is a proxy at the un-upgraded end -
 one doen't get any benefits. So it's really not the tunnel which is
 the key aspect, it's the 'all at one end' part which is key. Whether
 the system is tunnel, versus non-tunnel, is not that important.

 However, the double-ended approach of LISP does have advantages, as
 well as costs. To put it simply, the 'feature' of the alternative
 approach, that there's only a box at one end, has a 'bug': there's
 only a box at one end. There are things which such a design cannot
 accomplish, because of that.

 To put it another way, does the fact that the packet thus necessarily
 has only a single 'name' in it for the entities at each end (i.e. the
 IPvN source and destination addresses), because it is a 'normal'
 packet, present a limitation? Put that way, it would seem natural
 that it should cause certain limits.

 To compile a complete list of the things that can be done, when two
 separate 'names' are in the packet, is beyond the scope of this
 document. However, one example of the kind of thing that can be done
 is mobility with open connections, without needing to 'triangle
 route' the packets through some sort of 'base station' at the
 original location. Another is that is possible to automatically
 tunnel IPv6 traffic over IPv4 infrastructure, or vice versa,
 invisibly to the hosts on both ends.

 In the longer term, having having tunnel boxes will allow (and is
 allowing) us to explore other kinds of wrappings. For example, we
 can transport 'raw' local-network packets (such as Ethernet MAC
 frames) across an IPvN infrastructure.

 One could also wrap packets in non-IPvN formats: perhaps to take
 direct advantage of the capabilities of underlying switching fabrics
 (e.g. MPLS [RFC3031]); perhaps to deploy new carriage protocols,
 etc, where non-standard packet formats will allow extended semantics.

4. Architectual Aspects

 LISP does take some novel architectural approaches in a number of
 ways: e.g. its use of a separate mapping system, etc, etc. This
 section contains some commentary on some of the high-level
 architectural aspects of LISP.

4.1. Critical State

 LISP does have 'critical state' in the network (i.e. state which, if
 if lost, causes the communication to fail). However, because LISP is
 designed as an overall system, 'designing it in' allows for a

https://datatracker.ietf.org/doc/html/rfc4423
https://datatracker.ietf.org/doc/html/rfc3031

 'systems' approach to its state issues. In LISP, this state has been
 designed to be maintained in an 'architected' way, so it does not
 produce systemic brittleness in the way that the state in NATs does.

 For instance, throughout the system, provisions have been made to
 have redundant copies of state, in multiple devices, so that the loss
 of any one device does not necessarily cause a failure of an ongoing
 connection.

4.2. Need for a Mapping System

 LISP does need to have a mapping system, which brings design,
 implementation, configuration and operational costs. Surely all
 these costs are a bad thing? However, having a mapping system have
 advantages, especially when there is a mapping layer which has global
 visibility (i.e. other entities know that it is there, and have an
 interface designed to be able to interact with it). This is unlike,
 say, the mappings in NAT, which are 'invisible' to the rest of the
 network.

 In fact, one could argue that the mapping layer is LISP's greatest
 strength. Wheeler's Axiom* ('Any problem in computer science can be
 solved with another level of indirection') indicates that the binding
 layer available with the LISP mapping system will be of great value.
 Again, it is not the job of this document to list them all - and in
 any event, there is no way to forsee them all.

 The author of this document has often opined that the hallmark of
 great architecture is not how well it does the things it was designed
 to do, but how well it does things it was never expected to have to
 handle. Providing such a powerful and generic binding layer is one
 sure way to achieve the sort of lasting flexibility and power that
 leads to that outcome.

 [Footnote *: This Axiom is often mis-attributed to Butler Lampson,
 but Lampson himself indicated that it came from David Wheeler.]

4.3. Piggybacking of Control on User Data

 LISP piggybacks control transactions on top of user data packets.
 This is a technique that has a long history in data networking, going
 back to the early ARPANET. [McQuillan] It is now apparently regarded
 as a somewhat dubious technique, the feeling seemingly being that
 control and user data should be strictly segregated.

 It should be noted that _none_ of the piggybacking of control
 functionality in LISP is _architecturally fundamental_ to LISP. All
 of the functions in LISP which are performed with piggybacking could
 be performed almost equally well with separate control packets.

 The "almost" is solely because it would cause more overhead (i.e.
 control packets); neither the response time, robustness, etc would

 necessarily be affected - although for some functions, to match the
 response time observed using piggybacking on user data would need as
 much control traffic as user data traffic.

 This technique is particularly important, however, because of the
 issue identified at the start of this section - the very large fanout
 of the typical LISP switch. Unlike a typical router, which will have
 control interactions with only a few neighbours, a LISP switch could
 eventually have control interactions with hundreds, or perhaps even
 thousands (for a large site) of neighbours.

 Explicit control traffic, especially if good response times are
 desired, could amount to a very great deal of overhead in such a
 case.

5. Namespaces

 One of the key elements in any architecture, or architectural
 analysis, are the namespaces involved: what are their semantics and
 syntax, what are the kinds of things they name, etc.

 LISP has two key namespace, EIDs and RLOCs, but it must be emphasized
 that on an architectural level, neither the syntax, or, to a lesser
 degree, the semantics, of either are absolutely fixed. There are
 certain core semantics which are generaly unchanging (such as the
 notion that EIDs provide only identity, whereas RLOCs provide
 location), but as we will see, there is a certain amount of
 flexibility available for the long-term.

 In particular, all of LISP's key interfaces always include an Address
 Family Identifier (AFI) [AFI] for all names, so that new forms can be
 introduced at any time the need is felt. Of course, in practise such
 an introduction would not be a trivial exercise - but neither is is
 impossibly painful, as is the case with IPv4's 32-bit addresses,
 which are effectively impossible to upgrade.

5.1. LISP EIDs

 A 'classic' EID is defined as a subset of the possible namespaces for
 endpoints. [Chiappa] Like most 'proper' endpoint names, as proposed
 there, they contain contain no information about the location of the
 endpoint. EIDs are the subset of possible endpoint names which are:
 fixed length, 'reasonably' short', binary (i.e. not intended for
 direct human use), globally unique (in theory), and allocated in a
 top-down fashion (to achieve the former).

 LISP EIDs are, in line with the general LISP deployment philosophy, a
 reuse of something already existing - i.e. IPvN addresses. For
 those used as in LISP as EIDs, LISP removes much (or, in some cases,
 all) of the location-naming function of IPvN addresses.

 In addition, the goal is to have EIDs name hosts (or, more properly,

 their end-end communication stacks), whereas the other LISP namespace
 group (RLOCs) names interfaces. The idea is not just to have two
 namespaces (with different semantics), but also to use them to name
 different classes of things - classes which currently do not have
 clearly differentiated names. This should produce even more
 functionality.

5.1.1. Residual Location Functionality in EIDs

 LISP retains, especially in the early stages of the deployment, in
 many cases some residual location-naming functionality in EIDs, This
 is to allow the packet to be correctly routed/forwarded to the
 destination node, once it has been unwrapped by the ETR - and this is
 a direct result of LISP's deployment philosophy (see [Introduction],
 Section "Deployment").

 Clearly, if there are one or more unmodified routers between the ETR
 and the desination node, those routers will have to perform a routing
 step on the packet, for which it will need _some_ information as to
 the location of the destination.

 One can thus view such LISP EIDs, which retain 'stub' location
 information, as 'addresses' (in the definition of the generic sense
 of this term, as used here), but with the location information
 restricted to a limited, local scope.

 This retention of some location functionality in LISP EIDs, in some
 cases, has led some people to argue that use of the name 'EID' is
 improper. In response, it was suggested that LISP use the term
 'LEID', to distinguish LISP's 'bastardized' EIDs from 'true' EIDs,
 but this usage has never caught on.

 It has also been suggested that one usage mode for LISP EIDs, in
 existing software loads, is to assign them as the address on an
 internal virtual interface; all the real interfaces would have RLOCs
 only. [Templin] This would make such LISP EIDs functionally
 equivalent to 'real' EIDs - they are names which are purely identity,
 have no location information of any kind in them, and cannot be used
 to make any routing decisions anywhere outside the host.

 It is true that even in such cases, the EID is still not a 'pure'
 EID, as it names an interface, not the end-end stack directly.
 However, to do a perfect job here (or on separation of location and
 identity) is impossible without modifying existing hosts (which are,
 inevitably, almost always one end of an end-end communication) - and
 that has been ruled out, for reasons of viable deployment.

 The need for interoperation with existing unmodified hosts limits the
 semantic changes one can impose, much as one might like to provide a
 cleaner separation. (Future evolution can bring us toward that
 state, however: see [Future].)

5.2. RLOCs

 RLOCs are basically pure 'locators' [RFC1992], although their syntax
 and semantics is restricted at the moment, because in practise the
 only forms of RLOCs supported are IPv4 and IPv6.

5.3. Overlapping Uses of Existing Namespaces

 It is in theory possible to have a block of IPvN namespace used as
 both EIDs and RLOCs. In other words, EIDs from that block might map
 to some other RLOCs, and that block might also appear in the DFZ as
 the locators of some other ETRs.

 This is obviously potentially confusing - when a 'bare' IPvN address
 from one of these blocks, is it the RLOC, or the EID? Sometimes it
 it obvious from the context, but in general one could not simply have
 a (hypothetical) table which assigns all of the address space to
 either 'EID' or 'RLOC'.

 In addition, such usage will not allow interoperation of the sites
 named by those EIDs with legacy sites, using the PITR mechanism
 ([Introduction], Section "Proxy Devices"), since that mechanisms
 depends on advertizing the EIDs into the DFZ, although the LISP-NAT
 mechanism should still work ([Introduction], Section "LISP-NAT").

 Nevertheless, as the IPv4 namespace becomes increasingly used up,
 this may be an increasingly attractive way of getting the 'absolute
 last drop' out of that space.

5.4. LCAFs

 {{To be written.}}

 --- Key-ID
 --- Instance-IDs

6. Scalability

 As with robustness, any global communication system must be scalable,
 and scalable up to almost any size. As previously mentioned (xref
 target="Perspectives-Packet"/), the large fanouts to be seen with
 LISP, due to its 'overlay' nature, present a special challenge.

 One likely saving grace is that as the Internet grows, most sites
 will likely only interact with a limited subset of the Internet; if
 nothing else, the separation of the world into language blocks means
 that content in, say, Chinese, will not be of interest to most of the
 rest of the world. This tendency will help with a lot of things
 which could be problematic if constant, full, N^2 connectivity were
 likely on all nodes; for example the caching of mappings.

https://datatracker.ietf.org/doc/html/rfc1992

6.1. Demand Loading of Mappings

 One question that many will have about LISP's design is 'why demand-
 load mappings - why not just load them all'? It is certainly true
 that with the growth of memory sizes, the size of the complete
 database is such that one could reasonably propose keeping the entire
 thing in each LISP device. (In fact, one proposed mapping system for
 LISP, named NERD, did just that. [NERD])

 A 'pull'-based system was chosen over 'push' for several reasons; the
 main one being that the issue is not just the pure _size_ of the
 mapping database, but its _dynamicity_. Depending on how often
 mappings change, the update rate of a complete database could be
 relatively large.

 It is especially important to realize that, depending on what
 (probably unforseeable) uses eventually evolve for the
 identity->location mapping capability LISP provides, the update rate
 could be very high indeed. E.g. if LISP is used for mobility, that
 will greatly increase the update rate. Such a powerful and flexible
 tool is likely be used in unforseen ways (Section 4.2), so it's
 unwise to make a choice that would preclude any which raise the
 update rate significantly.

 Push as a mechanism is also fundamentally less desirable than pull,
 since the control plane overhead consumed to load and maintain
 information about unused destinations is entirely wasted. The only
 potential downside to the pull option is the delay required for the
 demand-loading of information.

 (It's also probably worth noting that many issues that some people
 have with the mapping approach of LISP, such as the total mapping
 database size, etc are the same - if not worse - for push as they are
 for pull.)

 Finally, for IPv4, as the address space becomes more highly used, it
 will become more fragmented - i.e. there will tend to be more,
 smaller, entries. For a routing table, which every router has to
 hold, this is problematic. For a demand-loaded mapping table, it is
 not bad. Indeed, this was the original motivation for LISP
 ([RFC4984]) - although many other useful and desirable uses for it
 have since been enumerated (see [Introduction], Section
 "Applications").

 For all of these reasons, as long as there is locality of reference
 (i.e. most ITRs will use only a subset of the entire set), it makes
 much more sense to use the a pull model, than the classic push one
 heretofore seen widely at the internetwork layer (with a pull
 approach thus being somewhat novel - and thus unsettling to many - to
 people who work at that layer).

https://datatracker.ietf.org/doc/html/rfc4984

 It may well be that some sites (e.g. large content providers) may
 need non-standard mechanisms - perhaps something more of a 'push'
 model. This remains to be determined, but it is certainly feasible.

6.2. Caching of Mappings

 It should be noted that the caching spoken of here is likely not
 classic caching, where there is a fixed/limited size cache, and
 entries have to be discarded to make room for newly needed entries.
 The economics of memory being what they are, there is no reason to
 discard mappings once they have been loaded (although of course
 implementations are free to chose to do so, if they wish to).

 This leads to another point about the caching of mappings: the
 algorithms for management of the cache are purely a local issue. The
 algorithm in any particular ITR can be changed at will, with no need
 for any coordination. A change might be for purposes of
 experimentation, or for upgrade, or even because of environmental
 variations - different environments might call for different cache
 management strategies.

 The local, unsynchronized replacability of the cache management
 scheme is the architectural aspect of the design; the exact
 algorithm, which is engineering, is not.

6.3. Amount of State

 {{To be written.}} [Iannone]

 -- Mapping cache size
 --- Mention studies
 -- Delegation cache size (in MRs)
 --- Mention studies
 -- Any others?

6.4. Scalability of The Indexing Subsystem

 LISP initially used an indexing subsystem called ALT. [ALT] ALT was
 relatively easy to construct from existing tools (GRE, BGP, etc), but
 it had a number of issues that made it unsuitable for large-scale
 use. ALT is now being superseded by DDT. [DDT]

 The basic structure and operation of DDT is identical to that of
 TREE, so the extensive simulation work done for TREE applies equally
 to DDT, as do the conclusions drawn about TREE's superiority to ALT.
 [Jakab]

 From an architectural point of view, the main advantage of DDT is
 that it enables client side caching of information about intermediate
 nodes in the resolution hierarchy, and also enables direct
 communication with them. As a result, DDT has much better scaling
 properties than ALT.

 The most important result of this change is that it avoids a
 concentration of resolution request traffic at the root of the
 indexing tree, a problem which by itself made ALT unsuitable for a
 global-scale system. The problem of root concentration (and thus
 overload) is almost unavoidable in ALT (even if masses of 'bypass'
 links are created).

 ALT's scalability also depends on enforcing an intelligent
 organization that aincreases aggregation. Unfortunately, the current
 backbone routing BGP system shows that there is a risk of an organic
 growth of ALT, one which does not achieve aggregation. DDT does not
 display this weakness, since its organization is inherently
 hierarchical (and thus inherently aggregable).

 The hierarchical organization of DDT also reduces the possibility for
 a configuration error which interferes with the operation of the
 network (unlike the situation with the current BGP DFZ). DDT
 security mechanisms can also help produce a high degree of
 robustness, both against misconfiguration, and deliberate attack.
 The direct communication with intermediate nodes in DDT also helps to
 quickly locate problems when they occur, resulting in better
 operational characteristics.

 Next, since in ALT mapping requests must be transmitted through an
 overlay network, a significant share of requests can see
 substantially increased latencies. Simulation results in the TREE
 work clearly showed, and quantified, this effect.

 The simulations also showed that the nodes composing the ALT and DDT
 networks for a mapping database of full Internet size could have
 thousands of neighbours. This is not an issue for DDT, but would
 almost certainly have been problematic for ALT nodes, since handling
 that number of simultaneous BGP sessions would likely to be
 difficult.

7. Security

 LISP does not yet have an overarching security architecture. Many
 parts of the system have been hardened, but more on a case-by case
 basis, rather than from an overall perspective. (This is in part due
 to the 'just enough' approach to security initially taken in LISP;
 see [Introduction], Section "Just Enough Security".)

 This section represents an attempt to produce a more broadly-based
 view of security in LISP; it mostly resulted from an attempt to add
 security to the DDT indexing system ([DDT]), but the analysis is is
 general enough to apply to LISP broadly.

 The _good_ thing about the Internet is that it brings the world to
 your doorstep - masses of information from all around the world are

 instantly available on your computing device. The _bad_ thing about
 the Internet is that it brings the world to your doorstep - including
 legions of crackers, thieves, and general scum and villainy. Thus,
 any node may be the target of fairly sophisticated attack - often
 automated (thereby reducing the effort required of the attacker to
 spread their attack as broadly as possible).

 Security in LISP faces many of the same challenges as security for
 other parts of the Internet: good security usually means work for the
 users, but without good security, things are vulnerable.

 The Internet has seen many very secure systems devised, only to see
 them fail to reach wide adoption; the reasons for that are complex,
 and vary, but being too much work to use is a common thread. It is
 for this reason that LISP attempts to provide 'just enough' security
 (see [Introduction], Section "Just Enough Security").

7.1. Basic Philosophy

 To square this circle, of needing to have very good security, but of
 it being too difficult to use very good security, the general concept
 is for LISP to have a series of 'graded' security measures available,
 with the 'ultimate' security mechanisms being very high-grade indeed.

 The concept is to devise a plan in which LISP can simultaneously
 attempt to have not just 'ultimate' security, but also one or more
 'easier' modes, ones which will be easier to configure and use. This
 'easier' mode can be both an interim system (with the full powered
 system available for when it it needed), as well as the system used
 in sections of the network where security is less critical (following
 the general rule that the level of any security should generally be
 matched to what is being protected).

 The challenge is to do this in a way that does not make the design
 more complex, since it has to include both the 'full strength'
 mechanism(s), and the 'easier to configure' mechanism(s). This is
 one of the fundamental tradeoffs to struggle with: it is easy to
 provide 'easier to configure' options, but that may make the overall
 design more complex.

 As far as making it hard to implement to begin with (also something
 of a concern initially, although obviously not for the long term): we
 can make it 'easy' to deploy initially by simply not implementing/
 configuring the heavy-duty security early on. (Provided, of course,
 that the packet formats, etc, needed to support such security are all
 included in the design to begin with.)

7.2. Design Guidance

 In designing the security, there are a small number of key points
 that will guide the design:

 - Design lifetime
 - Threat level

 How long is the design intended to last? If LISP is successful, a
 minimum of a 50-year lifetime is quite possible. (For comparison,
 IPv4 is now 34 at the time of writing this, and will be around for at
 least several decades yet, if not longer; DNS is 28, and will
 probably last indefinitely.)

 How serious are the threats it needs to meet? As mentioned above,
 the Internet can bring the worst crackers from anywhere to any
 location, in a flash. Their sophistication level is rising all the
 time: as the easier holes are plugged, they go after others. This
 will inevitably eventually require the most powerful security
 mechanisms available to counteract their attacks.

 Which is not to say that LISP needs to be that secure _right away_.
 The threat will develop and grow over a long time period. However,
 the basic design has to be capable of being _securable_ to the
 expanded degree that will eventually be necessary. However,
 eventually it will need to be as securable as, say, DNS - i.e. it
 can be secured to the same level, although people may chose not to
 secure their LISP infrastructure as well as DNSSEC potentially does.
 [RFC4033]

 In particular, it should be noted that historically many systems have
 been broken into, not through a weakness in the algorithms, etc, but
 because of poor operational mechanics. (The well-known 'Ultra'
 breakins of the Allies were mostly due to failures in operational
 procedure. [Welchman]) So operational capabilities intended to
 reduce the chance of human operational failure are just as important
 as strong algorithms; making things operationally robust is a key
 part of 'real' security.

7.2.1. Security Mechanism Complexity

 Complexity is bad for several reasons, and should always be reduced
 to a minimum. There are three kinds of complexity cost: protocol
 complexity, implementation complexity, and configuration complexity.
 We can further subdivide protocol complexity into packet format
 complexity, and algorithm complexity. (There is some overlap of
 algorithm complexity, and implementation complexity.)

 We can, within some limits, trade off one kind of complexity for
 others: e.g. we can provide configuration _options_ which are simpler
 for the users to operate, at the cost of making the protocol and
 implementation complexity greater. And we can make initial (less
 capable) implementations simpler if we make the protocols slightly
 more complex (so that early implementations don't have to implement
 all the features of the full-blown protocol).

https://datatracker.ietf.org/doc/html/rfc4033

 It's more of a question of some operational convenience/etc issues -
 e.g. 'How easy will it be to recover from a cryptosystem
 compromise'. If we have two ways to recover from a security
 compromise, one which is mostly manual and a lot of work, and another
 which is more automated but makes the protocol more complicated, if
 compromises really are very rare, maybe the smart call _is_ to go
 with the manual thing - as long as we have looked carefully at both
 options, and understood in some detail the costs and benefits of
 each.

7.3. Security Overview

 First, there are two different classes of attack to be considered:
 denial of service (DoS, i.e. the ability of an intruder to simply
 cause traffic not to successfully flow) versus exploitation (i.e. the
 ability to cause traffic to be 'highjacked', i.e. traffic to be sent
 to the wrong location).

 Second, one needs to look at all the places that may be attacked.
 Again, LISP is a relatively simple system, so there are not that many
 parts to examine. The following are the things we need to secure:

 - Lookups
 - Indexing
 - Mappings

7.3.1. Securing Lookups

 {{To be written.}} Nonces, [SecurityReq]

7.3.2. Securing The Indexing Subsystem

 It is envisioned that DDT will be highly securable, with all the
 delegations cryptographiclly secured via public-private signatures,
 very similar to the way DNS is ([RFC4033]).

 The detailed mechanisms will be based on DNS's; this has the obvious
 benefit that all the lessons of DNS's years of practical experience
 with deployment, operations, etc, as well as the improvements to the
 basic design of DNS Security to provide a secure but usable system
 can be taken into account. However, DDT's security will also apply
 the thinking above, about making a 'versio' which is easier to use
 available.

 {{To be written.}}

7.3.3. Securing Mappings

 There are two approaches to securing the provision of mappings. The
 first, which is of course not completely satisfactory, is to only
 secure the channel between the ITR and the entities involved in
 providing mappings for it. (See above, Section 7.3.1)

https://datatracker.ietf.org/doc/html/rfc4033

 The second is to secure the mappings themselves, by signing them 'at
 birth' (much the same way in which DNS Security operates).
 [RFC4033]. There was an attempt early on to suggest such a system
 for LISP ([SecurityAuth]), but it was not adopted (although the
 particular proposal was rather complex).

 In the long run, the latter approach would obviously be superior,
 since it would be almost immune to any compromises of the mapping
 distribution system. {{Tie-in to space allocation security}}

7.4. Securing the xTRs

 --- Cache management
 --- Unsoliticed Map-Replies are _very bad_ - must go through
 mapping system to verify that the sender is authoritative for
 that range of EIDs

8. Robustness

 -- Depends on deployment as well as design
 -- Architected, visible replication of state/data
 -- Overlapping mechanisms (ref redundancy as key for robustness)

9. Fault Discovery/Handling

 Any global communication system must be robust, and to be robust, it
 must be able to discover and handle problems. LISP's general
 philosophy of robustness is usually to have overlapping, simple
 mechanisms to discover and repair problems.

10. Optimization

 -- Philosophy
 -- Piggybacking
 -- 'Wiretapping' return mappings
 --- Security is an issue on that

11. Open Issues

 Although much work has been done on LISP, and it operates
 satisfactorily in a reasonably large initial deployment, there are a
 few potentially problematic issues which remain. It is not clear if
 they will be issues which need to be dealt, since they have not
 proven to be obstacles so far, but it is worth listing them.

 We can divide them in _local_ issues, i.e. ones which can be solved
 on a node-by-node basis, without requiring co-ordinated change, and
 systemic issues, which are obviously more problematic, since they
 could require co-ordinated changes to the protocols.

https://datatracker.ietf.org/doc/html/rfc4033

11.1. Local Open Issues

11.1.1. Missing Mapping Packet Queueing

 Currently, some (all?) ITRs discard packets when they need a
 mapping, but have not loaded one yet, thereby causing the applicaton
 to have to retransmit their opening packet. True, many ARP
 implementations use the same strategy, but the average APR cache will
 only ever contain a few mappings, so it will not be so noticeable as
 with the mapping cache in an ITR, which will likely contain
 thousands.

 Obviously, they could queue the packets while waiting to load the
 mapping, but this presents a number of subtle implementation issues:
 the ITR must make sure that it does not queue too many packets, etc.

 In particular, if such packets are queued, this presents a potential
 DoS attack vector, unless the code is carefully written with that
 possibility in mind.

11.1.2. Mapping Cache Management Algorithm

 Relatively little work has been done on sophisticated mapping cache
 management algorithms; in particular, the issue of which mapping(s)
 to drop if the cache reaches some maximum allowed size.

 This particular issue has also been identified as another potential
 DoS attack vector.

11.2. Systemic Open Issues

11.2.1. Mapping Database Provider Lock-in

 This refers to the fact that if one does not like the entity which is
 providing the indexing for the part of the address space which one's
 EIDs are allocated out of, there isn't probably isn't any way to
 switch to an alternative provider.

 It is not clear that this is a real probem, though - the fact that
 all DNS top-level zones only have a single registry has not been a
 problem, nor has the fact that if one doesn't like the service the
 registry offers, one can't take one's DNS name to another registry.

 Doing anything about it would also be difficult. Although it is
 technically possible to duplicate any node in the delegation tree,
 and in theory such duplicates could be provided by different
 providers, it is not clear that such an arrangement would make
 business sense.

 For instance, if the holder of 10.1.1/24 decides they do not like the
 entity providing indexing for 10.1/16 (call them E1), and ask another
 entity (E2) to provide alternative service for 10.1/16, two problems

 arise. First, E1 is _still_ going to have to maintain the correct
 data for 10.1.1/24, and response to queries asking about them.
 Second, E2 will similarly have to maintain data for, and reply to
 queries about, all the other space-holders in 10.1/16 - even though
 they will likely not have any business relationship with them.

11.2.2. Automated ETR Synchronization

 LISP requires that all the ETRs which are authoritative for the
 mappings for a particular address block return the same mapping data.
 In particular, their idea of the 'liveness' of all the ETRs should be
 identical, and correct.

 At the moment, this is mostly a manual process, although liveness
 information can be currently be gathered from some IGPs.

11.2.3. EID Reachability

 At the moment, LISP assumes that if an ETR is reachable from a given
 ITR, all destination EIDs behind that ETR are reachable from that
 ETR. There is no way to detect if any are not, nor to switch to an
 alternate ETR.

 It is not clear that this is a problem that needs attention. The
 same has been true for all border routers for many years now, and
 there does not seem to be any general mechanism to deal with it
 (Although some BGP implementations may advertize changes in
 reachability status if what they are seeing from their IGP changes.)

11.2.4. Detect and Avoid Broken ETRs

 {{To be written}}

12. Acknowledgments

 The author would like thank all the members of the core LISP group
 for their willingness to allow him to add himself to their effort,
 and for their enthusiasm for whatever assistance he has been able to
 provide. He would also like to thank (in alphabetical order) Vina
 Ermagan, Vince Fuller, and Joel Halpern for their careful review of,
 and helpful suggestions for, this document. Grateful thanks also to
 Vince Fuller for help with XML.

 A final thanks is due to John Wrocklawski for the author's
 organizational affiliation. This memo was created using the xml2rfc
 tool

13. IANA Considerations

 This document makes no request of the IANA.

14. Security Considerations

 This memo does not define any protocol and therefore creates no new
 security issues.

15. References

15.1. Normative References

 [DDT] V. Fuller, D. Lewis, and D. Farinacci, "LISP
 Delegated Database Tree", draft-fuller-lisp-ddt-01
 (work in progress), March 2012.

 [Future] J. N. Chiappa, "Potential Long-Term Developments With
 the LISP System", draft-chiappa-lisp-evolution-00
 (work in progress), July 2012.

 [Introduction] J. N. Chiappa, "An Introduction to the LISP Location-
 Identity Separation System",

draft-ietf-lisp-introduction-00 (work in progress),
 October 2012.

 [SecurityAuth] R. Gagliano, "A Profile for Endpoint Identifier
 Origin Authorizations (IOA)",

draft-rgaglian-lisp-iao-00 (work in progress),
 March 2009.

 [SecurityReq] F. Maino, V. Ermagan, A. Cabellos, D. Saucez, and
 O. Bonaventure, "LISP-Security (LISP-SEC)",

draft-ietf-lisp-sec-02 (work in progress),
 March 2012.

 [AFI] IANA, "Address Family Indicators (AFIs)", Address
 Family Numbers, January 2011, <http://www.iana.org/

assignments/address-family-numbers>.

15.2. Informative References

 [RFC1631] K. Egevang and P. Francis, "The IP Network Address
 Translator (NAT)", RFC 1631, May 1994.

 [RFC1992] I. Castineyra, J. N. Chiappa, and M. Steenstrup, "The
 Nimrod Routing Architecture", RFC 1992, August 1996.

 [RFC3031] E. Rosen, A. Viswanathan, and R. Callon,
 "Multiprotocol Label Switching Architecture",

RFC 3031, January 2001.

 [RFC4033] R. Arends, R. Austein, M. Larson, D. Massey, and
 S. Rose, "DNS Security: Introduction and
 Requirements", RFC 4033, March 2005.

 [RFC4423] R. Moskowitz and P. Nikander, "Host Identity Protocol

https://datatracker.ietf.org/doc/html/draft-fuller-lisp-ddt-01
https://datatracker.ietf.org/doc/html/draft-chiappa-lisp-evolution-00
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-introduction-00
https://datatracker.ietf.org/doc/html/draft-rgaglian-lisp-iao-00
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-sec-02
http://www.iana.org/assignments/address-family-numbers
http://www.iana.org/assignments/address-family-numbers
https://datatracker.ietf.org/doc/html/rfc1631
https://datatracker.ietf.org/doc/html/rfc1992
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc4033

 (HIP) Architecture", RFC 4423, May 2006.

 [RFC4984] D. Meyer, L. Zhang, and K. Fall, "Report from the IAB
 Workshop on Routing and Addressing", RFC 4984,
 September 2007.

 [RFC6115] T. Li, Ed., "Recommendation for a Routing
 Architecture", RFC 6115, February 2011.

 Perhaps the most ill-named RFC of all time; it
 contains nothing that could truly be called a
 'routing architecture'.

 [RFC6127] J. Arkko and M. Townsley, "IPv4 Run-Out and IPv4-IPv6
 Co-Existence Scenarios", RFC 6127, May 2011.

 [ALT] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis,
 "LISP Alternative Topology (LISP-ALT)",

draft-ietf-lisp-alt-10 (work in progress),
 December 2011.

 [NERD] E. Lear, "NERD: A Not-so-novel EID to RLOC Database",
draft-lear-lisp-nerd-09 (work in progress),

 April 2012.

 [ILNP] R.J. Atkinson and S.N. Bhatti, "ILNP Architectural
 Description", draft-irtf-rrg-ilnp-arch-05 (work in
 progress), May 2012.

 [Chiappa] J. N. Chiappa, "Endpoints and Endpoint Names: A
 Proposed Enhancement to the Internet Architecture",
 Personal draft (work in progress), 1999,
 <http://www.chiappa.net/~jnc/tech/endpoints.txt>.

 [Jakab] L. Jakab, A. Cabellos-Aparicio, F. Coras, D. Saucez,
 and O. Bonaventure, "LISP-TREE: A DNS Hierarchy to
 Support the LISP Mapping System", in 'IEEE Journal on
 Selected Areas in Communications', Vol. 28, No. 8,
 pp. 1332-1343, October 2010.

 [Iannone] L. Iannone and O. Bonaventure, "On the Cost of
 Caching Locator/ID Mappings", in 'Proceedings of the
 3rd International Conference on emerging Networking
 EXperiments and Technologies (CoNEXT'07)', ACM, pp.
 1-12, December 2007.

 [McQuillan] J. M. McQuillan, W. R. Crowther, B. P. Cosell,
 D. C. Walden, and F. E. Heart, "Improvements in the
 Design and Performance of the ARPA Network",
 Proceedings AFIPS 1972 FJCC, Vol. 40, pp. 741-754.

 [Templin] F. Templin, "LISP WG", LISP WG list

https://datatracker.ietf.org/doc/html/rfc4423
https://datatracker.ietf.org/doc/html/rfc4984
https://datatracker.ietf.org/doc/html/rfc6115
https://datatracker.ietf.org/doc/html/rfc6127
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-alt-10
https://datatracker.ietf.org/doc/html/draft-lear-lisp-nerd-09
https://datatracker.ietf.org/doc/html/draft-irtf-rrg-ilnp-arch-05
http://www.chiappa.net/~jnc/tech/endpoints.txt

 message, Message-ID: 39C363776A4E8C4A94691D2BD9D1C9A1
 05B0AC71@XCH-NW-7V2.nw.nos.boeing.com, 13
 March 2009,, <http://www.ietf.org/mail-archive/web/

lisp/current/msg00269.html>.

 [Wasserman] M. Wasserman, "IPv6 networking: Bad news for small
 biz", IETF list message, Message-Id:
 D11C4A34-7362-423E-A60E-476FC5D61D37@lilacglade.org,
 5 April 2012, <https://www.ietf.org/ibin/
 c5i?mid=6&rid=49&gid=0&k1=933&k2=62733&
 tid=1340933524>.

 [Welchman] G. Welchman, "The Hut Six Story", Allen Lane,
 London, pg. 3, 1982.

 A truly monumental book; the ground it covers ranges
 from his work helping break German codes in World War
 II to his experience with securing data packet
 networks!

Appendix A. Glossary/Definition of Terms

 - Address
 - Locator
 - EID
 - RLOC
 - ITR
 - ETR
 - xTR
 - PITR
 - PETR
 - MR
 - MS
 - DFZ

Appendix B. Other Appendices

 -- Location/Identity Separation Brief History
 -- LISP History
 -- Old models (LISP 1, LISP 1.5, etc)
 -- Different mapping distribution models (e.g. LISP-NERD)
 -- Different mapping indexing models (LISP-ALT
 forwarding/overlay model),
 LISP-TREE DNS-based, LISP-CONS)

Author's Address

 J. Noel Chiappa
 Yorktown Museum of Asian Art
 Yorktown, Virginia
 USA

http://www.ietf.org/mail-archive/web/lisp/current/msg00269.html
http://www.ietf.org/mail-archive/web/lisp/current/msg00269.html
https://www.ietf.org/ibin/

 EMail: jnc@mit.edu

