
LISP Working Group J. N. Chiappa
Internet-Draft Yorktown Museum of Asian Art
Intended status: Informational July 15, 2013
Expires: January 16, 2014

An Architecural Introduction to the LISP
Location-Identity Separation System
draft-ietf-lisp-introduction-01

Abstract

 LISP is an upgrade to the architecture of the IPvN internetworking
 system, one which separates location and identity (currently
 intermingled in IPvN addresses). This is a change which has been
 identified by the IRTF as a critically necessary evolutionary
 architectural step for the Internet. In LISP, nodes have both a
 'locator' (a name which says _where_ in the network's connectivity
 structure the node is) and an 'identifier' (a name which serves only
 to provide a persistent handle for the node). A node may have more
 than one locator, or its locator may change over time (e.g. if the
 node is mobile), but it keeps the same identifier.

 One of the chief novelties of LISP, compared to other proposals for
 the separation of location and identity, is its approach to deploying
 this upgrade. (In general, it is comparatively easy to conceive of
 new network designs, but much harder to devise approaches which will
 actually get deployed throughout the global network.) LISP aims to
 achieve the near-ubiquitous deployment necessary for maximum
 exploitation of an architectural upgrade by i) minimizing the amount
 of change needed (existing hosts and routers can operate unmodified);
 and ii) by providing significant benefits to early adopters.

 This document is an introduction to the entire LISP system, for those
 who are unfamiliar with it.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be modified,
 and derivative works of it may not be created, except to format it
 for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Prefaratory Note
 2. Background
 3. Deployment Philosophy
 3.1. Economics
 3.2. Maximize Re-use of Existing Mechanism
 3.3. 'Self-Deployment'
 4. LISP Overview
 4.1. Basic Approach
 4.2. Basic Functionality
 4.3. Mapping from EIDs to RLOCs
 4.4. Interworking With Non-LISP-Capable Endpoints
 4.5. Security in LISP
 5. Initial Applications
 5.1. Provider Independence
 5.2. Multi-Homing
 5.3. Traffic Engineering
 5.4. Routing
 5.5. Mobility
 5.6. IP Version Reciprocal Traversal
 5.7. Local Uses
 6. Major Functional Subsystems
 6.1. xTRs
 6.1.1. Mapping Cache Performance
 6.2. Mapping System
 6.2.1. Mapping System Organization
 6.2.2. Interface to the Mapping System
 6.2.3. Indexing Sub-system
 7. Examples of Operation
 7.1. An Ordinary Packet's Processing
 7.2. A Mapping Cache Miss

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 8. Design Approach
 9. xTRs
 9.1. When to Encapsulate
 9.2. UDP Encapsulation Details
 9.3. Header Control Channel
 9.3.1. Mapping Versioning
 9.3.2. Echo Nonces
 9.3.3. Instances
 9.4. Probing
 9.5. Mapping Lifetimes and Timeouts
 9.6. Security of Mapping Lookups
 9.7. Mapping Gleaning in ETRs
 9.8. Fragmentation
 10. The Mapping System
 10.1. The Mapping System Interface
 10.1.1. Map-Request Messages
 10.1.2. Map-Reply Messages
 10.1.3. Map-Register and Map-Notify Messages
 10.2. The DDT Indexing Sub-system
 10.2.1. Map-Referral Messages
 10.3. Reliability via Replication
 10.4. Security of the DDT Indexing Sub-system
 10.5. Extended Tools
 10.6. Performance of the Mapping System
 11. Deployment Mechanisms
 11.1. LISP Deployment Needs
 11.2. Internetworking Mechanism
 11.3. Proxy Devices
 11.3.1. PITRs
 11.3.2. PETRs
 11.4. LISP-NAT
 11.5. Use Through NAT Devices
 11.5.1. First-Phase NAT Support
 11.5.2. Second-Phase NAT Support
 11.6. LISP and DFZ Routing
 11.6.1. Long-term Possibilities
 12. Fault Discovery/Handling
 12.1. Handling Missing Mappings
 12.2. Outdated Mappings
 12.2.1. Outdated Mappings - Updated Mapping
 12.2.2. Outdated Mappings - Wrong ETR
 12.2.3. Outdated Mappings - No Longer an ETR
 12.3. Erroneous Mappings
 12.4. Neighbour Liveness
 12.5. Neighbour Reachability
 13. Current Improvements
 13.1. Improved NAT Support
 13.2. Mobile Device Support
 13.3. Multicast Support
 13.4. {{Any others?}}
 14. Acknowledgments

 15. IANA Considerations
 16. Security Considerations
 17. References
 17.1. Normative References
 17.2. Informative References

Appendix A. Glossary/Definition of Terms
Appendix B. Other Appendices

 B.1. Old LISP 'Models'
 B.2. Possible Other Appendices

1. Prefaratory Note

 This document is the first of a pair which, together, form what one
 would think of as the 'architecture document' for LISP (the
 'Location-Identity Separation Protocol'). Much of what would
 normally be in an architecture document (e.g. the architectural
 design principles used in LISP, and the design considerations behind
 various components and aspects of the LISP system) is in the second
 document, the 'Architectural Perspective on LISP' document.

 This 'Architectural Introduction' document is primarily intended for
 those who don't know anything about LISP, and want to start learning
 about it. It is intended to both be easy to follow, and also to give
 the reader a choice as to how much they wish to know about LISP.
 Reading only the first part(s) of the document will give a good high-
 level view of the system; reading the complete document should
 provide a fairly detailed understanding of the entire system.

 This goal explains why the document has a somewhat unusual structure.
 It is not a reference document, where all the content on a particular
 topic is grouped in one place. (That role is filled by the various
 protocol specifications.) It starts with a very high-level view of
 the entire system, to provide readers with a mental framework to help
 understand the more detailed material which follows. A second pass
 over the whole system then goes into more detail; finally, individual
 sub-systems are covered in still deeper detail.

 The intent is two-fold: first, the multiple passes over the entire
 system, each one going into more detail, are intended to ease
 understanding; second, people can simply stop reading when they have
 a detailed-enough understanding for their purposes. People who just
 want to get an idea of how LISP works might only read the first
 part(s), whereas people who are going to go on and read all the
 protocol specifications (perhaps to implement LISP) would need/want
 to read the entire document.

 Note: This document is a descriptive document, not a protocol
 specification. Should it differ in any detail from any of the LISP
 protocol specification documents, they take precedence for the actual
 operation of the protocol.

2. Background

 It has gradually been realized in the networking community that
 networks (especially large networks) should deal quite separately
 with the identity and location of a node (basically, 'who' a node is,
 and 'where' it is). At the moment, in both IPv4 and IPv6, addresses
 indicate both where the named device is, as well as identify it for
 purposes of end-end communication.

 The distinction was more than a little hazy at first: the early
 Internet [RFC791], like the ARPANET before it [Heart] [NIC8246], co-
 mingled the two, although there was recognition in the early Internet
 work that there were two different things going on. [IEN19]

 This likely resulted not just from lack of insight, but also the fact
 that extra mechanism is needed to support this separation (and in the
 early days there were no resources to spare), as well as the lack of
 need for it in the smaller networks of the time. (It is a truism of
 system design that small systems can get away with doing two things
 with one mechanism, in a way that usually will not work when the
 system gets much larger.)

 The ISO protocol architecture took steps in this direction [NSAP],
 but to the Internet community the necessity of a clear separation was
 definitively shown by Saltzer. [RFC1498] Later work expanded on
 Saltzer's, and tied his separation concepts into the fate-sharing
 concepts of Clark. [Clark], [Chiappa]

 The separation of location and identity is a step which has recently
 been identified by the IRTF as a critically necessary evolutionary
 architectural step for the Internet. However, it has taken some time
 for this requirement to be generally accepted by the Internet
 engineering community at large, although it seems that this may
 finally be happening. [RFC6115]

 The LISP system for separation of location and identity resulted from
 the discussions of this topic at the Amsterdam IAB Routing and
 Addressing Workshop, which took place in October 2006. [RFC4984]

 A small group of like-minded personnel from various scattered
 locations within Cisco, spontaneously formed immediately after that
 workshop, to work on an idea that came out of informal discussions at
 the workshop. The first Internet-Draft on LISP appeared in January,
 2007, along with a LISP mailing list at the IETF. [LISP0]

 Trial implementations started at that time, with initial trial
 deployments underway since June 2007; the results of early experience
 have been fed back into the design in a continuous, ongoing process
 over several years. LISP at this point represents a moderately
 mature system, having undergone a long organic series of changes and
 updates.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1498
https://datatracker.ietf.org/doc/html/rfc6115
https://datatracker.ietf.org/doc/html/rfc4984

 LISP transitioned from an IRTF activity to an IETF WG in March 2009,
 and after numerous revisions, the basic specifications moved to
 becoming RFCs in 2012 (although work to expand and improve it
 continues, and undoubtly will for a long time to come).

3. Deployment Philosophy

 It may seem odd to cover 'deployment philosophy' at this point in
 such a document. However the deployment philosophy was a major
 driver for much of the design (to some degree the architecture, and
 to a very large measure, the engineering). So, as such an important
 motivator, it is very desirable for readers to have this material in
 hand as they examine the design, so that design choices that may seem
 questionable at first glance can be better understood.

 Experience over the last several decades has shown that having a
 viable 'deployment model' for a new design is absolutely key to the
 success of that design. A new design may be fantastic - but if it
 can not or will not be successfully deployed (for whatever factors),
 it is useless. This absolute primacy of a viable deployment model is
 what has lead to some painful compromises in the design.

 The extreme focus on a viable deployment scheme is one of the
 novelties of LISP.

3.1. Economics

 The key factor in successful adoption, as shown by recent experience
 in the Internet - and little appreciated to begin with, some decades
 back - is economics: does the new design have benefits which outweigh
 its costs.

 More importantly, this balance needs to hold for early adopters -
 because if they do not receive benefits to their adoption, the sphere
 of earliest adopters will not expand, and it will never get to
 widespread deployment. One might have the world's best 'clean-slate'
 design, but if it does not have a deployment plan which is
 economically feasible, it's not good for much.

 This is particularly true of architectural enhancements, which are
 far less likely to be an addition which one can 'bolt onto the side'
 of existing mechanisms, and often offer their greatest benefits only
 when widely (or ubiquitously) deployed.

 Maximizing the cost-benefit ratio obviously has two aspects. First,
 on the cost side, by making the design as inexpensive as possible,
 which means in part making the deployment as easy as possible.
 Second, on the benefit side, by providing many new capabilities,
 which is best done not by loading the design up with lots of features
 or options (which adds complexity), but by making the addition
 powerful through deeper flexibility. We believe LISP has met both of

 these goals.

3.2. Maximize Re-use of Existing Mechanism

 One key part of reducing the cost of a new design is to absolutely
 minimize the amount of change _required_ to existing, deployed,
 devices: the fewer devices need to be changed, and the smaller the
 change to those that do, the lower the pain (and thus the greater the
 likelihood) of deployment.

 Designs which absolutely require 'forklift upgrades' to large amounts
 of existing gear are far less likely to succeed - because they have
 to have extremely large benefits to make their very substantial costs
 worthwhile.

 It is for this reason that LISP, in most cases, initially requires no
 changes to almost all existing devices in the Internet (both hosts
 and routers); LISP functionality is needed in only a few places (see

Section 11.1 for more).

 LISP also initially reuses, where-ever possible, existing protocols
 (IPv4 [RFC791] and IPv6 [RFC2460]). The 'initially' must be stressed
 - careful attention has also long been paid to the long-term future
 (see [Future]), and larger changes become feasible as deployment
 increases.

3.3. 'Self-Deployment'

 LISP has deliberately employed a rather different deployment model,
 which we might call 'self-deployment' (for want of a better term); it
 does not require a huge push to get it deployed, rather, it is hoped
 that once people see it and realize they can easily make good use of
 it _on their own_ (i.e. without requiring adoption by others), it
 will 'deploy itself' (hence the name of the approach).

 One can liken the problem of deploying new systems in this way to
 rolling a snowball down a hill: unless one starts with a big enough
 snowball, and finds a hill of the right steepness (i.e. the right
 path for it to travel), one's snowball is not going to go anywhere on
 its own. However, if one has picked one's spot correctly, once
 started, little additional work is needed.

4. LISP Overview

 LISP is an incrementally deployable architectural upgrade to the
 existing Internet infrastructure, one which provides separation of
 location and identity. The separation is usually not perfect, for
 reasons which are driven by the deployment philosophy (above), and
 explored in a little more detail elsewhere (in [Perspective], Section
 "Namespaces-EIDs-Residual").

 LISP separates the functions of location and identity of nodes (a

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2460

 nebulous term, deliberately chosen for use in this document precisely
 because its definition is not fixed - you will not go far wrong if
 you think of a node as being something like a host), which are
 currently intermingled in IPvN addresses. (This document uses the
 meaning for 'address' proposed in [Atkinson], i.e. a name with mixed
 location and identity semantics.)

4.1. Basic Approach

 In LISP, nodes have both a 'locator' (a name which says _where_ in
 the network's connectivity structure the node is), called an 'RLOC'
 (short for 'routing locator'), and an 'identifier' (a name which
 serves only to provide a persistent handle for the node), called an
 'EID' (short for 'endpoint identifier').

 A node may have more than one RLOC, or its RLOC may change over time
 (e.g. if the node is mobile), but it would normally always keep the
 same EID.

 Technically, one should probably say that ideally, the EID names the
 node (or rather, its end-end communication stack, if one wants to be
 as forward-looking as possible), and the RLOC(s) name interface(s).
 (At the moment, in reality, the situation is somewhat more complex,
 as will be explained elsewhere (in [Perspective], Section
 "Namespaces-EIDs-Residual".)

 This second distinction, of _what_ is named by the two classes of
 name, is necessary both to enable some of the capabilities that LISP
 provides (e.g the ability to seamlessly support multiple interfaces,
 to different networks), and is also a further enhancement to the
 architecture. Faailing to clearly recognize both interfaces and
 communication stacks as distinctly separate classes of things is
 another failing of the existing Internet architecture (again, one
 inherited from the previous generation of networking).

 A novelty in LISP is that it uses existing IPvN addresses (initially,
 at least) for both of these kinds of names, thereby minimizing the
 deployment cost, as well as providing the ability to easily interact
 with unmodified hosts and routers.

4.2. Basic Functionality

 The basic operation of LISP, as it currently stands, is that LISP
 augmented packet switches near the source and destination of packets
 intercept traffic, and 'enhance' the packets.

 The LISP device near the source looks up additional information about
 the destination, and then wraps the packet in an outer header, one
 which contains some of that additional information. The LISP device
 near the destination removes that header, leaving the original,
 unmodified, packet to be processed by the destination node.

 The LISP device near the original source (the Ingress Tunnel Router,
 or 'ITR') uses the information originally in the packet about the
 identity of its ultimate destination, i.e. the destination address,
 which in LISP is the EID of the ultimate destination. It uses the
 destination EID to look up the current location (the RLOC) of that
 EID.

 The lookup is performed through a 'mapping system', which is the
 heart of LISP: it is a distributed directory of mappings from EIDs to
 RLOCS. The destination RLOC will be (initially at least) the address
 of the LISP device near the ultimate destination (the Egress Tunnel
 Router, or 'ETR').

 {{Is it worth distinguishing between 'mapping' and 'binding'? Should
 the document pick one term, and stick with it?}}

 The ITR then generates a new outer header for the original packet,
 with that header containing the ultimate destination's RLOC as the
 wrapped packet's destination, and the ITR's own address (i.e. the
 RLOC of the original source) as the wrapped packet's source, and
 sends it off.

 When the packet gets to the ETR, that outer header is stripped off,
 and the original packet is forwarded to the original ultimate
 destination for normal processing.

 Return traffic is handled similarly, often (depending on the
 network's configuration) with the original ITR and ETR switching
 roles. The ETR and ITR functionality is usually co-located in a
 single device; these are normally denominated as 'xTRs'.

4.3. Mapping from EIDs to RLOCs

 The mappings from EIDs to RLOCs are provided by a distributed (and
 potentially replicated) database, the mapping database, which is the
 heart of LISP.

 Mappings are requested on need, not (generally) pre-loaded; in other
 words, mapping are distributed via a 'pull' mechanism. Once obtained
 by an ITR, they are cached by the ITR, to limit the amount of control
 traffic to a practicable level. (The mapping system will be
 discussed in more detail below, in Section 6.2 and Section 10)

 Extensive studies, including large-scale simulations driven by
 lengthy recordings of actual traffic at several major sites, have
 been performed to verify that this 'pull and cache' approach is
 viable, in practical engineering terms. (This subject will be
 discussed in more detail in Section 6.1.1, below.)

4.4. Interworking With Non-LISP-Capable Endpoints

 The capability for 'easy' interoperation between nodes using LISP,

 and existing non-LISP-using hosts (often called 'legacy' hosts) or
 sites (where 'site' is usually taken to mean a collection of hosts,
 routers and networks under a single administrative control), is
 clearly crucial.

 To allow such interoperation, a number of mechanisms have been
 designed. This multiplicity is in part because different mechanisms
 have different advantages and disadvantages (so that no single
 mechanism is optimal for all cases), but also because with limited
 field experience, it is not clear which (if any) approach will be
 preferable.

 One approach uses proxy LISP devices, called PITRs (proxy ITRs) and
 PETRs (proxy ETRs), to provide LISP functionality during interaction
 with legacy hosts. Another approach uses a device with combined LISP
 and NAT ([RFC1631]) functionality, named a LISP-NAT.

4.5. Security in LISP

 LISP has a subtle security philosophy; see [Perspective], Section
 "Security", where it is laid out in some detail.

 To provide a brief overview, it is definitely understood that LISP
 needs to be highly _securable_, especially in the long term; over
 time, the attacks mounted by 'bad guys' are becoming more and more
 sophisticated. So LISP, like DNS, needs to be _capable_ of providing
 'the very best' security there is.

 At the same time, there is a conflicting goal: it must be deployable.
 That means two things: First, with the limited manpower currently
 available, we cannot expect to create the complete security apparatus
 that we might see in the long term (which requires not just design,
 but also implementation, etc). Second, security needs to be
 flexible, so that we don't overload the users with more security than
 they need at any point.

 To accomplish these divergent goals, the approach taken is to
 thorougly analyze what LISP needs for security, and then design, in
 detail, a scheme for providing that security. Then, steps can be
 taken to ensure that the appropriate 'hooks' (such as packet fields)
 are included at an early stage, when doing so is still easy. Later
 on, the design can be fully specified, implemented, and deployed.

5. Initial Applications

 As previously mentioned, it is felt that LISP will provide even the
 earliest adopters with some useful capabilities, and that these
 capabilities will drive early LISP deployment.

 It is very imporant to note that even when used only for
 interoperation with existing unmodified hosts, use of LISP can still
 provide benefits for communications with the site which has deployed

https://datatracker.ietf.org/doc/html/rfc1631

 it - and, perhaps even more importantly, can do so _to both sides_.
 This characteristic acts to further enhance the utility for early
 adopters of deploying LISP, thereby increasing the cost/benefit ratio
 needed to drive deployment, and increasing the 'self-deployment'
 aspect of LISP.

 Note also that this section only lists likely _early_ applications
 and benefits - if and once deployment becomes more widespread, other
 aspects will come into play (as described in [Perspective], in the
 "Goals of LISP" section).

5.1. Provider Independence

 Provider independence (i.e. the ability to easily change one's
 Internet Service Provider) was probably the first place where the
 Internet engineering community finally really felt the utility of
 separating location and identity.

 The problem is simple: for the global routing to scale, addresses
 need to be aggregated (i.e. things which are close in the overall
 network's connectivity need to have closely related addresses), the
 so-called "provider aggregated" addresses. [RFC4116] However, if
 this principle is followed, it means that when an entity switches
 providers (i.e. it moves to a different 'place' in the network), it
 has to renumber, a painful undertaking. [RFC5887]

 In theory, it ought to be possible to update the DNS entries, and
 have everyone switch to the new addresses, but in practise, addresses
 are embedded in many places, such as firewall configurations at other
 sites.

 Having separate namespaces for location and identity greatly reduces
 the problems involved with renumbering; an organization which moves
 retains its EIDs (which are how most other parties refer to its
 nodes), but is allocated new RLOCs, and the mapping system can
 quickly provide the updated mapping from the EIDs to the new RLOCs.

5.2. Multi-Homing

 Multi-homing is another place where the value of separation of
 location and identity became apparent. There are several different
 sub-flavours of the multi-homing problem - e.g. depending on whether
 one wants open connections to keep working, etc - and other axes as
 well (e.g. site multi-homing versus host multi-homing).

 In particular, for the 'keep open connections up' case, without
 separation of location and identity, the only currently feasible
 approach is to use provider-independent addressses - which moves the
 problem into the global routing system, with attendant costs. This
 approach is also not really feasible for host multi-homing.

 Multi-homing was once somewhat esoteric, but a number of trends are

https://datatracker.ietf.org/doc/html/rfc4116
https://datatracker.ietf.org/doc/html/rfc5887

 driving an increased desirability, e.g. the wish to have multiple ISP
 links to a site for robustness; the desire to have mobile handsets
 connect up to multiple wireless systems; etc.

 Again, separation of location and identity, and the existince of a
 binding layer which can be updated fairly quickly, as provided by
 LISP, is a very useful tool for all variants of this issue.

5.3. Traffic Engineering

 Traffic engineering (TE) [RFC3272], desirable though this capability
 is in a global network, is currently somewhat problematic to provide
 in the Internet. The problem, fundamentally, is that this capability
 was not forseen when the Internet was designed, so the support for it
 via 'hacks' is neither clean, nor flexible.

 TE is, fundamentally, a routing issue. However, the current Internet
 routing architecture, which is basically the Baran design of fifty
 years ago [Baran] (a single large, distributed computationa), is ill-
 suited to provide TE. The Internet seems a long way from adopting a
 more-advanced routing architecture, although the basic concepts for
 such have been known for some time. [RFC1992]

 Although the identity-location binding layer is thus a poor place,
 architecturally, to provide TE capabilities, it is still an
 improvement over the current routing tools available for this purpose
 (e.g. injection of more-specific routes into the global routing
 table). In addition, instead of the entire network incurring the
 costs (through the routing system overhead), when using a binding
 layer to provide TE, the overhead is limited to those who are
 actually communicating with that particular destination.

 LISP includes a number of features in the mapping system to support
 TE. (Described in Section 6.2 below.)

 A number of academic papers have explored how LISP can be used to do
 TE, and how effective it can be. See the online LISP Bibliography
 ([Bibliography]) for information about them.

5.4. Routing

 Multi-homing and Traffic Engineering are both, in some sense, uses of
 LISP for routing, but there are many other routing-related uses for
 LISP.

 One of the major original motivations for the separation of location
 and identity in general, and thus LISP, was to reduce the growth of
 the routing tables in the so-called 'Default-Free-Zone' (DFZ) - the
 core of the Internet, the part where routes to _all_ ultimate
 destinations must be available. LISP is expected to help with this;
 for more detail, see Section 11.6, below.

https://datatracker.ietf.org/doc/html/rfc3272
https://datatracker.ietf.org/doc/html/rfc1992

 LISP may also have more local applications in which it can help with
 routing; see, for instance, [CorasBGP].

5.5. Mobility

 Mobility is yet another place where separation of location and
 identity is obviously a key part of a clean, efficient and high-
 functionality solution. Considerable experimentation has been
 completed on doing mobility with LISP.

5.6. IP Version Reciprocal Traversal

 Note that LISP 'automagically' allows intermixing of various IP
 versions for packet carriage; IPv4 packets might well be carried in
 IPv6, or vice versa, depending on the network's configuration. This
 would allow an 'island' of operation of one type to be
 'automatically' tunneled over a stretch of infrastucture which only
 supports the other type.

 While the machinery of LISP may seem too heavyweight to be good for
 such a mundane use, this is not intended as a 'sole use' case for
 deployment of LISP. Rather, it is something which, if LISP is being
 deployed anyway (for its other advantages), is an added benefit that
 one gets 'for free'.

5.7. Local Uses

 LISP has a number of use cases which are within purely local
 contexts, i.e. not in the larger Internet. These fall into two
 categories: uses seen on the Internet (above), but here on a private
 (and usually small scale) setting; and applications which do not have
 a direct analog in the larger Internet, and which apply only to local
 deployments.

 Among the former are multi-homing, IP version traversal, and support
 of VPN's for segmentation and multi-tenancy (i.e. a spatially
 separated private VPN whose components are joined together using the
 public Internet as a backbone).

 Among the latter class, non-Internet applications which have no
 analog on the Internet, are the following example applications:
 virtual machine mobility in data centers; other non-IP EID types such
 as local network MAC addresses, or application specific data.

6. Major Functional Subsystems

 LISP has only two major functional sub-systems - the collection of
 LISP packet switches (the xTRs), and the mapping system, which
 manages the mapping database. The purpose and operation of each is
 described at a high level below, and then, later on, in a fair amount
 of detail, in separate sections on each (Sections Section 9 and

Section 10, respectively).

6.1. xTRs

 xTRs are fairly normal packet switches, enhanced with a little extra
 functionality in both the data and control planes, to perform LISP
 data and control functionality.

 The data plane functions in ITRs include deciding which packets need
 to be given LISP processing (since packets to non-LISP hosts may be
 sent 'vanilla'); i.e. looking up the mapping; encapsulating the
 packet; and sending it to the ETR. This encapsulation is done using
 UDP [RFC768] (for reasons to be explained below, in Section 9.2),
 along with an additional IPvN header (to hold the source and
 destination RLOCs). To the extent that traffic engineering features
 are in use for a particular EID, the ITRs implement them as well.

 In the ETR, the data plane simply unwraps the packets, and forwards
 the now-normal packets to the ultimate destination.

 Control plane functions in ITRs include: asking for {EID->RLOC}
 mappings via Map-Request control messages; handling the returning
 Map-Replies which contain the requested information; managing the
 local cache of mappings; checking for the reachability and liveness
 of their neighbour ETRs; and checking for outdated mappings and
 requesting updates.

 In the ETR, control plane functions include participating in the
 neighbour reachability and liveness function (see Section 12.4);
 interacting with the mapping sub-system (next section); and answering
 requests for mappings (ditto).

6.1.1. Mapping Cache Performance

 As mentioned, studies have been performed to verify that caching
 mappings in ITRs is viable, in practical engineering terms. These
 studies not only verified that such caching is feasible, but also
 provided some insight for designing ITR mapping caches.

 Obviously, these studies are all snapshots of a particular point in
 time, and as the Internet continues its life-cycle they will
 increasingly become out-dated. However, they are useful because they
 provide an insight into how well LISP can be expected to perform, and
 scale, over time.

 The first, [Iannone], was performed in the very early stages of the
 LISP effort, to verify that that approach was feasible. First,
 packet traces of all traffic over the external connection of a large
 university (around 10,000 users) over a week-long period were
 collected. Simulations driven by these recording were then
 performed; a variety of control settings on the cache were used, to
 study the effects of varying the settings. The simulations set no
 limit on the total cache size, but used a range of cache retention

https://datatracker.ietf.org/doc/html/rfc768

 times (i.e. an entry that remained unused longer than a fixed
 retention time was discarded), from 3 minutes, up to 300 minutes.

 First, the simulation gave the cache sizes that would result from
 such a cache design. It showed that the resulting cache sizes ranged
 from 7,500 entries (at night, with the shortest retention time) up to
 about 100,000. Using some estimations as to i) how many RLOCs the
 average mapping would have (since this will affect its size), and ii)
 how much memory it would take to store a mapping, this indicated
 cache sizes of between roughly 100 Kbytes and a few Mbytes.

 Of more interest, in a way, were the results regarding two important
 measurements of the effectiveness of the cache: i) the hit ratio
 (i.e. the share of references which could be satisified by the
 cache), and ii) the miss _rate_ (since control traffic overhead is
 one of the chief concerns when using a cache). These results were
 also encouraging: miss (and hence lookup) rates ranged (again,
 depending on the time of day, cache settings, etc) from 30 per
 minute, up to 3,000 per minute (i.e. 150 per second; with the
 shortest timeout, and thus the smallest cache). Significantly, this
 was substantially lower than the amount of observed DNS traffic,
 which ranged from 1,800 packets per minute up to 15,000 per minute.

 The second, [Kim], was in general terms similar, except that it used
 data from a large ISP (taken over two days, at different times of the
 year), one with about three times as many users as the previous
 study. It used the same cache design philosophy (the cache size was
 not fixed), but slightly different, lower, retention time values: 60
 seconds, 180 seconds, and 1,800 seconds (30 minutes), since the
 previous study had indicated that extremely long times (hours) had
 little additional benefit.

 The results were similar: cache sizes ranges from 20,000 entries with
 the shortest timeout, to roughly 60,000 with the longest; the miss
 rate ranged from very roughly 400 per minute (with the longest
 timeout) to very roughly 7,000 per minute (with the shortest),
 similar to the previous results.

 Finally, a third study, [CorasCache], examined the effect of using a
 fixed size cache, and a purely Least Recently Used (LRU) cache
 eviction algorithm (i.e. no timeouts). It also tried to verify that
 models of the performance of such a cache (using previous theoretical
 work on caches) produced results that conformed with actual empirical
 measurements.

 It used yet another set of packet traces (some from an earlier study,
 [Jakab]). Using a cache size of around 50,000 entries produced a
 miss rate of around 1x10-4; again, definitely viable, and in line
 with the results of the other studies.

6.2. Mapping System

 The mapping database is a distributed, and potentially replicated,
 database which holds mappings between EIDs (identity) and RLOCs
 (location). To be exact, it contains mappings between EID blocks and
 RLOCs (the block size is given explicitly, as part of the syntax).

 Support for blocks is both for minimizing the administrative
 configuration overhead, as well as for operational efficiency; e.g.
 when a group of EIDs are behind a single xTR.

 However, the block may be (and often is) as small as a single EID.
 Since mappings are only loaded upon demand, if smaller blocks become
 predominant, then the increased size of the overall database is far
 less problematic than if the routing table came to be dominated by
 such small entries.

 A particular node may have more than one RLOC, or may change its
 RLOC(s), while keeping its singlar identity.

 The mapping contains not just the RLOC(s), but also (for each RLOC
 for any given EID) priority and weight (to allow allocation of load
 between several RLOCs at a given priority); this allows a certain
 amount of traffic engineering to be accomplished with LISP.

6.2.1. Mapping System Organization

 The mapping system is actually split into what are effectively three
 major functional sub-systems (although the latter two are closely
 integrated, and appear to most entities in the LISP system as a
 single sub-system).

 The first covers the actual mappings themselves; they are held by the
 ETRs, and an ITR which needs a mapping gets it (effectively) directly
 from the ETR. This co-location of the authoritative version of the
 mappings, and the forwarding functionality which it describes, is an
 instance of fate-sharing. [Clark]

 To find the appropriate ETR(s) to query for the mapping, the second
 two sub-systems form an 'indexing system', itself also a distributed,
 potentally replicated database. It provides information on which
 ETR(s) are authoritative sources for the various {EID -> RLOC}
 mappings which are available. The two sub-systems which form it are
 the user interface sub-system, and indexing sub-system (which holds
 and provides the actual information).

6.2.2. Interface to the Mapping System

 The client interface to the indexing system from an ITR's point of
 view is not with the indexing sub-system directly; rather, it is
 through the client-interface sub-system, which is provied by devices
 called Map Resolvers (MRs).

 ITRs send request control messages (Map-Request packets) to an MR.
 (This interface is probably the most important standardized interface
 in LISP - it is the key to the entire system.)

 The MR then uses the indexing sub-system to allow it to forward the
 Map-Request to the appropriate ETR. The ETR formulates reply control
 messages (Map-Reply packets), which are sent to the ITR. The details
 of the indexing system are thus hidden from the ITRs.

 Similarly, the client interface to the indexing system from an ETR's
 point of view is through devices called Map Servers (MSs - admittedly
 a poorly chosen term, since their primary function is not to respond
 to queries, but it's too late to change it now).

 ETRs send registration control messages (Map-Register packets) to an
 MS, which makes the information about the mappings which the ETR
 indicates it is authoritative for available to the indexing system.
 The MS formulates a reply control message (the Map-Notify packet),
 which confirms the registration, and is returned to the ETR. The
 details of the indexing system are thus likewise hidden from the
 'ordinary' ETRs.

6.2.3. Indexing Sub-system

 The current indexing sub-system is the Delegated Database Tree (DDT),
 which is very similar to DNS. [DDT], [RFC1034] However, unlike DNS,
 the actual mappings are not handled by DDT; DDT (as part of the
 indexing system) merely identifies the ETRs which hold the actual
 mappings.

 DDT replaced an earlier indexing sub-system, ALT ([Perspective],
 section "Appendices-ALT"); this swap validated the concept of having
 a separate client-interface sub-system, which would allow the actual
 indexing sub-system to be replaced without needing to modify the
 clients.

6.2.3.1. DDT Overview

 Conceptually, DDT is fairly simple: like DNS, in DDT the delegation
 of the EID namespace ([Perspective], Section "Namespaces-XEIDs") is
 instantiated as a tree of DDT 'nodes', starting with the 'root' DDT
 node. Each node is responsible (authoritative?) for one or more
 blocks of the EID namespace.

 The 'root' node is reponsible for the entire namespace; any DDT node
 can 'delegate' part(s) of its block(s) of the namespace to child DDT
 node(s). The child node(s) can in turn further delgate (necessarily
 smaller) blocks of namespace to their children, through as many
 levels as are needed (for operational, administrative, etc, needs).

 Just as with DNS, for reasons of performance, reliability and
 robustness, any particular node in the DDT delegation tree may be

https://datatracker.ietf.org/doc/html/rfc1034

 instantiated in more than one redundant physical server machines.
 Obviously, all the servers which instantiate a particular node in the
 tree have to have identical data about that node.

 Also, although the delegation hierarchy is a strict tree {{check - do
 all servers for the delegation of block X have to return the same
 list of servers for that block?}}, a single DDT server could be
 responsible (authoritative?) for more than one block of the EID
 namespace.

 Eventually, leaf nodes in the DDT tree assign ({{delegate? - it's all
 static configured, nothing is dynamic}}) EID namespace blocks to
 MS's, which are DDT terminal nodes; i.e. a leaf of the tree is
 reached when the delegation points to an MS instead of to another DDT
 node.

 The MS is in direct communication with the ETR(s) which both i) are
 authoritative for the mappings for that block, and ii) handle traffic
 to that block of EID namespace.

6.2.3.2. Use of DDT by MRs

 An MR which wants to find a mapping for a particular EID first
 interacts with the nodes of the DDT tree, discovering (by querying
 DDT nodes) the chain of delegations which cover that EID. Eventually
 it is directed to an MS, and then to an ETR which is responsible
 {{authoritative?}} for that EID.

 Also, again like DNS, MRs cache information about the delegations in
 the DDT tree. This means that once an MR has been in operation for
 while, it will usually have much of the delegation information cached
 locally (especially the top levels of the delegation tree). This
 allows them, when passed a request for a mapping by an ITR, to
 usually forward the mapping request to the appropriate MS without
 having to do a complete tree-walk of the DDT tree to find any
 particular mappping.

 Thus, a typical resolution cycle would usually involve looking at
 some locally cached delegation information, perhaps loading some
 missing delegation entries into their delegation cache, and finally
 sending the Map-Request to the appropriate MS.

 The big advantage of DDT over the ALT, in performance terms, is that
 it allows MRs to interact _directly_ with distant DDT nodes (as
 opposed to the ALT, which _always_ required mediation through
 intermediate nodes); caching of information about those distant nodes
 allows DDT to make extremely effective use of this capability.

7. Examples of Operation

 To aid in comprehension, a few examples are given of user packets
 traversing the LISP system. The first shows the processing of a

 typical user packet, i.e. what the vast majority of user packets will
 see. The second shows what happens when the first packet to a
 previously-unseen ultimate destination (at a particular ITR) is to be
 processed by LISP.

7.1. An Ordinary Packet's Processing

 This case follows the processing of a typical user packet (for
 instance, a normal TCP data or acknowledgment packet associated with
 an already-open TCP connection) as it makes its way from the original
 source host to the ultimate destination.

 When the packet has made its way through the local site to an ITR
 (which is also a border router for the site), the border router looks
 up the desination address (an EID) in its local mapping cache. It
 finds a mapping, which instructs it to wrap the packet in an outer
 header (an IP packet, containing a UDP packet which contains a LISP
 header, and then the user's original packet). The destination
 address in the outer header is set by the ITR to the RLOC of the
 destination ETR.

 The packet is then sent off through the Internet, using normal
 Internet routing tables, etc.

 On arrival at the destination ETR, the ETR will notice that it is
 listed as the destination in the outer header. It will examine the
 packet, detect that it is a LISP packet, and unwrap it. It will then
 examine the header of the user's original packet, and forward it
 internally, through the local site, to the ultimate destination.

 At the ultimate destination, the packet will be processed, and may
 produce a return packet, which follows the exact same process in
 reverse - with the exception that the roles of the ITR and ETR are
 swapped.

7.2. A Mapping Cache Miss

 If a host sends a packet, and it gets to the ITR, and the ITR both i)
 determines that it needs to perform LISP processing on the user data
 packet, but ii) does not yet have a mapping cache entry which covers
 that destination EID, then more complex processing ensues.

 It sends a Map-Request packet, giving the destination EID it needs a
 mapping for, to its MR. The MR will look in its cache of delegation
 information to see if it has the RLOC for the ETR for that
 destination EID. If not, it will query the DDT system to find the
 RLOC of the ETR. When it has the RLOC, it will send the Map-Request
 on to the ETR.

 The ETR sends a Map-Reply to the ITR which needs the mapping; from
 then on, processing of user packets through that ITR to that ultimate
 destination proceeds as above. (Typically, like many ARP

 implementations, the original user packet will have been discarded,
 not cached waiting for the mapping to be found. When the host
 retransmits the packet, the mapping will be there, and the packet
 will be forwarded.)

8. Design Approach

 Before describing LISP's components in more detail below, it it worth
 pointing out that what may seem, in some cases, like odd (or poor)
 design approaches do in fact result from the application of a
 thought-through, and consistent, design philosophy used in creating
 them.

 This design philosophy is covered in detail in in [Perspective],
 Section "Design"), and readers who are interested in the 'why' of
 various mechanisms should consult that; reading it may make clearer
 the reasons for some engineering choices in the mechanisms given
 here.

9. xTRs

 As mentioned above (in Section 6.1), xTRs are the basic data-handling
 devices in LISP. This section explores some advanced topics related
 to xTRs.

 Careful rules have been specified for both TTL and ECN [RFC3168] to
 ensure that passage through xTRs does not interfere with the
 operation of these mechanisms. In addition, care has been taken to
 ensure that 'traceroute' works when xTRs are involved.

9.1. When to Encapsulate

 An ITR knows that an ultimate destination is 'running' LISP (remember
 that the destination machine itself probably knows nothing about
 LISP), and thus that it should perform LISP processing on a packet
 (including potential encapsulation) if it has an entry in its local
 mapping cache that covers the destination EID.

 Conversely, if the cache contains a 'negative' entry (indicating that
 the ITR has previously attempted to find a mapping that covers this
 EID, and it has been informed by the mapping system that no such
 mapping exists), it knows the ultimate destination is not running
 LISP, and the packet can be forwarded normally.

 Note that the ITR cannot simply depend on the appearance, or non-
 appearance, of the destination in the routing tables in the DFZ, as a
 way to tell if an ultimate destination is a LISP node or not, because
 mechanisms to allow interoperation of LISP sites and 'legacy' sites
 necessarily involve advertising LISP sites' EIDs into the DFZ.

9.2. UDP Encapsulation Details

https://datatracker.ietf.org/doc/html/rfc3168

 The UDP encapsulation used by LISP for carrying traffic from ITR to
 ETR, and many of the details of how it works, were all chosen for
 very practical reasons.

 Use of UDP (instead of, say, a LISP-specific protocol number) was
 driven by the fact that many devices filter out 'unknown' protocols,
 so adopting a non-UDP encapsulation would have made the initial
 deployment of LISP harder - and our goal (see Section 3.1) was to
 make the deployment as easy as possible.

 The UDP source port in the encapsulated packet is a hash of the
 original source and ultimate destination; this is because many ISPs
 use multiple parallel paths (so-called 'Equal Cost Multi-Path'), and
 load-share across them. Using such a hash in the source-port in the
 outer header both allows LISP traffic to be load-shared, and also
 ensures that packets from individual connections are delivered in
 order (since most ISPs try to ensure that packets for a particular
 {source, source port, destination, destination port} tuple flow along
 a single path, and do not become disordered)..

 The UDP checksum is zero because the inner packet usually already has
 a end-end checksum, and the outer checksum adds no value. [Saltzer]
 In most exising hardware, computing such a checksum (and checking it
 at the other end) would also present an intolerable load, for no
 benefit.

9.3. Header Control Channel

 LISP provides a multiplexed channel in the encapsulation header. It
 is mostly (but not entirely) used for control purposes. (See
 [Perspective], Section "Architecture-Piggyback" for a longer
 discussion of the architectural implications of performing control
 functions with data traffic.)

 The general concept is that the header starts with an 8-bit 'flags'
 field, and it also includes two data fields (one 24 bits, one 32),
 the contents and meaning of which vary, depending on which flags are
 set. This allows these fields to be 'multiplexed' among a number of
 different low-duty-cycle functions, while minimizing the space
 overhead of the LISP encapsulation header.

9.3.1. Mapping Versioning

 One important use of the multiplexed control channel is mapping
 versioning; i.e. the discovery of when the mapping cached in an ITR
 is outdated. To allow an ITR to discover this, identifying sequence
 numbers are applied to different versions of a mappping.
 [Versioning] This allows an ITR to easily discover when a cached
 mapping has been updated by a more recent variant.

 Version numbers are available in control messages (Map-Replies), but

 the initial concept is that to limit control message overhead, the
 versioning mechanism should primarily use the multiplex user data
 header control channel.

 Versioning can operate in both directions: an ITR can advise an ETR
 what version of a mapping it is currently using (so the ETR can
 notify it if there is a more recent version), and ETRs can let ITRs
 know what the current mapping version is (so the ITRs can request an
 update, if their copy is outdated).

 At the moment version numbers are manually assigned, and ordered.
 Some felt that this was non-optimal, and that a better approach would
 have been to have 'fingerprints' which were computed from the current
 mapping data (i.e. a hash). It is not clear that the ordering buys
 much (if anything), and the potential for mishaps with manually
 configured version numbers is self-evident.

9.3.2. Echo Nonces

 Another important use of the header control channel is for a
 mechanism known as the Nonce Echo, which is used as an efficient
 method for ITRs to check the reachability of correspondent ETRs.

 Basically, an ITR which wishes to ensure that an ETR is up, and
 reachable, sends a nonce to that ETR, carried in the encapsulation
 header; when that ETR (acting as an ITR) sends some other user data
 packet back to the ITR (acting in turn as an ETR), that nonce is
 carried in the header of that packet, allowing the original ITR to
 confirm that its packets are reaching that ETR.

 Note that lack of a response is not necessarily _proof_ that
 something has gone wrong - but it stronly suggests that something
 has, so other actions (e.g. a switch to an alternative ETR, if one is
 listed; a direct probe; etc) are advised.

 (See Section 12.5 for more about Echo Nonces.)

9.3.3. Instances

 Another use of these header fields is for 'Instances' - basically,
 support for VPN's across backbones. [RFC4026] Since there is only
 one destination UDP port used for carriage of user data packets, and
 the source port is used for multiplexing (above), there is no other
 way to differentiate among different destination address namespaces
 (which are often overlapped in VPNs).

9.4. Probing

 RLOC-Probing (see [LISP], Section 6.3.2. "RLOC-Probing Algorithm"
 for details) is a mechanism method that an ITR can use to determine
 with certainty that an ETR is up and reachable from the ITR. As a
 side-benfit, it gives a rough RTT estimates.

https://datatracker.ietf.org/doc/html/rfc4026

 It is quite a simple mechanism - an ITR simply sends a specially
 marked Map-Request directly to the ETR it wishes information about;
 that ETR sends back a specially marked Map-Reply. A Map-Request and
 Map-Reply are used, rather than a special probing control-message
 pair, because as a side-benefit the ITR can discover if the mapping
 has been updated since it cached it.

 The probing mechanism is rather heavy-weight and expensive (compared
 to mechanisms like the Echo-Nonce), since it costs a control message
 from each side, so it should only be used sparingly. However, it has
 the advantages of providing information quickly (a single RTT), and
 being a simple, direct robust way of doing so.

9.5. Mapping Lifetimes and Timeouts

 Mappings come with a Time-To-Live, which indicate how long the
 creator of the mapping expects them to be useful for. The TTL may
 also indicate that the mapping should not be cached at all, or it can
 indicate that it has no particular lifetime, and the recipient can
 chose how long to store it.

 Mappings might also be discarded before the TTL expires, depending on
 what strategies the ITR is using to maintain its cache; if the
 maximum cache size is fixed, or the ITR needs to reclaim memory,
 mappings which have not been used 'recently' may be discarded.
 (After all, there is no harm in so doing; a future reference will
 merely cause that mapping to be reloaded.)

9.6. Security of Mapping Lookups

 LISP provides an optional mechanism to secure the obtaining of
 mappings by an ITR. [LISP-SEC] It provides protection against
 attackers generating spurious Map-Reply messages (including replaying
 old Map-Replies), and also against 'over-claiming' attacks (where a
 malicious ETR by claims EID-prefixes which are larger what what have
 been actually delegated to it).

 Very briefly, the ITR provided a One-Time Key with its query; this
 key is used by both the MS (to verify the EID block that it has
 delegated to the ETR), and indirectly by the ETR (to verify the
 mapping that it is returning to the ITR).

 The specification for LISP-SEC suggests that the ITR-MR stage be
 cryptographically protected, and indicates that the existing
 mechanisms for securing the ETR-MS stage are used to protect Map-
 Rquests also. It does assume that the channel from the MR to the MS
 is secure (otherwise an attacker could obtain the OTK from the Map-
 Request and use it to forge a reply).

9.7. Mapping Gleaning in ETRs

 As an optimization to the mapping acquisition process, ETRs are
 allowed to 'glean' mappings from incoming user data packets, and also
 from incoming Map-Request control messages. {{Is this still there?
 Check the latest version of the spec.}} This is not secure, and so
 any such mapping must be 'verified' by sending a Map-Request to get
 an authoritative mapping. (See further discussion of the security
 implications of this in [Perspective], Section "Security-xTRs".)

 The value of gleaning is that most communications are two-way, and so
 if host A is sending packets to host B (therefore needing B's
 EID->RLOC mapping), very likely B will soon be sending packets back
 to A (and thus needing A's EID->RLOC mapping). Without gleaning,
 this would sometimes result in a delay, and the dropping of the first
 return packet; this is felt to be very undesirable.

9.8. Fragmentation

 Several mechanisms have been proposed for dealing with packets which
 are too large to transit the path from a particular ITR to a given
 ETR.

 One, called the 'stateful' approach, keeps a per-ETR record of the
 maximum size allowed, and sends an ICMP Too Big message to the
 original source host when a packet which is too large is seen.

 In the other, referred to as the 'stateless' approach, for IPv4
 packets without the 'DF' bit set, too-large packets are fragmented,
 and then the fragments are forwarded; all other packets are
 discarded, and an ICMP Too Big message returned.

 It is not clear at this point which approach is preferable.

10. The Mapping System

RFC 1034 ("DNS Concepts and Facilities") has this to say about the
 DNS name to IP address mapping system:

 "The sheer size of the database and frequency of updates suggest
 that it must be maintained in a distributed manner, with local
 caching to improve performance. Approaches that attempt to
 collect a consistent copy of the entire database will become more
 and more expensive and difficult, and hence should be avoided."

 and this observation applies equally to the LISP mapping system.

 To recap, the mapping system is split into an indexing sub-system,
 which keeps track of where all the mappings are kept, and the
 mappings themselves, the authoritative copies of which are always
 held by ETRs.

10.1. The Mapping System Interface

https://datatracker.ietf.org/doc/html/rfc1034

 As mentioned in Section 6.2.2, both of the inferfaces to the mapping
 system (from ITRs, and ETRs) are standardized, so that the more
 numerous xTRs do not have to be modified when the mapping indexing
 sub-system is changed.

 (This precaution has already allowed the mapping system to be
 upgraded during LISP's evolution, when ALT was replaced by DDT.)

 This section describes the interfaces in a little more detail; for
 the details, see [MapInterface].

10.1.1. Map-Request Messages

 The Map-Request message contains a number of fields, the two most
 important of which are the requested EID block identifier (remember
 that individual mappings may cover a block of EIDs, not just a single
 EID), and the Address Family Identifier (AFI) for that EID block.
 [AFI] The inclusion of the AFI allows the mapping system interface
 (as embodied in these control packets) a great deal of flexibility.
 (See [Perspective], Section "Namespaces" for more on this.)

 Other important fields are the source EID (and its AFI), and one or
 more RLOCs for the source EID, along with their AFIs. Multiple RLOCs
 are included to ensure that at least one is in a form which will
 allow the reply to be returned to the requesting ITR, and the source
 EID is used for a variety of functions, including 'gleaning' (see

Section 9.7).

 Finally, the message includes a long nonce, for simple, efficient
 protection against offpath attackers (see [Perspective], Section
 "Security-xTRs" for more), and a variety of other fields and control
 flag bits.

10.1.2. Map-Reply Messages

 The Map-Reply message looks similar, except it includes the mapping
 entry for the requested EID(s), which contains one or more RLOCs and
 their associated data. (Note that the reply may cover a larger block
 of the EID namespace than the request; most requests will be for a
 single EID, the one which prompted the query.)

 For each RLOC in the entry, there is the RLOC, its AFI (of course),
 priority and weight fields (see Section 6.2), and multicast priority
 and weight fields.

10.1.2.1. Solicit-Map-Request Messages

 "Solicit-Map-Request" (SMR) messages are actually not another message
 type, but a sub-type of Map-Reply messages. They include a special
 flag which indicates to the recipient that it _should_ send a new
 Map-Request message, to refresh its mapping, because the ETR has
 detected that the one it is using is out-dated.

 SMR's, like most other control traffic, is rate-limited. {{Need to
 say more about rate limiting, probably in security section? Ref to
 that from here.}}

10.1.3. Map-Register and Map-Notify Messages

 The Map-Register message contains authentication information, and a
 number of mapping records, each with an individual Time-To-Live
 (TTL). Each of the records contains an EID (potentially, a block of
 EIDs) and its AFI, a version number for this mapping (see

Section 9.3.1), and a number of RLOCs and their AFIs.

 Each RLOC entry also includes the same data as in the Map-Replies
 (i.e. priority and weight); this is because in some circumstances it
 is advantageous to allow the MS to proxy reply on the ETR's behalf to
 Map-Request messages. [Mobility]

 Map-Notify messages have the exact same contents as Map-Register
 messages; they are purely acknowledgements.

10.2. The DDT Indexing Sub-system

 As previously mentioned Section 6.2.3, the indexing sub-system in
 LISP is currently the DDT system.

 The overall operation is fairly simple; an MR which needs a mapping
 starts at a server for the root DDT node (there will normally be more
 than one such server available, for both performance and robustness
 reasons), and through a combination of cached delegation information,
 and repetitive querying of a sequence of DDT servers, works its way
 down the delegation tree until it arrives at an MS which is
 authoritative (responsible?) for the block of EID namespace which
 holds the destination EID in question.

 The interaction between MRs and DDT servers is not complex; the MR
 sends the DDT server a Map-Request control message (which looks
 almost exactly like the Map-Request which an ITR sends to an MR).
 The DDT server uses its data (which is configured, and static) to see
 whether it is directly peered to an MS which can answer the request,
 or if it has a child (or children, if replicated) which is
 responsible for that portion of the EID namespace.

 If it has children which are responsible, it will reply to the MR
 with another kind of LISP control message, a Map-Referral message,
 which provides information about the delegation of the block
 containing the requested EID. The Map-Referral also gives the RLOCs
 of all the machines which are DDT servers for that block. and the MR
 can then send Map-Requests to any one (or all) of them.

 Control flags in the Map-Referral indicate to the querying MR whether
 the referral is to another DDT node, an MS, or an ETR. If the

 former, the MR then sends the Map-Request to the child DDT node,
 repeating the process.

 If the latter, the MR then interacts with that MS, and usually the
 block's ETR(s) as well, to cause a mapping to be sent to the ITR
 which queried the MR for it. (Recall that some MS's provide Map-
 Replies on behalf of an associated ETR, so in such cases the Map-
 Reply will come from the MS, not the ETR. {{I think this case has
 been mentioned already; check.}})

 Delegations are cached in the MRs, so that once an MR has received
 information about a delegation, it will not need to look that up
 again. Once it has been in operation for a short while, it will only
 need to ask for delegation information which is has not yet asked
 about - probably only the last stage in a delegation to a 'leaf' MS.

 As describe below (Section 10.6), significant amounts of modeling and
 performance measurement have been performed, to verify that DDT has
 (and will continue to have) acceptable performance.

10.2.1. Map-Referral Messages

 Map-Referral messages look almost identical to Map-Reply messages
 (which is felt to be an advantage by some people, although having a
 more generic record-based format would probably be better in the long
 run, as ample experience with DNS has shown), except that the RLOCs
 potentially name either i) other DDT nodes (children in the
 delegation tree), or ii) terminal MSs.

10.3. Reliability via Replication

 Everywhere throughout the mapping system, robustness to operational
 failures is obtained by replicating data in multiple instances of any
 particular node (of whatever type). Map-Resolvers, Map-Servers, DDT
 nodes, ETRs - all of them can be replicated, and the protocol
 supports this replication.

 The deployed DDT system actually uses anycast [RFC4786], along with
 replicated servers, to improve both performance and robustness.

 There are generally no mechanisms specified yet to ensure coherence
 between multiple copies of any particular data item, etc - this is
 currently a manual responsibility. If and when LISP protocol
 adoption proceeds, an automated layer to perform this functionality
 can 'easily' be layered on top of the existing mechanisms.

10.4. Security of the DDT Indexing Sub-system

 LISP provides an advanced model for securing the mapping indexing
 system, in line with the overall LISP security philosophy.

 Briefly, securing the mapping indexing system is broken into two

https://datatracker.ietf.org/doc/html/rfc4786

 parts: the interface between the clients of the system (MR's) and the
 mapping indexing system itself, and the interaction between the DDT
 nodes/servers which make it up.

 The client interface provides only a single model, using the
 'canonical' public-private key system (starting from a trust anchor),
 in which the child's public key is provided by the parent, along with
 the delegation. This requires very little configuration in the
 clients, and is fairly secure.

 The interface between the DDT nodes/servers allows for choices
 between a number of different options, allowing the operators to
 trade off among configuration complexity, security level, etc. This
 is based on experience with DNS-SEC ([RFC4033]), where configuration
 complexity in the servers has been a major stumbling block to
 deployment.

 See [Perspective], Section "Security-Mappings" for more.

10.5. Extended Tools

 In addition to the priority and weight data items in mappings, LISP
 offers other tools to enhance functionality, particularly in the
 traffic engineering area.

 One is 'source-specific mappings', i.e. the ETR may return different
 mappings to the enquiring ITR, depending on the identity of the ITR.
 This allows very fine-tuned traffic engineering, far more powerful
 than routing-based TE.

10.6. Performance of the Mapping System

 Prior to the creation of DDT, a large study of the performance of the
 previous mapping system, ALT ([ALT]), along with a proposed new
 design called TREE (which used DNS to hold delegation information)
 provided considerable insight into the likely performance of the
 mapping systems at larger scale. [Jakab] The basic structure and
 concepts of DDT are identical to those of TREE, so the performance
 simulation work done for that design applies aequally to DDT.

 In that study, as with earlier LISP performance analyses, extensive
 large-scale simulations were driven by lengthy recordings of actual
 traffic at several major sites; one was the site in the first study
 ([Iannone]), and the other was an even large university, with roughly
 35,000 users.

 The results showed that a system like DDT, which caches information
 about delegations, and allows the MR to communicate directly with the
 lower nodes on the delegation hierarchy based on cached delegation
 information, would have good performance, with average resolution
 times on the order of the MR to MS RTT. This verified the
 effectiveness of this particular type of indexing system.

https://datatracker.ietf.org/doc/html/rfc4033

 A more recent study, [Saucez], has measured actual resolution times
 in the deployed LISP network; it took measurements from a variety of
 locations in the Internet, with respect to a number of different
 target EIDs. Average measured resolution delays ranged from roughly
 175 msec to 225 msec, depending on the location.

11. Deployment Mechanisms

 This section discusses several deployment issues in more detail.
 With LISP's heavy emphasis on practicality, much work has gone into
 making sure it works well in the real-world environments most people
 have to deal with.

11.1. LISP Deployment Needs

 As mentioned earlier (Section 3.2), LISP requires no change to almost
 all existing hosts and routers. Obviously, however, one must deploy
 something to run LISP! Exactly what that has to be will depend
 greatly on the details of the site's existing networking gear.

 The primary requirement is for one or more xTRs. These may be
 existing routers, just with new software loads, or it may require the
 deployment of new devices.

 LISP also requires a small amount of LISP-specific support
 infrastructure, such as MRs, MSs, the DDT hierarchy, etc but much of
 this will either i) already be deployed, and if the new site can make
 arrangements to use it, it need do nothing else, or ii) those
 functions it must provide may be co-located in other LISP devices
 (again, either new devices, or new software on existing ones).

11.2. Internetworking Mechanism

 One aspect which has received a lot of attention are the mechanisms
 previously referred to (in Section 4.4) to allow interoperation of
 LISP sites with so-called 'legacy' sites which are not running LISP
 (yet).

 To briefly refresh what was said there, there are two main approaches
 to such interworking: proxy nodes (PITRs and PETRs), and an
 alternative mechanism using device with combined NAT and LISP
 functionality; these are described in more detail here.

11.3. Proxy Devices

 PITRs (proxy ITRs) serve as ITRs for traffic _from_ legacy hosts to
 nodes using LISP. PETRs (proxy ETRs) serve as ETRs for LISP traffic
 to legacy hosts (for cases where a LISP device cannot send packets
 directly to such hosts, without encapsulation).

 Note that return traffic _to_ a legacy host from a LISP-using node

 does not necessarily have to pass through an ITR/PETR pair - the
 original packets can usually just be sent directly to the ultimate
 destination. However, for some kinds of LISP operation (e.g. mobile
 nodes), this is not possible; in these situations, the PETR is
 needed.

11.3.1. PITRs

 PITRs (proxy ITRs) serve as ITRs for traffic _from_ legacy hosts to
 nodes using LISP. To do that, they have to advertise into the
 existing legacy backbone Internet routing the availability of
 whatever ranges of EIDs (i.e. of nodes using LISP) they are proxying
 for, so that legacy hosts will know where to send traffic to those
 LISP nodes.

 As mentioned previously (Section 9.1), an ITR at another LISP site
 can avoid using a PITR (i.e. it can detect that a given ultimate
 destination is not a legacy host, if a PITR is advertising it into
 the DFZ) by checking to see if a LISP mapping exists for that
 ultimate destination.

 This technique obviously has an impact on routing table in the DFZ,
 but it is not clear yet exactly what that impact will be; it is very
 dependent on the collected details of many individual deployment
 decisions.

 A PITR may cover a group of EID blocks with a single EID
 advertisement, in order to reduce the number of routing table entries
 added. (In fact, at the moment, aggressive aggregation of EID
 announcements is performed, precisely to to minimize the number of
 new announced routes added by this technique.)

 At the same time, if a site does traffic engineering with LISP
 instead of fine-grained BGP announcement, that will help keep table
 sizes down (and this is true even in the early stages of LISP
 deployment). The same is true for multi-homing.

11.3.2. PETRs

 PETRs (proxy ETRs) serve as ETRs for LISP traffic _to_ legacy hosts,
 for cases where a LISP device cannot send packets to such hosts
 without encapsulation. That typically happens for one of two
 reasons.

 First, it will happen in places where some device is implementing
 Unicast Reverse Path Forwarding (uRPF), to prevent a variety of
 negative behaviour; originating packets with the original source's
 EID in the source address field will result in them being filtered
 out and discarded.

 Second, it will happen when a LISP site wishes to send packets to a
 non-LISP site, and the path in between does not support the

 particular IP protocol version used by the original source along its
 entire length. Use of a PETR on the other side of the 'gap' will
 allow the LISP site's packet to 'hop over' the gap, by utilizing
 LISP's built-in support for mixed protocol encapsulation.

 PETRs are generally paired with specific ITRs, which have the
 location of their PETRs configured into them. In other words, unlike
 normal ETRS, PETRs do not have to register themselves in the mapping
 database, on behalf of any legacy sites they serve.

 Also, allowing an ITR to always send traffic leaving a site to a PETR
 does avoid having to chose whether or not to encapsulate packets; it
 can just always encapsulate packets, sending them to the PETR if it
 has no specific mapping for the ultimate destination. However, this
 is not advised: as mentioned, it is easy to tell if something is a
 legacy destination.

11.4. LISP-NAT

 A LISP-NAT device, as previously mentioned, combines LISP and NAT
 functionality, in order to allow a LISP site which is internally
 using addresses which cannot be globally routed to communicate with
 non-LISP sites elsewhere in the Internet. (In other words, the
 technique used by the PITR approach simply cannot be used in this
 case.)

 To do this, a LISP-NAT performs the usual NAT functionality, and
 translates a host's source address(es) in packets passing through it
 from an 'inner' value to an 'outer' value, and storing that
 translation in a table, which it can use to similarly process
 subsequent packets (both outgoing and incoming). [Interworking]

 There are two main cases where this might apply:
 - Sites using non-routable global addresses
 - Sites using private addresses [RFC1918]

11.5. Use Through NAT Devices

 Like them or not (and NAT devices have many egregious issues - some
 inherent in the nature of the process of mapping addresses; others,
 such as the brittleness due to non-replicated critical state, caused
 by the way NATs were introduced, as stand-alone 'invisible' boxes),
 NATs are both ubiquitous, and here to stay for a long time to come.

 Thus, in the actual Internet of today, having any new mechanisms
 function well in the presence of NATs (i.e. with LISP xTRs behind a
 NAT device) is absolutely necessary. LISP has produced a variety of
 mechanisms to do this.

11.5.1. First-Phase NAT Support

 The first mechanism used by LISP to operate through a NAT device only

https://datatracker.ietf.org/doc/html/rfc1918

 worked with some NATs, those which were configurable to allow inbound
 packet traffic to reach a configured host.

 A pair of new LISP control messages, LISP Echo-Request and Echo-
 Reply, allowed the ETR to discover its temporary global address; the
 Echo-Request was sent to the configured Map-Server, and it replied
 with an Echo-Reply which included the source address from which the
 Echo Request was received (i.e. the public global address assigned to
 the ETR by the NAT). The ETR could then insert that address in any
 Map-Reply control messages which it sent to correspondent ITRs.

 The fact that this mechanism did not support all NATs, and also
 required manual configuration of the NAT, meant that this was not a
 good solution; in addition, since LISP expects all incoming data
 traffic to be on a specific port, it was not possible to have
 multiple ETRs behind a single NAT (which normally would have only one
 global address to share, meaning port mapping would have to be used,
 except that...)

11.5.2. Second-Phase NAT Support

 For a more comprehensive approach to support of LISP xTR deployment
 behind NAT devices, a fairly extensive supplement to LISP, LISP NAT
 Traversal, has been designed. [LISP-NAT]

 A new class of LISP device, the LISP Re-encapsulating Tunnel Router
 (RTR), passes traffic through the NAT, both to and from the xTR.
 (Inbound traffic has to go through the RTR as well, since otherwise
 multiple xTRs could not operate behind a single NAT, for the
 'specified port' reason in the section above.)

 (Had the Map-Reply included a port number, this could have been
 avoided - although of course it would be possible to define a new
 RLOC type which included protocol and port, to allow other
 encapsulation techniques.)

 Two new LISP control messages (Info-Request and Info-Reply) allow an
 xTR to detect if it is behind a NAT device, and also discover the
 global IP address and UDP port assigned by the NAT to the xTR. A
 modification to LISP Map-Register control messages allows the xTR to
 initialize mapping state in the NAT, in order to use the RTR.

 This mechanism addresses cases where the xTR is behind a NAT, but the
 xTR's associated MS is on the public side of the NAT; this
 limitation, that MS's must be in the 'public' part of the Internet,
 seems reasonable.

11.6. LISP and DFZ Routing

 One of LISP's original motivations was to try and control the growth
 of the size of the so-called 'Default-Free-Zone' (DFZ), the core of
 the Internet, the part where routes to _all_ destinations must be

 available. As LISP becomes more widely deployed, it can help with
 this issue, in a variety of ways.

 In covering this topic, one must recognize that conditions in various
 stages of LISP deployment (in terms of ubiquity) will have a large
 influence. [Deployment] introduced useful terminology for this
 progression, in addition to some coverage of the topic (see Section

5, "Migration to LISP"):

 The loosely defined terms of "early transition phase", "late
 transition phase", and "LISP Internet phase" refer to time periods
 when LISP sites are a minority, a majority, or represent all edge
 networks respectively.

 In the early phases of deployment, two primary effects will allow
 LISP to have a positive impact on the routing table growth:
 - Using LISP for traffic engineering instead of BGP
 - Aggregation of smaller PI sites into a single PITR advertisement
 The first is fairly obvious (doing TE with BGP requires injecting
 more-specific routes into the DFZ routing tables, something doing TE
 with LISP avoids); the second is not guaranteed to happen (since it
 requires coordination among a number of different parties), and only
 time will tell if it does happen.

11.6.1. Long-term Possibilities

 At a later stage of the deployment, a more aggressive approach
 becomes available: taking part of the DFZ, one for which all 'stub'
 sites connected to it have deployed LISP, and removing all 'EID
 routes' (used for backwards compatability with 'legacy' sites); only
 RLOC routes would remain in the routing table in that part of the
 Internet backbone.

 Obviously there would be a boundary between the two parts of the DFZ,
 and the routers on the border would have to (effectively) become
 PITRs, and inject routes to all of the LISP sites 'behind' them into
 the 'legacy' DFZ (to coin a name for the part of the DFZ which, for
 reasons of interoperability with legacy sites, still carries EID
 routes).

 Note that it is likely not feasible to have the 'RLOC only' part of
 the DFZ in the 'middle' of the DFZ; that would require (effectively)
 EID routes to be removed from BGP on crossing the boundary _into_ the
 RLOC DFZ, but re-created on crossing the boundary _out_ of the RLOC
 DFZ. This is likely to be impractical, leading to the suggestion of
 a simpler boundary between the RLOC-only part of the DFZ, and the
 'legacy' DFZ.

 The mechanism for detecting which routes are 'EID routes' and which
 are 'RLOC routes' (required for the boundary routers to be able to
 filter out the 'EID routes') would also need to be worked out; the

 most likely appears to be something involving BGP attributes.

12. Fault Discovery/Handling

 LISP is, in terms of its functionality, a fairly simple system: the
 list of failure modes is thus not extensive.

12.1. Handling Missing Mappings

 Handling of missing mappings is fairly simple: the ITR calls for the
 mapping, and in the meantime can either discard traffic to that
 ultimate destination (as many ARP implementations do) [RFC826], or,
 if dropping the traffic is deemed undesirable, it can forward them
 via a 'default PITR'.

 A number of PITRs advertise all EID blocks into the backbone routing,
 so that any ITRs which are temporarily missing a mapping can forward
 the traffic to these default PITRs via normal transmission methods,
 where they are encapsulated and passed on.

12.2. Outdated Mappings

 If a mapping changes once an ITR has retrieved it, that may result in
 traffic to the EIDs covered by that mapping failing. There are three
 cases to consider:

 - When the ETR traffic is being sent to is still a valid ETR for
 that EID, but the mapping has been updated (e.g. to change the
 priority of various ETRs)
 - When the ETR traffic is being sent to is still an ETR, but no
 longer a valid ETR for that EID
 - When the ETR traffic is being sent to is no longer an ETR

12.2.1. Outdated Mappings - Updated Mapping

 A 'mapping versioning' system, whereby mappings have version numbers,
 and ITRs are notified when their mapping is out of date, has been
 added to detect this, and the ITR responds by refreshing the mapping.
 [Versioning]

12.2.2. Outdated Mappings - Wrong ETR

 If an ITR is holding a seriously outdated cached mapping, it may send
 packets to an ETR which is no longer an ETR for that EID.

 It might be argued that if the ETR is properly managing the lifetimes
 on its mapping entries, this 'cannot happen', but it is a wise design
 methodology to assume that 'cannot happen' events will in fact happen
 (as they do, due to software errors, or, on rare occasions, hardware
 faults), and ensure that the system will handle them properly (if,
 perhaps not in the most expeditious, or 'clean' way - they are, after
 all, very unlikely to happen).

https://datatracker.ietf.org/doc/html/rfc826

 ETRs can easily detect cases where this happpens, after they have un-
 wrapped a user data packet; in response, they send a Solicit-Map-
 Request to the source ITR to cause it to refresh its mapping.

12.2.3. Outdated Mappings - No Longer an ETR

 In another case for what can happen if an ITR uses an outdated
 mapping, the destination of traffic from an ITR might no longer be a
 LISP device at all. In such cases, one might get an ICMP Destination
 Unreachable error message. However, one cannot depend on that - and
 in any event, that would provide an attack vector, so it should be
 used with care. (See [LISP], Section 6.3, "Routing Locator
 Reachability" for more about this.)

 The following mechanism will work, though. Since the destination is
 not an ETR, the echoing reachability detection mechanism (see

Section 9.3.2) will detect a problem. At that point, the backstop
 mechanism, Probing, will kick in. Since the destination is still not
 an ETR, that will fail, too.

 At that point, traffic will be switched to a different ETR, or, if
 none are available, a reload of the mapping may be initiated.

12.3. Erroneous Mappings

 Again, this 'should not happen', but a good system should deal with
 it. However, in practise, should this happen, it will produce one of
 the prior two cases (the wrong ETR, or something that is not an ETR),
 and will be handled as described there.

12.4. Neighbour Liveness

 The ITR, like all packet switches, needs to detect, and react, when
 its next-hop neighbour ceases operation. As LISP traffic is
 effectively always unidirectional (from ITR to ETR), this could be
 somewhat problematic.

 Solving a related problem, neighbour reachability (below) subsumes
 handling this fault mode, however.

 Note that the two terms (liveness and reachability) are _not_
 synonmous (although a lot of LISP documentation confuses them).
 Liveness is a property of a node - it is either up and functioning,
 or it is not. Reachability is only a property of a particular _pair_
 of nodes.

 If packets sent from a first node to a second are successfully
 received at the second, it is 'reachable' from the first. However,
 the second node may at the very same time _not_ be reachable from
 some other node. Reachability is _always_ a ordered pairwise
 property, and of a specified ordered pair.

12.5. Neighbour Reachability

 A more significant issue than whether a particular ETR E is up or not
 is, as mentioned above, that although ETR E may be up, attached to
 the network, etc, an issue in the network between a source ITR I and
 E may prevent traffic from I from getting to E. (Perhaps a routing
 problem, or perhaps some sort of access control setting.)

 The one-way nature of LISP traffic makes this situation hard to
 detect in a way which is economic, robust and fast. Two out of the
 three are usually not to hard, but all three at the same time - as is
 highly desirable for this particular issue - are harder.

 In line with the LISP design philosophy ([Perspective], Section
 "Design-Theoretical"), this problem is attacked not with a single
 mechanism (which would have a hard time meeting all those three goals
 simultaneously), but with a collection of simpler, cheaper
 mechanisms, which collectively will usually meet all three.

 They are reliance on the underlying routing system (which can of
 course only reliably provide a negative reachabilty indication, not a
 positive one), the echo nonce (which depends on some return traffic
 from the destination xTR back to the source xTR), and finally direct
 'pinging', in the case where no positive echo is returned.

 (The last is not the first choice, as due to the large fan-out
 expected of LISP devices, reliance on it as a sole mechanism would
 produce a fair amount of overhead.)

13. Current Improvements

 In line with the philosophies laid out in Section 8, LISP is
 something of a moving target. This section discusses some of the
 contemporaneous improvements being made to LISP.

13.1. Improved NAT Support

13.2. Mobile Device Support

 Mobility is an obvious capability to provide with LISP. Doing so is
 relatively simple, if the mobile host is prepared to act as its own
 ETR. It obtains a local 'temporary use' address, and registers that
 address as its RLOC. Packets to the mobile host are sent to its
 temporary address, wherever that may be, and the mobile host first
 unwraps them (acting as an ETR), and the processes them normally
 (acting as a host).

 (Doing mobility without having the mobile host act as its ETR is
 difficult, even if ETRs are quite common. The reason is that if the
 ETR and mobile host are not integrated, during the step from the ETR
 to the mobile host, the packets must contain the mobile host's EID,

 and this may not be workable. If there is a local router between the
 ETR and mobile host, for instance, it is unlikely to know how to get
 the packets to the mobile host.)

 If the mobile host migrates to a site which is itself a LISP site,
 things get a little more complicated. The 'temporary address' it
 gets is itself an EID, requiring mapping, and wrapping for transit
 across the rest of the Internet. A 'double encapsulation' is thus
 required at the other end; the packets are first encapsulated with
 the mobile node's temporary address as their RLOC, and then this has
 to be looked up in a second lookup cycle (see Section 9.1), and then
 wrapped again, with the site's RLOC as their destination.

 This results in slight loss in maximum packet size, due to the
 duplicated headers, but on the whole it is considerably simpler than
 the alternative, which would be to re-wrap the packet at the site's
 ETR, when it is discovered that the ultimate destination's EID was
 not 'native' to the site. This would require that the mobile node's
 EID effectively have two different mappings, depending on whether the
 lookup was being performed outside the LISP site, or inside.

 {{Also probably need to mention briefly how the other end is notified
 when mappings are updated, and about proxy-Map-Replies.}} [Mobility]

13.3. Multicast Support

 Multicast may seem an odd thing to support with LISP, since LISP is
 all about separating identity from location, but although a multicast
 group in some sense has an identity, it certainly does not have _a_
 location.

 However, multicast is important to some users of the network, for a
 number of reasons: doing multiple unicast streams is inefficient; it
 is easy to use up all the upstream bandwidth, and without multicast a
 server can also be saturated fairly easily in doing the unicast
 replication. So it is important for LISP to 'play nicely' with
 multicast; work on multicast support in LISP is fairly advanced,
 although not far-ranging.

 Briefly, destination group addresses are not mapped; only the source
 address (when the original source is inside a LISP site) needs to be
 mapped, both during distribution tree setup, as well as actual
 traffic delivery. In other words, LISP's mapping capability is used:
 it is just applied to the source, not the destination (as with most
 LISP activity); the inner source is the EID, and the outer source is
 the EID's RLOC.

 Note that this does mean that if the group is using separate source-
 specific trees for distribution, there isn't a separate distribution
 tree outside the LISP site for each different source of traffic to
 the group from inside the LISP site; they are all lumped together

 under a single source, the RLOC.

 The approach currently used by LISP requires no packet format changes
 to existing multicast protocols. See [Multicast] for more;
 additional LISP multicast issues are discussed in [LISP], Section 12.

13.4. {{Any others?}}

14. Acknowledgments

 The author would like to start by thanking all the members of the
 core LISP group for their willingness to allow him to add himself to
 their effort, and for their enthusiasm for whatever assistance he has
 been able to provide.

 He would also like to thank (in alphabetical order) Vina Ermagan,
 Vince Fuller and Vasileios Lakafosis for their careful review of, and
 helpful suggestions for, this document. (If I have missed anyone in
 this list, I apologize most profusely.) A very special thank you
 goes to Joel Halpern, who, when asked, promptly returned comments on
 intermediate versions of this document. Grateful thanks go also to
 Darrel Lewis for his help with material on non-Internet uses of LISP,
 and to Vince Fuller and Dino Farinacci for answering detailed
 questions about some obscure LISP topics.

 A final thanks is due to John Wrocklawski for the author's
 organizational affiliation, and to Vince Fuller for help with XML.
 This memo was created using the xml2rfc tool.

 I would like to dedicate this document to the memory of my parents,
 who gave me so much, and whom I can no longer thank in person, as I
 would have so much liked to be able to.

15. IANA Considerations

 This document makes no request of the IANA.

16. Security Considerations

 This memo does not define any protocol and therefore creates no new
 security issues.

17. References

17.1. Normative References

 [RFC768] J. Postel, "User Datagram Protocol", RFC 768,
 August 1980.

 [RFC791] J. Postel, "Internet Protocol", RFC 791,
 September 1981.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791

 [RFC1498] J. H. Saltzer, "On the Naming and Binding of Network
 Destinations", RFC 1498, (Originally published in:
 "Local Computer Networks", edited by P. Ravasio et
 al., North-Holland Publishing Company, Amsterdam,
 1982, pp. 311-317.), August 1993.

 [RFC2460] S. Deering and R. Hinden, "Internet Protocol, Version
 6 (IPv6) Specification", RFC 2460, December 1998.

 [AFI] IANA, "Address Family Indicators (AFIs)", Address
 Family Numbers, January 2011, <http://www.iana.org/

assignments/address-family-numbers>.

 [LISP] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830,
 January 2013.

 [MapInterface] V. Fuller and D. Farinacci, "Locator/ID Separation
 Protocol (LISP) Map-Server Interface", RFC 6833,
 January 2013.

 [Versioning] L. Iannone, D. Saucez, and O. Bonaventure,
 "Locator/ID Separation Protocol (LISP) Map-
 Versioning", RFC 6834, January 2013.

 [Interworking] D. Lewis, D. Meyer, D. Farinacci, and V. Fuller,
 "Interworking between Locator/ID Separation Protocol
 (LISP) and Non-LISP Sites", RFC 6832, January 2013.

 [DDT] V. Fuller, D. Lewis, and D. Farinacci, "LISP
 Delegated Database Tree", draft-ietf-lisp-ddt-00
 (work in progress), October 2012.

 [Perspective] J. N. Chiappa, "An Architectural Perspective on the
 LISP Location-Identity Separation System",

draft-ietf-lisp-perspective-00 (work in progress),
 February 2013.

 [Future] J. N. Chiappa, "Potential Long-Term Developments With
 the LISP System", draft-chiappa-lisp-evolution-00
 (work in progress), October 2012.

 [LISP-SEC] F. Maino, V. Ermagan, A. Cabellos-Aparicio,
 D. Saucez, and O. Bonaventure, "LISP-Security (LISP-
 SEC)", draft-ietf-lisp-sec-04 (work in progress),
 October 2012.

 [LISP-NAT] V. Ermagan, D. Farinacci, D. Lewis, J. Skriver,
 F. Maino, and C. White, "NAT traversal for LISP",

draft-ermagan-lisp-nat-traversal-03 (work in
 progress), March 2013.

https://datatracker.ietf.org/doc/html/rfc1498
https://datatracker.ietf.org/doc/html/rfc2460
http://www.iana.org/assignments/address-family-numbers
http://www.iana.org/assignments/address-family-numbers
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc6833
https://datatracker.ietf.org/doc/html/rfc6834
https://datatracker.ietf.org/doc/html/rfc6832
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-ddt-00
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-perspective-00
https://datatracker.ietf.org/doc/html/draft-chiappa-lisp-evolution-00
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-sec-04
https://datatracker.ietf.org/doc/html/draft-ermagan-lisp-nat-traversal-03

 [Mobility] D. Farinacci, V. Fuller, D. Lewis, and D. Meyer,
 "LISP Mobility Architecture", draft-meyer-lisp-mn-07
 (work in progress), April 2012.

 [Multicast] D. Farinacci, D. Meyer, J. Zwiebel, and S. Venaas,
 "The Locator/ID Separation Protocol (LISP) for
 Multicast Environments", RFC 6831, January 2013.

 [Deployment] L. Jakab, A. Cabellos-Aparicio, F. Coras, J. Domingo-
 Pascual, and D. Lewis, "LISP Network Element
 Deployment Considerations",

draft-ietf-lisp-deployment-08 (work in progress),
 June 2013.

17.2. Informative References

 [NIC8246] A. McKenzie and J. Postel, "Host-to-Host Protocol for
 the ARPANET", NIC 8246, Network Information Center,
 SRI International, Menlo Park, CA, October 1977.

 [IEN19] J. F. Shoch, "Inter-Network Naming, Addressing, and
 Routing", IEN (Internet Experiment Note) 19,
 January 1978.

 [RFC826] D. Plummer, "Ethernet Address Resolution Protocol",
RFC 826, November 1982.

 [RFC1034] P. V. Mockapetris, "Domain Names - Concepts and
 Facilities", RFC 1034, November 1987.

 [RFC1631] K. Egevang and P. Francis, "The IP Network Address
 Translator (NAT)", RFC 1631, May 1994.

 [RFC1918] Y. Rekhter, R. Moskowitz, D. Karrenberg,
 G. J. de Groot, and E. Lear, "Address Allocation for
 Private Internets", RFC 1918, February 1996.

 [RFC1992] I. Castineyra, J. N. Chiappa, and M. Steenstrup, "The
 Nimrod Routing Architecture", RFC 1992, August 1996.

 [RFC3168] K. Ramakrishnan, S. Floyd, and D. Black, "The
 Addition of Explicit Congestion Notification (ECN) to
 IP", RFC 3168, September 2001.

 [RFC3272] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and
 X. Xiao, "Overview and Principles of Internet Traffic
 Engineering", RFC 3272, May 2002.

 [RFC4026] L. Andersson and T. Madsen, "Provider Provisioned
 Virtual Private Network (VPN) Terminology", RFC 4026,
 March 2005.

https://datatracker.ietf.org/doc/html/draft-meyer-lisp-mn-07
https://datatracker.ietf.org/doc/html/rfc6831
https://datatracker.ietf.org/doc/html/draft-ietf-lisp-deployment-08
https://datatracker.ietf.org/doc/html/rfc826
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1631
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1992
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3272
https://datatracker.ietf.org/doc/html/rfc4026

 [RFC4033] R. Arends, R. Austein, M. Larson, D. Massey, and
 S. Rose, "DNS Security Introduction and
 Requirements", RFC 4033, March 2005.

 [RFC4116] J. Abley, K. Lindqvist, E. Davies, B. Black, and
 V. Gill, "IPv4 Multihoming Practices and
 Limitations", RFC 4116, July 2005.

 [RFC4786] J. Abley and K. Lindqvist, "Operation of Anycast
 Services", RFC 4786, December 2006.

 [RFC4984] D. Meyer, L. Zhang, and K. Fall, "Report from the IAB
 Workshop on Routing and Addressing", RFC 4984,
 September 2007.

 [RFC5887] B. Carpenter, R. Atkinson, and H. Flinck,
 "Renumbering Still Needs Work", RFC 5887, May 2010.

 [RFC6115] T. Li, Ed., "Recommendation for a Routing
 Architecture", RFC 6115, February 2011.

 Perhaps the most ill-named RFC of all time; it
 contains nothing that could truly be called a
 'routing architecture'.

 [LISP0] D. Farinacci, V. Fuller, and D. Oran, "Locator/ID
 Separation Protocol (LISP)", draft-farinacci-lisp-00
 (work in progress), January 2007.

 [ALT] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis,
 "Locator/ID Separation Protocol Alternative Logical
 Topology (LISP+ALT)", RFC 6836, January 2013.

 [NSAP] International Organization for Standardization,
 "Information Processing Systems - Open Systems
 Interconnection - Basic Reference Model", ISO
 Standard 7489.1984, 1984.

 [Atkinson] R. Atkinson, "Revised draft proposed definitions",
 RRG list message, Message-Id: 808E6500-97B4-4107-
 8A2F-36BC913BE196@extremenetworks.com, 11 June 2007,
 <http://www.ietf.org/mail-archive/web/ram/current/

msg01470.html>.

 [Baran] P. Baran, "On Distributed Communications Networks",
 IEEE Transactions on Communications Systems Vol.
 CS-12 No. 1, pp. 1-9, March 1964.

 [Chiappa] J. N. Chiappa, "Endpoints and Endpoint Names: A
 Proposed Enhancement to the Internet Architecture",
 Personal draft (work in progress), 1999,
 <http://www.chiappa.net/~jnc/tech/endpoints.txt>.

https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4116
https://datatracker.ietf.org/doc/html/rfc4786
https://datatracker.ietf.org/doc/html/rfc4984
https://datatracker.ietf.org/doc/html/rfc5887
https://datatracker.ietf.org/doc/html/rfc6115
https://datatracker.ietf.org/doc/html/draft-farinacci-lisp-00
https://datatracker.ietf.org/doc/html/rfc6836
http://www.ietf.org/mail-archive/web/ram/current/msg01470.html
http://www.ietf.org/mail-archive/web/ram/current/msg01470.html
http://www.chiappa.net/~jnc/tech/endpoints.txt

 [Clark] D. D. Clark, "The Design Philosophy of the DARPA
 Internet Protocols", in 'Proceedings of the Symposium
 on Communications Architectures and Protocols SIGCOMM
 '88', pp. 106-114, 1988.

 [Heart] F. E. Heart, R. E. Kahn, S. M. Ornstein,
 W. R. Crowther, and D. C. Walden, "The Interface
 Message Processor for the ARPA Computer Network",
 Proceedings AFIPS 1970 SJCC, Vol. 36, pp. 551-567.

 [Bibliography] J. N. Chiappa (editor), "LISP (Location/Identity
 Separation Protocol) Bibliography", Personal
 site (work in progress), July 2013, <http://

www.chiappa.net/~jnc/tech/lisp/LISPbiblio.html>.

 [Iannone] L. Iannone and O. Bonaventure, "On the Cost of
 Caching Locator/ID Mappings", in 'Proceedings of the
 3rd International Conference on emerging Networking
 EXperiments and Technologies (CoNEXT'07)', ACM, pp.
 1-12, December 2007.

 [Kim] J. Kim, L. Iannone, and A. Feldmann, "A Deep Dive
 Into the LISP Cache and What ISPs Should Know About
 It", in 'Proceedings of the 10th International IFIP
 TC 6 Conference on Networking - Volume Part I
 (NETWORKING '11)', IFIP, pp. 367-378, May 2011.

 [CorasCache] F. Coras, A. Cabellos-Aparicio, and J. Domingo-
 Pascual, "An Analytical Model for the LISP Cache
 Size", in 'Proceedings of the 11th International IFIP
 TC 6 Networking Conference: Part I', IFIP, pp. 409-
 420, May 2012.

 [Jakab] L. Jakab, A. Cabellos-Aparicio, F. Coras, D. Saucez,
 and O. Bonaventure, "LISP-TREE: A DNS Hierarchy to
 Support the LISP Mapping System", in 'IEEE Journal on
 Selected Areas in Communications', Vol. 28, No. 8,
 pp. 1332-1343, October 2010.

 [Saucez] D. Saucez, L. Iannone, and B. Donnet, "A First
 Measurement Look at the Deployment and Evolution of
 the Locator/ID Separation Protocol", in 'ACM SIGCOMM
 Computer Communication Review', Vol. 43 No. 2, pp.
 37-43, April 2013.

 [CorasBGP] F. Coras, D. Saucez, L. Jakab, A. Cabellos-Aparicio,
 and J. Domingo-Pascual, "Implementing a BGP-free ISP
 Core with LISP", in 'Proceedings of the Global
 Communications Conference (GlobeCom)', IEEE, pp.
 2772-2778, December 2012.

http://www.chiappa.net/~jnc/tech/lisp/LISPbiblio.html
http://www.chiappa.net/~jnc/tech/lisp/LISPbiblio.html

 [Saltzer] J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-To-
 End Arguments in System Design", ACM TOCS, Vol 2, No.
 4, pp 277-288, November 1984.

Appendix A. Glossary/Definition of Terms

 - Address
 - Locator
 - EID
 - RLOC
 - ITR
 - ETR
 - xTR
 - PITR
 - PETR
 - MR
 - MS
 - DFZ

Appendix B. Other Appendices

B.1. Old LISP 'Models'

 LISP, as initilly conceived, had a number of potential operating
 modes, named 'models'. Although they are now obsolete, one
 occasionally sees mention of them, so they are briefly described
 here.

 - LISP 1: EIDs all appear in the normal routing and forwarding
 tables of the network (i.e. they are 'routable');this property is
 used to 'bootstrap' operation, by using this to load EID->RLOC
 mappings. Packets were sent with the EID as the destination in
 the outer wrapper; when an ETR saw such a packet, it would send a
 Map-Reply to the source ITR, giving the full mapping.
 - LISP 1.5: Similar to LISP 1, but the routability of EIDs happens
 on a separate network.
 - LISP 2: EIDs are not routable; EID->RLOC mappings are available
 from the DNS.
 - LISP 3: EIDs are not routable; and have to be looked up in in a
 new EID->RLOC mapping database (in the initial concept, a system
 using Distributed Hash Tables). Two variants were possible: a
 'push' system, in which all mappings were distributed to all ITRs,
 and a 'pull' system in which ITRs load the mappings they need, as
 needed.

B.2. Possible Other Appendices

 -- Location/Identity Separation Brief History
 -- LISP History

Author's Address

 J. Noel Chiappa
 Yorktown Museum of Asian Art
 Yorktown, Virginia
 USA

 EMail: jnc@mit.edu

